
Space Complexity of Perfect Matching in Bounded Genus

Bipartite Graphs

Samir Datta ∗ Raghav Kulkarni † Raghunath Tewari‡

N. V. Vinodchandran§

April 27, 2010

Abstract

We investigate the space complexity of certain perfect matching problems over bipar-
tite graphs embedded on surfaces of constant genus (orientable or non-orientable). We
show that the problems of deciding whether such graphs have (1) a perfect matching
or not and (2) a unique perfect matching or not, are in the logspace complexity class
SPL. Since SPL is contained in the logspace counting classes ⊕L (in fact in ModkL for all
k ≥ 2), C=L, and PL, our upper bound places the above-mentioned matching problems in
these counting classes as well. We also show that the search version, computing a perfect
matching, for this class of graphs is in FLSPL. Our results extend the same upper bounds
for these problems over bipartite planar graphs known earlier.

As our main technical result, we design a logspace computable and polynomially
bounded weight function which isolates a minimum weight perfect matching in bipartite
graphs embedded on surfaces of constant genus. We use results from algebraic topology
for proving the correctness of the weight function.

∗Chennai Mathematical Institute, India: email:sdatta@cmi.ac.in
†University of Chicago: email:raghav@cs.uchicago.edu
‡University of Nebraska-Lincoln: email:rtewari@cse.unl.edu. Research supported in part by NSF grants

CCF-0830730 and CCF-0916525.
§University of Nebraska-Lincoln: email:vinod@cse.unl.edu. Research supported in part by NSF grants

CCF-0830730 and CCF-0916525.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 79 (2010)

1 Introduction

The perfect matching problem and its variations are one of the most well-studied problems in
theoretical computer science. Research in understanding the inherent complexity of compu-
tational problems related to matching has lead to important results and techniques in com-
plexity theory and elsewhere in theoretical computer science. However, even after decades of
research, the exact complexity of many problems related to matching is not yet completely
understood.

We investigate the space complexity of certain well studied perfect matching problems over
bipartite graphs. We prove new uniform space complexity upper bounds on these problems
for graphs embedded on surfaces of constant genus. We prove our upper bounds by solving the
technical problem of ‘deterministically isolating’ a perfect matching for this class of graphs.

Distinguishing a single solution out of a set of solutions is a basic algorithmic problem with
many applications. The isolating lemma due to Mulmulay, Vazirani, and Vazirani provides
a general randomized solution to this problem. Let F be a non-empty set system on U =
{1, . . . , n}. The isolating lemma says, for a random weigh function on U (bounded by nO(1)),
with high probability there is a unique set in F of minimum weight [MVV87]. This lemma
was originally used to give an elegant RNC algorithm for constructing a maximum matching
(by isolating a minimum weight perfect matching) in general graphs. Since its discovery,
the isolating lemma has found many applications, mostly in discovering new randomized or
non-uniform upper bounds, via isolating minimum weight solutions [MVV87, RA00, GW96,
ARZ99]. Clearly, derandomizing the isolating lemma in sufficient generality will improve
these upper bounds to their deterministic counterparts and hence will be a major result.
Unfortunately, recently it is shown that such a derandomization will imply certain circuit
lower bounds and hence is a difficult task [AM08].

Can we bypass isolating lemma altogether and deterministically isolate minimum weight
solutions in specific situations? Recent results illustrate that one may be able to use the
structure of specific computational problem under consideration to achieve non-trivial deter-
ministic isolation. In [BTV09], the authors used the structure of directed paths in planar
graphs to prescribe a simple weight function that is computable deterministically in logarith-
mic space with respect to which the minimum weight directed path between any two vertices
is unique. In [DKR08], the authors isolated a perfect matching in planar bipartite graphs. In
this paper we extend the deterministic isolation technique of [DKR08] to isolate a minimum
weight perfect matching in bipartite graphs embedded on constant genus surfaces.

Our Contribution

Let G be a bipartite graph with weight function w on it edges. For an even cycle C =
e1e2 · · · e2k, the circulation of C with respect to w is the sum

∑2k
i=1(−1)iw(ei). The main

technical contribution of the present paper can be stated (semi-formally) as follows.

Main Technical Result. There is a logspace matching preserving reduction f , and a
logspace computable and polynomially bounded weight function w, so that given a bipar-
tite graph G with a combinatorial embedding on a surface of constant genus, the circulation
of any simple cycle in f(G) with respect to w is non-zero. (This implies that the minimum
weight perfect matching in f(G) is unique [DKR08]).

We use this result to establish (using known techniques) the following new upper bounds.

2

Refer to the next section for definitions.

New Upper Bounds. For bipartite graphs, combinatorially embedded on surfaces of con-
stant genus the problems Decision-BPM and Unique-BPM are in SPL, and the problem
Search-BPM is in FLSPL.

SPL is a logspace complexity class that was first studied by Allender, Reinhardt, and Zhou
[ARZ99]. This is the class of problems reducible to the determinant with the promise that
the determinant is either 0 or 1. In [ARZ99], the authors show, using a non-uniform version
of isolating lemma, that perfect matching problem for general graphs is in a ‘non-uniform’
version of SPL. In [DKR08], using the above-mentioned deterministic isolation, the authors
show that for planar bipartite graphs, Decision-BPM is in fact in SPL (uniformly). Recently,
Hoang showed that for graphs with polynomially many matchings, perfect matchings and
many related matching problems are in SPL [Hoa09]. SPL is contained in logspace counting
classes such as ModkL for all k ≥ 2 (in particular in ⊕L), PL, and C=L, which are in turn
contained in NC2. Thus the upper bound of SPL that we prove implies that the problems
Decision-BPM and Unique-BPM for the class of graphs we study are in these logspace
counting classes as well.

The techniques that we use in this paper can also be used to isolate directed paths in
graphs on constant genus surfaces. This shows that the reachability problem for this class of
graphs can be decided in the unambiguous class UL, extending the results of [BTV09]. But
this upper bound is already known since recently Kynčl and Vyskočil show that reachability
for bounded genus graphs logspace reduces to reachability in planar graphs [KV09].

Matching problems over graphs of low genus have been of interest to researchers, mainly
from a parallel complexity viewpoint. The matching problems that we consider in this paper
are known to be in NC. In particular in [KMV08], the authors present an NC2 algorithm
for computing a perfect matching for bipartite graphs on surfaces of O(log n) genus (readers
can also find an account of known parallel complexity upper bounds for matching problems
over various classes of graphs in their paper). However, the space complexity of matching
problems for graphs of low genus has not been investigated before. The present paper takes
a step in this direction.

