
Exponential Time Complexity

of the Permanent and the Tutte Polynomial

Holger Dell1⋆, Thore Husfeldt2, and Martin Wahlén3

1 Humboldt University of Berlin, Germany
2 IT University of Copenhagen, Denmark and Lund University, Sweden

3 Lund University, Sweden and Uppsala University, Sweden

Abstract. The Exponential Time Hypothesis (ETH) says that deciding
the satisfiability of n-variable 3-CNF formulas requires time exp(Ω(n)).
We relax this hypothesis by introducing its counting version #ETH,
namely that every algorithm that counts the satisfying assignments re-
quires time exp(Ω(n)). We transfer the sparsification lemma for d-CNF
formulas to the counting setting, which makes #ETH robust.
Under this hypothesis, we show lower bounds for well-studied #P-hard
problems: Computing the permanent of an n×n matrix with m nonzero
entries requires time exp(Ω(m)). Restricted to 01-matrices, the bound
is exp(Ω(m/ log m)). Computing the Tutte polynomial of a multigraph
with n vertices and m edges requires time exp(Ω(n)) at points (x, y)
with (x − 1)(y − 1) 6= 1 and y /∈ {0,±1}. At points (x, 0) with x 6∈
{0,±1} it requires time exp(Ω(n)), and if x = −2,−3, . . ., it requires
time exp(Ω(m)). For simple graphs, the bound is exp(Ω(m/ log3 m)).

1 Introduction

The permanent of a matrix and the Tutte polynomial of a graph are central top-
ics in the study of counting algorithms. Originally defined in the combinatorics
literature, they unify and abstract many enumeration problems, including imme-
diate questions about graphs such as computing the number of perfect matchings,
spanning trees, forests, colourings, certain flows and orientations, but also less
obvious connections to other fields, such as link polynomials from knot theory,
reliability polynomials from network theory, and (maybe most importantly) the
Ising and Potts models from statistical physics.

From its definition (repeated in (1) below), the permanent of an n×n-matrix
can be computed in O(n!n) time, and the Tutte polynomial (2) can be evaluated
in time exponential in the number of edges. Both problems are famously #P-
hard, which rules out the existence of polynomial-time algorithms under stan-
dard complexity-theoretic assumptions, but that does not mean that we have to
resign ourselves to brute-force evaluation of the definition. In fact, Ryser’s fa-
mous formula [Rys63] computes the permanent with only exp(O(n)) arithmetic

⋆ Supported by the Deutsche Forschungsgemeinschaft within the research training
group “Methods for Discrete Structures” (GRK 1408).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 78 (2010)

2 Holger Dell, Thore Husfeldt, and Martin Wahlén

operations, and more recently, an algorithm with running time exp(O(n)) for
n-vertex graphs has also been found [BHKK08] for the Tutte polynomial. Cu-
riously, both of these algorithms are based on the inclusion–exclusion principle.
In the present paper we show that these algorithms cannot be significantly im-
proved, by providing conditional lower bounds of exp(Ω(n)) for both problems.

It is clear that #P-hardness is not the right conceptual framework for such
claims, as it is unable to distinguish between different types of super-polynomial
time complexities. For example, the Tutte polynomial for planar graphs remains
#P-hard, but can be computed in time exp(O(

√
n)) [SIT95]. Therefore, we work

under the Exponential Time Hypothesis (ETH), viz. the complexity theoretic
assumption that some hard problem (namely, Satisfiability of 3-CNF formulas
in n variables) requires time exp(Ω(n)). More specifically, we introduce #ETH,
a counting analogue of ETH which models the hypothesis that counting the
satisfying assignments requires time exp(Ω(n)).

Computing the permanent. The permanent of an n × n matrix A is defined as

per A =
∑

π∈Sn

∏

1≤i≤n

Aiπ(i) , (1)

where Sn is the set of permutations of {1, . . . , n}. This is redolent of the determi-
nant from linear algebra, detA =

∑

π sign(π)
∏

i Aiπ(i), the only difference is an
easily computable sign for every summand. Both definitions involve a summa-
tion with n! terms, but admit much faster algorithms that are textbook material:
The determinant can be computed in polynomial time using Gaussian elimina-
tion and the permanent can be computed in O(2nn) operations using Ryser’s
formula.

Valiant’s celebrated #P-hardness result [Val79] for the permanent shows that
no polynomial-time algorithm à la “Gaussian elimination for the permanent” can
exist unless P = NP, and indeed unless P = P#P. Several unconditional lower
bounds for the permanent in restricted models of computation are also known.
Jerrum and Snir [JS82] have shown that monotone arithmetic circuits need
n(2n−1−1) multiplications to compute the permanent, a bound they can match
with a variant of Laplace’s determinant expansion. Raz [Raz09] has shown that
multi-linear arithmetic formulas for the permanent require size exp(Ω(log2 n)).
Ryser’s formula belongs to this class of formulas, but is much larger than the
lower bound; no smaller construction is known. Intriguingly, the same lower
bound holds for the determinant, where it is matched by a formula of size
exp(O(log2 n)) due to Berkowitz [Ber84]. One of the easy consequences of the
present paper is that Ryser’s formula is in some sense optimal under #ETH.
In particular, no uniformly constructible, subexponential size formula such as
Berkowitz’s can exist for the permanent unless #ETH fails.

A related topic is the expression of per A in terms of det f(A), where f(A)
is a matrix of constants and entries from A and is typically much larger than A.
This question has fascinated many mathematicians for a long time, see Agrawal’s
survey [Agr06]; the best known bound on the dimension of f(A) is exp(O(n))

Exponential Time Complexity of the Permanent and the Tutte Polynomial 3

and it is conjectured that all such constructions require exponential size. In
particular, it is an important open problem if a permanent of size n can be
expressed as a determinant of size exp(O(log2 n)). Our paper shows that under
#ETH, if such a matrix f(A) exists, computing f must take time exp(Ω(n)).

Computing the Tutte polynomial. The Tutte polynomial, a bivariate polynomial
associated with a given graph G = (V, E) with n vertices and m edges, is defined
as

T (G; x, y) =
∑

A⊆E

(x − 1)k(A)−k(E)(y − 1)k(A)+|A|−|V | , (2)

where k(A) denotes the number of connected components of the subgraph (V, A).
Despite their unified definition (2), the various computational problems given

by T (G; x, y) for different points (x, y) differ widely in computational complexity,
as well as in the methods used to find algorithms and lower bounds. For example,
T (G; 1, 1) equals the number of spanning trees in G, which happens to admit a
polynomial time algorithm, curiously again based on Gaussian elimination. On
the other hand, the best known algorithm for computing T (G; 2, 1), the number
of forests, runs in exp(O(n)) time.

Computation of the Tutte polynomial has fascinated researchers in computer
science and other fields for many decades. For example, the algorithms of On-
sager and Fischer from the 1940s and 1960s for computing the so-called partition
function for the planar Ising model are viewed as major successes of statisti-
cal physics and theoretical chemistry; this corresponds to computing T (G; x, y)
along the hyperbola (x−1)(y−1) = 2 for planar G. Many serious attempts were
made to extend these results to other hyperbolas or graph classes, but “after
a quarter of a century and absolutely no progress”, Feynman in 1972 observed
that “the exact solution for three dimensions has not yet been found”. 4

As for the permanent, the failure of theoretical physics to “solve the Potts
model” and sundry other questions implicit in the computational complexity
of the Tutte polynomial were explained only with Valiant’s #P-hardness pro-
gramme. After a number of papers, culminating in [JVW90], the polynomial-time
complexity of exactly computing the Tutte polynomial at points (x, y) is now
completely understood: it is #P-hard everywhere except at those points (x, y)
where a polynomial-time algorithm is known; these points consist of the hyper-
bola (x−1)(y−1) = 1 as well as the four points (1, 1), (−1,−1), (0,−1), (−1, 0).

In the present paper we show an exp(Ω(n)) lower bound to match the
exp(O(n)) algorithm from [BHKK08], which holds under #ETH everywhere
except for |y| = 1. In particular, this establishes a gap to the planar case, which
admits an exp(O(

√
n)) algorithm [SIT95]. Our hardness results apply (though

not everywhere, and sometimes with a weaker bound) even if the graphs are
sparse and simple. These classes are of particular interest because most of the
graphs arising from applications in statistical mechanics arise from bond struc-
tures, which are sparse and simple.

