
Codes for Computationally Simple Channels:

Explicit Constructions with Optimal Rate

Venkatesan Guruswami∗ Adam Smith†

April 2010

Abstract

In this paper, we consider coding schemes for computationally bounded channels, which can
introduce an arbitrary set of errors as long as (a) the fraction of errors is bounded with high
probability by a parameter p and (b) the process which adds the errors can be described by
a sufficiently “simple” circuit. Codes for such channel models are attractive since, like codes
for traditional adversarial errors, they can handle channels whose true behavior is unknown or
varying over time.

For three classes of channels, we provide explicit, efficiently encodable/decodable codes of
optimal rate where only inefficiently decodable codes were previously known. In each case,
we provide one encoder/decoder that works for every channel in the class. The encoders are
randomized, and probabilities are taken over the (local, unknown to the decoder) coins of the
encoder and those of the channel.
Unique decoding for additive errors. We give the first construction of poly-time encod-
able/decodable binary codes for additive (a.k.a. oblivious) channels that achieve the Shannon
capacity 1−H(p). These are channels which add an arbitrary error vector e ∈ {0, 1}n of weight
at most pn to the transmitted word; the vector e can depend on the code but not on the par-
ticular transmitted word. Such channels capture binary symmetric errors and burst errors as
special cases.
List-decoding for log-space channels. A space-S(n) bounded channel reads and modifies
the transmitted codeword as a stream, using at most S(n) bits of workspace on transmissions
of n bits. For constant S, this captures many models from the literature, including discrete
channels with finite memory and arbitrarily varying channels. We give an efficient binary code
with optimal rate (up to 1−H(p)) that recovers a short list containing the correct message with
high probability for channels limited to logarithmic space.
List-decoding for poly-time channels. For any constant c, assuming the existence of pseu-
dorandom generators, we give a similar list-decoding result for channels describable by circuits
of size at most nc. We are not aware of any channel models considered in the information theory
literature (other than purely adversarial channels) which require more than nonuniform linear
time to implement.

∗Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213. guruswami@cmu.edu. Re-
search supported by a Packard Fellowship and NSF CCF 0953155.
†Computer Science & Engr. Dept, Pennsylvania State University, University Park, PA 16802. Supported by NSF

grants TF-0747294 and TF-0729171. asmith@cse.psu.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 77 (2010)

Contents

1 Introduction 1

1.1 Our results . 1

1.2 Techniques . 3

2 Background and Relation to Previous Work 4

3 Statements of Results 6

3.1 Codes for worst-case additive errors . 6

3.2 Codes for online log-space-bounded channels . 7

3.3 List-decoding for Time-bounded Channels . 8

4 Construction overview 8

5 List decoding implies codes for worst-case additive errors 10

5.1 Some coding terminology . 10

5.2 Algebraic manipulation detection (AMD) codes . 11

5.3 Combining list decodable and AMD codes . 12

6 Explicit Codes of Optimal Rate for Additive Errors 13

6.1 Ingredients . 13

6.2 Main theorem on codes for additive error . 16

6.3 Proofs of Lemmas used in Theorem 6.1 . 17

6.4 Completing the Proof of Main Theorem 6.1 . 19

7 Capacity-achieving codes for online space-bounded channels 20

7.1 Channel models and branching programs . 20

7.2 Nisan’s pseudorandom generator . 21

7.3 Code construction and ingredients . 21

7.4 Low-space pseudorandom stochastic code . 23

7.5 List decoding algorithm . 25

7.6 Analyzing Decoding: Main Steps . 26

7.7 Control Candidates Analysis . 26

7.8 Payload Decoding Analysis . 27

7.8.1 The Hiding Lemma . 27

7.8.2 Proof of the Hiding Lemma 7.9 . 28

7.8.3 Proof of Lemma 7.5 . 29

7.8.4 Proof of Lemma 7.11 . 29

8 Time-Bounded Channels 31

References 32

A Ingredients for Code Construction for Additive Errors 35

A.1 Constant rate codes for average error . 35

A.2 Reed-Solomon codes . 36

A.3 Pseudorandom constructs . 36

A.3.1 Samplers . 36

A.3.2 Almost t-wise independent permutations . 37

A.3.3 t-wise independent bit strings . 37

A.4 Capacity achieving codes for t-wise independent errors 37

B Capacity-achieving codes for average error 38

B.1 Codes for average error from stochastic codes for additive errors 38

B.2 Explicit capacity-achieving codes for average error 38

C Impossibility Results for Bit-Fixing Channels when p > 1
4 39

1 Introduction

For the binary symmetric channel BSCp which flips each transmitted bit independently with prob-
ability p < 1/2, the optimal rate of reliable transmission is known to be the Shannon capacity
1−H(p), where H(·) is the binary entropy function. Moreover, concatenated codes approach this
capacity and are efficiently decodable (Forney [11]). In contrast, for adversarial channels that can
corrupt up to a fraction p of symbols in an arbitrary manner, the optimal rate is unknown, though
it is known that the rate has to be much smaller than the Shannon capacity. In particular, for
p > 1/4, the achievable rate over an adversarial channel is zero, while 1 −H(p) remains positive.
Determining the best asymptotic rate for error fraction p (equivalently, minimum relative distance
2p) remains an important open question in combinatorial coding theory.

Codes that tolerate adversarial errors are attractive because they can model channels whose
true behavior is unknown or varies over time, including, for example, burst errors and echo. In
contrast, codes tailored to any one of these models tend to fail when the model changes. For
example, concatenated codes, which can transmit efficiently and reliably at the Shannon capacity
with random errors, fail miserably in the presence of burst errors that occur in long runs.

In this paper, we consider several intermediate models of uncertain channels. Specifically, we
consider computationally bounded channels, which can introduce an arbitrary set of errors as long
as (a) the total number of errors is bounded by pn with high probability and (b) the process which
adds the errors can be described by a sufficiently “simple” circuit. The idea behind these models is
that natural processes may be mercurial, but are not computationally intensive. These models are
powerful enough to capture natural settings like i.i.d. and burst errors, but weak enough to allow
efficient communication arbitrarily close to the Shannon capacity. The models we study, or close
variants, have been considered previously; see Section 2 for a discussion of related work.

For three classes of channels, we provide efficiently encodable and decodable codes of optimal
rate 1 − H(p) where only inefficiently decodable codes were previously known. In each case, we
provide one encoder/decoder that works for every channel in the class. (In particular, our results
apply even when the channel’s behavior depends on the code.)

We first describe the models and our results briefly (Section 1.1), and outline our main technical
contributions (Section 1.2). In Section 2, we describe related lines of work aimed at handling
(partly) adversarial errors with rates near Shannon capacity. Our results are stated formally in
Section 3.

1.1 Our results

The encoders we construct are stochastic (that is, randomized). Probabilities are taken over the
(local, unknown to the decoder) coins of the encoder and the choices of the channel; messages
may be chosen adversarially and known to the channel. Our results assume no setup or shared
randomness between the encoder and decoder.

Unique decoding for additive channels. We give the first explicit construction of stochastic
codes with polynomial-time encoding/decoding algorithms that approach the Shannon capacity
1−H(p) for additive (a.k.a. oblivious) channels. These are channels which add an arbitrary error
vector e ∈ {0, 1}n of weight at most pn to the transmitted word. The error vector may depend on

1

the code but, crucially, not on the encoder’s local random coins. Additive errors capture binary
symmetric errors as well as certain models of correlated errors, like burst errors. For a deterministic
encoder, the additive error model is equivalent to the usual adversarial error model. A randomized
encoder is thus necessary to achieve the Shannon capacity.

We also provide a novel, simple proof that (inefficient) capacity-achieving codes exist for additive
channels. We do so by combining linear list-decodable codes with rate approaching 1−H(p) (known
to exist, but not known to be efficiently decodable) with a special type of authentication scheme.
Previous existential proofs relied on complex random coding arguments [5, 21]; see the discussion
of related work below.

List decoding for space-bounded channels. The additive errors model postulates that the
error vector has to be picked obliviously, before seeing the codeword Enc(m; r). To get a more
powerful class of channels, consider a channel that processes the codeword as a stream, deciding as
it goes which positions to corrupt. The channel’s only limitation is a bound S(n) on the amount of
work space it can use. Roughly, we view the channel as a finite automaton with 2S(n) states. More
precisely, in order to allow nonuniform dependency on the code, we model the channel as a width-
2S(n) branching program that outputs one bit for every input bit that it reads. Even for constant
space S, this model captures a wide range of channels considered in coding theory, including additive
channels, discrete channels with finite memory, echo, bounded delay and arbitrarily varying channels
(see the discussion of related work, below, for definitions). We consider logarithmic space channels,
since they constitute a more robust and expressive class than constant space channels (for example,
a log-space channel can track the number of bits it has altered). As above, we assume that, with
high probability, the channel introduces at most pn errors.

First, we show that reliable unique decoding with positive rate is impossible even for memoryless
channels when p > 1/4. The issue is that a single code must work for all channels. Thus, to
communicate at a rate close to 1−H(p) for all p, we consider the relaxation to list-decoding : the
decoder is allowed to output a small list of messages, one of which is correct. List-decodable codes
with rate approaching 1 −H(p) are known to exist even for adversarial errors [34, 10]. However,
constructing efficient (i.e., polynomial-time encodable and decodable) codes for list decoding with
near-optimal rate is a major open problem.

Our main contribution for space-bounded channels is a construction of polynomial-time list-
decodable codes with optimal rate for channels whose space bound is logarithmic in the block length
n. Specifically, for every message m and log-space channel W, the decoder takes W(Enc(m; r)) as
input and returns a small list of messages that, with high probability over r and the coins of the
channel, contains the real message m. The size of the list is polynomial in 1/ε, where n(1−H(p)−ε)
is the length of the transmitted messages.

Note that the decoder need not return all words within a distance pn of the received word
(as is the case for the standard “combinatorial” meaning of list decoding for deterministic codes),
but it must return the correct message as one of the candidates with high probability. From a
communication viewpoint, this notion of list-decoding is natural for stochastic codes. In fact, it
is exactly the notion that is needed in constructions which “sieve” the list, such as [13, 24]; see
related work in Section 2.

Our results raise a compelling question: are there stochastic codes of rate approaching 1−H(p)
that can be uniquely decoded from pn log-space errors, when p < 1/4?

2

List decoding for polynomial time channels. More generally, one may consider channels
whose behavior on n-bit inputs is described a circuit of size T (n). Logarithmic space channels,
in particular, can be realized by polynomial-size circuits. In fact, we do not know of any channel
models considered in the information theory literature (other than purely adversarial channels)
which require more than linear time to implement. Our construction of list-decodable codes for
logarithmic space channels can be extended to handle channels with a given polynomial time
bound T (n) = nc, for any fixed c > 1, under an additional assumption, namely the existence of
pseudorandom generators of constant stretch that output n pseudorandom bits and fool circuits of
size nc. Such generators exist, for example, if there are functions in E which have no subexponential-
size circuits [26, 18], or if one-way functions exist [33, 17].

For all three models, our constructions require the development of new methods for applying
tools from cryptography and derandomization to coding-theoretic problems. We give a brief dis-
cussion of these techniques next. A more detailed discussion of the approach behind our code
construction appears in Section 4.

1.2 Techniques

Control/payload construction. In our constructions, we develop several new techniques for
coding theory. The first is a novel “reduction” from the standard coding setting with no setup to
the setting of shared secret randomness. In models in which errors are distributed evenly, such a
reduction is relatively simple [1]; however, this reduction fails against adversarial errors. Instead,
we show how to hide the secret randomness (the control information) inside the main codeword
(the payload) in such a way that the decoder can learn the control information but (a) the control
information remains hidden to a bounded channel and (b) its encoding is robust to a certain, weaker
class of errors. We feel this technique should be useful in other settings of bounded adversarial
behavior.

Our reduction can also be viewed as a novel way of “bootstrapping” from “small” codes, which
can be decoded by brute force, to “large” codes, which can be decoded efficiently. The standard
way to do this is via concatenation; unfortunately, concatenation does not work even against mildly
unpredictable models, such as the additive error model.

Pseudorandomness. Second, our results further develop a surprising connection between coding
and pseudorandomness. Hiding the “control information” from the channel requires us to make
different settings of the control information indistinguishable from the channel’s point of view.
Thus, our proofs apply techniques from cryptography together with constructions of pseudorandom
objects (generators and samplers) from derandomization. Typically, the “tests” that must be fooled
are compositions of the channel (which we assume has low complexity) with some subroutine of the
decoder (which we design to have low complexity). The connection to pseudorandomness appeared
in a simpler form in the previous work on bounded channels [23, 12, 24]; our use of this connection
is significantly more delicate.

3

2 Background and Relation to Previous Work

There are several lines of work aimed at handling adversarial, or partly adversarial, errors with
rates near the Shannon capacity. We survey them briefly here and highlight the relationship to our
results.

List decoding. List decoding was introduced in the late 1950s [9, 32] and has witnessed a lot of
recent algorithmic work (cf. the survey [14]). Under list decoding, the decoder outputs a small list
of messages that must include the correct message. Random coding arguments assert the existence
of binary codes of rate 1−H(p)−ε for which error-correction against adversarial errors is possible in
this model when the decoder is allowed to output a list of size O(1/ε) [10, 34, 15]. If a small amount
of auxiliary information can be communicated on a noiseless side channel, then it becomes possible
to pick the correct element from the list with high probability [13]. The explicit construction of
binary list-decodable codes with rate close to 1 −H(p), however, remains a major open question.
We provide such codes for space- or time-bounded channels. As mentioned above, the model we
consider is slightly weaker than the standard one, in that we assume that the received word is
obtained by corrupting a true output of the randomized encoder.

Adding Setup: Shared Randomness. Another relaxation that increases codes’ power is to allow
randomized coding strategies where the sender and receiver share “secret” randomness, hidden from
the channel, which is used to pick a coding scheme at random from a family of codes (such codes were
called private codes in [20]). Using such strategies, one can achieve the capacity 1−H(p) against
ADVp (for example, by randomly permuting the symbols and adding a random offset [23, 20]). Using
explicit codes achieving capacity on the BSCp [11], one can even get such randomized codes of rate
approaching 1 − H(p) explicitly (although getting an explicit construction with o(n) randomness
remains an open problem [29]). A related notion of setup is the public key model of Micali et
al. [24], in which the sender generates a public key which is assumed to be known to the receiver
and possibly the channel. This model only makes sense for computationally bounded channels,
discussed below.

Our constructions are the first (for all three models) which achieve rate 1−H(p) with efficient
decoding and no setup assumptions.

AVCs: Oblivious, nonuniform errors. A different approach to modeling uncertain channels is
embodied by the rich literature on arbitrarily varying channels (AVCs), surveyed in [22]. Despite
being extensively investigated in the information theory literature, AVCs have not received much
algorithmic attention.

An AVC is specified by a finite state space S and a family of memoryless channels {Ws : s ∈ S}.
The channel’s behavior is governed by its state, which is allowed to vary arbitrarily. The AVC’s
behavior in a particular execution is specified by a vector ~s = (s1, ..., sn) ∈ Sn: the channel applies
the operation Wsi to the ith bit of the codeword. A code for the AVC is required to transmit
reliably with high probability for every sequence ~s, possibly subject to some state constraint. Thus
AVCs model uncertainty via the nonuniform choice of the state vector ~s ∈ Sn. However — and this
is the one of the key differences that makes the bounded space model more powerful — the choice
of state vector in an AVC oblivious to the codeword and the channel cannot look at the codeword
to decide the state sequence.