Proof Outline. We assume that the graph G is presented as a combinatorial embedding on
a surface (orientable or non-orientable) of genus g, where g is a constant. This is a standard
assumption when dealing with graphs on surfaces, since it is NP-complete to check whether
a graph has genus ≤ g [Tho89]. We first give a sequence of two reductions to get, from G,
a graph G′ with an embedding on a genus g ‘polygonal schema in normal form’. These two
reductions work for both orientable and non-orientable cases. At this point we take care of
the non-orientable case by reducing it to the orientable case. Once we have the embedding
on an orientable polygonal schema in normal form, we further reduce G′ to G′′ where G′′

is embedded on a constant genus ‘grid graph’. These reductions are matching preserving,
bipartiteness preserving and computable in logspace. Finally, for G′′, we prescribe a set of
4g + 1 weight functions, W = {wi}1≤i≤4g+1, so that for any cycle C in G′′, there is a weight
function wi ∈ W with respect to which the circulation of C is non-zero. Since g is constant,
we can take a linear combination of the elements inW, for example

∑
wi∈W wi × (nc)i (where

n is the number of vertices in the grid) for some fixed constant c (say c = 4), to get a single
weight function with respect which the circulation of any cycle is non-zero.

The intuition behind these weight functions is as follows (for some of the definitions, refer

3

to later sections). The setW is a disjoint unionW1∪W2∪{w} of the sets of weight functions
W1, W2, and {w}. Consider a graph G embedded on a fundamental polygon with 2g sides.
There are two types cycles in G: surface separating and surface non-separating. A basic
theorem from algebraic topology implies that a surface non-separating cycle will intersect
at least one of the sides of the polygon an odd number of times. This leads to 2g weight
functions in W1 to take care of all the surface non-separating cycles. There are two types of
surface separating cycles: (a) ones which completely lie inside the polygon and (b) the ones
which cross some boundary. Type (a) cycles behaves exactly like cycles in plane so the weight
function w designed for planar graphs works (from [DKR08]). For dealing with cycles of type
(b), we first prove that if such a cycle intersects a boundary, it should alternate between
‘coming in’ and ‘going out’. This leads to 2g weight functions in W2 which handle all type
(b) cycles.

Figure 1 gives a pictorial view of the components involved in the proof of our main technical
result.

The rest of the paper is organized as follows. In Section 2 we give the necessary definitions
and state results from earlier work, that we use in this paper. In Section 3 we state and prove
our upper bounds assuming a grid embedding. In Section 4 we reduce the non-orientable
case to the orientable one. In Section 5 we give matching preserving, logspace reductions
from a combinatorial embedding of the graph on a surface of genus g, to a grid embedding.
In Section 6 we add proofs of some necessarylemmas and theorems that we use to prove our
results.

Combinatorial
embedding of a
graph on a genus
g orientable sur-
face

Combinatorial
embedding on an
orientable polyg-
onal schema with
O(g) sides

Combinatorial
embedding on an
orientable polyg-
onal schema in
normal form

Embedding on
a “genus g grid
graph”

Assignment of
weight function
W , w.r.t which
circulations be-
come non-zero

Minimum weight
perfect match-
ing w.r.t. W is
unique

Combinatorial
embedding of a
graph on a genus
g non-orientable
surface

Combinatorial
embedding on a
non-orientable
polygonal schema
with O(g) sides

Combinatorial
embedding on a
non-orientable
polygonal schema
in normal form

Lemma 5 Theorem 6

Lemma 8

Theorem 10
(Main Theorem)

Lemma 5 Theorem 6

Theorem
18

Lemma 1

Orientable case

Non-orientable case

Figure 1: Outline of the steps. Note that all reductions are matching preserving and logspace
computable.

4

2 Preliminaries

2.1 Topological graph theory

We introduce the necessary terminology from algebraic topology. For a more comprehensive
understanding of this topic, refer to any standard algebraic topology book such as [Mas91].

A 2-manifold is a topological space such that every point has an open neighborhood
homeomorphic to R2 and two distinct points have disjoint neighborhoods. A 2-manifold is
often called a surface. The genus of a surface Γ is the maximum number g, if there are g cycles
C1, C2, . . . , Cg on Γ, such that Ci∩Cj = ∅ for all i, j and Γ\ (C1∪C2∪ . . .∪Cg) is connected.
A surface is called orientable if it has two distinct sides, else it is called non-orientable. A
cycle C in Γ is said to be non-separating if there exists a path between any two points in
Γ \ C, else it is called separating.

A polygonal schema of a surface Γ, is a polygon with 2g′ directed sides, such that the sides
of the polygon are partitioned into g′ classes, each class containing exactly two sides and
glueing the two sides of each equivalence class gives the surface Γ (upto homeomorphism).
A side in the ith equivalence class is labelled σi or σ̄i depending on whether it is directed
clockwise or anti-clockwise respectively. The partner of a side σ is the other side in its
equivalence class. By an abuse of notation, we shall sometimes refer to the symbol of a side’s
partner, as the partner of the symbol. Frequently we will denote a polygonal schema as a
linear ordering of its sides moving in a clockwise direction, denoted by X. For a polygonal
schema X, we shall refer to any polygonal schema which is a cyclic permutation, or a reversal
of the symbols, or a complementation (σ mapped to σ̄ and vice versa) of the symbols, as
being the same as X. A polygonal schema is called orientable (resp. non-orientable) if the
corresponding surface is orientable (resp. non-orientable).

Definition 1. An orientable polygonal schema is said to be in normal form if it is in one of
the following forms:

σ1τ1σ̄1τ̄1σ2τ2σ̄2τ̄2 . . . σmτmσ̄mτ̄m (2.1)

σσ̄ (2.2)

A non-orientable polygonal schema is said to be in normal form if it is of one of the
following forms:

σσX (2.3)
στσ̄τX (2.4)

where, X is a string representing an orientable schema in normal form (i.e. like Form 2.1 or
2.2 above).

We denote the polygonal schema in the normal form of a surface Γ as Λ(Γ). We will
refer to two orientable symbols σ, τ which form the following contiguous substring: στσ̄τ̄ as
being clustered together while a non-orientable symbol σ which occurs like σσ as a contiguous
subtring is said to form a pair. Thus, in the first and third normal forms above all symbols
are clustered. The first normal form represents a connected sum of torii and the third of a
projective plane and torii. In the fourth normal form all but one of the orientable symbols are
clustered while the only non-orientable symbol is sort of clustered with the other orientable
symbol. This form represents a connected sum of a Klein Bottle and torii. The second normal
form represents a sphere.

5

We next introduce the concept of Z2-homology. Given a 2-manifold Γ, a 1-cycle is a closed
curve in Γ. The set of 1-cycles forms an Abelian group, denoted as C1(Γ), under the symmetric
difference operation, ∆. Two 1-cycles C1, C2 are said to be homologically equivalent if C1∆C2

forms the boundary of some region in Γ. Observe that this is an equivalence relation. Then the
first homology group of Γ, H1(Γ), is the set of equivalence classes of 1-cycles. In other words,
if B1(Γ) is defined to be the subset of C1(Γ) that are homologically equivalent to the empty
set, then H1(Γ) = C1(Γ)/B1(Γ). If Γ is a genus g surface then H1(Γ) is generated by a system
of 2g 1-cycles, having only one point in common, and whose complement is homeomorphic to
a topological disk. Such a disk is also referred to as the fundamental polygon of Γ.