4 The Feynman quote and many other quotes describing the frustration and puzzle-
ment of physicists around that time can be found in the copious footnotes of [Ist00].

4 Holger Dell, Thore Husfeldt, and Martin Wahlén

x−1 0 1

y

−1
0

1

x−1 0 1

y

−1
0

1

exp(Ω(n))

exp(Ω(n/ log3 n))

nω(1)

nO(1)

Fig. 1. Exponential time complexity under #ETH of the Tutte plane for multigraphs
(left) and simple graphs (right) in terms of n, the number of vertices. White areas on
the map correspond to uncharted territory. The black hyperbola (x−1)(y−1) = 1 and
the four points close to the origin are in P. Everywhere else, in the shaded regions, we
prove a lower bound exponential in n, or within a polylogarithmic factor of it.

It has been known since the 1970s [Law76] that graph 3-colouring can be
solved in time exp(O(n)), and this is matched by an exp(Ω(n)) lower bound
under ETH [IPZ01]. Since graph 3-colouring corresponds to evaluating T at
(−2, 0), the exponential time complexity for T (G;−2, 0) was thereby already
understood. In particular, computing T (G; x, y) for input G and (x, y) requires
vertex-exponential time, an observation that is already made in [GHN06] without
explicit reference to ETH.

The literature for computing the Tutte polynomial is very rich, and we make
no attempt to survey it here. A recent paper of Goldberg and Jerrum [GJ08],
which shows that the Tutte polynomial is even hard to approximate for large
parts of the Tutte plane, contains an overview. A list of graph classes for which
subexponential time algorithms are known can be found in [BHKK08].

2 Results

The exponential time hypothesis (ETH) as defined in [IPZ01] is that satisfiability
of 3-CNF formulas cannot be computed substantially faster than by trying all
possible assignments, i.e., it requires time exp(Ω(n)). We define the counting
exponential time hypothesis via the counting version of 3-Sat.

Name #3-Sat

Input 3-CNF formula ϕ with n variables and m clauses.
Output The number of satisfying assignments to ϕ.

The best known algorithm for this problem runs in time O(1.6423n) [Kut07].
Our hardness results are based on the following hypothesis.

(#ETH) There is a constant c > 0 such that no deterministic algorithm
can compute #3-Sat in time exp(c · n).

At the expense of making the hypothesis more unlikely, the term “deterministic”
may be replaced by “randomized”, but we ignore such issues here. Note that ETH

Exponential Time Complexity of the Permanent and the Tutte Polynomial 5

trivially implies #ETH whereas the other direction is not known. By introducing
the sparsification lemma, [IPZ01] show that ETH is a robust notion in the sense
that the clause width 3 and the parameter n in its definition can be replaced by
d ≥ 3 and m, respectively, to get an equivalent hypothesis, albeit the constant c
may change in doing so. We transfer the sparsification lemma to #d-Sat and
get a similar kind of robustness for #ETH:

Theorem 1. For all d ≥ 3, #ETH holds if and only if #d-Sat requires time
exp(Ω(m)).

In the appendix, we go into more depth about computational complexity aspects
of #ETH, including a proof of Thm. 1.

The Permanent. For a set S of rationals we define the following problems:

Name PermS

Input Square matrix A with entries from S.

Output The value of per A.

We write Perm for PermIN. If B is a bipartite graph with aij edges from the
ith vertex in the left half to the jth vertex in the right half (1 ≤ i, j ≤ n), then
per(aij) equals the number of perfect matchings of B. Thus Perm0,1 and Perm

and can be viewed as counting the perfect matchings in bipartite graphs and
multigraphs, respectively.

We express our lower bounds in terms of m, the number of non-zero entries
of A. Without loss of generality, n ≤ m, so the same bounds hold for the pa-
rameter n as well. Note that these bounds imply that the hardest instances have
roughly linear density.

Theorem 2. Under #ETH,

(i) Perm−1,0,1 requires time exp(Ω(m)).
(ii) Perm requires time exp(Ω(m)).
(iii) Perm01 requires time exp(Ω(m/ log n)).

The proof of this theorem is in §3. For (i), we follow a standard reduction
by Valiant [Val79,Pap94] but use a simple equality gadget derived from [BD07]
instead of Valiant’s XOR-gadget. For (ii) we use interpolation to get rid of the
negative weights. Finally, to establish (iii) we replace large positive weights by
gadgets of logarithmic size, which increases the number of vertices and edges by
a logarithmic factor.

The Tutte Polynomial. The computational problem Tutte(x, y) is defined for
each pair (x, y) of rationals.

Name Tutte(x, y).

Input Undirected multigraph G with n vertices.
Output The value of T (G; x, y).

6 Holger Dell, Thore Husfeldt, and Martin Wahlén

In general, parallel edges and loops are allowed; we write Tutte01(x, y) for the
special case where the input graph is simple.

Our main result is that under #ETH, Tutte(x, y) requires time exp(Ω(n))
for specific points (x, y), but the size of the bound, and the graph classes for
which it holds, varies. We summarise our results in the theorem below, see also
Fig. 1. Our strongest reductions give edge-exponential lower bounds, i.e., bounds
in terms of the parameter m, which implies the same bound in terms of n because
m ≥ n in connected graphs. Moreover, a lower bound of exp(Ω(m)) together
with the algorithm in time exp(O(n)) from [BHKK08] implies that worst-case
instances are sparse, in the sense that m = O(n). At other points we have to
settle for a vertex-exponential lower bound exp(Ω(n)). While this matches the
best upper bound, it does not rule out a vertex-subexponential algorithm for
sparse graphs.

Theorem 3. Let (x, y) ∈ Q2. Under #ETH,

(i) Tutte(x, y) requires time exp(Ω(n)) if (x−1)(y−1) 6= 1 and y 6∈ {0,±1}.
(ii) Tutte01(x, y) requires time exp(Ω(m/ log3 m)) if (x−1)(y−1) 6∈ {0, 1, 2}

and x 6∈ {−1, 0}.
(iii) Tutte01(x, 0) requires time exp(Ω(m)) if x ∈ {−2,−3, . . .}.
(iv) Tutte01(x, 0) requires time exp(Ω(n)) if x 6∈ {0,±1}.

In an attempt to prove these results, we may first turn to the literature,
which contains a cornucopia of constructions for proving hardness of the Tutte
polynomial in various models. In these arguments, a central role is played by
graph transformations called thickenings and stretches. A k-thickening replaces
every edge by a bundle of k edges, and a k-stretch replaces every edge by a path
of k edges. This is used do ‘move’ an evaluation from one point to another. For
example, if H is the 2-stretch of G then T (H ; 2, 2) ∼ T (G; 4, 4

3). Thus, every
algorithm for (2, 2) works also at (4, 4

3), connecting the hardness of the two
points. These reductions are very well-developed in the literature, and are used
in models that are immune to polynomial-size changes in the input parameters,
such as #P-hardness and approximation complexity. However, in the present
paper we cannot always afford such constructions, otherwise our bounds would
be of the form exp(Ω(n1/r)) for some constant r depending on the blowup in
the proof. In particular, the parameter n is destroyed already by a 2-stretch in
a nonsparse graph.

The proofs are in §4–§6. Where we can, we sample from established methods,
carefully avoiding or modifying those that are not parameter-preserving. At other
times we require completely new ideas; the constructions in §5, which use Theta
graph products instead of thickenings and stretches, may be of independent
interest. Like many recent papers, we use Sokal’s multivariate version of the
Tutte polynomial, which vastly simplifies many of the technical details.

Consequences. The permanent and Tutte polynomial are equivalent to, or gen-
eralisations of, various other graph problems, so our lower bounds hold for these

Exponential Time Complexity of the Permanent and the Tutte Polynomial 7

problems as well. In particular, it takes time exp(Ω(m)) to compute the follow-
ing graph polynomials (for example, as a list of their coefficients) for a given
simple graph: the Ising partition function, the q-state Potts partition function
(q 6= 0, 1, 2), the reliability polynomial, the chromatic polynomial, and the flow
polynomial. Moreover, we have exp(Ω(n)) lower bounds for the following count-
ing problems on multigraphs: # perfect matchings, # cycle covers in digraphs,
connected spanning subgraphs, all-terminal graph reliability with given edge
failure probability p > 0, # nowhere-zero k-flows (k 6= 0,±1), and # acyclic
orientations.