The additive errors channel we consider is captured by the AVC framework. Indeed, consider

4

the simple AVC where S = {0, 1} and when in state s, the channel adds s mod 2 to the input
bit. With the state constraint

∑n
i=1 si 6 pn on the state sequence (s1, s2, . . . , sn) of the AVC, this

models additive errors, where an arbitrary error vector e with at most p fraction 1’s is added to the
codeword by the channel, but e is chosen obliviously of the codeword.

Csiszár and Narayan determined the capacity of AVCs with state constraints [6, 7]. In particular,
for the additive case, they showed that random codes can achieve rate approaching 1−H(p) while
correcting any specific error pattern e of weight pn with high probability. 1 Note that codes
providing this guarantee cannot be linear, since the bad error vectors for all codewords are the
same in a linear code. The decoding rule used in [6] to prove this claim was quite complex, and it
was simplified to the more natural closest codeword rule in [7]. Langberg [21] revisited this special
case (which he called an oblivious channel) and gave another proof of the above claim, based on a
different random coding argument.

As outlined above, we provide two results for this model: first, we give a new and simpler
existential proof. More importantly, we provide the first explicit constructions of codes for this
model which achieve the optimal rate 1−H(p).

Computationally bounded channels. In a different vein, Lipton [23] considered channels whose
behavior can be described by a polynomial-time algorithm. Lipton showed how a small amount of
secret shared randomness (the seed for a pseudorandom generator) could be used to communicate
at the Shannon capacity over any polynomial time channel that introduces a bounded number of
errors. Micali et al. [24] gave a similar result in a public key model; however, their result relies on
efficiently list-decodable codes, which are only known with sub-optimal rate. Both results assume
the existence of one-way functions and some kind of setup. On the positive side, in both cases the
channel’s time bound need not be known explicitly ahead of time; one gets a trade-off between the
channel’s time and its probability of success.

Our list decoding result removes the setup assumptions of [23, 24] at the price of imposing a
specific polynomial bound on the channels running time and relaxing to list-decoding.

However, our result also implies stronger unique decoding results in the public-key model [24].
Specifically, our codes can be plugged into the construction of Micali et al. to get unique decoding
at rates up to the Shannon capacity when the sender has a public key known to the decoder (and
possibly the channel). The idea, roughly, is to sign messages before encoding them; see [24] for
details.

Logarithmic space channels. Galil et al. [12] considered a slightly weaker model, logarithmic
space, that still captures most physically realizable channels. They modeled the channel as a finite
automaton with polynomially-many states. Using Nisan’s generator for log-space machines [25],
they removed the assumption of one-way functions from Lipton’s construction in the shared ran-
domness model [23].

We add nonuniformity to their model to get a common generalization of arbitrarily varying
channels. Our code construction for logarithmic space channels removes the assumption of shared

1The AVC literature usually discusses the “average error criterion”, in which the code is deterministic but the
message is assumed to be uniformly random and unknown to the channel. We prefer the “stochastic encoding”
model, in which we consider the worst-case message, but allow the encoder some local random coins. This is a strict
strengthening of the model as long as the decoder recovers the random coins r along with message m. The results of
[6, 21] also apply to this stronger model.

5

setup in the model of [12], at the price of achieving list-decoding. This relaxation is in some sense
necessary since unique decoding in this model is impossible when p > 1/4.

3 Statements of Results

Recall the notion of stochastic codes: A stochastic binary code of rate R and block length n is
given by an encoding function Enc : {0, 1}Rn × {0, 1}b → {0, 1}n which encodes the Rn message
bits, together with some additional random bits, into an n-bit codeword.

3.1 Codes for worst-case additive errors

Existential result via list decoding. We give a novel construction of stochastic codes for additive
errors by combining linear list-decodable codes with a certain kind of authentication code called
algebraic manipulation detection (AMD) codes. Such AMD codes can detect additive corruption
with high probability, and were defined and constructed for a cryptographic motivation in [4].
The decoder does not have access to the randomness r to “sign” the message m. The linearity of
the list-decodable code is therefore crucial to make the combination with AMD codes work. The
linearity ensures that the spurious messages output by the list-decoder are all additive offsets of
the true message that depend only on the error vector (and not on m, r). An additional feature of
our construction is that even when the fraction of errors exceeds p, the decoder outputs a decoding
failure with high probability (rather than decoding incorrectly). This feature is important when
using these codes as a component in our explicit construction mentioned next.

The formal result is stated below and proved in Section 5.

Theorem 3.1. For every p, 0 < p < 1/2 and every ε > 0, there exists a family of stochastic codes of
rate R > 1−H(p)−ε and a deterministic (exponential time) decoder Dec : {0, 1}n → {0, 1}Rn∪{⊥}
such that for every m ∈ {0, 1}Rn and every error vector e ∈ {0, 1}n of Hamming weight at most
pn, Prr

[
Dec

(
Enc(m, r) + e

)
= m

]
> 1− 2−Ωε,p(n). Moreover, when more than a fraction p of errors

occur, the decoder is able to detect this and report a decoding failure (⊥) with probability at least
1− 2−Ωε,p(n).
Given an explicit family of linear binary codes of rate R that can be efficiently list-decoded from frac-
tion p of errors with constant polynomial list-size L = L(p, n), we can construct explicit stochastic
codes with the above guarantee with rate R along with an efficient decoder.

Explicit, efficient codes achieving capacity. For explicit binary list-decodable codes of optimal
rate are not known, so one cannot use the above connection to construct explicit stochastic codes
of rate ≈ 1−H(p) for pn additive errors. Nevertheless, we give an explicit construction of capacity-
achieving stochastic codes against worst-case additive errors. The construction is described at a
high-level in Section 4 and in detail in Section 6.

Theorem 3.2. For every p ∈ (0, 1/2), every ε > 0, and infinitely many N , there is an explicit,
efficient stochastic code of block length N and rate R > 1−H(p)− ε which corrects a p fraction of
additive errors with probability 1− o(1). Specifically, there is a polynomial time encoder Enc and a
polynomial time decoder Dec such that for every message m ∈ {0, 1}RN and every error vector e of
Hamming weight at most pN , we have Prr(Dec(Enc(m; r) + e) = m) = 1− exp(−Ωε(N/ log2N)).

6

A slight modification of our construction give codes for the “average error criterion,” in which
the code is deterministic but the message is assumed to be uniformly random and unknown to the
channel (Theorem B.3).

3.2 Codes for online log-space-bounded channels

We generalize the model of Galil et al. [12] to capture both finite automaton-based models as well
as arbitrarily varying channels. To model channels (as opposed to Boolean functions), we augment
standard branching programs with the ability to output bits at each step.

Definition 1 (Space bounded channels). An online-space-S channel is a read-once branching pro-
gram of width 6 2S that outputs one bit at each computation step. Specifically, let Q = {0, 1}S be
a set of 2S states. For input length N , the channel is given by a sequence of N transition func-
tions Fi : Q × {0, 1} → Q × {0, 1}, for i = 1 to N , along with a start state q0 ∈ Q. On input
x = (x1x2 · · ·xN) ∈ {0, 1}N , the channel computes (qi, yi) = Fi(qi−1, xi) for i = 1 to N . The output
of the channel, denoted A(x), is y = (y1y2 · · · yN) ∈ {0, 1}N .

A randomized online-space-S channel is a probability distribution over the space of deterministic
online-space-S channels. For a given input x, such a channel induces a corresponding distribution
on outputs. A randomized channel A is pN -bounded with probability 1 − β if, for all inputs
x ∈ {0, 1}N , with probability at least 1 − β, the channel flips fewer than pN bits of x, that is
PrA∈A[weight(x⊕A(x)) > pN] 6 β .

We exhibit a very simple “zero space” channel that rules out achieving any positive rate (i.e.,
the capacity is zero) when p > 1/4. In each position, the channel either leaves the transmitted
bit alone, set it to 0, or set it to 1. The channel works by “pushing” the transmitted codeword
towards a different valid codeword (selected at random). This simple channel adds at most n/4
errors in expectation. We can get a channel with a hard bound on the number of errors by allowing
it logarithmic space. Our impossibility result can be seen as strengthening a result by Dey et al. [8]
for online channels in the special case where p > 1/4. See Appendix C for details.

Theorem 3.3 (Impossibility of unique decoding for p > 1
4). For every pair of randomized encod-

ing/decoding algorithms Enc,Dec that make n uses of the channel and use a message space whose
size tends to infinity with n, for every 0 < ν < 1

4 , there is an online space-dlog(n)e channel W2

that alters at most n(1
4 + ν) bits and causes a uniformly random message to be incorrectly decoded

with probability Ω(ν).

For list-decoding, we provide a positive result, namely, a construction of codes with rate ap-
proaching 1 − H(p) that efficiently recover a short list containing the correct message when the
channel uses logarithmic space. For details of the construction and analysis, see Section 7. The
structure of the code is similar to the uniquely decodable code for additive errors; however, addi-
tional work is needed to make the codewords appear pseudorandom to the channel, and the analysis
is much more subtle.

Theorem 3.4 (Corollary of Theorem 7.3). For every p ∈ (0, 1/2) and constant ε > 0, there is an
efficient Monte Carlo construction of a stochastic code with encoding/decoding algorithms (Enc,Dec)
such that for every message m ∈ {0, 1}(1−H(p)−ε)N and every randomized online-space-S channel

7

WS on N input bits that is pN -bounded (where Ω(logN) 6 S 6 o(N/ logN)), with high probability
over the choice of coins r and the errors introduced by WS, Dec(WS(Enc(m; r))) outputs a list of
at most poly(1/ε) messages that includes the real message m.

The probability of incorrect decoding is at most N2−Ω(ε3S) + 2−Ω(ε3N/S), and the running time
of (Enc,Dec) is is polynomial in N and 2S (and therefore polynomial in N for log-space channels).

3.3 List-decoding for Time-bounded Channels

Finally, we prove a similar result for time-bounded channels, assuming the existence of certain
pseudorandom generators (which in turn follow from standard complexity assumptions). The model
here is easy to describe: it suffices that the channel be implementable by a circuit of size N c for
some c > 1.

The details appear in Section 8.

Theorem 3.5. Assume either E 6⊆ SIZE(2ε0n) for some ε0 > 0 or the existence of one-way func-
tions. For all constants ε > 0, p ∈ (0, 1/2), and c > 1, and for infinitely many integers N , there
exists a Monte Carlo construction (succeeding with probability 1 − N−Ω(1)) of a stochastic code
of block length N and rate R > 1 − H(p) − ε with NO(c) time encoding/list decoding algorithms
(Enc,Dec) that have the following property: For all messages m ∈ {0, 1}RN , and all pN -bounded
channels W that are implementable by a size O(N c) circuit, Dec(W(Enc(m; r))) outputs a list of at
most poly(1/ε) messages that includes the real message m with probability at least 1−N−Ω(1).

4 Construction overview

Construction Ideas for Additive Errors. Our result is obtained by combining several ingredi-
ents in pseudorandomness and coding theory. At a high level the idea (introduced by Lipton [23]
in the context of shared randomness) is that if we permute the symbols of the codewords randomly
after the error pattern is fixed, then the adversarial error pattern looks random to the decoder.
Therefore, an explicit code CBSC that can achieve capacity for the binary symmetric channel (such
as Forney’s concatenated code construction [11]) can be used to communicate on ADVp after the
codewords symbols are randomly permuted. This allows one to achieve capacity against adversarial
errors when the encoder and decoder share randomness that is unknown to the adversary causing
the errors. But, crucially, this requires the decoder to know the random permutation that was used
at the encoding.

Our encoder communicates the random permutation (in encoded form) also as part of the overall
codeword, without relying on any shared randomness, public key, or other “extra” information. The
decoder must be able to figure out the permutation correctly solely based on a noisy version of
the overall codeword (that encodes the permutation plus the actual data). The seed used to pick
this random permutation (plus some extra random seeds needed for the construction) is encoded
by a low rate code that can correct several errors (say a Reed-Solomon code) and this information
is dispersed into randomly located blocks of the overall codeword (see Figure 1). The random
locations to place the control blocks are picked by a “sampler” — the seed for this sampler is also
part of the control information along with the seed for the random permutation.

8

message m

REC(m)

REC

Capacity-
approaching code

that corrects t-
wise indep. errors

π-1(REC(m))

t-wise
independent

permutationπ
of {1,...,n}

r

f(α1), f(α2), ..., f(αk)

α1, f(α1) α2, f(α2) · · · αk, f(αk)

· · ·
SC

C1 C2 Ck

SC SC

constant-rate
code that

corrects p+ε
adversarial

errors

RS

Control
information

Encoding to handle
insertions/deletions

Rate ε Reed-
Solomon code

blocks of length
O(log(N)) bits

· · ·

Chop
into

blocks of
length

O(log(n))
bits

· · ·
Final codeword. Control information accounts

for an ε fraction of blocks

"Payload" codeword Control info

π−1

π-1(REC(m)) + Δ

+

t-wise
independent

offset Δ

∆

Figure 1: Schematic description of encoder from Algorithm 1.

The key challenge is to ensure that the decoder can figure out which blocks encode the control
information, and which blocks consist of “data” bits from the codeword of CBSC (the “payload”
codeword) that encodes the actual message. The control blocks (which comprise a tiny portion of
the overall codeword) are further encoded by a stochastic code (call it the control code) that can
correct somewhat more than a fraction p, say a fraction p+ ε, of errors. These codes can have any
constant rate — since they encode a small portion of the message their rate is not so important,
so we can use explicit sub-optimal codes for this purpose.

Together with the random placement of the encoded control blocks, the control code ensures
that a reasonable (Ω(ε)) fraction of the control blocks (whose encodings by the control code incur
fewer than p+ε errors) will be correctly decoded. Moreover any blocks with too many errors will be
flagged as an erasure with high probability. The fraction of correctly recovered control blocks will
be large enough that all the control information can be recovered by decoding the Reed-Solomon
code used to encode the control information into these blocks. This recovers the permutation
used to scramble the symbols of the concatenated codeword. The decoder can then unscramble
the symbols in the message blocks and run the standard algorithm for the concatenated code to
recover the message.

One pitfall in the above approach is that message blocks could potentially get mistaken for
corrupted control blocks and get decoded as erroneous control information that leads the whole
algorithm astray. To prevent this, in addition to scrambling the symbols of the message blocks
by a (pseudo)random permutation, we also add a pseudorandom offset (which is nearly t-wise
independent for some t much larger than the length of the blocks). This will ensure that with
high probability each message block will be very far from every codeword and therefore will not be
mistaken for a control block.

One important issue we have glossed over is that a completely random permutation of the n
bits of the payload codeword will take Ω(n log n) bits to specify. This would make the control
information too big compared to the message length (whereas we need it to be a tiny fraction of
the message length). Therefore, we use almost t-wise independent permutations for t ≈ εn/ log n.

9

Such permutations can be sampled with ≈ εn random bits. We then make use of the fact that CBSC

enables reliable decoding even when the error locations have such limited independence instead of
being a uniformly random subset of all possible locations [29].