An undirected graph G is said to be embedded on a surface Γ if it can be drawn on Γ so
that no two edges cross. We assume that the graph is given with a combinatorial embedding
on a surface of constant genus. Refer to the book by Mohar and Thomassen [MT01] for
details. A graph G is said to have genus g if G has a minimal embedding (an embedding
where every face of G is homeomorphic to a disc) on a genus g surface. Such an embedding
is also called a 2-cell embedding. A genus g graph is said to be orientable (non-orientable) if
the surface is orientable (non-orientable).

Definition 2. The polygonal schema of a graph G is a combinatorial embedding given on
the polygonal schema of some surface Γ together with the ordered set of vertices on each
side of the polygon. Formally it is a tuple (φ,S), where φ is a cyclic ordering of the edges
around a vertex and S = (S1, S2, . . . , S2g) is the cyclic ordering of the directed sides of the
polygon. Each Si is an ordered sequence of the vertices, from the tail to the head of the side
Si. Moreover every Si is paired with some other side, say S−1

i in S, such that the jth vertex
of Si (say from the tail of Si) is the same as the jth vertex of S−1

i (form the tail of S−1
i).

2.2 Complexity Theory

For a nondeterministic machine M , let accM (x) and rej M (x) denote the number of accepting
computations and the number of rejecting computations respectively. Denote gapM (x) =
accM (x)− rej M (x).

Definition 3. A language L is in SPL if there exists a logspace bounded nondeterministic
machine M so that for all inputs x, gapM (x) ∈ {0, 1} and x ∈ L if and only if gapM (x) = 1.
FLSPL is the class of functions computed by a logspace machine with an SPL oracle. UL is
the class of languages L, decided by a nondeterministic logspace machine (say M), such that
for every string in L, M has exactly one accepting path and for a string not in L, M has no
accepting path.

Alternatively, we can define SPL as the class of problems logspace reducible to the prob-
lem of checking whether the determinant of a matrix is 0 or not under the promise that the
determinant is either 0 or 1. For definitions of other complexity classes refer to any stan-
dard textbooks such as [AB09, Vol99]. All reductions discussed in this paper are logspace
reductions.

Given an undirected graph G = (V,E), a matching M is a subset of E such that no two
edges in M have a vertex in common. A maximum matching is a matching of maximum
cardinality. M is said to be a perfect matching if every vertex is an endpoint of some edge in
M .

Definition 4. We define the following computational problems related to matching:

6

- Decision-BPM : Given a bipartite graph G, checking if G has a perfect matching.

- Search-BPM: Given a bipartite graph G, constructing a perfect matching, if one
exists.

- Unique-BPM: Given a bipartite graph G, checking if G has a unique perfect matching.

2.3 Necessary Prior Results

Lemma 1 ([DKR08]). For any bipartite graph G and a weight function w, if all circulations
of G are non-zero, then G has a unique minimum weight perfect matching.

Lemma 2 ([ARZ99]). For any weighted graph G assume that the minimum weight perfect
matching in G is unique and also for any subset of edges E′ ⊆ E, the minimum weight perfect
matching in G \ E′ is also unique. Then deciding if G has a perfect matching is in SPL.
Moreover, computing the perfect matching (in case it exists) is in FLSPL.

Sketch of proof. Let wmax and wmin be the maximum and minimum possible weights respec-
tively, that an edge in G can get. Then any perfect matching in G will have a weight from
the set W = {k : k ∈ Z, n · wmin ≤ k ≤ n · wmax}. Similar to [ARZ99], there exists a GapL
function f , such that for some value of k ∈ W , |f(G, k)| = 1 if G has a perfect matching of
weight k, else f(G, k) = 0 for all values of k. Note that in [ARZ99] the authors actually give
a GapL/poly function since the weight function for the graphs (which are unweighted to begin
with) are required as an advice in their GapL machine. Here we consider weighted graphs,
thus eliminating the need for any advice. Now consider the function

g(G) = 1−
∏
k

(
1− (f(G, k))2

)
.

By definition, g(G) = 1 if G has a perfect matching, else it is 0.
To compute a perfect matching in G, we will construct a logspace transducer that makes

several queries to the function f defined above. For a graph G′ having a unique minimum
weight perfect matching (say M ′), the weight of M ′ can be computed by iteratively querying
the function f(G′, k) for values of k ∈W in an increasing order, starting from n · wmin. The
value k, for which the function outputs a non-zero value for the first time, is the weight of
M ′. We denote this weight by wG′ . First compute wG. For an e in G, define the graph
G−e = G \ {e}. Now compute wG−e for every edge e in G. Output the edges e for which
wG−e > wG. The set of outputted edges comprise a perfect matching (in fact the minimum
weight perfect matching) because deleting an edge in this set had increased the weight of the
minimum weight perfect matching in the resulting graph.

3 Embedding on a Grid

Theorem 3. Given a 2-cell combinatorial embedding of a graph G of constant genus, there
is a logspace transducer that constructs a graph G′ ∈ k-ori-GG, such that, there is a perfect
matching in G iff there is a perfect matching in G′. Moreover, given a perfect matching M ′

in G′, in logspace one can construct a perfect matching M in G.

Proof. Using Corollary 7 reduce G to a graph G1 that has an embedding on the polygonal
schema in the normal form. If the schema is non-orientable, then by applying Theorem 18

7

we get a graph G2 along with its embedding on an orientable polygonal schema (need not be
in the normal form). Again by Corollary 7, we reduce it to a graph on a polygonal schema in
the normal form. Finally we apply Lemma 8, we get the desired graph.

3.0.1 Combinatorial Embedding to a Polygonal Schema

Lemma 4 ([ABC+09]). Let G be a graph embedded on a surface, and let T be a spanning
tree of G. Then there is an edge e ∈ E(G) such that T ∪{e} contains a non-separating cycle.

Notice that in [ABC+09] the graph was required to be embedded on an orientable surface
but the proof did not use this requirement.

Definition 5. Given a cycle (or path) C in an embedded graph G, define by GQC the graph
constructed by “cutting” the edges incident on the cycle from the right. In other words, the
neighbors of u ∈ C (which are not on the cycle) can be partitioned into two sets, arbitrarily
called left and right. For every neighbbor v of u which lies to the right of C, cut the edge
(u, v) into two pieces (u, xuv) and (yuv, v) where xuv, yuv are (new) spurious vertices. We add
spurious edges between consecutive spurious vertices along the cut and label all the newly
formed spurious edges with the label LC along the left set and L−1

C along the right set. (see
Figure 2).

X Y Z

X1 X2 Y1Y2Y3 Z1Z2Z3Z4

C

(a)

X Y Z

X ′1 X ′2 Y ′1Y
′
2Y
′
3 Z ′1Z

′
2Z
′
3Z
′
4

X ′′1 X ′′2 Y ′′1Y
′′
2Y
′′
3 Z ′′1Z

′′
2Z
′′
3Z
′′
4

X1 X2 Y1Y2Y3 Z1Z2Z3Z4

C

(b)

Figure 2: An example of the cut operation Q, cutting graph G along cycle (or path) C. (a)
Part of graph G and cycle C. (b) Part of the resulting graph GQC, with the dotted lines
representing the spurious edges.