The lower bound for counting the number of perfect matchings holds even in
bipartite graphs, where an O(1.414n) algorithm is given by Ryser’s formula. Such
algorithms are also known for general graphs [BH08], the current best bound is
O(1.619n) [Koi09].

For simple graphs, we have exp(Ω(m/ log m)) lower bounds for # perfect
matchings and # cycle covers in digraphs.

3 Hardness of the Permanent

This section contains the proof of Thm. 2. With [0, n] = {0, 1, . . . , n} we establish

the reduction chain #3-Sat 4 Perm−1,0,1
4 Perm[0,n]

4 Perm01 while taking
care of the instance sizes.

Proof (of Thm. 2). First, to prove (i), we reduce #3-Sat in polynomial time to
Perm−1,0,1 such that 3-CNF formulas ϕ with m clauses are mapped to graphs G
with O(m) edges. For technical reasons, we preprocess ϕ such that every vari-
able x occurs equally often as a positive literal and as a negative literal x̄ (e.g.,
by adding trivial clauses of the form (x ∨ x̄ ∨ x̄) to ϕ). We construct G with
O(m) edges and weights w : E → {±1} such that #Sat(ϕ) can be derived from
per G in polynomial time. For weighted graphs, the permanent is

per G =
∑

C⊆E

w(C) , where w(C) =
∏

e∈C

w(e) .

The sum above is over all cycle covers C of G, that is, subgraphs (V, C) with an
in- and outdegree of 1 at every vertex.

In Fig. 2, the gadgets of the construction are depicted. For every variable x
that occurs in ϕ, we add a selector gadget to G. For every clause c = ℓ1 ∨ ℓ2 ∨ ℓ3

of ϕ, we add a clause gadget to G. Finally, we connect the edge labelled by a
literal ℓ in the selector gadget with all occurrences of ℓ in the clause gadgets,
using equality gadgets. This concludes the construction of G.

The number of edges of the resulting graph G is linear in the number of
clauses. The correctness of the reduction follows along the lines of [Pap94]
and [BD07]. The satisfying assignments stand in bijection to cycle covers of
weight (−1)i2j where i (resp. j) is the number of occurrences of literals set to
false (resp. true) by the assignment, and all other cycle covers sum up to 0. Since
we preprocessed ϕ such that i = j, we obtain per G = (−2)i · #Sat(ϕ).

8 Holger Dell, Thore Husfeldt, and Martin Wahlén

x x̄

ℓ̄2

ℓ̄3ℓ̄1

u

v

u′

v′

−1

Fig. 2. Left: A selector gadget for variable x. Depending on which of the two cycles is
chosen, we assume x to be set to true or false. Middle: A clause gadget for the clause
ℓ1 ∨ ℓ2 ∨ ℓ3. The gadget allows all possible configurations for the outer edges, except
for the case that all three are chosen (which would correspond to ℓ1 = ℓ2 = ℓ3 = 0).
Right: An equality gadget that replaces two edges uv and u′v′. The top loop carries a
weight of −1. It can be checked that the gadget contributes a weight of −1 if all four
outer edges are taken, +2 if none of them is taken, and 0 otherwise.

u v

u

v

a0
a1 a2 ak−1 ak

2 2 2

Fig. 3. Left: This gadget simulates in unweighted graphs edges uv of weight 2. Right:
This gadget simulates edges uv of weight a =

P

k

i=0 ai2
i with ai ∈ {0, 1}.

To prove (ii), we reduce Perm−1,0,1 in polynomial time to Perm[0,n] by inter-
polation: On input G, we conceptually replace all occurrences of the weight −1
by a variable x and call this new graph Gx. We can assume that only loops have
weight x in Gx because the output graph G from the previous reduction has
weight −1 only on loops. Then p(x) = per Gx is a polynomial of degree d ≤ n.

If we replace x by a value a ∈ [0, n], then Ga is a weighted graph with as
many edges as G. As a consequence, we can use the oracle to compute per Ga for
a = 0, . . . , d and then interpolate, to get the coefficients of the polynomial p(x).
At last, we return the value p(−1) = per G. This completes the reduction, which
queries the oracle d + 1 graphs that have at most m edges each.

For part (iii), we have to get rid of positive weights. Let Ga be one query
of the last reduction. Again we assume that a ≤ n and that weights 6= 1 are
only allowed at loop edges. We replace every edge of weight a by the gadget that
is drawn in Fig. 3, and call this new unweighted graph G′. It can be checked
easily that the gadget indeed simulates a weight of a (parallel paths correspond
to addition, serial edges to multiplication), i.e., per G′ = per Ga. Unfortunately,
the reduction blows up the number of edges by a superconstant factor: The
number of edges of G′ is m(G′) ≤ (m + n log a) ≤ O(m + n log n). But since
m(G′)/ logm(G′) ≤ O(m), the reduction shows that (iii) follows from (ii). �

Exponential Time Complexity of the Permanent and the Tutte Polynomial 9

These results immediately transfer to counting the number of perfect match-
ings in a graph even if the graph is restricted to be bipartite.

4 Hyperbolas in the Tutte plane

Our first goal will be to show that the Tutte polynomial is hard “for all hyper-
bolas” (x−1)(y−1) = q, except for q = 0 (which we understand only partially),
q = 1 (which is in P), and for q = 2 (which he handle separately in §6.3). From
the hyperbolas, we will specialise the hardness result to individual points in the
following sections.

4.1 The Multivariate Tutte Polynomial

We need Sokal’s multivariate version of the Tutte polynomial, defined in [Sok05]
as follows. Let G = (V, E) be an undirected graph whose edge weights are given
by a function w : E → Q. Then

Z(G; q,w) =
∑

A⊆E

qk(A)
∏

e∈A

w(e) , (3)

where k(A) is the number of connected components in the subgraph (V, A).
If w is single-valued, in the sense that w(e) = w for all e ∈ E, we slightly
abuse notation and write Z(G; q, w). With a single-valued weight function, the
multivariate Tutte polynomial essentially equals the Tutte polynomial,

T (G; x, y) = (x − 1)−k(E)(y − 1)−|V |Z(G; q, w) ,

where q = (x − 1)(y − 1) and w = y − 1 ,
(4)

see [Sok05, eq. (2.26)]. The conceptual strength of the multivariate perspective is
that it turns the Tutte polynomial’s second variable y, suitably transformed, into
an edge weight of the input graph. In particular, the multivariate formulation
allows the graph to have different weights on different edges, which turns out to
be a dramatic technical simplification even when, as in the present work, we are
ultimately interested in the single-valued case.

Sokal’s polynomial vanishes at q = 0, so we will sometimes work with the
polynomial

Z0(G; q,w) =
∑

A⊆E

qk(A)−k(E)
∏

e∈A

w(e) ,

which gives something non-trivial for q = 0 and is otherwise a proxy for Z:

Z(G; q,w) = qk(E)Z0(G; q,w) . (5)

10 Holger Dell, Thore Husfeldt, and Martin Wahlén

4.2 Three-terminal minimum cut

We first establish that with two different edge weights, one of them negative, the
multivariate Tutte polynomial computes the size of a 3-terminal minimum cut,
for which we observe hardness under #ETH in Appendix B. This connection has
been used already in [GJ07,GJ08], with different reductions, to prove hardness
of approximation.

The graphs we will look at are connected and have rather simple weight
functions. The edges are partitioned into two sets E∪̇T , and for fixed rational w
the weight function is given by

w(e) =

{

−1, if e ∈ T ,

w, if e ∈ E.
(6)

For such a graph, we have

Z0(G; q,w) =
∑

A⊆E∪T

qk(A)−1w|A∩E|(−1)|A∩T |. (7)

For fixed G and q, this is a polynomial in w of degree at most m.

Lemma 1. Let q be a rational number with q 6∈ {1, 2}. Computing the coeffi-
cients of the polynomial w 7→ Z0(G; q,w), with w as in (6), for a given simple
graph G requires time exp(Ω(m)) under #ETH.

Moreover, this is true even if |T | = 3.

Proof. Suppose G′ = (V, E, t1, t2, t3) is an instance of #3-Terminal MinCut

with n = |V | and m = |E|. As observed in App. B we can assume that G′ is
simple and connected. Modify G′ by adding a triangle between the terminals,
obtaining the graph G = (V, E ∪ T) where T = {t1t2, t2t3, t1t3}; note that
n(G) = n, m(G) = m + 3, and |T | = 3.