Extending the Construction to log-space and poly-time channels. The construction for
additive channels does not work against more powerful channels for two reasons: first, the channel
may be able to learn which blocks of the codeword contain the control information and concentrate
errors on those blocks. Second, a more powerful channel may inject a large number of correctly
formatted control blocks into the transmitted word (recall, each of the blocks is quite small). Even
if the real control blocks are uncorrupted, the decoder will have trouble determining which of the
correct-looking control blocks is in fact legitimate.

We overcome the first obstacle by making sure that transmitted word is indistinguishable from
a random string by a log-space (resp. poly-time) test, even one which knows the message and
certain parts of the control information. This ensures that the channel’s placement of errors is
“independent” (according to log-space tests) from the locations of the control blocks. It also
ensures that errors are “randomly distributed” after unscrambling in the sense that the events that
we needed to happen with high probability for successful decoding against oblivious errors will
also happen with good probability against errors caused by the log-space (or poly-time-bounded)
channel. Ensuring that this happens and leads to correct decoding constitutes the bulk of our
analysis. This part is harder for the space-bounded case, since Nisan’s generator only ensures
that the error distribution caused by the channel is indistinguishable from oblivious errors by
online space-bounded machines. However, the unscrambling of the error vector (according to the
permutation that was applied to the payload codeword) cannot be done in an online fashion. So
we have to resort an indirect argument based on showing almost log n-wise independence of certain
events related to the payload decoding.

We overcome the second obstacle by using list-decoding: although the channel may inject
spurious possibilities for the control information, the total number of such spurious candidates
will be bounded, and the list of candidates will include the correct control information with high
probability.

5 List decoding implies codes for worst-case additive errors

In this section, we will demonstrate how to use good linear list-decodable codes to get good stochas-
tic codes. The conversion uses the list-decodable code as a black-box and loses only a negligible
amount in rate. In particular, by using binary linear codes that achieve list decoding capacity,
we get stochastic codes which achieve the capacity for additive errors. The linearity of the code is
crucial for this construction. The other ingredient we need for the construction is an authentication
code (“MAC”) that can detect additive corruption with high probability, which has been studied
under the label of Algebraic manipulation detection (AMD) codes [4].

5.1 Some coding terminology

We begin with the definitions relating to list decoding and stochastic codes for additive errors.

10

Definition 2 (List decodable codes). For a real p, 0 < p < 1, and an integer L > 1, a code C ⊆ Σn

is said to be (p, L)-list decodable if for every y ∈ Σn there are at most L codewords of C within
Hamming distance pn from y. If for every y the list of 6 L codewords within Hamming distance
pn from y can be found in time polynomial in n, then we say C is efficiently (p, L)-list decodable.
Note that (p, 1)-list decodability is equivalent to the distance of C being greater than 2pn. 2

An efficiently (p, L)-list decodable code can be used for communication on the ADVp channel
with the guarantee that the decoder can always find a list of at most L messages that includes the
correct message.

Definition 3 (Stochastic codes and their decodability). A stochastic binary code of rate R and
block length n is given by an encoding function Enc : {0, 1}Rn×{0, 1}b → {0, 1}n which encodes the
Rn message bits together with some additional random bits into an n-bit codeword.

Such a code is said to be (efficiently) p-decodable with probability 1−δ if there is a (deterministic
polynomial time computable) decoding function Dec : {0, 1}n → {0, 1}Rn ∪ {⊥} such that for every
m ∈ {0, 1}Rn and every error vector e ∈ {0, 1}n of Hamming weight at most pn, with probability at
least 1− δ over the choice of a random string ω ∈ {0, 1}b, we have

Dec
(
Enc(m,ω) + e

)
= m .

Though we do not require it in the definition, our constructions in this section of stochastic
codes from list-decodable codes will also have the desirable property that when the number of errors
exceeds pn, with high probability the decoder will output a decoding failure rather than decoding
incorrectly.

5.2 Algebraic manipulation detection (AMD) codes

The following is not the most general definition of AMD codes from [4], but will suffice for our
purposes and is the one we will use.

Definition 4. Let G = (G1, G2, G3) be a triple of abelian groups (whose group operations are written
additively) and δ > 0 be a real. Let G = G1 ×G2 ×G3 be the product group (with component-wise
addition). An (G, δ)-algebraic manipulation code, or (G, δ)-AMD code for short, is given by a map
f : G1 ×G2 → G3 with the following property:

For every x ∈ G1, and all ∆ ∈ G, Prr∈G2

[
D((x, r, f(x, r)) + ∆) /∈ {x,⊥}] 6 δ ,

where the decoding function D : G → G1 ∪ {⊥} is given by D((x, r, s)) = x if f(x, r) = s and
⊥ otherwise. The tag size of the AMD code is defined as log |G2|+ log |G3| — it is the number of
bits the AMD encoding appends to the source. 2

Intuitively, the AMD allows one to authenticate x via a signed form (x, r, f(x, r)) so that an
adversary who manipulates the signed value by adding an offset ∆ cannot cause incorrect decoding
of some x′ 6= x. The following concrete scheme from [4] achieves near optimal tag size and we will
make use of it.

11

Theorem 5.1. Let F be a finite field of size q and characteristic p, and d be a positive integer
such that d+ 2 is not divisible by p. Then the function f

(d)
AMD : Fd × F→ F given by f (d)

AMD(x, r) =
rd+2 +

∑d
i=1 xir

i is a
(G, d+1

q

)
-AMD code with tag size 2 log q where G = (Fd,F,F).2

5.3 Combining list decodable and AMD codes

Using a (p, L)-list decodable code C of length n, for any error pattern e of weight at most pn,
we can recover a list of L messages that includes the correct message m. We would like to use
the stochastic portion of the encoding to allow us to unambiguously pick out m from this short
list. The key insight is that if C is a linear code, then the other (less than L) messages in the list
are all fixed offsets of m that depend only on the error pattern e. So if prior to encoding by the
list-decodable code C, the messages are themselves encodings as per a good AMD code, and the
tag portion of the AMD code is good for these fixed L or fewer offsets, then we can uniquely detect
m from the list using the AMD code. If the tag size of the DMD code is negligible compared to
the message length, then the overall rate is essentially the same as that of the list-decodable code.
Since there exist binary linear (p, L)-list-decodable codes of rate approaching 1−H(p) for large L,
this gives stochastic codes (in fact, strongly decodable stochastic codes) of rate approaching 1−H(p)
for correcting up to a fraction p of worst-case additive errors.

Theorem 5.2 (Stochastic codes from list decoding and AMD). Let b, d be positive integers with
d odd and k = b(d + 2). Let C : Fk2 → Fn2 be the encoding function of a binary linear (p, L)-list
decodable code. Let f (d)

AMD be the function from Theorem 5.1 for the choice F = F2b. Let C ′ be the
stochastic binary code with encoding map E : {0, 1}bd × {0, 1}b → {0, 1}n given by

E(m, r) = C
(
m, r, f

(d)
AMD(m, r)

)
.

Then if d+1
2b 6 δ

L , the stochastic code C ′ is strongly p-decodable with probability 1 − δ. If C is
efficiently (p, L)-list decodable, then C ′ is efficiently (and strongly) p-decodable with probability
1− δ.

Moreover, even when e has weight greater than pn, the decoder detects this and outputs ⊥ (a
decoding failure) with probability at least 1− δ.

Note that the rate of C ′ is d
d+2 times the rate of C.

Proof. Fix an error vector e ∈ {0, 1}n and a message m ∈ {0, 1}bd. Suppose we pick a random r
and transmit E(m, r), so that y = E(m, r) + e was received.

The decoding function D, on input y, first runs the list decoding algorithm for C to find a list of
` 6 L messages m′1, . . . ,m

′
` whose encodings are within distance pn of y. It then decomposes m′i as

(mi, ri, si) in the obvious way. The decoder then checks if there is a unique index i ∈ {1, 2, . . . , `}
for which f

(d)
AMD(mi, ri) = si. If so, it outputs (mi, ri), otherwise it outputs ⊥.

Let us now analyze the above decoder D. First consider the case when wt(e) 6 pn. In this case
we want to argue that the decoder correctly outputs (m, r) with probability at least 1− δ (over the
choice of r). Note that in this case one of the m′i’s equals (m, r, f (d)

AMD(m, r)), say this happens for

2Here we mean the additive group of the vector space Fd.

12

i = 1 w.l.o.g. Therefore, the condition f
(d)
AMD(m1, r1) = s1 will be met and we only need to worry

about this happening for some i > 1 also.

Let ei = y − C(m′i) be the associated error vectors for the messages m′i. Note that e1 = e.
By linearity of C, the ei’s only depend on e; indeed if c′1, . . . , c

′
` are all the codewords of C within

distance pn from e, then ei = c′i + e. Let ∆i be the pre-image of c′i, i.e., c′i = C(∆i). Therefore we
have m′i = m′1 + ∆i where the ∆i’s only depend on e. By the AMD property, for each i > 1, the
probability that f (d)

AMD(mi, ri) = si over the choice of r is at most d+1
2b 6 δ/L. Thus with probability

at least 1−δ, none of the checks f (d)
AMD(mi, ri) = si for i > 1 succeed, and the decoder thus correctly

outputs m1 = m.

In the case when wt(e) > pn, the same argument shows that the check f (d)
AMD(mi, ri) = si passes

with probability at most δ/L for each i (including i = 1). So with probability at least 1 − δ none
of the checks pass, and the decoder outputs ⊥.

Plugging into the above theorem the existence of binary linear (p,O(1/ε))-list-decodable codes
of rate 1−H(p)− ε/2, and picking d = 2dc0/εe+ 1 for some absolute constant c0, we can conclude
the following result on existence of stochastic codes achieving capacity for reliable communication
against additive errors.

Corollary 5.3. For every p, 0 < p < 1/2 and every ε > 0, there exists a family of stochastic codes
of rate at least 1 − H(p) − ε, which are strongly p-decodable with probability at least 1 − 2−c(ε,p)n

where n is the block length and c(ε, p) is a constant depending only on ε and p.
Moreover, when more than a fraction p of errors occur, the code is able to detect this and report a
decoding failure with probability at least 1− 2−c(ε,p)n.

Remark 1. For the above construction, if the decoding succeeds, it correctly computes in addition
to the message m also the randomness r used at the encoder. So the construction also gives deter-
ministic codes for the “average error criterion” where for every error vector, all but an exponentially
small fraction of messages are communicated correctly. See Appendix B for a discussion of codes
for this model and their relation to stochastic codes for additive errors.

6 Explicit Codes of Optimal Rate for Additive Errors

6.1 Ingredients

Our construction uses a number of tools from coding theory and pseudorandomness. These are
described in detail in Appendix A. Briefly, we use:

• A constant-rate explicit stochastic code SC : {0, 1}b×{0, 1}b → {0, 1}cob, defined on blocks of
length c0b = Θ(logN), that is efficiently decodable with probability 1− c1/N from a fraction
p + O(ε) of additive errors. decodable with probability 1 − c1/N . These codes are obtained
via Theorem 3.1 (detailed statement appears in the Appendix as Proposition A.1).

• A rate O(ε) Reed-Solomon code RS which encodes a message as the evaluation of a polynomial
at points α1, ..., α` in such a way that an efficient algorithm RS-Decode can efficiently recover
the message given at most ε`/4 correct symbols and at most ε/24 incorrect ones.

13

Algorithm 1. Encode: On input parameters N, p, ε (with p + ε < 1/2), and message m ∈ {0, 1}R·N , where
R = 1−H(p)−O(ε).
1: Λ← 2c0 � Here c0 = c0(p+ ε) is the constant in the stochastic code from Proposition A.1

that can correct a fraction p+ ε of errors.

2: n← N
Λ logN � The final codeword consists of n blocks of length Λ logN .

3: `← 24εN/ logN � The control codeword is ` blocks long.

4: n′ ← n− ` and N ′ ← n′ · (Λ logN) � The payload codeword is n′ blocks long (i.e. N ′ bits).

Phase 1: Generate control information

5: Select sπ ←R {0, 1}ε2N . � sπ is a seed for picking a permutation of [N ′] from an almost t-wise independent
family as per Proposition A.5, where t = Ω(ε2N/ logN).

6: Select s∆ ←R {0, 1}ε2N . � s∆ is a seed for picking a t′-wise independent string ∆, where t′ =
Ω(ε2N/ logN) as per Proposition A.6.

7: Select sT ←R {0, 1}ε2N . � sT is a seed for sampling a pseudorandom subset T ⊂ [n] = [n′ + `] of size `
as per Proposition A.4.

8: ω ← (sπ, s∆, sT) � Total length |ω| = 3ε2N .

Phase 2: Encode control information

9: Let F = FN and S = (α1, . . . , α`) ⊆ F be an arbitrary subset of size `.
Compute (a1, ..., a`)← RSF,S,`,|ω|/ logN (ω).

� RS (defined in (3)) is a rate ε/8 Reed-Solomon code of length 24εN = 8
ε · |ω|

bits, i.e., ` = 24εN/ logN field symbols.
10: for i← 1 to ` do
11: Ai ← (αi, ai)

� Add location information to each RS symbol to get block Ai of 2 logN bits.
12: Set Ci ← SC(Ai, ri), where ri ←R {0, 1}2 logN .

� Here SC = SC2 logN,p+ε : {0, 1}2 logN × {0, 1}2 logN → {0, 1}Λ logN is a stochastic code that can
correct a fraction (p+ε) of additive errors with probability 1−c1/N2 > 1−1/N as per Proposition A.1.

� The control information ω is thus encoded by a concatenated code with an outer Reed-Solomon code
and inner code SC.

13: end for

Phase 3: Generate the payload codeword

14: P ← REC(m), � REC : {0, 1}R′N ′ → {0, 1}N ′
is a code that can correct a p+ 25Λε fraction of

t-wise independent errors, as per Proposition A.7. Here R′ = RN
N ′ .

15: π ← KNR(sπ) � Generate permutation π : [n]→ [n] using Proposition A.5.

16: ∆← POLY(s∆) � Generate random offset string ∆ ∈ {0, 1}n as guaranteed by Proposition A.6.

17: π−1(P)← (bits of P permuted according to π−1)
18: Q← π−1(P)⊕∆
19: Cut Q into n′ blocks B1, ...Bn′ of length Λ logN bits. � Recall that n′ = n

Λ logN .

Phase 4: Interleave blocks of payload codeword and control codeword

20: T ← Samp(sT) � Generate pseudorandom size-` subset of [n′+ `] as locations for control blocks,
using sampler of Proposition A.4.

21: Interleave blocks C1, ..., C` with blocks B1, ..., Bn′ , using Ci blocks in positions from T and Bi blocks in
positions from T = [n′ + `] \ T .

14

Algorithm 2. Decode: On input a received word x of the length output by Enc.
� The decoder’s pseudocode is annotated with statements about performance.

These claims assume that x = Enc(m;ω, r1, . . . , r`) + e where e contains at
most a fraction p of ones and the random string (ω; r1, r2, . . . , r`) is uniform
and independent of the pair (m, e).

1: Cut x into n′ + ` blocks x1, ..., xn′+` of length Λ log(n) each.
2: for i← 1 to n′ + ` do
3: F̃i ← SC-Decode(xi).

� Run the decoder for the stochastic code SC used to encode the symbols of the RS codeword encoding
the control blocks.

� With high prob, non-control blocks are rejected (Lemma 6.4), and control blocks are either correctly
decoded or discarded (Lemma 6.3).