Also, if C is a path, its endpoints will lie on two paths. Consider the first path - if the
two edges on either side of C on this path have the same label L1. This can be broken into
two cases - firstly, if the left and right side of this endpoint are the same (in other words, the

8

path is a cycle). In this case, we just keep the same label L1. When the left and right side
of this endpoint are distinct, we will need to split the label into two or three new labels as
detailed below and similarly for the other path and common label L2. We will only describe
the case when L1, L2 are both defined - the other cases are similar and simpler.

First assume that L1 6= L2 and L1 6= L−1
2 . Then we will split remove labels L1, L2 and

replace them by four new labels say L′1,C , L
′′
1,C and L′2,C , L

′′
2,C , respectively for the two sides

of the intersection. If, on the other hand, L1 is the same as L2 or its inverse - then there are
two subcases. Firstly, if the path C is between two copies of the same vertex then we replace
L1 by two new labels L′1,C , L

′′
1,C one for either side of the cut. L2 being a copy or an inverse

copy of L1 splits automatically. The second case is if C is between two distinct points on two
copies or inverse copies. Then we split L1 into three parts according to the two points. The
rotation system is modified appropriately. We illustrate this in Figure 3.

Notice that in the process of cutting, for every new label LC we are adding at most 4 new
labels.

L1

L1

L2

L2

C

reduction

L′1,C

L′′1,C

L′2,C

L′′2,C

L−1
C

LC

(a)

L1

L1

L1

L1

C
v v

reduction

L′1,C

L′′1,C

L′1,C

L′′1,C

L−1
C

LC
v v
v v

(b)

L1

L1

L1

L1

C

w w

v v

reduction

L′1,C

L′′1,C

L′′1,C

L′′′1,C

L′′′1,C

L′1,C

L−1
C

LC
v w
v w

v

w

(c)

Figure 3: Cutting along a path C when (a) L1 6= L2 and L1 6= L−1
2 , (b) L1 = L2 or L1 = L−1

2

and C is between copies of the same vertex v, and (c) L1 = L2 or L1 = L−1
2 and C is between

distinct vertices v and w.

Given a graph Gi embedded on a surface, potentially with spurious edges, we can find
Ci+1, a non-separating cycle (which does not use a spurious edge) by invoking Lemma 4.
Define Gi+1 to be GiQCi+1.

Starting with G0 = G of genus g and repeating the above operation at most g times, we
get a planar graph H with at most 2g spurious faces (which consist of spurious vertices and
edges).

Now find a spanning tree of this graph which does not use a spurious edge - that such
a tree exists follows from noticing that the graph without spurious edges is still connected.

9

Find a tree path connecting any two spurious faces. Cut along this path to combine the two
spurious faces into one larger spurious face. Repeat the operation till all the spurious faces
are merged into one spurious face and re-embed the planar graph so that it forms the external
face.

It is easy to see that the procedure above can be performed in logspace, provided that g
is constant. Thus we have sketched the proof of the following:

Lemma 5. Given the combinatorial embedding of a constant genus graph we can find a
polygonal schema for the graph in logspace.

3.0.2 Normalizing a Polygonal Schema

We adapt the algorithmic proof of Brahana-Dehn-Heegaard (BDH) [Bra21, DH07] classifica-
tion theorem as described in Vegter-Yap [VY90] so that it runs in logspace for constant genus
graphs. The algorithm starts with a polygonal schema and uses the following five transforms
O(m) times to yield a normalized polygonal schema, where the original polygonal schema has
2m sides.

A. Replace Xσσ̄ by X (Example given in Figure 4).

σ σ

X

σ

X

Figure 4: Reduction A (pasting along σ)

B. Replace στXτ̄Y by ρXρ̄σY (Example given in Figure 5).

σ τ

Y X

τ

ρ
p q

r

qr

σ ρ

Y X

τ

ρ
p q

p

qr

Figure 5: Reduction B (Cutting along ρ followed by pasting along τ). Note that the number
of vertices in the equivalence class of r, reduces by 1.

C. Replace σXσY by ττY ∗X, where Y ∗ is reverse complement of Y (Example given in
Figure 6).

D. Replace σXτY σ̄Uτ̄V by ρπρ̄π̄UY XV (Example given in Figure 7).

10

Y X

σ

σ

τ X Y ∗
σ

τ τ

Figure 6: Reduction C (Cutting along τ followed by pasting along ρ)

σ

X

τ

Y
σ

U

τ

V
ρ

(a)

ρ

τ

Y

X
ρ

V

U

τ

σ

(b)

ρ

τ

Y

X
ρ

V

U

τ

π

(c)

ρ

π

V

U

Y

X

ρ

π

τ

(d)

Figure 7: Reduction D (a) Cutting along ρ. (b) Pasting along σ. (c) Cutting along π. (d)
Pasting along τ .

E. Replace σ1σ1Xσ2σ3σ̄2σ̄3Y by τ1τ1τ2τ2τ3τ3XY (Example given in Figure 8).

F. Replace σσττX by σρσ̄ρX (Example given in Figure 9).

The procedure is to

1. Use reductions A,B,C several times to ensure that all the sides of the polygonal schema
have a common endpoint.

2. (a) Orientable case: Use transform D repeatedly to bring the polygon in normal form.

(b) Non-orientable case:

- Use reductions C,D to convert the schema into a form where the orientable
symbols are clustered and non-orientable symbols are paired

- Use reduction E repeatedly (in the forward direction) to eliminate all orientable
symbols.

- Use Reduction E in the reverse direction repeatedly to eliminate all but at
most one non-orientable symbol.

- Use Reduction F, if necessary, to ensure that there is at most one non-orientable
symbol.

Possibly, the only step requiring any explanation is the last one. We apply Reduction E in
reverse with X as the empty string to replace three non-orientable symbols by two orientable
ones forming a cluster of 4 and a single non-orientable one which forms a pair. The way

11

σ1

σ2

X

σ2

σ2

σ3

σ3

Y

ρ

(a)

σ2

σ3

ρ

Y ∗

σ3

σ2

ρ

X

σ1

(b)

τ1

τ1

τ2

τ2

τ3

τ3

X

Y

(c)

Figure 8: Reduction E (a) Cutting along ρ. (b) Pasting along σ1. (c) Obtained from Figure
8(b) by applying Reduction C thrice.

σ

σ τ

τ

X

ρ

(a)

σ

ρ σ

ρ

X

τ

(b)

Figure 9: Reduction F (a) Cutting along ρ. (b) Pasting along τ .

we apply the reduction, ensures that both the orientable and the non-orientable parts are
contiguous.

Fianlly we will be left with a string in one of the first two normal forms or a string of the
form σσττX (where X is an orientable schema in normal form) in which case Reduction F is
applicable.

To see that the above procedure can be carried out in L it suffices to prove that each of the
above reductions can be carried out in L, the number of reductions is bounded by a constant
and we can decide in L when to carry out a reduction.