We focus our attention on the family A of edge subsets A ⊆ E for which
t1, t2, and t3 each belong to a distinct component in the graph (V, A). In other
words, A belongs to A if and only if E − A is a 3-terminal cut in G′. Then we
can split the sum in (7) into

Z0(G; q,w) =
∑

B⊆T

(

∑

A∈A

qk(A∪B)−1w|A|(−1)|B| +
∑

A/∈A

qk(A∪B)−1w|A|(−1)|B|

)

.

(8)
We first show that the second term of (8) vanishes. Consider an edge subset

A 6∈ A and assume without loss of generality that it connects the terminals t1
and t2. Consider B ⊆ T , and let B′ = B ⊕ {t1t2}, so that B′ is the same as
B except for t1t2. Then the contributions of A ∪ B and A ∪ B′ cancel: First,
k(A ∪ B) equals k(A ∪ B′) because t1 and t2 are connected through A already,
so the presence or absence of the edge t1t2 makes no difference. Second, (−1)|B|

equals −(−1)|B
′|.

Exponential Time Complexity of the Permanent and the Tutte Polynomial 11

We proceed to simplify the first term of (8). The edges in B only ever connect
vertices in T , and for A ∈ A , each of these lies in a separate component of (V, A),
so

k(A ∪ B) =

{

k(A) − |B| , if |B| = 0, 1, 2,

k(A) − 2 , if |B| = 3.

Calculating the contribution of B for each size |B|, we arrive at

∑

B⊆T

∑

A∈A

qk(A∪B)−1w|A|(−1)|B| =
∑

A∈A

qk(A)−1(q0 − 3q−1 + 3q−2 − q−2)w|A| ,

and after some simplification we can give (8) as

Z0(G; q,w) = Q ·
∑

A∈A

qk(A)−3w|A| , where Q = (q − 1)(q − 2) . (9)

Note that, by assumption on q, we have Q 6= 0.
Let us write

∑m
i=0 diw

i = Q−1Z0(G; q,w), that is, di is the coefficient of the
monomial wi in the sum above. More specifically,

Q · di =
∑

A∈A : |A|=i

qk(A)−3 .

The edge subsets A ∈ A are exactly the complements of the 3-terminal cuts
in G′. Now consider the family C of minimal 3-terminal cuts, all of size c. The
sets E − A in C are exactly the sets A of size m − c in A , and by minimality,
k(A) = 3. Thus,

Q · dm−c =
∑

A∈A : |A|=m−c

q3−3 = |C |.

Thus, if we could compute the coefficients d0, . . . , dm of w 7→ Z0(G; q,w),
then we could determine the smallest c so that dm−c 6= 0 and return dm−c =
|C |/Q, the number of 3-terminal mincuts. �

From this result, the argument continues in two directions. For simple graphs
and certain parts of the Tutte plane, we proceed in §4.3 and §5. For nonsimple
graphs and certain (other) parts of the Tutte plane, we can use just thickening
and interpolation; see §6.

4.3 The Tutte polynomial along a hyperbola

To apply Lemma 1 to the Tutte polynomial, we need to get rid of the negative
edges, so that the weight function is single-valued. In [GJ08], this is done by
thickenings and stretches, which we need to avoid. However, since the number of
negative edges is small (in fact, 3), we can use another tool, deletion–contraction.
We will omit the case q = 0 from this analysis, because we won’t need it later,
so we can work with Z instead of Z0.

A deletion–contraction identity expresses a function of the graph G in terms
of two graphs G − e and G/e, where

12 Holger Dell, Thore Husfeldt, and Martin Wahlén

G − e arises from G by deleting the edge e and
G/e arises from G by contracting the edge e, that is, deleting it and identifying

its endpoints so that remaining edges between these two endpoints become
loops.

It is known [Sok05, eq. (4.6)] that

Z(G; q,w) = Z(G − e; q,w) + w(e)Z(G/e; q,w). (10)

Lemma 2. Computing the coefficients of the polynomial v 7→ Z(G; q, v) for a
given simple graph G requires time exp(Ω(m)) under #ETH, for all q /∈ {0, 1, 2}.

Proof. Let G = (V, E) be a graph as in the previous lemma. Using (5) and 3
applications of deletion–contraction (10) we can write

Z0(G; q,w)qk(E) = Z(G; q,w) =
∑

C⊆{1,2,3}

(−1)|C|Z(GC ; q,w), (11)

where for each C ⊆ {1, 2, 3}, the graph GC is constructed from G by removing
the three edges e1, e2, e3 with weight −1 as follows: if i ∈ C then ei is contracted,
otherwise it is deleted. In any case, the edges of T have disappeared and remain-
ing edges of GC are in one-to-one correspondence with the edges in E; especially,
they all have the same weight w, so Z(GC ; q,w) = Z(GC ; q, w).

The resulting GC are not necessarily simple, because the contracted edges
from T may have been part of a triangle. (In fact, investigating the details of the
reduction we can see that this is indeed the case.) Thus we construct the simple
graph G′

C from GC by subdividing every edge into a 2-path. This operation,
known as a 2-stretch, is known to largely preserve the value of Z, in particular,

Z(GC ; q, w) = (q + 2w)mZ(G′
C ; q, w′) , where 1 +

q

w
=
(

1 +
q

w′

)2

.

In summary, to compute Z(G; q,w), we need to compute the 8 polynomials
v 7→ Z(GC ; q, v), one for each GC , and evaluate each at w′. We note that every
G′

C is simple and has at most n + m vertices and at most 2m edges. �

5 Generalised Theta graphs

We now prove Thm. 3 (ii) by showing that most points (x, y) of the Tutte
plane, are as hard as the entire hyperbola on which they lie, even for sparse,
simple graphs. The drawback of our method is that we loose a polylogarithmic
factor in the exponent of the lower bound and we do not get any results if
q := (x − 1)(y − 1) ∈ {0, 1, 2} or if x ∈ {−1, 0}. However, the results are
particularly interesting for the points on the line y = −1, for which we know no
other good exponential lower bounds under #ETH, even in more general graph
classes. We remark that the points (−1,−1), (0,−1), and (1

2 ,−1) on this line
are known to admit a polynomial-time algorithm, and indeed our hardness result
does not apply here. Also, since our technique does not work in the case q = 0,
the point (1,−1) remains mysterious.

Exponential Time Complexity of the Permanent and the Tutte Polynomial 13

5.1 Generalised Theta graphs

For a set S = {s1, . . . , sk} of positive integers, the generalised Theta graph ΘS

consists of two vertices x and y joined by k internally disjoint paths of s1, . . . , sk

edges, respectively. For example,

Θ{2,3,5} is x y .

For such a graph ΘS , we will study the behaviour of the tensor product
G⊗ΘS defined by Brylawski [Bry82] as follows: given G = (V, E), replace every
edge xy ∈ E by (a fresh copy of) ΘS . 5 What makes the ⊗-operation so useful
in the study of Tutte polynomials is that the Tutte polynomial of G⊗H can be
expressed in terms of the Tutte polynomials of G and H .

The Tutte polynomial of Theta graphs has been already studied by Sokal
in the context of complex roots of the chromatic polynomial. The necessary
formulas for Z(G ⊗ ΘS) can be derived from [Sok04, prop 2.2, prop 2.3]. We
present them here for the special case where all edge weights are the same.6

Lemma 3 (Sokal). Let q and w be rational numbers with w 6= 0 and q 6∈
{0,−2w}. Then, for all graphs G and finite sets S of positive integers,

Z(G ⊗ ΘS ; q, w) = q|E|−|S| ·
∏

s∈S

(

(q + w)s − ws
)|E| · Z(G; q, wS) , (12)

where

wS = −1 +
∏

s∈S

(

1 +
q

(1 + q/w)s − 1

)

. (13)

5.2 Interpolation

Our plan is to compute the coefficients of the monovariate polynomial w 7→
Z(G; q, w) for given G and q by interpolation from sufficiently many evalua-
tions of Z(G; q, wS) ∼ Z(G ⊗ ΘS ; q, w). For this, we need that the number of
different wS is at least |E| + 1, one more than the degree of the polynomial.

