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Abstract

The direct product problem is a fundamental question in complexity theory which seeks to
understand how the difficulty of computing a function on each of k£ independent inputs scales
with k. We prove the following direct product theorem (DPT) for query complexity: if every
T-query algorithm has success probability at most 1 — € in computing the Boolean function f
on input distribution g, then for a@ < 1, every aeTk-query algorithm has success probability
at most (2%¢(1 — ¢))* in computing the k-fold direct product f®* correctly on k independent
inputs from p. In light of examples due to Shaltiel, this statement gives an essentially optimal
tradeoff between the query bound and the error probability. As a corollary, we show that for an
absolute constant o > 0, the worst-case success probability of any aRs(f)k-query randomized
algorithm for f®* falls exponentially with k. The best previous statement of this type, due to
Klauck, Spalek, and de Wolf, required a query bound of O(bs(f)k).

The proof involves defining and analyzing a collection of martingales associated with an
algorithm attempting to solve f®*. Our method is quite general and yields a new XOR lemma
and threshold DPT for the query model, as well as DPTs for the query complexity of learning
tasks, search problems, and tasks involving interaction with dyamic entities. We also give a
version of our DPT in which decision tree size is the resource of interest.
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1 Introduction

1.1 Direct product problems

Suppose some Boolean function f(z) on n input bits is ‘hard to compute’ for a certain computational
model. Tt seems that computing the k-tuple f&*(z!, ... 2%) := (f(z1),..., f(z*)) on independent
inputs z!, ..., 2" should be ‘even harder’. The intuition is that the k tasks to be performed appear
separate and unrelated, and that with more tasks there are more chances to make a mistake. One
way to make this idea more precise is the so-called direct product problem. In this approach, we try
to prove statements of the following form:

Suppose every algorithm using resources at most T has success probability at most p
i computing f. Then, every algorithm using resources at most T" has success probability
at most p' in computing f€* on k independent inputs to f.

Such a result is called a direct product theorem (DPT). The direct product problem can be contrasted
with a second, related question, the direct sum problem, which studies how the complexity of solving
k instances of a problem scales with k, when we are only interested in algorithms which succeed
with high probability (or probability 1). For a recent overview of the direct sum problem in query
complexity, and proofs of some new results, see [JKSI10].

Depending on the computational model and our interests, T' and 7" might measure time, com-
munication, or any other resource. The success probability could be with respect to some input
distribution u, in which case it is natural to assume in the k-fold setting that the inputs are drawn
independently from p; we call this the average-case setting. However, one can also consider the case
where p is a bound on the worst-case success probability of a randomized algorithm, ranging over
all inputs to f; we then try to establish an upper-bound p’ on the worst-case success probability of
query-bounded algorithms for f®*. The strength of a direct product theorem can be measured in
terms of the dependence of the parameters T, p’ on T, p, k, and, possibly, on the function f itself.
We want T” to be large and p’ to be small, to establish that the k-fold problem is indeed ‘very
hard’.

There is also an important variant of the direct product problem, in which we are interested in
computing the ‘k-fold XOR f®*(xt ... 2%) := f(2!) @ ... @ f(2*) of k independent inputs to f.
An XOR lemma is a result which upper-bounds the success probability p’ achievable by algorithms
for f&* using T resources, under the assumption that any algorithm using 7" resources has success
probability at most pF_-] An obvious difference from DPTs is that in an XOR lemma, p’ must always
be at least 1/2, since f®* is Boolean and the algorithm could simply guess a random bit. The
hope is that (p’ — 1/2) decays exponentially with k. Research on XOR lemmas has proceeded in
parallel with research on direct product theorems; the known results are of similar strength (with
some exceptions), and in some cases there are reductions known from XOR lemmas to DPTs or
vice versa (see [Ung09, IK10] for an overview and recent results of this type).