4: if F̃i 6=⊥ then
5: Parse F̃i as (α̃i, ãi), where α̃i, ãi ∈ FN .
6: end if
7: end for
8: (s̃T , s̃∆, s̃π)← RS-Decode

(
pairs (α̃i, ãi) output above

)
.

� With high prob., enough control blocks are decoded correctly to recover the
control information (Lemma 6.5).

9: T̃ ← Samp(s̃T),
∆̃← POLY(s̃∆)
π̃ ← KNR(s̃π)

10: Q̃← concatenation of blocks xi in [n′ + k] \ T̃
� Fraction of errors in Q̃ is at most p+O(ε).

11: P̃ ← π(Q̃⊕ ∆̃)
� If control info is correct, then errors in P̃ are almost t-wise independent.

12: m̃← REC-Decode(P̃)
� Run the decoder from Proposition A.7.

� With high prob., m̃ = m

• A randomness-efficient sampler Samp : {0, 1}σ → [N]` , such that for any subset B ⊆ [N] of
size at least µN , the output set of the sampler intersects with B in roughly a µ fraction of
its size, that is |Samp(s) ∩ B| ≈ µ|Samp(s)|, with high probability over s ∈ {0, 1}σ. We use
an expander-based construction from Vadhan [31].

• A generator KNR : {0, 1}σ → Sn for an (almost) t-wise independent family of permutations
of the set {1, ..., n}, that uses a seed of σ = O(t log n) random bits (Kaplan, Naor, and
Reingold [19]).

• A generator POLYt : {0, 1}σ → {0, 1}n for a t-wise independent distribution of bit strings of
length n, that uses a seed of σ = O(t log n) random bits.

• An explicit efficiently decodable, rate R = 1 − H(p) − O(ε) code REC : {0, 1}Rn → {0, 1}n
that can correct a p fraction of t-wise independent errors, that is: for every message m ∈

15

{0, 1}Rn, and every error vector e ∈ {0, 1}n of Hamming weight at most pn, we have
REC-Decode(REC(m) + π(e)) = m with probability at least 1− 2−Ω(ε2t) over the choice of
a permutation π ∈R range(KNR). (Here π(e) denotes the permuted vector: π(e)i = eπ(i).) A
standard family of concatenated codes satisfies this property (Smith [29]).

6.2 Main theorem on codes for additive error

The following (Theorem 3.2, restated) is our result on explicit construction of capacity-achieving
codes for additive errors.

Theorem 6.1. For every p ∈ (0, 1/2), and every ε > 0, the functions Encode, Decode (Al-
gorithms 1 and 2) form an explicit, efficiently encodable and decodable stochastic code with rate
R = 1 − H(p) − ε such that for every m ∈ {0, 1}RN and error vector e ∈ {0, 1}N of Hamming
weight at most pN , we have Prω

[
Decode(Encode(m;ω)+e) = m

]
> 1−exp(−Ω(ε2N/ log2N))),

where N is the block length of the code.

With all the ingredients described in Section A in place, we can describe and analyze the code
of Theorem 6.1. The encoding algorithm is given in Algorithm 1 (page 14). The corresponding
decoder is given in Algorithm 2 (page 15). Also, a schematic illustration of the encoding is in
Figure 1. The reader might find it useful to keep in mind the high level description from Section 4
when reading the formal description.

Starting the Proof of Theorem 6.1. The rate R of the overall code is almost equal to the
rate R′ of the code REC used to encode the actual message bits m, since the encoded control
information has length O(εN) which is much smaller than the number of message bits (by picking
ε small enough). The code REC needs to correct a fraction p+ 25Λε of t-wise independent errors,
so we can pick R′ > 1−H(p)− O(ε). Now the rate R = R′N ′

N = R′(1− 24Λε) > 1−H(p)− O(ε)
(for small enough ε > 0).

We now turn to the analysis of the decoder. Fix a message m ∈ {0, 1}R·N and an error vector
e ∈ {0, 1}N with Hamming weight at most pN . Suppose that we run Enc on m and coins ω
chosen independently of the pair m, e, and let x = Enc(m;ω) + e. The decoder parses x into blocks
x1, ..., xn′+` of length Λ logN , corresponding to the blocks output by the encoder.

The suite of four lemmas below which are proved in Section 6.3 show that the decoder recovers
the control information correctly with high probability. Conditioning on correct recovery of the
control information, we then show that the payload message is correctly recovered. The proof of
the theorem is completed in Section 6.4.

Definition 5 (Good sampler seeds). A sampled set T is good for error vector e if the fraction of
control blocks with relative error rate at most p+ ε is at least ε

2 . 2

Lemma 6.2 (Good sampler lemma). For any error vector e of relative weight at most p, with
probability at least 1 − exp(−Ω(ε3N/ logN) over the choice of sampler seed sT , the set T is good
for e.

Lemma 6.3 (Control blocks lemma). For any e, T such that T is good for e, with probability at
least 1 − exp(−Ω(ε3N/ logN)) over the random coins (r1, r2, . . . , r`) used by the ` SC encodings,
we have:

16

1. The number of control blocks correctly decoded by SC-Decode is at least ε`
4 .

2. The number of erroneously decoded control blocks is less than ε`
24 .

(By erroneously decoded, we mean that SC-Decode outputs neither ⊥ nor the correct mes-
sage.)

Lemma 6.4 (Payload blocks lemma). For every m, e, sT , sπ, with probability at least 1−2−Ω(ε2N/ log2N))

over the offset seed s∆, the number of payload blocks incorrectly accepted as control blocks by
SC-Decode is less than ε`

24 .

Lemma 6.5 (Control Information Lemma). For any m and e, with probability 1− 2−Ω(ε2N/ log2N)

over the choice of the control information and the coins of SC, the control information is correctly
recovered, that is ω̃ = ω.

Remark 2. It would be interesting to achieve an error probability of 2−Ωε(N), i.e., a positive “error
exponent,” in Theorem 6.1 instead of the 2−Ωε(N/ log2N) bound we get. A more careful analysis
(perhaps one that works with almost t′-wise independent offset ∆) can probably improve our error
probability to 2−Ωε(N/ logN), but going further using our approach seems difficult. The existential
result due to Csiszár and Narayan [6] achieves a positive error exponent for all rates less than
capacity, as does our existence proof using list decoding in Section 5.3.

Remark 3. A slight modification of our construction give codes for the “average error criterion,”
in which the code is deterministic but the message is assumed to be unknown to the channel and the
goal is to ensure that for every error vector most messages are correctly decoded; see Theorem B.3
in Appendix B.

6.3 Proofs of Lemmas used in Theorem 6.1

Proof of Lemma 6.2. Let B ⊂ [n] = [n′ + `] be the set of blocks that contain a (p + ε) or smaller
fraction of errors. We first prove that B must occupy at least an ε fraction of total number of
blocks: to see why, let γ be the proportion of blocks which have error rate at most (p + ε). The
total fraction of errors in x is then at least (1 − γ)(p + ε). Since this fraction is at most p by
assumption, we must have 1− γ 6 p/(p+ ε). So γ > ε/(p+ ε) > ε.

Next, we show that the number of control blocks that have error rate at most p+ε cannot be too
small. The error e is fixed before the encoding algorithm is run, and so the sampler seed sT is chosen
independently of the set B. Thus, the fraction of control blocks in B will be roughly ε. Specifically,
we can apply Proposition A.4 with µ = ε (since B occupies at least an ε fraction of the set of blocks),
θ = ε/2 and σ = ε2N . We get that the error probability γ is exp(−Ω(θ2`)) = exp(−Ω(ε3N/ logN).
(Note that for constant ε, the seed length σ = ε2N � logN + ` log(1/ε) is large enough for the
proposition to apply.)

Proof of Lemma 6.3. Fix e and the sampled set T which is good for e. Consider a particular
received block xi that corresponds to control block j, that is, xi = Cj + ei. The key observation
is that the error vector ei depends on e and the sampler seed T , but it is independent of the
randomness used by SC to generate Cj . Given this observation, we can apply Proposition A.1
directly:

17

(a) If block i has error rate at most p+ ε, then SC-Decode decodes correctly with probability
at least 1− c1/N

2 > 1− 1/N over the coins of SC.

(b) If block i has error rate more than p + ε, then SC-Decode outputs ⊥ with probability at
least 1− c1/N

2 > 1− 1/N over the coins of SC.

Note that in both statements (a) and (b), the probability need only be taken over the coins of
SC.

Consider Y, the the number of control blocks that either (i) have “low” error rate (6 p+ ε) yet
are not correctly decoded, or (ii) have high error rate, and are not decoded as ⊥. Because statements
(a) and (b) above depend only on the coins of SC, and these coins are chosen independently in
each block, the variable Y is statistically dominated by a sum of independent Bernoulli variables
with probability 1/N of being 1. Thus E[Y] 6 `/N < 1. By a standard additive Chernoff bound,
the probability that Y exceeds ε`/24 is at most exp(−Ω(ε2`)). The bound on Y implies both the
bounds in the lemma.

Proof of Lemma 6.4. Consider a block xi that corresponds to payload block j, that is, xi = Bj+ei.
Fix e, sT , and sπ. The offset ∆ is independent of these, and so we may write xi = yi + ∆i, where
yi is fixed independently of ∆i. Since ∆ is a t′-wise independent string with t′ = Ω(ε2N/ logN)
much greater than the size Λ logN of each block, the string ∆i is uniformly random in {0, 1}Λ logN .
Hence, so is xi. By Proposition A.1 we know that on input a random string, SC-Decode outputs
⊥ with probability at least 1− c1/N

2 > 1− 1/N

Moreover, the t′-wise independence of the bits of ∆ implies t′

Λ logN -wise independence of the

blocks of ∆. Define t′blocks = min{ t′

Λ logN ,
ε`
96}. Note that Ω

(
ε2N

log2N

)
6 t′blocks 6 ε`

96 . The decisions
made by SC-Decode on payload blocks are t′blocks-wise independent. Let Z denote the number of
payload blocks that are incorrectly accepted as control blocks by SC-Decode. We have E[Z] 6
n′

N 6 ε`/48 (for large enough N).

We can apply a concentration bound of Bellare and Rompel [3, Lemma 2.3] using t = t′blocks,
µ = E[Z] 6 ε`

48 , A = ε`
48 , to obtain the bound

Pr[Z > ε`
24] 6 8

(
t′blocks · µ+ (t′blocks)

2

(ε`/48)2

)t′blocks/2

6 (logN)−Ω(t′blocks) 6 e−Ω(ε2N log logN/ log2N) .

This bound implies the lemma statement.

Proof of Lemma 6.5. Suppose the events of Lemmas 6.3 and 6.4 occur, that is, for at least ε`/4
of the control blocks the recovered value F̃i is correct, at most ε`/24 of the control blocks are
erroneously decoded, and at most ε`/24 of the payload blocks are mistaken for control blocks.

Because the blocks of the control information come with the (possibly incorrect) evaluation
points α̃i, we are effectively given a codeword in the Reed-Solomon code defined for the related
point set {α̃i}. Now, the degree of the polynomial used for the original RS encoding is d∗ =
|ω|/ log(N) − 1 < 3ε2N/ logN = ε`/8. Of the pairs (α̃i, ãi) decoded by SC-Decode, we know at
least ε`

4 are correct (these pairs will be distinct), and at most 2 · ε`24 are incorrect (some of these pairs
may occur more than once, or even collide with one of the correct). If we eliminate any duplicate

18

pairs and then run the decoding algorithm from Proposition A.2, the control information ω will be
correctly recovered as long as the number of correct symbols exceeds the number of wrong symbols
by at least d∗ + 1. This requirement is met if ε`

4 − 2 × ε`
24 > d∗ + 1. This is indeed the case since

d∗ < ε`/8.

Taking a union bound over the events of Lemmas 6.3 and 6.4, we get that the probability that
the control information is correctly decoded is at least 1− exp(−Ω(ε2N/ log2N)), as desired.

6.4 Completing the Proof of Main Theorem 6.1

Proof of Theorem 6.1. We will first prove that the decoding of the payload codeword succeeds
assuming the correct control information ω = (sπ, s∆, sT) is handed directly to the decoder, i.e., in
the “shared randomness” setting. We will then account for the fact that we must condition on the
correct recovery of the control information ω by the first stage of the decoder.

Fix a message m, error vector e, and sampler seed sT , and let eQ be the restriction of e to the
payload codeword, i.e., blocks not in T . The relative weight of eQ is at most pN

N ′ = pN
′+`Λ logN
N ′ =

p(1 + 24εΛ N
N ′) 6 p(1 + 25Λε) (for sufficiently small ε).

Now since sπ is selected independently from T , the permutation π is independent of the payload
error eQ. Consider the string P̃ that is input the the REC decoder. We can write P̃ = π̃(Q̃⊕ ∆̃) =
π(Q⊕ eQ ⊕∆). Because a permutation of the bit positions is a linear permutation of ZN ′2 , we get
P̃ = π(Q+ ∆)⊕ π(eQ) = P ⊕ π(eQ).

Thus the input to REC is corrupted by a fraction of at most p(1 + 25Λε) errors which are t-wise
independent, in the sense of Proposition A.7 [29]. Thus, with probability at least 1 − e−Ω(ε2t) =
1− e−Ω(ε4N/ logN), the message m is correctly recovered by Decode.

In the actual decoding, the control information is not handed directly to the decoder. Let ω̃
be the candidate control information recovered by the decoder (in Step 8 of the algorithm). The
above suite of lemmas (Lemmas 6.2, 6.3, 6.4, and 6.5) show that the control information is correctly
recovered, i.e., ω̃ = ω, with probability at least exp(−Ω(ε2N/ log2N))).

The overall probability of success is given by

Pr
ω

[payload decoding succeeds with control information ω̃]

which is at least

Pr
ω

[ω̃ = ω ∧ payload decoding succeeds with control information ω̃]

= Pr
ω

[ω̃ = ω ∧ payload decoding succeeds with control information ω]

> 1− Pr
ω

[ω̃ 6= ω]− Pr
ω

[payload decoding succeeds given ω]

> 1− exp(−Ω(ε2N/ log2N))− exp(−Ω(ε4N/ logN)) .

Because ε is a constant relative to logN , it is the former probability that dominates. This completes
the analysis of the decoder and the proof of Theorem 6.1.

19

7 Capacity-achieving codes for online space-bounded channels

In this section, we outline a Monte Carlo algorithm that, for any desired error fraction p ∈ (0, 1/2),
produces a code of rate close to 1 −H(p) which can be efficiently list decoded from errors caused
by an arbitrary randomized online log-space channel that corrupts at most a fraction p of symbols
with high probability. Recall that for p > 1/4, resorting to list decoding is necessary even for very
simple (constant space) channels. If the channel is allowed a space bound S = o(N/ logN), our
construction and decoding times are polynomial in the block length N of the code and 2S .

7.1 Channel models and branching programs

We model space-bounded online channels as a restricted form of bounded-width branching pro-
grams. Galil et al. [12] formulated a uniform version of this model, with finite automata replacing
branching programs. We use a nonuniform model since it simplifies several proofs and captures a
broader class of channels, including AVC’s.

Definition 6 (Branching programs). A layered, oblivious branching program of width 2S and
length ` is a sequence of ` transition functions Fi : Q × {0, 1} → Q, where Q = {0, 1}S is a
set of 2S states, together with a start state q0 ∈ Q, an input map I : [`] → [N], and an output
map Out : Q → {0, 1}. On input a binary string (x1x2 · · ·xN) ∈ {0, 1}N , the program computes
qi = Fi(qi−1, xI(i)) for i = 1 to `. The (binary) output of the program is Out(q`).