5 In the interest of formality we note there are two ways of doing this, because G
is undirected. However, by virtue of our choice of second operand, the resulting
graphs will be isomorphic no matter which orientation we choose, so we can dispense
with some of the formalities normally needed at this point of definition. For general
second operands, the resulting graphs need no be isomorphic, but the resulting Tutte
polynomials turn out to be the same anyway; in fact, in any graph one can remove
a maximal biconnected component and reinsert it in the other direction without
changing the Tutte polynomial, an operation that is called the Whitney twist. The
operation is more naturally defined for matroids, in which context it is sometimes
called a tensor product. Note that the operation is not commutative; Sokal uses the
notation G

H .
6 An alternative is to derive them more directly from Sokal’s parallel and edge re-

duction rules, which is not difficult. Since all edges weights are the same, the result
could also be established from the classical Tutte polynomial and the constructions
in [JVW90], but this would probably be very laborious.

14 Holger Dell, Thore Husfeldt, and Martin Wahlén

Lemma 4. Let q and w be rational numbers with w 6= 0 and q 6∈ {0,−w,−2w}.
For all integers m ≥ 1, there exist sets S0, . . . , Sm of positive integers such that

(i)
∑

s∈Si
s ≤ O(log3 m) for all i, and

(ii) wSi
6= wSj

for all i 6= j.

Furthermore, the sets Si can be computed in time polynomial in m.

Proof. Let b = |1 + q/w| and f(s) = 1 + q/(bs − 1) for s > 0. Our choice of
parameters ensures that b > 0 and b 6= 1, so f is a well-defined, continuous, and
strictly monotone function from IR+ → IR. Furthermore, wS = −1 +

∏

s∈S f(s)
for all positive even integers s. Now let s0 ≥ 2 be an even integer such that f(s)
is nonzero and has the same sign as f(s0) for all s ≥ s0. For i = 0, . . . , m, let
bℓ · · · b0 denote the binary expansion of i where ℓ = ⌊log m⌋. For a large constant
gap parameter ∆ > 6 only depending on q and chosen later, define

Si = { s0 + ∆⌈log m⌉ · (2j + bj) : 0 ≤ j ≤ ℓ } .

The salient feature of this construction is that all sets Si are different, of
equal small cardinality, contain only positive even integers, and are from a range
where f does not change sign. Most important for our analysis is that the ele-
ments of the Si are spaced apart significantly, i.e.,

for i, j and any s ∈ Si and t ∈ Sj , either s = t or |s − t| ≥ ∆ log m. (P)

From |Si| = ⌊log m⌋ + 1 and the fact that all numbers in the sets are bounded
by O(log2 m), we immediately get (i).

To establish (ii), let 0 ≤ i < j ≤ m. We want to show that wSi
6= wSj

. Let
us define S = Si \ Sj and T = Sj \ Si. From (13), we see by multiplying with
(wSi∩Sj

+ 1) on both sides that wS + 1 = wT + 1 is equivalent to wSi
= wSj

since wSi∩Sj
6= −1.

It remains to show that
∏

s∈S f(s) 6=∏t∈T f(t). Equivalently,

∏

s∈S

(

bs + q − 1
)

∏

t∈T

(

bt − 1
)

−
∏

t∈T

(

bt + q − 1
)

∏

s∈S

(

bs − 1
)

6= 0 (14)

We will factor out the products in (14). Using the notation ‖X‖ =
∑

x∈X x,
we rewrite

∏

s∈S

(

bs + q − 1
)

∏

t∈T

(

bt − 1
)

=
∑

X⊆S∪T

(−1)|T\X|(q − 1)|S\X|b‖X‖ .

Here we use the convention that for X ⊆ S ∪ T , the term bs is taken in the first
factor if s ∈ X ∩ S, and bt is taken in the second factor if t ∈ X ∩ T . Doing this
for both terms of (14) and collecting terms we arrive at the equivalent claim

∑

X⊆S∪T

g(X) 6= 0 , (15)

Exponential Time Complexity of the Permanent and the Tutte Polynomial 15

where

g(X) =
(

(−1)|T\X|(q − 1)|S\X| − (−1)|S\X|(q − 1)|T\X|
)

· b‖X‖ . (16)

Let s1 be the smallest element of S ∪ T and without loss of generality assume
that s1 ∈ S (otherwise exchange S and T). Now from (16) and |S| = |T |, it
follows that

g
(

S ∪ T
)

= g(∅) = 0

g
(

(S ∪ T) \ {s1}
)

= q · b‖S∪T‖−s1

g
(

{s1}
)

= q(1 − q)|S|−1 · bs1 .

The largest exponent of b with nonzero coefficient in (16) is ‖S ∪ T ‖ − s1 and all
other exponents are at least ∆ log m smaller than that. Similarly, the smallest
exponent of b with nonzero coefficient is s1 and all other exponents are at least
∆ log m larger. We will let X0 denote the term with the largest contribution in
(15); so we set X0 = S ∪ T \ {s1} for b > 1 and X0 = {s1} for b < 1.

The total contribution of the remaining terms is h =
∑

X 6=X0
g(X). We will

prove (15) by showing |h| < |g(X0)|. From the triangle inequality and the fact
that S ∪ T has at most 4m2 subsets X , we get

|h| ≤ 4m2 · max
X 6=X0

|g(X)| ≤ 4m2 · 2|q − 1|1+log m · b‖X0‖±∆ log m

where the sign in ±∆ logm depends on whether b is larger or smaller than 1. If
b > 1, the sign is negative. In this case, notice that ∆ = ∆(q) can be chosen so
that 4m2 · 2|q − 1|1+log m < |q| · b∆ log m for all m ≥ 2. If b < 1, we can similarly
choose ∆ as to satisfy 4m2 · 2|q− 1|1+log m < |q| · |1− q||S|−1 · b−∆ log m. Thus, in
both cases we have |h| < |g(X0)|, establishing (ii). �

We are ready to formalise the interpolation idea and prove Thm. 3 (ii).

Proof (of Thm. 3 (ii)). Let (x, y) ∈ Q2 with q := (x − 1)(y − 1) 6∈ {0, 1, 2} and
x /∈ {−1, 0}. We prove that Tutte01(x, y) requires time exp(Ω(m/ log3 m)).
Let G be a simple graph with n vertices and m edges. We will compute the
coefficients of the polynomial v 7→ Z(G; q, v), which requires time exp(Ω(m)) by
Lem. 2.

Set w = y − 1 and note w 6= 0 and q /∈ {0,−w,−2w}. Construct the sets
S0, . . . , Sm as given by Lem. 4. For each i = 0, . . . , m, construct the graph
G⊗ΘSi

and compute Z(G; q, wSi
) using (12). By Lem. 4 the points wS0

, . . . , wSm

are different. Moreover, as is clear from (3), the function v 7→ Z(G; q, v) is
a polynomial of degree at most m, so we can use interpolation to recover its
coefficients. The evaluations defined by (12) only ever evaluate simple graphs
with O(n log3 n) vertices and O(m log3 m) edges at the point (q, w). �

6 Interpolation and thickening

If we allow graphs to have multiple edges, we can use thickening and interpola-
tion, one of the original strategies of [JVW90], for relocating the hardness result

16 Holger Dell, Thore Husfeldt, and Martin Wahlén

for hyperbolas from Lem. 2 to individual points in the Tutte plane. This gives
us slightly better bounds in some points (but none at all on the line y = −1).

We recall the thickening identities for the multivariate Tutte polynomial.
Assuming that there are only two edge weights α1 and α2, the weight function
will be w : E → {α1, α2}. We denote by Gk1,k2

the k1, k2-thickening of (G,w)
if all edges e of G with w(e) = αi have been replaced by ki parallel edges.
Let wk1,k2

be the weight function that a k1, k2-thickening from w ‘moves’ to.
One can show [Sok05, (4.21)] that, with wk1,k2

(e) = (1 + αi)
ki − 1 whenever

w(e) = αi, it holds that

Z(G; q,wk1,k2
) = Z(Gk1,k2

; q,w) . (17)

It is easy to transfer this result to the Tutte polynomial T using (4), yielding
special cases of Brylawski’s well-known graph transformation rules.

6.1 The multivariate Tutte polynomial along a hyperbola

It will be convenient to introduce the computational problem Sokal(q) for
fixed q, which is to compute the coefficients of Z0(G; q,w), seen as a bivari-
ate polynomial in the two edge weights w(e) ∈ {α1, α2}.