The direct product problem has been studied extensively in models including Boolean cir-
cuits (e.g., [GNW95, TW97, TJKW10]), communication protocols [[RW94, [Sha03, KSAW07, 1.SS08,
VW08], and query algorithms [TRW94, NRS99, [Sha03, KSAWO07]. In all of these models, an opti-
mal T-bounded algorithm which attempts to compute f can always be applied independently to

!Terminology varies somewhat in the literature. For instance, what we call XOR lemmas are called ‘direct product
theorems’ in [Sha03|, and what we refer to as direct product problems are in [Sha03] called the ‘concatenation variant’.



each of k inputs, using at most 7" = Tk resources and succeeding with probability p' = p*, so
these are the ‘ideal’; strongest parameters one might hope for in a DPT. However, direct product
statements of such strength are generally false, as was shown by Shaltiel [Sha03], who gave a family
of counterexamples which applies to all ‘reasonable’ computational models. We will describe these
examples (specialized to the query model) in Section E|

Thus, all DPTs shown have necessarily been weaker in one of several ways. First, researchers
have restricted attention to algorithms of a special form. Shaltiel [Sha03] showed a DPT with the
‘ideal’ parameters above holds for the query model, if the algorithm is required to query each of
the k inputs exactly T times. He called such algorithms ‘fair’E| A similar result for a special class
of query algorithms called ‘decision forests’ was shown earlier by Nisan, Rudich, and Saks [NRS99].

Second, DPTs have been shown for unrestricted algorithms, but using resource bounds whose
strength depends on properties of the function f. For example, Klauck, Spalek, and de Wolf [KSdWO?]
showed that for any f and any v > 0, a DPT holds for f in which the achievable worst-case success
probability p’ is at most (1/2+ ), provided T" < a - bs(f)k for some constant a = a(y) > 0.
Here bs(f) is the block sensitivity of f [Nis89, BAWO02], a complexity measure known to be related
to the randomized query complexity by the inequalities Ra(f)'/3 < bs(f) < Ra(f) (suppressing
constant factors). Now, one can always compute f correctly on k instances with high probability
using O(Ra(f)klogk) queries. For many functions, including random functions, bs(f) = ©(Ra(f))
and so the DPT of [KSdW07] gives good results. However, examples are known [BAW02] where
bs(f) = O(\/Ra(f)), so the number of queries allowed by this DPT can be significantly less than
one might hope.

Klauck, Spalek, and de Wolf also proved DPTs for quantum query algorithms computing f, in
which the success probability p’ drops exponentially in k if the number of allowed quantum queries
is O(y/bs(f)k). Spalek [S08] proved a DPT for quantum query algorithms where the resource
bound T” scales in terms of a complexity measure called the multiplicative quantum adversary. The
ultimate strength of this result is not yet clear since the relationships between the multiplicative
adversary and other complexity measures are not well-understood. Finally, for symmetric functions,
direct product theorems of a strong form were proved for quantum query complexity by Ambainis,
Spalek, and de Wolf [ASdW09].

We have surveyed results in the query model, but in other models, such as communication
complexity, our earlier remarks also apply: known direct product theorems in which the allowed
communication 7" scales with k either apply to specific functions (e.g., in [KSAW07] a direct product
theorem was proved for the quantum communication complexity of the Disjointness function, and
a classical analogue was proved by Klauck [Kla09]), or else require the allowed resources T to
scale as D(f)k, where D(f) is a complexity measure which can be significantly smaller than the
resources needed to compute a single instance of f. For example, in communication complexity,
DPTs have been shown whose strength is related to the so-called discrepancy of f [Sha03) LSS08).
In the Boolean circuit model, despite intensive study, the known results are quantitatively much
weaker, and in particular require 7" to shrink as k grows in order to make the success probability

2Shaltiel calls a DPT ‘strong’ if it applies to all p,T and its parameters satisfy p’ < P and T > Q(Tk). His
counterexamples rule out strong DPTs for ‘reasonable’ computational models. In later works, the modifier ‘strong’
has been used in a somewhat broader way. We will not use this terminology in the present paper.

3Technically, Shaltiel proved, in our terms, an optimal XOR lemma for fair algorithms, but as he noted, this implies
an optimal DPT, and his proof method can also be modified to directly prove an optimal DPT for fair algorithms.



p' decay as k grows (although if 7" is allowed to shrink with k, a DPT with p’ = p* can be shown
using [Imp95, [Hol05], as remarked in [IK10]).