The Vegter-Yap paper does careful book-keeping in order to ensure that the number of
operations in Step 1 is linear in the original genus. We can alternatively, follow the brute
force approach and keep on applying Reductions A,B,C while the sides of the polygon do not
have a common end-point. This will require at most linear number of applications of the first
two reductions.

Observe that for the orientable case, each application of reduction D reduces the number of
unclustered symbols by two. Thus we are done in O(m) applications of this reduction. Simi-
larly, each application of reduction C reduces the number of unpaired non-orientable symbols
by one and as before every application of reduction D reduces the number of unclustered
orientable symbols by two. So in O(m) steps all the orientable symbols are clustered and
the non-orientable symbols are paired. Now every application of reduction E in the forward
direction gets rid of two orientable symbols so in O(m) steps all the orientable symbols are

12

removed. Finally O(m) applications of reduction E in reverse lead to removal of all but one
non-orientable symbols.

To see that each of the steps is in L observe that each of the steps involves one or more of
the following operations:

- find a path through the interior of the polygon between two points on its boundary

- cut along a path

- paste two paired sides of (a cut) polygon together

We know how to do the second operation in L while the third, being the reverse of the
second one is even easier, since we just have to identify corresponding spurious vertices and
then excise them out of the corresponding edge. The first operation is just an undirected
reachability question in the graph (minus its boundary) hence is in L by Reingold’s Theorem.

Finally, a determination of when to apply a particular reduction is easily seen to be in
L for all but, possibly, reduction D. In this case, for an orientable symbol σ separated from
its mate σ̄ on both sides, sequentially test for each other symbol τ if it lies in one of the
two stretches that σ and its mate divide the schema into, while its mate τ̄ lies in the other.
Having found the first such τ suffices to enable a use of the reduction.

Thus, using the above argument and Lemma 5 we have sketched the proof of the following
theorem:

Theorem 6. Given a combinatorial embedding of constant genus, say g (which is positive or
otherwise), for a graph G, in logspace we can find a polygonal schema for the graph in normal
form. of genus O(|g|) in magnitude, and also the corresponding combinatorial embedding.

Let k-gon-bi be the class of constant genus, bipartite graphs along with an embedding
given on the polygonal schema in normal form of the surface in which the graph has an
embedding. Moreover, for every graph in this class, no edge has both its end points on the
boundary of the polygon.

At this point, there are no vertices lying on the boundary of the polygonal schema, only
edges crossing it. It is easy to see that for each such edge e = (u, v) which has two halves
lying on segments of the polygon, if we introduce internal vertices u′ = v′, v′′ on the edge
(converting it to a path u, u′ = v′, v′′, v) so that u′, v′ lie on the boundary of the polygon on
the sides nearer to u, v respectively, then, because the path has odd length the number of
perfect matchings in the modified graph is preserved.

Thus we have proved that:

Corollary 7. Given the combinatorial embedding of a graph of constant genus, there is an
logspace reduction, which preserves perfect matchings, to a graph in the class k-gon-bi.

3.0.3 From Polygonal Schema in normal form to a Grid

Lemma 8. If G is an orientable graph in k-gon-bi, then one can get a logspace, matching-
preserving reduction form G to a graph H ∈ k-ori-GG

Proof. We start with a graph G ∈ k-gon-bi and construct a graph H ∈ k-ori-GG such that
the number of perfect matchings in G and H are the same.

13

We can assume that the maximum degree of G is 3 and there exists a vertex s of degree
2 [KMV08]. Think of G as a planar graph. Reduce G to a grid graph G′ using [ABC+09]. It
follows from the reduction that faces are preserved (modulo subdivision of edges). Let T be
the spanning tree of G constructed by the algorithm that would be embedded on the course
grid and let T ′ be the tree corresponding to T in G′. Every vertex (say v) on boundary of
the polygon in G is a leaf node since every edge has at most one of its end points on the
boundary of the polygon (by definition of k-gon-bi). Therefore v is also a leaf in T . Let s
be the root of T and h(u) be the height of a vertex u in T . It follows from the reduction that
h(u) is the value of its y-coordinate in G′.

For the rest of this proof we will use the notation u′ and v′ to denote the respective copies
of some two vertices u and v in G. Now subdivide every horizontal edge in G′ into 2 edges to
get the grid graph G′′. This ensures that the horizontal distance between the copies of any
two vertices in G′ is even. First claim is that the number of matchings in G and G′′ are the
same. To see this it is enough to show that: e = (u, v) is an edge in G iff any simple path
from u′ to v′ has odd length. If e is a tree edge then the vertical distance between u′ and v′

is 1 and the horizontal distance is even. Thus the distance between them on the grid is odd
and therefore any path between them on the grid has odd length. Similarly, if e is a non-tree
edge, then h(u) and h(v) have different parity and therefore the vertical distance between
them is odd.

Now we will see how to construct the grid graph H as required by the Lemma. Let G′′

be a m1 ×m2 grid. Construct an empty grid H, of size (m1 + 2)× (m2 + 2). Place the grid
G′′ on H so that G′′ lies properly inside the grid (that is no edge of G′′ has an end point on
any of the boundary vertices of H). Suppose two vertices u and v in G get identified when
G is thought of as a genus g graph. Then from our earlier observation we have that both u′

and v′ must be leaf nodes and lie on the outer face of G′′. Also h(u) and h(v) must have the
same parity, since otherwise we can construct an odd cycle in G by traversing from s to u
(which is the same as v) and back to s via v. This implies that the y-coordinate of both u′

and v′ in G′′ has the same parity. Drop a path from u (and similarly a path from v) by going
down all the way to the south border of H. Observe that the sum of the lengths of these two
paths is even. This is because, the difference in their y-coordinates is even. This ensures that
matching is preserved by adding these paths.

The ordering of the segments in the outer face that get glued, is same in both H and G
since faces are preserved by the reduction in [ABC+09]. Also the by our construction the
length of each segment is even since the horizontal distance between two vertices is a multiple
of 2. Additionally from there are no edges along the boundary of the grid as required.

3.1 Any graph in a“genus g grid” is bipartite

Lemma 9. Any graph G ∈ k-ori-GG is bipartite.

Proof. Let C be a cycle in G. First we consider the case when C is a simple cycle. Partition
C into paths P1 = (p1, . . . , p2), P2 = (p2, . . . , p3), . . . , Pk = (pk, . . . , p1), such that each Pi

lies entirely in the grid with its two end points pi and pi+1 lying on some two segments. An
example of this partition is shown in Figure 10(a) for the respective cycle. For each path
Pi construct a path P ′i by moving along the border of the grid from pi to pi+1 along a fixed
direction (say in clockwise direction).