Name Sokal(q).
Input G = (V, E) and w : E → {α1, α2} for variables α1 and α2.
Output The coefficients of the bivariate polynomial {α1, α2} 7→ Z0(G; q, w).

Now we can state the most general interpolation process that we will need.

Lemma 5. Let (x, y) ∈ Q with y 6∈ {0,±1} and let q = (x − 1)(y − 1). There
is a polynomial-time reduction from Sokal(q) to Tutte(x, y) that, on input a
graph with n vertices and m edges, queries only graphs with n vertices and at
most m2 edges.

Proof. Let G = (V, E) and w : E → {α1, α2} be the instance to Sokal(q). Let
p′(α1, α2) = Z0(G; q,w), a polynomial in α1 and α2. For convenience, define
p(α1, α2) = p′(α1 − 1, α2 − 1). The maximum degree of p is at most m.

By abuse of notation, let y − 1 also denote the constant function E → {y −
1}. Clearly, Z0(G; q, y − 1) = p(y, y). By (4), it holds Z0(G

′; q, y − 1) = (y −
1)|V |−k(E)T (G′; x, y) for all graphs G′.

Using (17) for (k1, k2) ∈ IN2, we can ‘shift’ the point (y, y) to (yk1 , yk2), that
is, we get identities p(yk1 , yk2) = Z0(Gk1,k2

; q, y − 1). We see these identities as
a linear equation system

Y ·

c0,0

...
ci,j

...
cm,m

=

p
(

y0, y0
)

...
p
(

yk1 , yk2

)

...
p
(

ym, ym
)

,

Exponential Time Complexity of the Permanent and the Tutte Polynomial 17

where Y is the (m + 1)2 × (m + 1)2 bivariate Vandermonde matrix with

Y(i,j),(k1,k2) = yik1+jk2 ,

for all (k1, k2) ∈ {0, . . . , m}2 and (i, j) ∈ {0, . . . , m}2. The solution ci,j of the

equation system are the coefficients of the polynomial p(α1, α2) =
∑

i,j ci,jα
i
1α

j
2.

Since y 6∈ {0,±1}, the points (yk1 , yk2) are all pairwise distinct. The bivariate
Vandermonde matrix is non-singular since it is the Kronecker product Y =
Y1 ⊗ Y1 of two univariate non-singular Vandermonde matrices Y1,

Y1 =

(

y0
)0

. . .
(

y0
)i

. . .
(

y0
)m

...
...

...
(

yk
)0

. . .
(

yk
)i

. . .
(

yk
)m

...
...

...

(ym)
0

. . . (ym)
i
. . . (ym)

m

.

We interpolate the polynomial p by solving for its coefficients in the above lin-
ear equation system. For this, we make (m+1)2 queries to the oracle Tutte(x, y)
and each query graph Gk1,k2

has n vertices and at most m2 edges. �

6.2 General component weights

Here we consider the case where the component weight q is neither 1 nor 2. This
establishes Thm. 3 (i) except for q = 2, which is handled in §6.3.

Proof (of Thm. 3 (i) for q 6= 2). Let (x, y) ∈ Q2 with y 6∈ {0,±1} and q :=
(x − 1)(y − 1) 6∈ {1, 2}. We show that Tutte(x, y) requires time exp(Ω(n))
under #ETH.

We start from Lem. 1. Let G = (V, E ∪ T) be a graph with edge weights as
given in (6). We compute w → Z0(G; q,w) using an algorithm for Sokal(q) on
the instance G = (V, E ∪ T) and weights w′ given by w′(e) = α1 = w (e ∈ E)
and w′(e) = α2 = −1 (e ∈ T). Thus, Sokal(q) requires time exp(Ω(m)) under
#ETH, and the result now follows from the interpolation Lemma 5. �

6.3 From the Permanent to the Ising hyperbola

Now we reduce the permanent to Sokal(2), the multivariate Tutte polynomial
at q = 2, and from there to Tutte(x, y) with (x − 1)(y − 1) = 2.

Proof (of Thm. 3 (i) for q = 2). Let (x, y) ∈ Q2 with q := (x − 1)(y − 1) = 2.
We show that Tutte(x, y) requires time exp(Ω(n)) under #ETH. For this, we
establish a chain of reductions Perm 4 Sokal(q) 4 Tutte(x, y) in which the
number of vertices is increased by no more than a constant factor. Then the
desired result follows from Thm. 2 (ii). The first reduction follows the argument
sketched in [GJ08, Lemma 16], which we give in detail below for completeness.

18 Holger Dell, Thore Husfeldt, and Martin Wahlén

The second reduction is Lemma 5, observing that the lemma’s condition y 6∈
{−1, 0, 1} holds because q = 2 and (x, y) is non-special.

We turn to the first reduction. Let A be an n × n matrix with nonnegative
integer entries aij , of which m are nonzero. It is useful to view per A as the
number of perfect matchings of the bipartite multigraph G = (V, E) with vertex
set V = {1, . . . , 2n} and aij edges from i to n + j.

Construct G′ = (V ′, E′) by setting V ′ = V ∪ {t} and E′ = E ∪ T , where
T = { tv : v ∈ V }. Clearly n(G′) = n(G) + 1 and m(G′) = n(G) + m(G). Define
the edge weight function w : E′ → {α,−2} by w(e) = α if e ∈ E and w(e) = −2
if e ∈ T . Now we have the following:

Z(G′; 2,w) =
∑

A⊆E′

2k(A)
∏

e∈A

w(e)

=
∑

B⊆E

∑

C⊆T

2k(B∪C)
∏

e∈B∪C

w(e) =
∑

B⊆E

h(B)α|B| ,

where

h(B) =
∑

C⊆T

(−2)|C|2k(B∪C) .

A graph is bridge connected if it is connected and does not contain any bridge.
In [GJ08, Proof of Lemma 16] it is shown that

1. Let |B| = n. If (V ′, T ∪ B) is bridge connected, then h(B) = 2n+1, and
h(B) = 0, otherwise.

2. The set {B : |B| = n and (V ′, T ∪ B) is bridge connected } is in 1–1 corre-
spondence with the set of perfect matchings of G. Specifically, (V ′, T ∪ B)
is bridge connected if and only if B is a perfect matching in G.

In particular, |B| equals the number of perfect matchings of G, and hence the
permanent of A. Thus, we can compute

perA = 2−(n+1)cn = 2−(n+1)
∑

B⊆E : |B|=n

h(B)

if we know the coefficients of the polynomial p(α) =
∑

i ciα
i := Z(G′; 2,w). This

gives the desired reduction from Perm to Sokal(2). �

7 Linial’s Reduction Along the x -Axis

The chromatic polynomial χ(G; q) of G is the polynomial in q with the property
that, for all c ∈ IN, the evaluation χ(G; c) is the number of proper c-colourings
of the vertices of G. We write χ(q) for the function G 7→ χ(G; q). It is known
that the Tutte polynomial specializes to the chromatic polynomial for y = 0:

χ(G; q) = (−1)n(G)−k(G)qk(G)T (G; 1 − q, 0) . (18)

Exponential Time Complexity of the Permanent and the Tutte Polynomial 19

The case y = 0 cannot be handled by the proof in §6.2 because thickenings
do not produce enough points for the interpolation. Instead, we use Linial’s
reduction [Lin86] for this line.

Proof (of Thm. 3 (iii) and (iv)). Let x ∈ Q and q = 1 − x. We use (18) to
see that evaluating the chromatic polynomial χ(q) is equivalent to evaluating
Tutte(x, 0) if q 6= 0. Since χ(3) is the number of 3-colourings, the case q = 3
requires time exp(Ω(m)) under #ETH, even for simple graphs (cf. App. B). For
i ∈ {1, 2, . . .} and all real r, Linial’s identity is

χ(G + Ki; r) = r(r − 1) . . . (r − i + 1) · χ(G; r − i) , (19)

where G + Ki is the simple graph consisting of G and a clique Ki on i vertices,
each of which is adjacent to every vertex of G.

For q ∈ {4, 5, . . .}, we can set i = q − 3 and directly compute χ(G; 3) =
χ(G; q−i) = χ(G+Ki; q)/[q(q−1) · · ·4]. Since m(G+Ki) = m(G)+i·n(G)+

(

i
2

)

≤
O(m(G)), it follows that χ(q) requires time exp(Ω(m)) under #ETH, even for
simple graphs. This establishes part (iii) of the theorem.