We define an online branching program of width 2S as a special case of the above, in which
` = N and I is the identity function, so that qi = Fi(qi−1, xi). Such a program is essentially a
nonuniform finite automaton, for which the transition function can change from symbol to symbol.
A randomized online branching program is a probability distribution over (deterministic) online
branching programs (of the same input length and width bound).

To model space-bounded channels (as opposed to Boolean functions), we augment the standard
branching program model with the ability to output bits at each phase.

Definition 7 (Space bounded channels (Def. 1 restated)). An online-space-S channel is a read-
once width-2S branching program that outputs one bit at each computation step. Specifically, let
Q = {0, 1}S be a set of 2S states. For input length N , the channel is given by a sequence of N
transition functions Fi : Q× {0, 1} → Q× {0, 1}, for i = 1 to N , along with a start state q0 ∈ Q.
On input x = (x1x2 · · ·xN) ∈ {0, 1}N , the channel computes (qi, yi) = Fi(qi−1, xi) for i = 1 to N .
The output of the channel, which is denoted A(x), is y = (y1y2 · · · yN) ∈ {0, 1}N .

A randomized (online-space-S channel is a probability distribution over the space of determin-
istic (online-space-S) channels. For a given input x, such a channel induces a corresponding dis-
tribution on outputs. A randomized channel A is pN -bounded with probability 1 − β if, for all
inputs x ∈ {0, 1}N , with probability at least 1− β, the channel flips fewer than pN bits of x, that is

Pr
A∈A

[weight(x⊕A(x)) > pN] 6 β .

Remark 4 (Bounded Lookahead). We may also consider a model in which the channel bases its
decision about which bits to flip not only on positions seen so far, but some number of positions

20

in the future. A channel with look-ahead t is specified by N + t transition functions. The input is
augmented with t extra dummy bits, i.e. x′ = x‖0t, and the output of the channel is the last N
bits produced by the transition functions, that is y = yt+1yt+2 · · · yt+N . The results of this section
extend directly to channels with O(S) look-ahead.

7.2 Nisan’s pseudorandom generator

The encoding function of our code will make use of Nisan’s pseudorandom generator for fooling
space bounded algorithms, or in the non-uniform setting, bounded width branching programs. We
first define the notion of indistinguishability of two distributions relative to a function.

Definition 8 (Indistinguishability). For a given (possibly randomized) Boolean function A on some
domain D and two random variables X,Y taking values in D, we write X

η≈A Y if

|Pr(A(X) = 1)− Pr(A(Y) = 1)| 6 η .

Theorem 7.1 (Nisan’s PRG [25]). For integers S′,m, there exists s 6 O(S′ logm) and a function
Nis : {0, 1}O(S′ logm) → {0, 1}m such that for every randomized online branching program B on m
inputs of width 2S

′
,

Nis(Us)
2−S′

≈ B Um
where Ut denotes the uniform distribution on {0, 1}t. For such a generator, s is called its seed
length, and 2−S

′
its error.

7.3 Code construction and ingredients

We will use the same high level approach from our construction for the additive errors case, with
some components changed, and with a seed in the control information to obtain an offset that looks
uniformly random to online log-space bounded channels.

Parameters. Input parameters of the construction: N, p, S, ε, where

(i) N is the block length of the final code,

(ii) pN is the bound on the number of errors introduced (0 < p < 1/2) by the channel w.h.p.

(iii) S is a bound on the space of the online channel (as per Definition 7), such that S is both
Ω(logN) and o(N/ logN).

(iv) ε is a measure of how far the rate is from the optimal bound of 1−H(p) (that is, the rate is
be at least 1−H(p)− ε). We will assume 0 < 2ε < 1/2− p.

The seeds/control information. The control information ω will consist of three randomly
chosen strings sπ, sT , sΓ where sπ, sT are as in the additive errors case. We will take the lengths of
sπ, sT be ζN where ζ = ζ(p, ε) will be chosen small enough compared to ε (the exact choice of ζ is
not too important, but we remark that choosing, say, ζ = ε10 should suffice).

21

The third string sΓ ∈ {0, 1}ζN will be a seed for Nisan’s generator Nis for randomized online
branching programs of width 22S with error ηNis 6 2−2S . Since S 6 o(N/ logN), a seed length of
ζN is sufficient for Nisan’s generator from Theorem 7.1. The offset Γ ← Nis(sΓ) will be used to
fool the space-bounded channel. We won’t need to add the t′-wise independent offset ∆ as we did
in the additive errors case.

Encoding the message. The payload codeword encoding a message m will be π−1(REC(m)) ⊕Γ,
which is the same as the encoding for the additive channel, with the offset Γ added to break
dependencies in the log-space bounded channel instead of the t′-wise independent offset ∆.

We will use the fact that REC is a concatenated code with the following standard components:

• an outer code RECout (over an alphabet of size 2a for some constant a) of rate at least 1−ε/10
that can correct a constant fraction κ = κ(ε) > ε/10 of worst-case errors, and

• an inner code RECin of dimension a, block length bdata 6 O(log(1/κ)/ε2), and rate a/bdata >
1 −H(p) − ε/10 that is capacity-achieving for the binary symmetric channel with crossover
probability p with error probability at most κ/10. Such capacity-achieving codes exist by
Shannon’s theorem, and can be found in time exp(poly(1/ε)) (which is independent of n) by
a brute-force search.

Thus the payload codeword will naturally be broken into ndata “inner chunks” of size bdata. This
structure of REC will be important to argue that once the control information is correctly recovered,
the decoder can find the actual message. This step is not as easy as in the additive errors case,
since the error distribution is no longer a simple t-wise independent distribution but rather caused
by an arbitrary space-bounded online channel.

For convenience, we will assume that bdata will divide the size of the control blocks bctrl (which
will be Θ(logN)). Therefore, each block of the final codeword will either be a control block, or a
payload block that consists of bctrl/bdata consecutive “inner chunks” of the concatenated payload
codeword.

Encoding the seeds. The control information (consisting of the seeds sπ, sT , sΓ) will be encoded
by a similar structure to the solution for the additive channel: a Reed-Solomon code of rate RRS =
RRS(p, ε) concatenated with an inner stochastic code. But the stochastic code SC (of Proposition
A.1) will now be replaced by a low-space pseudorandom code LSC with good list decoding properties
and such that the stochastic encoding of every message according to the code is indistinguishable
from a random string by a randomized online space-S channel.

The formal properties needed from LSC are stated in Proposition 7.2 below — we will apply
the Proposition with the choice S0 = 2S and list decoding radius δ = p+ ε < 1/2− ε, obtaining a
code of block length 2Λ0S. The size bctrl of the control blocks will be set to be equal to the block
length 2Λ0S of LSC. Let nctrl denote number of control blocks, which also equals the block length
of the Reed-Solomon code. Note that

nctrl ≈ εN/bctrl = Θ(εN/S) .

22

The encoding of control blocks is exactly as in the additive errors case, with LSC replacing SC.
As in the additive errors case, the control blocks will be interspersed with the payload blocks at
locations specified by the sampler’s output on sT .

Rate of the code. The code encoding the control information is of some small constant rate
Rctrl(p, ε) and the control information consists only of O(ζN) bits. Given ε, we can select ζ small
enough so that the control portion of the codeword only adds εN/2 bits to the overall encoding.
The rate of REC is at least (1− ε/10)(1−H(p)− ε/10) > 1−H(p)− ε/5. So the rate of the overall
stochastic code is at least 1−H(p)− ε as desired.

We next formally state and prove the properties of the code LSC needed above, thus completing
the description of the code and encoding function.

7.4 Low-space pseudorandom stochastic code

Definition 9 (Decomposable stochastic code). A binary stochastic code with encoding map E where
E : {0, 1}k × {0, 1}s → {0, 1}b is said to be decomposable if there exist functions E1 : {0, 1}k →
{0, 1}b and E2 : {0, 1}s → {0, 1}b such that E(x, y) = E1(x) ⊕ E2(y) for every x, y. We say that
such a encoding decomposes as E = [E1, E2]. 2

Definition 10 (List-decodable low-space pseudorandom code). A decomposable binary stochastic
code with encoding map E : {0, 1}k × {0, 1}s → {0, 1}b that decomposes as E = [E1, E2] is said to
be a (δ, L)-list decodable (S, γ)-pseudorandom code if the following properties hold:

1. E is (δ, L)-list decodable, i.e., for every y ∈ {0, 1}b, there are at most L pairs (m, r) such that
E(m, r) is within Hamming distance δb of y.

2. For every m ∈ {0, 1}k and every randomized online branching program B (that can depend on
m,E1(m)) with b input bits and width 2S, we have

E(m,Us)
γ≈B Ub .

The rate of such a code equals k/b, and its seed complexity is s. 2

The construction of the necessary stochastic code, whose codewords look random to low-space
channels, is guaranteed by the following lemma.

Proposition 7.2 (Inner control codes). For some fixed positive integer Λ0 the following holds. For
all δ, 0 < δ < 1/2, there exist R = R(δ) > (1/2 − δ)Ω(1) > 0 and a positive integer L = L(δ) 6
1/(1/2 − δ)O(1) such that for all large enough integers S0, there exists a 2O(S0) time randomized
Monte Carlo construction of a decomposable stochastic code with encoding E : {0, 1}k × {0, 1}s →
{0, 1}u with u = Λ0S0, k > Ru and s = 10S0, that is (δ, L)-list-decodable (S0, 2−S0)-pseudorandom
with probability at least 1− 2−u.

Further, there exists a deterministic decoding procedure running in time 2O(S0) that, given a
string y ∈ {0, 1}u, recovers the complete list of (at most L) pairs (m, r) whose encodings E(m, r)
are within Hamming distance at most δu from y.

23

Proof. The existence will be shown by a probabilistic construction with a decomposable encoding
E(m, r) = C(m)⊕ BPPRG(r) where C will be (the encoding map of) a linear list-decodable code,
and BPPRG will be a generator that fools width 2S0 branching programs, obtained by picking
BPPRG(r) ∈ {0, 1}u independently and uniformly at random for each seed r. Here u = Λ0S0

for a large enough absolute constant Λ0 as in the statement of the Proposition. Note that the
construction time is 2O(u) = 2O(S0).

List-decoding property. We adapt the proof that a truly random set is list-decodable. Let
C ⊆ {0, 1}u be a linear (δ, LC = LC(δ))-list decodable code; such codes exist for rates less than
1−H(δ) [15], and can be constructed explicitly with positive rate R(δ) > (1/2− δ)Ω(1) > 0 for any
constant δ < 1/2 with a list size LC 6 1/(1/2− δ)O(1) [16]. We will show that the composed code
E has constant list-size with high probability over the choice of BPPRG as long as the rate of the
combined code is strictly less than 1−H(δ).

Fix a ball B′ of radius δu in {0, 1}u, and let X denote the size of the intersection of the
image of E with B′. We can view the image of E as a union of 2s sub-codes Cr, where Cr is
the translated code C ⊕ BPPRG(r) (for r ∈ {0, 1}s). Each sub-code Cr is (δ, LC)-list-decodable
since it is a translation of C. We can then write X =

∑
r∈{0,1}s Xr, where Xr is the size of

Cr∩B′. The Xr are independent integer-valued random variables with range [0, LC] and expectation
E[Xr] = |C| · |B′|/2u 6 2−u(1−H(δ)−RC) where RC denotes the rate of C. Therefore,

E[X] = 210S02−u(1−H(δ)−RC) = 2−u(1−H(δ)−RC−10/Λ0) .

Suppose RC + 10/Λ0 = 1−H(δ)−α0, so that E[X] = 2−α0u. Let t be the ratio L/E[X], where
L = L(δ) is the desired list-decoding bound for the composed code E. We will set L = 3LC/α0. By
the multiplicative Chernoff bound for bounded random variables, the probability (over the choice
of BPPRG) that X > L is at most

(
t
e

)tE[X]/LC . Simplifying, we get Pr[X > L] 6 (Le)22−3u 6 2−2u.

Taking a union bound over all 2u possible balls B′, we get that with probability at least 1−2−2u,
the random choice of BPPRG satisfies the property that the decomposable stochastic code with
encoding map E = C ⊕ BPPRG is (δ, L)-list-decodable.

Pseudorandomness. We now establish the pseudorandomness claim. It suffices to prove
the pseudorandomness property against all deterministic online branching programs of width 2S0 ,
since a randomized online branching program is just a distribution over deterministic branching
programs.

Fix an arbitrary codeword C(m). Consider the (multi)set Xm = {C(m)⊕BPPRG(r)} as r varies
over {0, 1}s. Each element of this set is chosen uniformly and independently at random from {0, 1}u.
Fix an online width-2S0 branching program B. By a standard Chernoff bound, the probability,
over the choice of Xm, that Prx∈Xm [B(x) = 1] deviates from the probability Pr[B(Uu) = 1] that B
accepts a uniformly random string by more than ζ in absolute value, is at most exp(−Ω(ζ2|Xm|)).
For ζ = 2−S0 and |Xm| = 2s > 210S0 , this probability is at most exp(−Ω(28S0)).

The number of online branching programs of width 2S0 on u input bits is at most exp(O(S0u)2S0) 6
exp(O(22S0)). By a union bound over all these branching programs, we conclude that except with
probability at most exp(−2Ω(S0)) over the choice of BPPRG, the following holds for every online
width 2S0 branching program B with u inputs bits:

| Pr
x∈Xm

[B(x) = 1]− Pr[B(Uu) = 1]| 6 2−S0 .

24

Sincem was arbitrary, we have proved that the constructed stochastic code is (S0, 2−S0)-pseudorandom
with probability at least 1− 2−2u.

Decoding. Finally, it remains to justify the claim about the decoding procedure. Given a
string y ∈ {0, 1}u, the decoding algorithm will go over all (m, r) ∈ {0, 1}k × {0, 1}s by brute force,
and check for each whether dist(E(m, r), y) 6 δu. By the list-decoding property, there will be at
most L such pairs (m, r). The decoding complexity is 2O(k+s) = 2O(u).

7.5 List decoding algorithm

The decoding algorithm will be similar to the additive case with the principal difference being that
the inner stochastic codes will be decoded as per the procedure guaranteed in Proposition 7.2 (using
time 2O(S) for each block). For each block, we obtain a list of L possible pairs of the form (αi, ai).
These set of (at most NL pairs) are the fed into the polynomial time Reed-Solomon list decoding
algorithm (guaranteed by Proposition A.3), which returns a list of poly(1/ε) values for the control
information. This comprises the first phase of the decoder.

Once a list of control vectors is recovered, the second phase of the decoder will run the decoding
algorithm for REC for each of these choices of the control information and recover a list of possible
messages.

The steps to decode each of inner stochastic codes takes time 2O(S) and decoding the Reed-
Solomon code as well as REC takes time polynomial in N . So the overall run time is polynomial in
N and 2S .

The main theorem about decoding is the following.

Theorem 7.3. Let WS be an arbitrary randomized online-space-S channel on N input bits that is
pN -bounded with probability 1 − β. Consider the code construction described in Section 7.3 using
component codes REC, a Reed-Solomon code of small enough rate RRS, and the code LSC that is
(p+ ε, L)-list decodable and (2S, 2−2S)-pseudorandom (which happens with 1− 2−Ω(S) probability).