Fix an i ∈ [k]. Consider the partition of P ′i , induced by the segments along which it
passes. Denote the first and the last partition by P ′i1 and P ′i2 respectively. Note that any of

14

the intermediate partitions of P ′i has even length since the length of an intermediate partition
equals the length of the corresponding segment and hence is even. Therefore we have,

|P ′i | mod 2 = (|P ′i1 |+ |P
′
i2 |) mod 2. (3.1)

Also,

|Pi| mod 2 = |P ′i | mod 2, (3.2)

because the path Pi and P ′i together form a simple cycle on the grid and any cycle that lies
entirely on the grid has even length. Consider the sum,

S =
k∑

i=1

(|P ′i1 |+ |P
′
i2 |). (3.3)

Rearranging we get,

S = |P ′11
|+ |P ′k2

|+
k−1∑
i=1

(|P ′i2 |+ |P
′
(i+1)1

|). (3.4)

Since |P ′i2 | and |P ′((i+1) mod k)1
| are equal, we have,

S = 2|P ′11
|+

k−1∑
i=1

2|P ′i2 |. (3.5)

Now combining Equations (3.1), (3.2) and (3.5), we have
∑k

i=1 |Pi| is even and thus C is
of even length.

If C is non-simple, then C can be decomposed into a collection of simple cycles {Cj} such
that |C| =

∑
j Cj . Now using the previous part we get that C has even length.

4 New Upper Bounds

In this section we establish new upper bounds on the space complexity of certain matching
problems on bipartite constant genus graphs, embedded on a ‘genus g grid’.

We define k-ori-GG to be the class of genus g graphs such that: for every G ∈ k-ori-GG,
G is a grid graph embedded on a grid of size 2m × 2m. We assume that the distance
between adjacent horizontal (and similarly vertical) vertices is of unit length. The entire
boundary of the grid is divided into 4g segments, and each segment has even length, for
some constant g. The 4g segments are labelled as (S1, S2, S

′
1, S
′
2, . . . S2i−1, S2i, S

′
2i−1, S

′
2i,

. . . , S2g−1, S2g, S
′
2g−1, S

′
2g), together with a direction, namely, Si is directed from left to right

and S′i is directed from right to left for each i ∈ [2g]. The jth vertex on a segment Si is the
jth vertex on the border of the grid, starting from the head of the segment Si and going along
the direction of the segment. Finally the segments Si and S′i are glued to each other for each
i ∈ [2g] in the same direction. In other words, the jth vertex on segment Si is the same as
the jth vertex on segment S′i. Also there are no edges along the boundary of the grid.

Definition 6. If C is a cycle in G, we denote the circulation of C with respect to a weight
function w as circw(C). For any subset E′ ⊆ C, circw(E′) is the value of the circulation
restricted to the edges of E′.

15

Theorem 10 (Main Theorem). There exists a logspace computable and polynomially bounded
weight function W , such that for any graph G ∈ k-ori-GG and any cycle C ∈ G, circW (C) 6=
0.

Theorem 11. For a graph embedded on a constant genus surface,

(a) Decision-BPM is in SPL,

(b) Search-BPM is in FLSPL and

(c) Unique-BPM is in SPL.

Proof. As a result of Theorem 3, we can assume that our input graph G ∈ k-ori-GG. Using
Theorem 10 and Lemma 1 we get a logspace computable weight function W , such that the
minimum weight perfect matching in G with respect to W is unique. Moreover, for any subset
E′ ⊆ E, Theorem 10 is valid for the subgraph G \ E′ also, with respect to the same weight
function W . Now (a) and (b) follows from Lemma 2. Checking for uniqueness can be done by
first computing a perfect matching, then deleting an edge from the matching and rechecking
to see if a perfect matching exists in the new graph. If it does, then G did not have a unique
perfect matching, else it did. Note that Theorem 10 is valid for any graph formed by deletion
of edges of G.

Theorem 10 also gives an alternative proof of directed graph reachability for constant
genus graphs.

Theorem 12 ([BTV09, KV09]). Directed graph reachability for constant genus graphs is in
UL.

The proof of Theorem 12 follows from Lemma 13 and [BTV09]. We adapt Lemma 13 from
the journal version of [DKR08] (to appear in Theory of Computing Systems).

Lemma 13. There exist a logspace computable weight function that assigns polynomially
bounded weights to the edges of a directed graph such that: (a) the weights are skew symmetric,
i.e., w(u,v) = - w(v,u), and (b) the sum of weights along any (simple) directed cycle is non-
zero.

Lemma 14. In any class of graphs closed under the subdivision of edges, Theorem 10 implies
the hypothesis of Lemma 13.

Proof. Given an undirected graph G, construct a bipartite graph G′ as follows: replace every
undirected edge {u, v} by a path u−w− v of length two. Use Lemma 13 to assign weights to
the edges of G′. Suppose that the weight assigned to the undirected edge {u,w} in G′ is a and
the weight of {w, v} is b. Let

−→
G denote the directed graph obtained from G by considering

each undirected edge as two directed edges in opposite directions. Now we assign the weights
to the edges of

−→
G as follows: directed edge (u, v) gets weight a− b; whereas the directed edge

(v, u) will get weight b− a. The circulations of the cycles in G′ being non-zero will translate
into the sum of the edges along any cycle in the directed graph

−→
G being non-zero.

16

4.1 Proof of Main Theorem

Proof of Theorem 10. For a graph G ∈ k-ori-GG, we define W is a linear combination of
the following 4g + 1 weight functions defined below. This is possible in logspace since g is
constant.

Define 4g + 1 weight functions as follows:

- For each i ∈ [2g],

wi(e) =
{

1 if e lies on the segment Si

0 otherwise
(4.1)

- For each i ∈ [2g],

w′i(e) =


j if e lies on the segment Si at index j from the head of Si and j is odd
−j if e lies on the segment Si at index j from the head of Si and j is even
0 otherwise

(4.2)

-

w′′(e) =


0 if one end of e lies on the boundary of the grid
0 if e does not lie on the boundary and e is a vertical edge
(−1)i+j(i+ j − 1) if e is the jth horizontal edge from left, lying in row i

from bottom, and not lying on the boundary
(4.3)

Note that if e does not lie on the boundary of the grid then w′′(e) is same as the weight
function defined in [DKR08].

If C is a cycle in G, we denote the circulation of C with respect to a weight function w as
circw(C). For any subset E′ ⊆ C, circw(E′) is the value of the circulation restricted to the
edges of E′. An example of a cycle on a grid is given in Figure 10(a).

Let C be a simple cycle in G. If C is surface non-separating, then circwi(C) 6= 0 for some
i. If C is surface separating and crosses the boundary of the grid at some vertex v, then
circw′i(C) 6= 0 for i, such that v lies in the segment Si. If C does not intersect any of the
boundary segments, then C does not have any edge on the boundary since there are no edges
along the boundary by definition of k-ori-GG. Therefore circw′′(C) 6= 0 by [DKR08].

Without loss of generality, assume C intersects segment S1. Let EC
1 be the set of edges

of C that intersect S1. Note that circw1(C) = circw1(EC
1) (same thing holds for w′1 as well.

We can assume that |EC
1 | is even since otherwise circw1(EC

1) is odd and hence non-zero. By
Lemma 16 it follows that the edges of EC

1 , alternate between going out and coming into the
grid. Then using Lemma 17 we get that circw′1(EC

1) 6= 0 and thus circw′1(C) 6= 0. (See below
for Lemma 16 and 17)

To establish Lemma 16 we use an argument (Lemma 15) from homology theory. For two
cycles (directed or undirected) C1 and C2, let I(C1, C2) denote the number of times C1 and
C2 cross each other (that is one of them goes from the left to the right side of the other, or
vice versa).