For part (iv), let x 6∈ {1, 0,−1,−2,−3, . . .}. We show that Tutte01(x, 0)
requires time exp (Ω(n)) under #ETH. Indeed, with access to χ(q), we can
compute χ(G; q−i) for all i = 0, . . . , n, noting that all prefactors in (19) nonzero.
From these n + 1 values, we interpolate to get the coefficients of the polynomial
r 7→ χ(G; r), which in turn allows us evaluate χ(G; 3). In this case, the size of the
oracle queries depends nonlinearly on the size of G, in particular m(G+Kn) ∼ n2.
However, the number of vertices is n(G+Ki) ≤ 2n ≤ O(m(G)). Thus, since χ(3)
requires time exp(Ω(n)) under #ETH, this also holds for χ(q), even for simple
graphs. �

The only points on the x-axis not covered here are q ∈ {0, 1, 2}, corresponding
to x ∈ {1, 0,−1}. Two of these admit polynomial time algorithms, so we expect
no lower bound to hold; the exponential complexity of (1, 0) is left open under
#ETH.

8 Conclusion

Our results leave open a number of cases. For the Tutte polynomial of multi-
graphs, we have left the line y = 1 and the points (1, 0) and (1,−1) on the
plane unexplored. The line corresponds to forest counting T (G; z + 1, 1) ∼
∑

forests F z|V |−|F | and the point (1, 0) is the intersection of the reliability poly-
nomial x = 1 and the chromatic polynomial y = 0. For simple graphs, the two
lines x = −1, 0 and the two hyperbolas (x − 1)(y − 1) = 0, 2 are open, and for
most of the plane our lower bound of exp(Ω(n/ log3 n)) does not quite match
the upper bound of exp(O(n)). Furthermore, closing the gap between upper and
lower bound for the permanent of (n × n)-matrices with entries 0 and 1 seems
to be particularly interesting.

20 Holger Dell, Thore Husfeldt, and Martin Wahlén

Acknowledgements

The authors are grateful to Leslie Ann Goldberg and Andreas Björklund for
valuable comments.

References

[Agr06] Manindra Agrawal. Determinant versus permanent. In Proceedings of the

25th International Congress of Mathematicians, ICM 2006, volume 3, pages
985–997, 2006.

[BD07] Markus Bläser and Holger Dell. Complexity of the cover polynomial. In
Proceedings of the 34th International Colloquium on Automata, Languages

and Programming, ICALP 2007, volume 4596 of Lecture Notes in Computer

Science, pages 801–812. Springer, 2007.
[Ber84] Stuart J. Berkowitz. On computing the determinant in small parallel

time using a small number of processors. Information Processing Letters,
18(3):147–150, 1984.

[BH08] Andreas Björklund and Thore Husfeldt. Exact algorithms for exact sat-
isfiability and number of perfect matchings. Algorithmica, 52(2):226–249,
2008.

[BHKK08] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto.
Computing the Tutte polynomial in vertex-exponential time. In Proceedings

of the 47th annual IEEE Symposium on Foundations of Computer Science,

FOCS 2008, pages 677–686, 2008.
[Bry82] Thomas Brylawski. The Tutte polynomial, Matroid theory and its applica-

tions. Centro Internazionale Matematico Estivo, pages 125–275, 1982.
[DJP+94] Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Sey-

mour, and Mihalis Yannakakis. The complexity of multiterminal cuts. SIAM

Journal on Computing, 23(4):864–894, 1994.
[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer,

2006.
[GHN06] Omer Giménez, Petr Hliněný, and Marc Noy. Computing the Tutte polyno-

mial on graphs of bounded clique-width. SIAM Journal on Discrete Math-

ematics, 20:932–946, 2006.
[GJ07] Leslie Ann Goldberg and Mark Jerrum. The complexity of ferromagnetic

Ising with local fields. Combinatorics, Probability and Computing, 16(1):43–
61, 2007.

[GJ08] Leslie Ann Goldberg and Mark Jerrum. Inapproximability of the Tutte
polynomial. Information and Computation, 206(7):908–929, 2008.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which prob-
lems have strongly exponential complexity? Journal of Computer and Sys-

tem Sciences, 63(4):512–530, 2001.
[Ist00] Sorin Istrail. Statistical mechanics, three-dimensionality and NP-

completeness. I. universality of intractability for the partition function of
the Ising model across non-planar lattices. In Proceedings of the 32nd an-

nual ACM Symposium on Theory of Computing, STOC 2000, pages 87–96.
ACM, 2000.

[JS82] Mark Jerrum and Marc Snir. Some exact complexity results for straight-line
computations over semirings. Journal of the ACM, 29(3):874–897, 1982.

Exponential Time Complexity of the Permanent and the Tutte Polynomial 21

[JVW90] François Jaeger, Dirk L. Vertigan, and Dominic J.A. Welsh. On the com-
putational complexity of the Jones and Tutte polynomials. Mathematical

proceedings of the Cambridge Philosophical Society, 108(1):35–53, 1990.
[Koi09] Mikko Koivisto. Partitioning into sets of bounded cardinality. In Proceedings

of the 7th International Workshop on Parameterized and Exact Complexity,

IWPEC 2009, pages 258–263, 2009.
[Kut07] Konstantin Kutzkov. New upper bound for the #3-SAT problem. Informa-

tion Processing Letters, 105(1):1–5, 2007.
[Law76] Eugene L. Lawler. A note on the complexity of the chromatic number

problem. Information Processing Letters, 5:66–67, 1976.
[Lin86] Nathan Linial. Hard enumeration problems in geometry and combinatorics.

SIAM Journal on Algebraic and Discrete Methods, 7(2):331–335, 1986.
[Pap94] Christos M. Papadimitriou. Computational Complexity. Addison-Wesley,

Reading, Massachusetts, 1994.
[Raz09] Ran Raz. Multi-linear formulas for permanent and determinant are of super-

polynomial size. Journal of the ACM, 56(2):1–17, 2009.
[Rys63] Herbert J. Ryser. Combinatorial mathematics. Number 14 in Carus Math.

Monographs. Mathematical Association of America, 1963.
[SIT95] Kyoko Sekine, Hiroshi Imai, and Seiichiro Tani. Computing the Tutte poly-

nomial of a graph of moderate size. In Proceedings of the 6th International

Symposium on Algorithms and Computation, ISAAC 1995, number 1004 in
Lecture Notes in Computer Science, pages 224–233. Springer, 1995.

[Sok04] Alan D. Sokal. Chromatic roots are dense in the whole complex plane.
Combinatorics, Probability and Computing, 13(02):221–261, 2004.

[Sok05] Alan D. Sokal. The multivariate Tutte polynomial (alias Potts model) for
graphs and matroids. In Surveys in Combinatorics, volume 327 of Lon-

don Mathematical Society Lecture Note Series, pages 173–226. Cambridge
University Press, 2005.

[Val79] Leslie G. Valiant. The complexity of computing the permanent. Theoretical

Computer Science, 8(2):189–201, 1979.

22 Holger Dell, Thore Husfeldt, and Martin Wahlén

A The Counting Exponential Time Hypothesis

Sparsification is the process of reducing the density of graphs, formulas, or other
combinatorial objects, while some properties of the objects like the answer to a
computational problem are be preserved.

The objective of sparsification is twofold. From an algorithmic perspective,
efficient sparsification procedures can be used as a preprocessing step to make
input instances sparse and thus possibly simpler and smaller, such that only the
core information about the input remains. In the literature, such applications of
sparsification procedures are called kernelization or (lossy) compression. From
a complexity theoretic point of view, sparsification is a tool to identify those
instances of a problem that are computationally the hardest. If an NP-hard
problem admits efficient sparsification, the hardest instances are sparse.

In the context of the exponential time hypothesis, the sparsification lemma
provides a way to show that the hardest instances of d-Sat are sparse and thus
the parameter n can be replaced with m in the statement of the exponential time
hypothesis. The following is the sparsification lemma as formulated in [FG06,
Lemma 16.17].

Lemma 6 (Sparsification Lemma). Let d ≥ 2. There exists a computable
function f : IN2 → IN such that for every k ∈ IN and every d-CNF formula γ
with n variables, we can find a formula

β =
∨

i∈[t]

γi

such that:

(1) β is equivalent to γ,

(2) t ≤ 2n/k and

(3) each γi is a subformula of γ in which each variable occurs at most f(d, k)
times.