Then for every message m, with high probability over the choice of control information sπ, sT , sΓ

and the errors introduced by WS, the list output by the above-mentioned list decoding algorithm
includes the message m with probability at least

1− 2β −N2−Ω(ε3S) − 2−Ω(ε3N/S) .

The running time of the decoding algorithm is polynomial in N and 2S (and thus polynomially
bounded in the block length if the space bound is logarithmic).

Since the construction of LSC in Proposition 7.2 guarantees the required pseudorandomness
property with probability 1− 2−Ω(S), setting S = Θ(logN) in the above theorem implies our main
result (Theorem 3.4) on capacity-achieving codes for list decoding on online log-space channels.

The novelty compared to the additive errors case is in the analysis of the decoder, which is more
subtle since we have to deal with a much more powerful channel. The remainder of this section
deals with this analysis, which will establish the validity of Theorem 7.3.

25

7.6 Analyzing Decoding: Main Steps

Our analysis requires two main claims.

Lemma 7.4 (Few Control Candidates). The decoder recovers a list of L′ 6 poly(1/ε) candidate
values of the control information. With high probability (specifically probability at least 1 − β −
exp(−Ω(ε3N/S))), the list includes the correct value ω = (sπ, sT , sΓ) of the control information
used at the encoder.

Lemma 7.5 (Payload decoding succeeds). Given the correct control information (π, T,Γ), the
decoder succeeds with high probability. Specifically, the probability of successful decoding is at least
1− β −N exp(−Ω(ε3S))).

Combining these two lemmas, which we prove in the next two sections, we get that except with
probability at most 2β+exp(−Ω(ε3N/S))+N exp(−Ω(ε3S)), the decoder recovers a list of at most
L′ 6 poly(1/ε) potential messages, one of which is the correct original message. This establishes
Theorem 7.3.

7.7 Control Candidates Analysis

In this section we show that the decoder can recover a small list of candidate control strings, one
of which is correct with high probability (Lemma 7.4).

Our analysis follows the case of additive errors, but the relaxed goal of list-decoding simplifies
the analysis of this part considerably. Recall that the sampled set T is “good” for a particular error
pattern (Definition 5) if at least a fraction ε of the nctrl control blocks have an error rate (fraction
of flipped bits) bounded above by p+ ε.

There were four main lemmas in the analysis of additive errors. We can reuse the first
(Lemma 6.2) verbatim, with the only change in the calculation being that the number of con-
trol blocks nctrl is now Θ(εN/S) instead of Θ(εN/ logN).

Lemma 7.6 (Good Samplers: Lemma 6.2 Restated). For every error vector e of weight at most
pN , with probability at least 1− exp(−Ω(ε3N/S)) over the choice of sampler seed sT , the set T is
good for e.

Lemma 7.7 (Correct Control Blocks — list decoding version). For any e, T such that T is good
for e, the decoding algorithm for the inner codes LSC outputs a list of L symbols containing the
correct symbol ai for at least εnctrl

2 = Θ(ε
2N
S) control blocks.

Proof. The list-decoding radius of the LSC code is set to be δ > p + ε, so all blocks with an error
rate below p+ ε produce a valid list.

The third lemma from the analysis of additive errors (Lemma 6.4), which previously stated that
very few payload blocks are mistaken for control blocks, is the piece of the analysis that requires the
most significant change. It is possible for the space-bounded channel to inject fake control blocks
into the codeword (by changing a block to some pre-determined codeword of LSC). Therefore we
can only say that the total number of candidate control blocks is small.

26

Lemma 7.8 (Bounding mistaken control blocks). For every m, e, ω, the total number of candidate
control symbols is at most NL

2Λ0S
.

Proof. Since each block has bctrl = 2Λ0S bits, there are N
2Λ logN blocks considered by the decoder.

The list decoding of each such block yields at most L candidate control symbols.

Given Lemmas 7.7 and 7.8, we only need to ensure that the rate RRS of the Reed-Solomon
code used at the outer level to encode the control information is small enough so that list decoding
is possible according to Proposition A.3 as long as (1) the number of data pairs n is at most
NL

2Λ0S
and the number of agreements t is at least Θ(ε

2N
S). The claimed list decoding is possible

with RRS = O(ε4/L), and the list decoder will return at most O(L/ε2) candidates for the control
information. Since the list decoding radius δ of LSC was chosen to be δ = p+ ε < 1/2− ε, we have
L 6 1/εO(1) by the guarantee of Proposition 7.2, so the output list size is bounded by a polynomial
in 1/ε. This proves Lemma 7.4; the claimed failure probability is obtained by adding the probability
β that the channel flips more than pN bits, and the failure probability of the sampler from Lemma
7.6.

7.8 Payload Decoding Analysis

We now turn to the analysis of the decoding of the payload codeword and the task of proving
Lemma 7.8. We first develop a key tool called the “Hiding Lemma” which will be crucial to our
analysis.

7.8.1 The Hiding Lemma

Given a message m, and pseudorandom outputs π, T,Γ based on the seeds sπ, sT , sΓ, let

Enc(m;π, T,Γ, r1, ..., rnctrl
)

denote the output of the encoding algorithm when the ri’s are used as the random bits for the
LSC encoding. Let Enc(m;π, T, ·) be a random encoding of the message m using a given π, T and
selecting all other inputs at random.

Definition 11 (Conditional Indistinguishability). For random variables X,Y, Z with X,Y defined
on {0, 1}N , and η > 0, we say that X and Y are online-space-S indistinguishable given Z with
advantage η if for all values z of Z, and for all randomized online branching programs Az (that
could depend nonuniformly on z) with N inputs and width 2S, we have X

η≈Az Y , where X and Y
are conditioned on Z = z. 2

The following crucial lemma lets us limit the damage that an online space-bounded channel can
cause to our codewords.

Lemma 7.9 (Hiding Lemma). For all messages m, sampler sets T and permutations π, the random
variables Enc(m;π, T, ·) and UN (the uniform distribution on {0, 1}N) are online-space-2S indis-
tinguishable given (m,π, T) with advantage η, where η is at most N2−2S + ηNis 6 (N + 1) · 2−2S.

27

We defer the proof of the above lemma to Section 7.8.2. First, we develop a useful corollary on
error distributions.

Definition 12 (Error distributions). Given a randomized channel A on N bits and a random
variable D on {0, 1}N , let EA(D) denote the error distribution of A on D, that is D ⊕A(D).

An important consequence of the Hiding Lemma is that even with the knowledge of π and T ,
the distribution of errors inflicted by a space-bounded channel on a codeword of our code and on
a uniformly random string are indistinguishable by space-bounded tests.

Corollary 7.10 (Errors are Near-Oblivious). Let WS be a randomized online-space-S channel.
For every m,π, T , the error distributions EWS

(UN) and EWS
(Enc(m;π, T, ·)) are online-space-S

indistinguishable given (m,π, T), with advantage at most (N + 1)2−2S.

Proof. One can compose a distinguisher for the two error random variables with the channel WS

to get a distinguisher for the original distributions of the Hiding Lemma. This composition can be
achieved while maintaining the online restriction and the space usage is the sum of the space of
WS and the distinguisher (that is, at most 2S).

7.8.2 Proof of the Hiding Lemma 7.9

Proof of Lemma 7.9. The proof proceeds by hybrid argument. Fix m,π, T , and recall that |T | =
nctrl is the number of control blocks. Let D0 be the random variable Enc(m;π, T, ·), and D2 be the
uniform distribution over {0, 1}N . We will define an intermediate random variable D1, in which
the control blocks of D0 are replaced by fresh uniformly random strings. We show that D0 and D2

are both indistinguishable from D1, and hence from each other.

For notational convenience, suppose that π is the identity permutation, and that the set T ,
which dictates the locations of the control blocks, occupies the last ` = nctrl locations so that the
control information is sent at the end of the codeword (the proof works identically for any other
fixed pair T, π). Let the encoding LSC decompose as [C∗,BPPRG]. We can then write D0 as

D0 = (payload ⊕ Γ ‖c1 ⊕ BPPRG(r1)‖ · · · ‖c` ⊕ BPPRG(r`)) ,

where ri is the randomness used by the stochastic encoder LSC and c1, ..., c` are codewords of C∗.
Similarly, we can write D1 = (payload ⊕ Γ ‖U1‖ · · · ‖U `).

If ν is the concatenated string BPPRG(r1)‖ · · · ‖BPPRG(r`), then conditioned on m,π, T and
Γ, any branching program that distinguishes D1 from D0 can be used to construct a branching
program of the same complexity that distinguishes ν from uniform, by hard-wiring in the string
(payload ⊕Γ ‖c1‖ · · · ‖c`). By the (2S, 2−2S)-pseudorandom property of LSC and a standard hybrid
argument, no online-space-2S branching program can distinguish ν from uniform with advantage
better than ` · 2−2S 6 N2−2S . Hence D0 and D1 are indistinguishable with advantage greater than
N2−2S .

We now show that D1 and D2 are indistinguishable with advantage greater than ηNis. Note that
in both distributions, the last ` blocks are uniform and independent of the long payload block. A
randomized online-space-2S branching program A that distinguishes D1 from D2 with advantage
η can be turned into a distinguisher Bpayload, defined by Bpayload(z) = A(z ⊕ payload‖U1‖ · · ·U `),

28

that distinguishes Γ from uniform with advantage η. We can represent Bpayload as a randomized
online branching program with the same width as A, that is, at most 2S. By the property of the
pseudorandom generator Nis, we conclude that A’s advantage in distinguishing D1 from D2 is at
most ηNis 6 2−2S .

7.8.3 Proof of Lemma 7.5

Armed with the Hiding Lemma, we return to the task of proving Lemma 7.5 on the claim that the
payload decoding succeeds. Recall that for this part, we can assume that the decoder is given the
correct control information ω = (π, T,Γ). We are thus in the shared randomness setting.

We will use the Hiding Lemma (actually, Corollary 7.10) to argue that the events that we needed
to happen with high probability for successful decoding against additive errors (where the errors
were oblivious to the codeword) will also happen with good probability against the online-space-S
channel WS . However, the high probability guarantee we will be able to prove is weaker, being
1−N−Ω(1) when S = O(logN).

In the following, we fix the message m and the choice T of the control block locations.

Definition 13 (Friendly errors). For an error vector e ∈ {0, 1}N with Hamming weight at most
pN , define e to be friendly for (π, T) if the permuted error vector π(e|T̄) is an error pattern on
which the decoder for the code REC succeeds.

The decoder for REC is the standard “hard decoder” for concatenated codes: it decodes each
inner block by brute force to the message in {0, 1}a whose encoding by RECin is closest to it, and
runs a unique decoder to correct up to a fraction κ = κ(ε) of errors for the outer code RECout. By
the linearity of REC, the success of the decoding depends only on the error pattern, and not on the
message. In particular, e is friendly for (π, T) if and only if decoding π(e|T̄) leads to the all zeroes
message.

The following key lemma says that the error caused by any randomized online-space-S bounded
channel is likely to be friendly and thus lead to successful decoding of REC. This lemma immediately
implies Lemma 7.5.

Lemma 7.11 (Errors are likely to be friendly). Let WS be any randomized online-space-S channel
on N bits that causes at most pN errors with probability 1 − β. For all subsets T of control block
locations, with probability at least

1− β −N · 2−Ω(ε3S)

(taken over π and the choice of e according to EWS
(Enc(m;T, ·))), e is friendly for (π, T).

The proof of the above lemma (which appears in Section 7.8.4 below) is one of key difficulties in
the analysis compared to the additive errors case. Another principal difference was that we could
not argue that the number of payload blocks mistaken for control blocks was small, but allowing
for list decoding enabled getting around this difficulty relatively easily.

7.8.4 Proof of Lemma 7.11

Let us denote W = WS for ease of notation. Our plan to prove Lemma 7.11 is the following: By
Corollary 7.10 of the Hiding Lemma, we know that EW(Enc(m;T, ·)) is online-space-S indistinguish-

29

able (with advantage (N + 1)2−2S) from EW(UN). The latter error distribution is oblivious to the
actual codeword, and so by the analysis of the additive errors case (proof of Theorem 6.1), we know
that an error vector distributed according to EW(UN) is friendly for (π, T) with high probability
(specifically at least 1 − β − exp(−Ωε(N/ logN)), where the β term accounts for the chance that
W causes more than pN errors).

If EW(Enc(m;T, ·)) were statistically close to EW(UN), we could conclude that errors distributed
according to EW(Enc(m;T, ·)) are also friendly for (π, T) and we would be done. However, these
error distributions are only online-space-S indistinguishable. So in order to apply this style of
reasoning, we would need to argue that checking whether an input error vector e ∈ {0, 1}N is
friendly for (π, T) can be done by an online-space-S machine (that can depend non-uniformly on
π).

This task amounts to checking that π(e|T̄) decodes to the all zeroes message. Since the decoder
for REC corrects a fraction κ of worst-case errors for the outer code RECout, this condition is met if
at most a κ fraction of inner blocks (each with bdata bits, corresponding to a codeword of RECin) are
decoded to a non-zero element of {0, 1}a. This check could potentially be made in low space if we
had access to e permuted according to π. Unfortunately, we are only guaranteed indistinguishability
against tests with online access to e. We do not know of a method for checking friendliness of e
for (π, T) in online-space-S.

We therefore resort to a more complicated and indirect argument. We follow ideas from our
earlier work [29] on the correction of t-wise independent errors. Specifically, we will show that any
particular set of S/bdata blocks of the concatenated code behave as they would for binary symmetric
errors. We can then use concentration bounds for S/bdata-wise independent random variables to
argue that decoding succeeds with high probability.

Lemma 7.12. For every subset P of at most S/bdata positions of RECout, the probability (taken
over π and the choice of e according to EW(m;T, ·)) that the inner decodings for RECin on π(e|T̄)
return a non-zero element of {0, 1}a for every position in P is at most (κ/5)|P | + (N + 1)2−S.

Proof. Since |P |bdata 6 S = o(N/ logN), by the Ω(N/ logN)-wise independence of the permutation
π, for each fixed error vector e, and therefore also for e chosen according to EW(UN), the probability
that all positions in P are decoded incorrectly is at most (κ/10)|P | + 2−|P |bdata 6 (κ/5)|P |. The
condition that all inner blocks of RECin corresponding to positions in P are incorrectly decoded can
be checked by an online branching program of width 2S , by simply keeping the at most (S/bdata) ·
bdata = S bits in the blocks corresponding to P in memory. Since EW(m;T, ·) and EW(UN) are online-
space-S indistinguishable with advantage (N + 1)2−2S , we get the conclusion of the lemma.

To complete the argument and prove that at most a κ fraction of positions of RECout are decoded
incorrectly, we need the following probabilistic fact. We include a proof, which is based on ideas
used to prove similar statements in [28], for completeness.