Next we adapt the following Lemma from Cabello and Mohar [CM07]. Here we assume
we are given an orientable surface (Cabello and Mohar gives a proof for a graph on a surface).

17

S1 S2

S4 S3

T1

T2T3

T4

P1

P2

P3

P4

P5

P6

P7

P8

1−2 3−4 5−6

(a) Example of a cycle on the grid that crosses
each segment an even number of times with the
weights w′1

Q2

Q1

Q′2
Q′1

C C

P1

P2 Cj

(b) Construction of a path from Q1 to Q2 in Γ\C
(the dotted path is the shortest path between Q1

and Q′1 (resp. between Q2 and Q′2).

Figure 10:

Lemma 15 ([CM07]). Given a genus g orientable, surface Γ, let C = {Ci}i∈[2g] be a set of
cycles that generate the first homology group H1(Γ). A cycle C in Γ in non-separating if and
only if there is some cycle Ci ∈ C such that I(C,Ci) ≡ 1(mod 2).

Proof. Let C̃ be some cycle in Γ. We can write C̃ =
∑

i∈[2g] tiCi since C generates H1(Γ).
Define IC̃(C) =

∑
i∈[2g] tiI(C,Ci)(mod 2). One can verify that IC̃ : C1(Γ) → Z2 is a group

homomorphism. Now since B1(Γ) is a normal subgroup of B1(Γ), IC̃ induces a homomorphism
from H1(Γ) to Z2.

Any cycle is separating if and only if it is homologous to the empty set. Therefore if C is
separating, then C ∈ B1(Γ) and thus every homomorphism from H1(Γ) to Z2 maps it to 0.
Hence for every i ∈ [2g], I(C,Ci) ≡ ICi(C) = 0.

Suppose C is non-separating. One can construct a cycle C ′ on Γ, that intersects C exactly
once. Let C ′ =

∑
i∈[2g] t

′
iCi. Now 1 ≡ IC′(C) ≡

∑
i∈[2g] t

′
iI(C,Ci)(mod 2). This implies that

there exists i ∈ [2g] such that I(C,Ci) ≡ 1(mod 2).

Lemma 16. Let C be a simple directed cycle on a genus g orientable surface Γ and let
C = {Ci}i∈[2g] be a system of 2g directed cycles on Γ, having exactly one point in common
and Γ \ C is the fundamental polygon, say Γ′. If I(C,Ci) is even for all i ∈ [2g] then for all
j ∈ [2g], C alternates between going from left to right and from right to left of the cycle Cj

in the direction of Cj (if C crosses Cj at all).

Proof. Suppose there exists a j ∈ [2g] such that C does not alternate being going from left to
right and from right to left with respect to Cj . Thus if we consider the ordered set of points
where C intersects Cj , ordered in the direction of Cj , there are two consecutive points (say
P1 and P2) such that at both these points C crosses Cj in the same direction.

Let Q1 and Q2 be two points in Γ \ C. We will show that there exists a path in Γ \ C
between Q1 and Q2. Consider the shortest path from Q1 to C. Let Q′1 be the point on
this path that is as close to C as possible, without lying on C. Similarly define a point Q′2

18

corresponding to Q2. Note that it is sufficient for us to construct a path between Q′1 and
Q′2 in Γ \ C. If both Q′1 and Q′2 locally lie on the same side of C, then we get a path from
Q′1 to Q′2 not intersecting C, by traversing along the boundary of C. Now suppose Q′1 and
Q′2 lie on opposite sides (w.l.o.g. assume that Q′1 lies on the right side) of C. From Q′1
start traversing the cycle until you reach cycle Cj (point P1 in Figure 10(b)). Continue along
cycle Cj towards the adjacent intersection point of C and Cj , going as close to C as possible,
without intersecting it (point P2 in Figure 10(b)). Essentially this corresponds to switching
from one side of C to the other side without intersecting it. Next traverse along C to reach
Q′2. Thus we have a path from Q′1 to Q′2 in Γ \ C. We give an example of this traversal in
Figure 10(b). This implies that C is non-separating.

It is well known that C forms a generating set of H1(Γ), the first homology group of the
surface. Now from Lemma 15 it follows that I(C,Cl) ≡ 1(mod 2) for some l ∈ [2g], which
is a contradiction.

Lemma 17. Let G be a graph in k-ori-GG with C being a simple cycle in G and EC
1 being

the set of edges of C that intersects segment S1. Assume |EC
1 | is even and the edges in EC

1

alternate between going out and coming into the grid. Let i1 < i2 < . . . < i2p−1 < i2p be the
distinct indices on S1 where C intersects it. Then∣∣∣circw′1(EC

1)
∣∣∣ =

∣∣∣∣∣
p∑

k=1

(i2k − i2k−1)

∣∣∣∣∣
and thus non-zero unless EC

1 is empty.

Proof. Let ej = (uj , vj) for j ∈ [2p] be the 2p edges of G lying on the segment S1. Assume
without loss of generality that the vertices vj ’s lie on S1. Assign an orientation to C such that
e1 is directed from u1 to v1. Also assume that i1 is even and the circulation gives a positive
sign to the edge e1. Therefore circw′1({e1}) = −i1.

Now consider any edge ej such that j is even. By Lemma 16, the edge enters the segment
S1. Suppose ij is odd. Then consider the following cycle C ′ formed by tracing C from uj to
u1, without the edges e1 and ej and then moving along the segment S1 back to uj . Since ij is
odd therefore the latter part of C ′ has odd length. Note that C ′ need not be a simple cycle.
By Lemma 9, |C ′| is even, therefore the part of C ′ from u1 to uj also has odd length. This
implies that the circulation gives a positive sign to the edge ej . Therefore, circw′1({ej}) = ij .
Similarly, if ij is odd, then the part of C ′ from u1 to uj will have even length. Thus the
circulation gives a negative sign to the edge ej and therefore circw′1({ej}) = −(−ij) = ij .

If j is odd, the above argument can be applied to show that circw′1({ej}) = −ij . Therefore
we have,

circw′1(EC
1) =

p∑
k=1

(i2k − i2k−1).

Now removing the assumptions at the beginning of this proof would show that the LHS
and RHS of the above equation is true modulo absolute value as required.

It is interesting to note here that similar method does not show that bipartite matching
in non-orientable constant genus graphs is in SPL. The reason is that Lemma 16 crucially
uses the fact that the surface is orientable. In fact, one can easily come with counterexample
to the Lemma if the surface is non-orientable.

19

5 Reducing the non-orientable case to the orientable case

Let G be a bipartite graph embedded on a genus g non-orientable surface. As a result of
Theorem 6 we can assume that we are given a combinatorial embedding (say Π) of G on a
(non-orientable) polygonal schema, say Λ(Γ), in the normal form with 2g′ sides. (Here g′ is a
function of g.)