Furthermore, β can be computed from γ and k in time t · poly(n).

We sketch below a small modification in the proof of the sparsification lemma
that allows us to replace (1) with the condition

(1’) sat(γ) = ˙⋃
i sat(γi) ,

where sat(ϕ) is the set of assignments that satisfy the formula ϕ. In particu-
lar, (1’) implies #Sat(γ) =

∑

i #Sat(γi), which means that the sparsification
lemma can be used for the counting version of 3-Sat.

Proof (sketch). We adapt the terminology of [FG06, Proof of Lemma 16.17] and
we follow their construction precisely, except for a small change in the sparsifi-
cation algorithm. When the algorithm decides to branch for a CNF-formula γ

Exponential Time Complexity of the Permanent and the Tutte Polynomial 23

and a flower α = {δ1, . . . , δp}, the original algorithm would branch on the two
formulas

γα
heart = γ \ {δ1, . . . , δp} ∪ {δ} ,

γα
petals = γ \ {δ1, . . . , δp} ∪ {δ1 \ δ, . . . , δp \ δ} .

We modify the branching on the petals to read

γα
petals = γ \ {δ1, . . . , δp} ∪ {δ1 \ δ, . . . , δp \ δ} ∪

{

{¬l} : l ∈ δ
}

.

This way, the satisfying assignments become disjoint: In each branching step, we
guess whether the heart contains a literal set to true, or whether all literals in
the heart are set to false and each petal contains a literals set to true.

Now we have that, for all CNF-formulas γ, all assignments σ to the variables
of γ, and all flowers α of γ,

(i) σ satisfies γ if and only if σ satisfies γα
heart ∨ γα

petals, and
(ii) σ does not satisfy γα

heart or σ does not satisfy γα
petals.

By induction, we see that at the end of the algorithm,

(i) σ satisfies γ if and only if σ satisfies some γi, and
(ii) σ satisfies at most one γi.

This implies that sat(γ) = ˙⋃
i∈[t] sat(γi).

Notice that our new construction adds at most n clauses of size 1 to the
formulas γi compared to the old one. Furthermore, our construction does not
make t any larger because the REDUCE-step removes all clauses that properly
contain {¬l} and thus these unit clauses never appear in a flower. �

Proof (of Thm. 1). For all integers d ≥ 3 and k ≥ 1, the sparsification lemma
gives an oracle reduction from #d-Sat to #d-Sat that, on input a formula γ
with n variables, only queries formulas with m′ = O(n) clauses, such that the
reduction runs in time exp(O(n/k)). Now, if for every c > 0 there is an algorithm
for #d-Sat that runs in time exp(cm), we can combine this algorithm and the
above oracle reduction to obtain an algorithm for #d-Sat that runs in time
exp(O(n/k) + c · m′) = exp(O(n/k) + c · O(n)). Since this holds for all small
c > 0 and large k, we have for every c′ > 0 an algorithm for #d-Sat running in
time exp(c′ ·n). This proves that for all d ≥ 3, #d-Sat can be solved in variable-
subexponential time if and only if it can be solved in clause-subexponential time.

To establish the equivalence between different d’s, we transform an instance ϕ
of #d-Sat into an instance ϕ′ of #3-Sat that has the same number of satisfying
assignments. The formula ϕ′ is constructed as in the standard width-reduction
for d-CNF formulas, i.e., by introducing a constant number of new variables for
every clause of ϕ. Thus, since the number of clauses of ϕ′ is O(m), any clause-
subexponential algorithm for #3-Sat implies a clause-subexponential algorithm
for #d-Sat. The converse of this implication is trivial. �

24 Holger Dell, Thore Husfeldt, and Martin Wahlén

B Hardness of 3-Colouring and 3-Terminal MinCut

The purpose of this part is to show that the standard reductions from 3-Sat

to the computational problems 3-Colouring, NAE-Sat, MaxCut, and 3-
Terminal MinCut already preserve the number of solutions and increase the
number of clauses or edges of the instances by at most a constant factor. This
then implies that the corresponding counting problems require time exponential
in the number of clauses or edges unless #ETH fails.

Theorem 4. Deterministically computing the problems #NAE-Sat, #Max-

Cut, and #3-Terminal MinCut requires time exp(Ω(m)) unless #ETH fails.

In the following, we formally define the problems, sketch the standard NP-
hardness reductions, and provide their analyses as needed to proof Thm. 4.

Name #NAE-Sat

Input 3-CNF formula ϕ.
Output The number of truth assignments, so that no clause {a, b, c} ∈ ϕ

contains only literals with the same truth value.

Lemma 7. There is a polynomial-time mapping reduction from #3-Sat to
#NAE-Sat that maps formulas with m clauses to formulas with O(m) clauses.

Proof. Let ϕ be a 3-CNF formula with n variables and m clauses. To construct
the instance ϕ′ to NAE-Sat, we first replace every trivariate clause (a ∨ b ∨ c)
with the clauses

(x ∨ a) ∧ (x ∨ b) ∧ (x ∨ a ∨ b) ∧ (x ∨ c).

where x is a fresh variable. These clauses force x to have the value of a ∨ b in a
satisfying assignment. It can be checked that these clauses are satisfied exactly if
the original clause was satisfied and moreover that the trivariate clause is never
all-false or all-true. In total, we increase the number of clauses four-fold.

Finally, introduce yet another fresh variable z and add this single variable
(positively) to every mono- and bivariate clause. It is well-known that this modifi-
cation turns the instance into an instance of NAE-Sat (see [Pap94, Theorem 3]).
The resulting instance ϕ′′ has 4m clauses and #NAE-Sat(ϕ′′) = #3-Sat(ϕ).�

Name #3-Colouring

Input Simple undirected graph G.
Output The number of proper vertex-colourings with three colours.

Lemma 8. There is a polynomial-time mapping reduction from #NAE-Sat to
#3-Colouring that maps formulas with m clauses to graphs with O(m) edges.

Proof. The hardness of 3-Colouring under ETH is already observed in [IPZ01]
but without mentioning that it even holds if we use m instead of n to measure
the size of the instance.

The graph G that is constructed in [Pap94, Theorem 9.8] from an NAE-Sat-
instance ϕ with n variables and m clauses has n′ = 1 + 2n + 3m vertices and
m′ = 3n+ 6m edges. Furthermore the number of proper 3-colourings is equal to
#NAE-Sat(ϕ). �

Exponential Time Complexity of the Permanent and the Tutte Polynomial 25

Name #MaxCut

Input Simple undirected graph G.
Output The number of maximum cuts.

Lemma 9. There is a polynomial-time mapping reduction from #NAE-Sat to
#MaxCut that maps formulas with m clauses to graphs with O(m) edges.

Proof. We follow the reduction in [Pap94, Theorem 9.5]. Given an instance to
NAE-Sat with n variables and m clauses, the reduction produces an instance
to MaxCut, a graph with 2n vertices and at most 3m + 3m = 6m edges.
Furthermore, the number of solutions is equal. �

Name #3-Terminal MinCut

Input Simple undirected graph G = (V, E) with three distinguished vertices
(“terminals”) t1, t2, t3 ∈ V .

Output The number of cuts of minimal size that separate t1 from t2, t2 from
t3, and t3 from t1.

Lemma 10. There is a polynomial-time mapping reduction from #MaxCut

to #3-Terminal MinCut that maps graphs with m edges to graphs with O(m)
edges.

Proof. We follow the reduction in [DJP+94]. So let G = (V, E) be a graph with
n vertices and m edges. It is made explicit in [DJP+94] that the construction
builds a graph F with n′ = 3+n+4m = O(m) vertices. For the number of edges,
every uv ∈ E results in a gadget graph C with 18 edges, so the number of edges
in F is 18m = O(m). The construction is such that the number of minimum
3-terminal cuts of F equals the number of maximum cuts of G. �

Proof (of Thm. 4). Assume one of the problems can be solved in time exp(cm)
for every c > 0. Then 3-Sat can be solved by first applying the applicable
reductions of the preceding lemmas and then invoking the assumed algorithm.
This gives for every c > 0 an algorithm for 3-Sat that runs in time exp(O(cm)),
which implies that #ETH fails. �

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