Claim 7.1. Let α ∈ (0, 1/3) and X1, X2, . . . , Xn be 0-1 valued random variables with Pr[Xi = 1] 6
α for i = 1, 2, . . . , n. Further assume that for every subset P ⊆ {1, 2, . . . , n} of size `,

Pr
[∏
i∈P

Xi = 1
]

6 α` . (1)

30

for some α` > 0. Then

Pr
[n∑
i=1

Xi > 3αn
]

6 α`

(
n− `

3αn− `
)`

. (2)

Proof. Define Z =
∑n

i=1Xi and S` =
∑

16i1<i2<···<i`6nXi1Xi2 · · ·Xi` to be the `’th symmetric
function. Since the Xi are 0-1 valued, when Z = a, S` =

(
a
`

)
. We have

Pr[Z > 3αn] 6 Pr
[
S` >

(
3αn
`

)]
6

E[S`](
3αn
`

)
using Markov’s inequality. By linearity of expectation and the hypothesis (1), we have E[S`] 6(
n
`

)
α`. Since 3αn 6 n,

(
n
`

)
/
(

3αn
`

)
6
(

n−`
3αn−`

)`
and the claim follows.

Let us now combine Lemma 7.12 and Claim 7.1 applied with the choice ` = S/bdata, α =
κ/5 + (N + 1)2−2S , α` = (κ/5)` + (N + 1)2−2S , and n = ndata which is the number of data blocks
of the payload codeword (which is also the block length of RECout).

As ndata = Ω(N) and ` 6 S 6 o(N/ logN), we have ndata−`
3αndata−` 6 1

2α for large enough N . Also
α` = (κ/5)` + (N + 1)2−2S 6 2N(κ/5)` since ` 6 ε2S and κ > εO(1). Since 3α = 3κ/4 + oN (1) 6 κ,
the tail bound (2) implies that the the probability (taken over π and the choice of e according to
EW(m;T, ·)) that more than a fraction κ of the inner blocks corresponding to RECin are incorrectly
decoded is at most

α`
(2α)`

6
2N(κ/5)`

2`(κ/5 + (N + 1)2−2S)`
6

2N
2`

=
2N

2S/bdata
6 N · 2−Ω(ε3S) .

This finishes the proof of Lemma 7.11, which in turn implies Lemma 7.5 and completes the proof
of our main Theorem 7.3 on space-bounded channels.

8 Time-Bounded Channels

The ideas behind our code construction for online space-bounded channels are quite general and
can be extended to construct codes against more powerful channels provided we have the necessary
explicit pseudorandom generators that can play the role of Nisan’s generator for branching pro-
grams. In this section, we focus on channels which can be described by polynomial sized circuits.
Specifically, we say a channel has circuit size T on inputs of length N if the effect of the channel
can be described by a randomized circuit of at most T gates.

Construction. Suppose we desire a code of block length N and rate 1 −H(p) − ε that can be
list-decoded errors caused by a channel of circuit size N c that flips at most pN bits with high
probability. We can use a similar construction scheme to the online space-bounded case, with the
size of the control blocks bctrl = c′ logN for a suitable c′ (chosen large enough compared to c), and
with the components LSC and the generator Nis changed (as described below) to accommodate the
more powerful channel.

31

The inner code LSC used for the control information encoding will be replaced by a (δ, L)-list-
decodable whose codewords are indistinguishable from Ubctrl with advantage N−c by (randomized)
circuits of size N c+Ω(1). A Monte Carlo construction similar to the one described in Proposition
7.2 can construct such a code with probability 1−N−Ω(1) in poly(N) time.

The generator Nis will be replaced by an efficiently computable pseudorandom generator PolyPRG :
{0, 1}ζ(ε)N → {0, 1}N of constant stretch such that the output of PolyPRG fools all circuits C of
size N c+Ω(1); formally

PolyPRG(UζN)
N−c

≈ C UN .

Such a pseudorandom generator which is computable in poly(N) time exists under computational
assumptions. For instance, the existence of one-way functions suffices [33, 17], as does the worst-
case complexity assumption that E 6⊆ SIZE(2ε0n) for some absolute constant ε0 > 0 [18] where
E = DTIME(2O(n)) and SIZE(2ε0n) denotes the class of languages that have size O(2ε0n) circuits.

Decoding algorithm and its analysis. The decoding algorithm is identical to the algorithm
described in Section 7.5 for the case of online space-bounded channels.

Turning to the analysis, the part about recovering the control information applies verbatim,
and implies that the list decoding of the control information succeeds in finding the correct control
information with high probability. An analog of the Hiding Lemma 7.9 (and its Corollary 7.10)
where indistinguishability is with respect to size N c+Ω(1) circuits follows with an identical argument.
The analog of Lemma 7.11, which was at the heart of the proof that the payload decoding also
succeeds w.h.p., is in fact easier to prove for polynomial-sized circuits and implies that the error
vector caused by the size N c channel is friendly for π with high probability. (The proof is easier
since a circuit of some fixed polynomial size can perform the check that an error vector e is friendly
for π; recall that this was the difficulty in the online space-bounded case and we required a more
complex argument). We can thus prove the following formal statement for coding against channels
of polynomial size.

Theorem 8.1. Assume either E 6⊆ SIZE(2ε0n) for some ε0 > 0 or the existence of one-way func-
tions. For all constants ε > 0, p ∈ (0, 1/2), and c > 1, and for infinitely many integers N ,
there exists a Monte Carlo construction (succeeding with probability 1 − N−Ω(1)) of a stochastic
encoder/decoder pair (Enc,Dec) with the following properties:

• Enc encodes a message of length RN > (1−H(p)− ε)N bits into N bits.

• (Enc,Dec) runs in time NO(c).

• For every received word r ∈ {0, 1}N , the decoder Dec(r) outputs a list of at most poly(1/ε)
candidate messages.

• For all messages m ∈ {0, 1}RN , and for all randomized channels W with circuit size N c (which
could depend non-uniformly on m) that cause at most pN errors with probability 1−N−Ω(1),
the list output by the decoder contains m with probability at least 1−N−Ω(1) (taken over the
stochastic encoding and the channel noise).

32

References

[1] R. Ahlswede. Elimination of correlation in random codes for arbitrarily varying channels. Z.
Wahrscheinlichkeitstheorie Verw. Gebiete, 44:159–175, 1978. 3, 40

[2] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the
maximal independent set problem. J. Algorithms, 7(4):567–583, 1986. 37

[3] M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. In Proceedings of the
35th Annual IEEE Symposium on Foundations of Computer Science, pages 276–287, 1994. 18

[4] R. Cramer, Y. Dodis, S. Fehr, C. Padró, and D. Wichs. Detection of algebraic manipulation
with applications to robust secret sharing and fuzzy extractors. In Advances in Cryptology
- EUROCRYPT, 27th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 471–488, 2008. 6, 10, 11

[5] I. Csiszár and P. Narayan. Arbitrarily varying channels with constrained inputs and states.
IEEE Transactions on Information Theory, 34(1):27–34, 1988. 2

[6] I. Csiszár and P. Narayan. The capacity of the arbitrarily varying channel revisited: Positivity,
constraints. IEEE Transactions on Information Theory, 34(2):181–193, 1988. 5, 17

[7] I. Csiszár and P. Narayan. Capacity and decoding rules for classes of arbitrarily varying
channels. IEEE Transactions on Information Theory, 35(4):752–769, 1989. 5

[8] B. K. Dey, S. Jaggi, and M. Langberg. Codes against online adversaries. CoRR, abs/0811.2850,
2008. 7

[9] P. Elias. List decoding for noisy channels. Technical Report 335, Research Laboratory of
Electronics, MIT, 1957. 4

[10] P. Elias. Error-correcting codes for list decoding. IEEE Transactions on Information Theory,
37:5–12, 1991. 2, 4

[11] G. D. Forney. Concatenated Codes. MIT Press, Cambridge, MA, 1966. 1, 4, 8, 37

[12] Z. Galil, R. J. Lipton, X. Yu, and M. Yung. Computational error-correcting codes achieve
shannon’s bound explicitly. Manuscript, 1995. 3, 5, 6, 7, 20

[13] V. Guruswami. List decoding with side information. In Proceedings of the 18th IEEE Confer-
ence on Computational Complexity (CCC), pages 300–309, July 2003. 2, 4

[14] V. Guruswami. Algorithmic Results in List Decoding, volume 2 of Foundations and Trends in
Theoretical Computer Science (FnT-TCS). NOW publishers, January 2007. 4

[15] V. Guruswami, J. Hastad, M. Sudan, and D. Zuckerman. Combinatorial bounds for list
decoding. IEEE Transactions on Information Theory, 48(5):1021–1035, 2002. 4, 24

[16] V. Guruswami and M. Sudan. List decoding algorithms for certain concatenated codes. In
Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (STOC), pages
181–190, 2000. 24

33

[17] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any
one-way function. SIAM J. Comput., 28(4):1364–1396, 1999. 3, 32

[18] R. Impagliazzo and A. Wigderson. P = BPP if e requires exponential circuits: Derandom-
izing the xor lemma. In Proceedings of the 29th Annual ACM Symposium on the Theory of
Computing, pages 220–229, 1997. 3, 32

[19] E. Kaplan, M. Naor, and O. Reingold. Derandomized constructions of k-wise (almost) inde-
pendent permutations. Electronic Colloquium on Computational Complexity TR06-002, 2006.
15, 37

[20] M. Langberg. Private codes or succinct random codes that are (almost) perfect. In Proceedings
of the 45th IEEE Symposium on Foundations of Computer Science (FOCS), pages 325–334,
2004. 4

[21] M. Langberg. Oblivious communication channels and their capacity. IEEE Transactions on
Information Theory, 54(1):424–429, 2008. 2, 5

[22] A. Lapidoth and P. Narayan. Reliable communication under channel uncertainty. IEEE
Transactions on Information Theory, 44(6):2148–2177, 1998. 4, 38

[23] R. J. Lipton. A new approach to information theory. In Proceedings of the 11th Annual
Symposium on Theoretical Aspects of Computer Science, pages 699–708, 1994. 3, 4, 5, 8

[24] S. Micali, C. Peikert, M. Sudan, and D. A. Wilson. Optimal error correction against computa-
tionally bounded noise. In Proceedings of the 2nd Theory of Cryptography Conference, pages
1–16, 2005. 2, 3, 4, 5

[25] N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992. 5, 21

[26] N. Nisan and A. Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994. 3

[27] W. W. Peterson. Encoding and error-correction procedures for Bose-Chaudhuri codes. IEEE
Transactions on Information Theory, 6:459–470, 1960. 36

[28] J. P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-hoeffding bounds for applications with
limited independence. SIAM J. Discrete Math., 8(2):223–250, 1995. 30

[29] A. Smith. Scrambling adversarial errors using few random bits, optimal information rec-
onciliation, and better private codes. In Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 395–404, 2007. 4, 10, 16, 19, 30, 37

[30] M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. Journal of
Complexity, 13(1):180–193, 1997. 36

[31] S. P. Vadhan. Constructing locally computable extractors and cryptosystems in the bounded-
storage model. J. Cryptology, 17(1):43–77, 2004. 15, 36

34

[32] J. M. Wozencraft. List Decoding. Quarterly Progress Report, Research Laboratory of Electron-
ics, MIT, 48:90–95, 1958. 4

[33] A. C.-C. Yao. Theory and applications of trapdoor functions. In Proceedings of the 23rd IEEE
Symposium on Foundations of Computer Science, pages 80–91, 1982. 3, 32

[34] V. V. Zyablov and M. S. Pinsker. List cascade decoding. Problems of Information Transmis-
sion, 17(4):29–34, 1981 (in Russian); pp. 236-240 (in English), 1982. 2, 4

A Ingredients for Code Construction for Additive Errors

In this section, we will describe the various ingredients that we will need in our construction of
capacity achieving AVC codes, expanding on the brief mention of these from Section 6.1.

A.1 Constant rate codes for average error

By plugging in an appropriate explicit construction of list-decodable codes (with sub-optimal rate)
into Theorem 5.2, we can also get the following explicit constructions of stochastic codes, albeit
not at capacity. We will make use of these codes to encode blocks of logarithmic length control
information in our final capacity-achieving explicit construction. The total number of bits in all
these control blocks together will only be a small fraction of the total message length. So the
stochastic codes encoding these blocks can have any constant rate, and this allows us to use any
off-the-shelf explicit constant rate list-decodable code in Theorem 5.2 (in particular, we do not
need a brute-force search for small list-decodable codes of logarithmic block length). We get the
following claim by choosing d = 1 and picking C to be a binary linear (α, c1(α)/2)-list decodable
code in Theorem 5.2.

Proposition A.1. For every α, 0 < α < 1/2, there exists c0 = c0(α) > 0 and c1 = c1(α) < ∞
such that for all large enough integers b, there is an explicit stochastic code SCk,α of rate 1/c0 with
encoding E : {0, 1}b × {0, 1}b → {0, 1}c0b that is efficiently strongly α-decodable with probability
1− c12−b.

Moreover, for every message and every error pattern of more than a fraction α of errors, the
decoder for SCk,α returns ⊥ and reports a decoding failure with probability 1− c12−b.

Further, there exists an absolute constant c3 = c3(α) such that on input a uniformly random
string y from {0, 1}c0b, the decoder for SCk,α returns ⊥ with probability at least 1− c12−b (over the
choice of y).

Proof. The claim follows by choosing d = 1 and picking C to be a binary linear (α, c1(α)/2)-list
decodable code in Theorem 5.2. The claim about decoding a uniformly random input follows since
the number of strings y which differ from some valid output of the encoder E is at most a fraction
α of positions is at most 22b2H(α)c0b. By standard entropy arguments, we have (1 − H(α))c0b +
log(c1(α)/2) > 3b (since the code encodes 3b bits, the capacity is 1−H(α), and at most log(c1(α)/2)
additional bits of side information are necessary to disambiguate the true message from the list).
We conclude that the probability that a random string gets accepted by the decoder is at most
2−b · 2log(c1(α)/2) 6 c12−b.

35

A.2 Reed-Solomon codes

If F is a finite field with at least n elements, and S = (α1, α2, . . . , αn) is a sequence of n distinct ele-
ments from F, the Reed-Solomon encoding, RSF,S,n,k(m), or just RS(m) when the other parameters
are implied, of a message m = (m0,m1, . . . ,mk−1) ∈ Fk is given by

RSF,S,n,k(m) = (f(α1), f(α2), · · · , f(αn)) . (3)

where f(X) = m0 + m1X + ... + mk−1X
k−1. The following is a classic result on unique decoding

Reed-Solomon codes [27], stated as a noisy polynomial reconstruction algorithm.

Proposition A.2 (Unique decoding of RS codes). There is an efficient algorithm with running
time polynomial in n and log |F| that given n distinct pairs (αi, ai) ∈ F2, 1 6 i 6 n, and an integer
k < n, finds the unique polynomial f of degree at most k, if any, that satisfies f(αi) = ai for more
than n+k

2 values of i. Note that this condition can also be expressed as
∣∣{i : f(αi) = ai}

∣∣ − ∣∣{i :
f(αi) 6= ai)}

∣∣ > k.

We also state a list-decoding generalization (the version due to Sudan [30] suffices), which will
be used in our result for space-bounded channels.

Proposition A.3 (List decoding of RS codes [30]). There is an efficient algorithm with running
time polynomial in n and log |F| that given n distinct pairs (αi, ai) ∈ F2, 1 6 i 6 n, and integer
k < n, finds the set L of all polynomials f of degree at most k, if any, that satisfy f(αi) = ai for
at least t values of i as long as t >

√
2kn. Moreover, there are at most

√
2n/k polynomials in the

set L.