Let Y = (X1, X2) be the cyclic ordering of the labels of the sides of Λ(Γ), where X2 is
the ‘orientable part’ and X1 is the ‘non-orientable part’. More precisely, for the polygonal
schema in the normal form, we have: X1 is either (σ, σ) (thus corresponds to the projective
plane) or it is (σ, τ, σ̄, τ) (thus corresponds to the Klein bottle). See Figure 11.

σ

σ

X2 X1

(a)

σ

τ

σ̄

τ

X2 X1

(b)

Figure 11: (a) Λ(Γ) when the surface is a sum of an orientable surface and the projective
plane. (b) Λ(Γ) when the surface is a sum of an orientable surface and the Klein bottle

.

Now let G be a bipartite graph embedded on a non-orientable polygonal schema Λ(Γ)
with 2g′ sides. We will construct a graph G′ embedded on an orientable polygonal schema
with 4g′−2 sides such that G has a perfect matching iff G′ has a perfect matching. Moreover,
given a perfect matching in G′ one can retrieve in logspace a perfect matching in G. This is
illustrated in the following Theorem.

Theorem 18. Let G be a bipartite graph given with its embedding on a non-orientable polyg-
onal schema in normal form Λ(Γ), with 2g′ sides as above. One can construct in logspace,
another graph G′ together with its embedding on the polygonal schema of an orientable sur-
face Γ′ of genus 4g′ − 2 such that: G has a perfect matching iff G′ has a perfect matching.
Moreover, given a perfect matching in G′, one can construct in logspace a perfect matching
in G.

Proof. We first show the case when Γ is the sum of an orientable surface and a Klein bottle.
Consider the polygonal schema formed by taking two copies of Λ(Γ) and glueing the side τ
of one copy with its partnered side τ of the other copy. We relabel the edge labelled σ in the
second copy with some unused symbol δ to avoid confusion. The entire reduction is shown in
Figure 12. Let G′ be the resulting graph.

Note that the polygonal schema obtained as a result represents an orientable surface and
has constantly many sides. Also every vertex and edge in G has exactly two copies in G′

and G′ is also bipartite. Let M be a matching in G. Let M ′ be the union of the edges of
M from both the copies of G . Its easy to see that M ′ is a matching in G′. Now consider a
matching M ′ in G′. The projection of M ′ to G gives a subgraph of G where every vertex has
degree (counted with multiplicity) exactly two. Since G is bipartite, one can obtain a perfect
matching within this subgraph.

20

σ

τ

σ̄

τ

X21

δτ

δ̄
τ

X22

(a)

σ

τ

σ̄

δ

δ̄

τ̄

X22

X21

(b)

Figure 12: Klein bottle. (a) The two copies of Λ(Γ) with the side that is being glued shown
in dark. (b) Polygonal schema obtained after the glueing operation.

Now consider the case when Γ is the ‘sum’ of an orientable surface and a projective plane,
i.e., following the notation above X1 corresponds to the labels of a polygonal schema for the
projective plane and X2 corresponds to the labels of a polygonal schema of an orientable
surface. Take two copies of Λ(Γ), and glue σ of one copy with its partner σ in the other copy.
We show this operation in Figure 13. The rest of the proof is similar to the Klein bottle

σ

σ

X21

σ

σ X22

(a)

σσ̄

X21

X22

(b)

Figure 13: Projective plane. (a) The two copies of Λ(Γ) with the two pair of sides that are
being glued shown in dark. (b) Polygonal schema obtained after the glueing operation.

case.

Thus we see that the non-orientable case can be reduced to the orientable case. The
resulting polygonal schema need not be in the normal form. Once again we apply Theorem
6 to get a combinatorial embedding on a polygonal schema in the normal form.

Acknowledgment

The third author would like to thank Prof. Mark Brittenham from the Mathematics depart-
ment at the University of Nebraska-Lincoln, for numerous discussions that they had and for
providing valuable insight into topics in algebraic topology.

21

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 1 edition, 2009.

[ABC+09] Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta, and
Sambuddha Roy. Planar and grid graph reachability problems. Theory Comput.
Syst., 45(4):675–723, 2009.

[AM08] V. Arvind and Partha Mukhopadhyay. Derandomizing the isolation lemma and
lower bounds for circuit size. In Proceedings of RANDOM ’08, pages 276–289,
2008.

[ARZ99] Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and count-
ing: Uniform and nonuniform upper bounds. Journal of Computer and System
Sciences, 59:164–181, 1999.

[Bra21] H. R. Brahana. Systems of circuits on two-dimensional manifolds. The Annals of
Mathematics, 23(2):144–168, 1921.

[BTV09] Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. Directed planar
reachability is in unambiguous log-space. ACM Trans. Comput. Theory, 1(1):1–
17, 2009.

[CM07] Sergio Cabello and Bojan Mohar. Finding shortest non-separating and non-
contractible cycles for topologically embedded graphs. Discrete Comput. Geom.,
37(2):213–235, 2007.

[DH07] Max Dehn and Poul Heegaard. Analysis situs. Enzyklopädie der mathematischen
Wissenschaften mit Einschluß ihrer Anwendungen, III.AB(3):153–220, 1907.

[DKR08] Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically isolating
a perfect matching in bipartite planar graphs. In 25th International Symposium
on Theoretical Aspects of Computer Science, pages 229–240, 2008.

[GW96] Anna Gal and Avi Wigderson. Boolean complexity classes vs. their arithmetic
analogs. Random Structures and Algorithms, 9:1–13, 1996.

[Hoa09] Thanh Minh Hoang. On the matching problem for special graph classes. In
Electronic Colloquium on Computational Complexity, number TR09-091, 2009.

[KMV08] Raghav Kulkarni, Meena Mahajan, and Kasturi R. Varadarajan. Some perfect
matchings and perfect half-integral matchings in NC. Chicago Journal of Theoret-
ical Computer Science, 2008(4), September 2008.

[KV09] Jan Kynčl and Tomáš Vyskočil. Logspace reduction of directed reachability for
bounded genus graphs to the planar case. In Electronic Colloquium on Computa-
tional Complexity, number TR09-050, 2009.

[Mas91] William S. Massey. A Basic Course in Algebraic Topology. Springer-Verlag, 1991.

22

[MT01] Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. John Hopkins Uni-
versity Press, 2001.

[MVV87] Ketan Mulmuley, Umesh Vazirani, and Vijay Vazirani. Matching is as easy as
matrix inversion. Combinatorica, 7:105–113, 1987.

[RA00] Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM
Journal of Computing, 29:1118–1131, 2000. An earlier version appeared in FOCS
1997, pp. 244–253.

[Tho89] C. Thomassen. The graph genus problem is np-complete. J. Algorithms, 10(4):568–
576, 1989.

[Vol99] Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach.
Springer-Verlag, 1999.

[VY90] Gert Vegter and Chee-Keng Yap. Computational complexity of combinatorial sur-
faces. In Proceedings of the 6th Annual Symposium on Computational Geometry,
pages 102–111, 1990.

23

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