A.3 Pseudorandom constructs

A.3.1 Samplers

Let [N] = {1, 2, . . . , N}. If B ⊆ [N]→ {0, 1} has density µ (i.e., µN elements), then standard tail
bounds imply that for a random subset T ⊆ [N] of size `, the density of B ∩ T is within ±θ of
µ with overwhelming probability (at least 1 − exp(−cθ`)). But picking a random subset of size `
requires ≈ ` log(N/`) random bits. The following shows that a similar effect can be achieved by a
sampling procedure that uses fewer random bits. The idea is the well known one of using random
walks of length ` in a low-degree expander on N vertices. This could lead to repeated samples while
we would like ` distinct samples. This can be achieved by picking slightly more than ` samples and
discarding the repeated ones. The result below appears in this form as Lemma 8.2 in [31].

Proposition A.4. For every N ∈ N, 0 < θ < µ < 1, γ > 0, and integer ` > `0 = Ω(1
θ2

log(1/γ)),
there exists an explicit efficiently computable function Samp : {0, 1}σ → [N]` where σ 6 O(logN +
` log(1/θ)) with the following property:

For every B ⊆ [N] of size at least µN , with probability at least 1−γ over the choice of a random
s ∈ {0, 1}σ, |Samp(s) ∩B| > (µ− θ)|Samp(s)|.

We will use the above samplers to pick the random positions in which the blocks holding encoded
control information are interspersed with the data blocks. The sampling guarantee will ensure that
a reasonable fraction of the control blocks have no more than a fraction p + ε of errors when the
total fraction of errors is at most p.

36

A.3.2 Almost t-wise independent permutations

Definition 14. A distribution D on Sn (the set of permutations of {1, 2, . . . , n}) is said to almost t-
wise independent if for every 1 6 i1 < i2 < · · · < it 6 n, the distribution of (π(i1), π(i2), . . . , π(it))
for π chosen according to D has statistical distance at most 2−t for the uniform distribution on
t-tuples of t distinct elements from {1, 2, . . . , n}. 2

A uniformly random permutation of {1, 2, . . . , n} takes log n! = Θ(n log n) bits to describe.
The following result shows that almost t-wise independent permutations can have much shorter
descriptions.

Proposition A.5 ([19]). For all integers 1 6 t 6 n, there exists D = O(t log n) and an explicit
map KNR : {0, 1}σ → Sn, computable in time polynomial in n, such that the distribution KNR(s)
for random s ∈ {0, 1}σ is almost t-wise independent.

A.3.3 t-wise independent bit strings

We will also need small sample spaces of binary strings in {0, 1}n which look uniform for any t
positions.

Definition 15. A distribution D on {0, 1}n is said to t-wise independent if for every 1 6 i1 <
i2 < · · · < it 6 n, the distribution of (xi1 , xi2 , . . . , xit) for x = (x1, x2, . . . , xn) chosen according to
D equals the uniform distribution on {0, 1}t. 2

Using evaluations of degree t polynomials over a field of characteristic 2, the following well known
fact can be shown. We remark that the optimal seed length is about t

2 log n and was achieved in
[2], but we can work with the weaker O(t log n) seed length.

Proposition A.6. Let n be a positive integer, and let t 6 n. There exists σ 6 O(t log n) and
an explicit map POLYt : {0, 1}σ → {0, 1}n, computable in time polynomial in n, such that the
distribution POLYt(s) for random s ∈ {0, 1}σ is t-wise independent.

A.4 Capacity achieving codes for t-wise independent errors

Forney [11] constructed binary linear concatenated codes that achieve the capacity of the binary
symmetric channel BSCp. Smith [29] showed that these codes also correct patterns of at most a
fraction p of errors w.h.p. when the error locations are distributed in a t-wise independent manner
for large enough t. The precise result is the following.

Proposition A.7. For every p, 0 < p < 1/2 and every ε > 0, there is an explicit family of binary
linear codes of rate R > 1 −H(p) − ε such that a code REC : {0, 1}Rn → {0, 1}n of block length n
in the family provides the following guarantee. There is a polynomial time decoding algorithm Dec
such that for every message m ∈ {0, 1}Rn, every error vector e ∈ {0, 1}n of Hamming weight at
most pn, and every almost t-wise independent distribution D of permutations of {1, 2, . . . , n}, we
have

Dec(REC(m) + π(e)) = m

with probability at least 1−2−Ω(ε2t) over the choice of a permutation π ∈R D, as long as ω(log n) <
t < εn/10. (Here π(e) denotes the permuted vector: π(e)i = eπ(i).)

37

We will use the above codes (which we denote REC, for “random-error code”) to encode the
actual data in our stochastic code construction.

B Capacity-achieving codes for average error

The average error criterion is an extensively studied topic in the literature on arbitrarily varying
channels; see the survey [22] and the many references therein. Here we assume the message is
unknown to the channel and the decoding error probability is taken over a uniformly random
choice of the message and the noise of the channel. The following defines this notion for the special
case of the additive errors. The idea is that we want every error vector to be bad for only a small
fraction of messages.

Definition 16 (Codes for average error). A code C with encoding function E :M→ Σn is said to
be (efficiently) p-decodable with average error δ if there is a (polynomial time computable) decoding
function D : Σn → M∪ {⊥} such that for every error vector e ∈ Σn, the following holds for at
least a fraction (1− δ) of messages m ∈M: D(E(m) + e) = m. 2

B.1 Codes for average error from stochastic codes for additive errors

A slightly more general notion of the p-decodable stochastic codes from Definition 3 implies codes
for average error.

Definition 17 (Strongly decodable stochastic codes). For a code as in Definition 3, if the decoding
function correctly computes in addition to the message m also the randomness ω used at the encoder
with probability at least 1 − δ, the we say that the stochastic code is strongly p-decodable with
probability 1− δ. 2

Using a strongly decodable stochastic code we can get a code for average error by simply using
the last few bits of the message as the randomness of the stochastic encoder. If the number of
random bits used by the stochastic code is small compared to the message length, the rates of the
codes in the two models are almost the same.

Observation B.1. A stochastic code SSC that is strongly p-decodable with probability 1− δ gives a
code AVC of the same block length that is p-decodable with average error δ. If the ratio of number
of random bits to message bits in SSC is λ, the rate of AVC is (1 + λ) times the rate of SSC.

B.2 Explicit capacity-achieving codes for average error

We would now like to apply Observation B.1 to the stochastic codes constructed in Section 6 and
also construct explicit codes achieving capacity for the average error criterion. For this, we need
to ensure that the decoder for the stochastic code can also recover all the random bits used at
the encoding. We already showed (Lemma 6.5) that the random string ω comprising the control
information is in fact correctly recovered w.h.p. However, there is no hope to recover all the random
strings r1, r2, . . . , r` used by the various SC encodings. This is because some of these control blocks
could incur much more than a fraction p+ ε of errors (or in fact be totally corrupted).

38

Our idea is to use the same random string r for each of the ` encodings SC(Ai, r) in Step 12.
Since each run of SC-Decode is correct with probability at least 1 − c1/N

2, by a union bound
over all n blocks, we can claim that all the following events occur with probability at least 1−c1/N
(over the choice of r):

Among the control blocks, all of the at least ε`/2 control blocks with at most a fraction
p+ ε of errors are decoded correctly, along with the random string r, by SC-Decode.
Further, SC-Decode outputs ⊥ on all the other control blocks. Thus the correct
random string r gets at least ε`/2 “votes.”

By Lemma 6.4, with probability at least 1 − exp(−Ω(ε2N/ log2N))) (over the choice of ω), the
number of payload blocks that get accepted as control blocks is at most ε`/24. (Note that this
lemma only used the t′-wise independence of the offset string ∆.)

The above facts imply that the control information ω is recovered correctly with probability at
least 1 − O(1/N) over the choice of (ω, r) (this is the analog of Lemma 6.5). Also r is the unique
string which will get at least ε`/2 votes from the various runs of SC-Decode. Therefore it can be
correctly identified (with probability at least 1 − O(1/N) over the choice of (ω, r)) after running
SC-Decode on all the n blocks. We can thus conclude the following result on capacity-achieving
codes for average error (Definition 16).

Lemma B.2 (Polynomially small average error). For every p ∈ (0, 1/2), and every ε > 0, there is
an explicit family of binary codes of rate at least 1−H(p)− ε that are efficiently p-decodable with
average error O(1/N) where N is the block length of the code.

One can reduce the error probability in this theorem by using redundant, but t-wise independent,
values ri for the control block encodings. Specifically, let (r1, ..., r`) be a random codeword from a
Reed-Solomon code of dimension ε`/8 (the simpler construction above corresponds to a majority
code). Then the ri values are, in particular, ε`/8-wise independent. One can modify the proof
of Lemma 6.3 (which states that sufficiently many control blocks are recovered) to rely on only
this limited independence. Under the same conditions that the control information is correctly
recovered, there is enough information to recover the entire vector r1, ..., r`. We can thus prove the
following:

Theorem B.3 (Exponentially small average error). For every p ∈ (0, 1/2), and every ε > 0, there
is an explicit family of binary codes of rate at least 1−H(p)−ε that are efficiently p-decodable with
average error exp(−Ωε(N/ log2N)) where N is the block length of the code.

C Impossibility Results for Bit-Fixing Channels when p > 1
4

We show that even very simple channels prevent reliable communication if they can introduce
a fraction errors strictly greater than 1/4. In particular, this result (a) separates the additive
(i.e., oblivious) error model from bounded-space channels when p > 1/4, and (b) shows that some
relaxation of correctness is necessary to handle space- and time-bounded channels when p > 1/4.

Theorem C.1 (Impossibility for p > 1
4 , detailed version). For every pair of randomized encod-

ing/decoding algorithms Enc,Dec that make n uses of the channel and use a message space whose
size tends to infinity with n, if a uniformly random message is sent over the channel, then

39

1. there is a distribution over memoryless channels that alters at most n/4 bits in expectation
and causes a decoding error with probability at least 1

2 − o(1).

2. for every 0 < ν < 1
4 , there is an online space-dlog(n)e channel W2 that alters at most n(1

4 +ν)
bits (with probability 1) and causes a decoding error with probability Ω(ν).

Our proof adapts the impossibility results of Ahlswede [1] on arbitrarily-varying channels. We
present a self-contained proof for completeness. Readers familiar with the AVCs literature will
recognize the idea of symmetrizability from [1].

The Swapping Channel. We begin by considering a simple swapping channel, whose behavior is
specified by a state vector s = (s1, ..., sn) ∈ {0, 1}n. On input a transmitted word c = (c1, ..., cn) ∈
{0, 1}n, the channel Ws outputs ci in all positions where ci = si, and a random bit in all positions
where ci 6= si. The bits selected randomly by the channel at different positions are independent.

There are several equivalent characterizations that help to understand the channel’s behavior.
First, we may view the channel as outputting either ci or si, independently for each position.

Ws(c)i =

{
ci if ci = si

U ← {0, 1} if ci 6= si
=

{
ci with prob. 1/2
si with prob. 1/2

This view of the channel makes it obvious that the output distribution is symmetric with respect
to the inversion of c and s. That is,

Ws(c) and Wc(s)are identically distributed (4)

The key idea behind our lower bounds is that if s is itself a valid codeword, then the decoder
cannot tell whether c was sent with state s, or s was sent with state c. If c and s code different
messages, then the decoder will make a mistake with probability at least 1/2.

Note that the expected number of errors introduced by the channel is half of the Hamming
distance dist(c, s); specifically, the number of errors is distributed as Binomial(dist(c, s), 1

2). As
long as dist(c, s) is close to n/2, then the number of errors will be less than n(1

4 + ν) with high
probability.

Hard Channel Distributions. Given an stochastic encoder Enc(·; ·), consider the following
distribution on swapping channels: pick a random codeword in the image of Enc and use it as the
state.

Wmain(c) :


Select m′, r′ uniformly at random
Compute s← Enc(m′, r′)
Output Ws(c)

Lemma C.2. Under the conditions of Theorem C.1, for channel Wmain:
(a) The probability of a decoding error on a random message is 1

2 − o(1).
(b) The expected number of bits altered by W(main) is at most n/4.

40

Proof. (a) We are interested in bounding the probability of a decoding error:

Pr(correct decoding) = Pr
m,r

channel coins

(
Dec(Wmain(Enc(m, r))) = m

)
= Pr

m,r,m′,r′
swapping coins

(
Dec(WEnc(m′,r′)(Enc(m, r))) = m

)
.

Because of the symmetry of the swapping channel, the right hand side is equal to the probability
that the decoder outputs m′, rather than m. This is a decoding error as long as m′ differs from m.
We assumed that the size of the message space grows with n, so the probability that m = m′ goes
to 0 with n. We use “right” and “wrong” and shorthand for the events that decoding is correct
and incorrect, respectively.

Pr(right) = Pr
m,m′

(decoder outputs m′) 6 Pr(wrong ∨m = m′) 6 Pr(wrong) + o(1) .

Thus, the probability of correct decoding is at most 1
2 − o(1). This proves part (a) of the Lemma.

It remains to show that the expected number of bit corruptions is at most n/4. This follows
directly from the following fact, which is essentially the Plotkin bound from coding theory:

Claim C.1 (Plotkin). If (m, r) is independent of and identically distributed to (m′, r′), then the
expectation of the distance dist(Enc(m, r),Enc(m′, r′)) is at most n/2.

Proof. By linearity of expectation, the expected Hamming distance is the sum, over positions i, of
the probability that Enc(m, r) and Enc(m′, r′) disagree in the ith positions. The probability that
two i.i.d. bits disagree is at most 1

2 , so the expected distance is at most n
2 .

Part (b) of the lemma follows since the expected number of errors introduced by the swapping
channel is half of the Hamming distance between the transmitted word and the state vector.

Bounding the Number of Errors. To prove part (2) of Theorem C.1, we will find a (nonuni-
form) channel with a hard bound on the number of bits it alters. In logarithmic space, it is easy for
the channel to count the number of bits it has flipped so far and stop altering bits when a threshold
has been exceeded. The difficult part is to show that such a channel will still cause a significant
probability of decryption error.

As before, the channel will select m′, r′ at random and run the swapping channel Ws with state
s = Enc(m′, r′). In addition, however, it will stop altering bits once the threshold of n(1

4 + ν) bits
have been exceeded.

Consider now the transmission of a random codeword c = Enc(m, r). Let G be the event that
dist(c, s) 6 n(1

2 + ν). By a Markov bound, the probability of G is at most 1/2
1/2+ν , and so the

probability of G is 1 − Pr(Ḡ) > 2ν
1+2ν > ν. Conditioned on G, the number of bits altered by Ws

on input c is dominated by Binomial(n(1
2 + ν), 1

2). The probability that the number of bits altered
exceeds n(1

4 + ν) is therefore at most exp(−Ω(ν2n)).

41

On the other hand, conditioned on G there is a significant probability of a decoding error. To
see why this is the case, first note that conditioned on G the error-bounded channel will simulate
Ws(c) nearly perfectly. Moreover, the event G is symmetric in c and s, and so conditioning on G
does not help to distinguish Wc(s) from Ws(c). By the same reasoning as in the previous proof,

Pr(incorrect decoding|G) >
1
2
− o(1) .

Since G has probability at least ν, the channel causes a decoding error with probability at least
ν
2 − o(1), in expectation over the choice of s. Hence, there exists a specific string s∗ for which the
channel causes a decoding error with probability ν

2−o(1). This completes the proof of Theorem C.1.

42

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