1.2 Our results
Our main result is the following direct product theorem in the average-case setting:

Theorem 1. Suppose f is a Boolean function and p is a distribution over inputs to f, such that
any T-query randomized algorithm has success probability at most (1 — €) in computing f on an
input from p. Then for a € (0,1], any randomized algorithm making aeTk queries has success
probability at most (2°5(1 — £))* < (1 — & + .84ae)* in computing fF correctly on k inputs drawn
independently from p.

We use Shaltiel’s examples to show that the tradeoff in Theorem [I]between the query bound and
the error probability is essentially best-possible, at least for general functions f and for small values
a < .001. (For specific functions, the success probability will in some cases decay exponentially
even when the number of queries allowed scales as Tk rather than €7'k.) Theorem |1 reveals that
small values of €, as used in Shaltiel’s examples, are the only major ‘obstruction’ to strong, general
direct product statements in the query model.

As a corollary of Theorem|[I], we obtain the following DPT for worst-case error, which strengthens
the worst-case DPT of [KSdW07] mentioned earlier:

Theorem 2. For any Boolean function f and 0 < v < 1/4, any randomized algorithm making at
most Y3 Ro(f)k/11 queries has worst-case success probability less than (1/2 + v)k in computing f&F
correctly.

It seems intuitive that a statement like Theorem [2| should be true, and proving such a DPT was
arguably one of the major open problems in classical query complexity.

We also prove a new XOR lemma. Let By, denote the binomial distribution on & trials with
success probability p.

Theorem 3. Suppose that any T-query randomized algorithm has success probability at most (1—¢)
in computing the Boolean function f on an input from p. Then for 0 < a < 1, any randomized
algorithm making aeTk queries and attempting to compute f€F on k inputs drawn independently
from p has success probability at most

1
-1 P Y 1-—
5 < + YNB;;_QE[ > ( as)k]) ,

which is less than 3 (1 +[1 -2+ 2104111(2/04)5]'“).

Compare the probability bound above with the success probability %(1 + (1 — 2¢)¥), which can
be attained using Tk queries by attempting to solve each instance independently and outputting
the parity of the guessed bits. The concrete estimate given in Theorem [3]is meant to illustrate how
our bound approaches this value as & — 0; by a more careful use of Chernoff inequalities, one can
get somewhat tighter bounds for specific ranges of a,e. An XOR lemma for the worst-case setting
can also be derived from our result.



In addition to our ‘ordinary’ DPT (Theorem 1)), we also prove a ‘threshold’ DPT, which bounds
the probability that a query-bounded algorithm for f®* solves ‘too many’ of the k instances cor-
rectly. As one special case, we prove:

Theorem 4. Let f be a (not-necessarily Boolean) function such that any T-query algorithm has

success probability at most 1 — e in computing f on an input sampled from p. Fix any n, o € (0, 1].

Consider any randomized algorithm R making at most aeTk queries on k independent inputs from

w. Then the probability that R computes f correctly on at least nk of the inputs is at most
JBr V= - aoh

Using Chernoff inequalities, Theorem [4] gives success bounds which decay exponentially in & for
any fixed a,e,n, provided n > 1 — e + ae. As we will explain, Shaltiel’s examples show that this
cutoff is nearly best-possible. By setting 7 := 1 in Theorem [ we also get an ordinary DPT for
non-Boolean functions, which in general is stronger than the DPT we’d get by a straightforward
generalization of our techniques for Theorem This is the simplest way we know to get such a
DPT.

Threshold DPTs have been proved for a variety of models. Unger [Ung09] shows how to derive
threshold DPTs from XOR lemmas, and recent work of Impagliazzo and Kabanets [IK10] gives
a way to derive threshold DPTs from sufficiently strong DPTs (see also the earlier works cited
in [Ung09, TK10]). However, the results of [IK10] do not apply for our purposes, and the threshold
DPT we prove is more general than we’d get by applying the results of [Ung09] to our XOR lemma.
In any case the proof of our threshold DPT is, we feel, quite natural (and actually forms the basis
for our XOR lemma). Our method applies to very general threshold events: we give bounds on
the probability that the set S C [k] of instances solved correctly by a query-bounded algorithm is
‘large’, in a sense specified by an arbitrary monotone collection A of subsets of [k]. Generalized
threshold DPTs of this form were shown recently by Holenstein and Schoenebeck [HS10| in the
circuit model, for a rich class of computational tasks called ‘weakly verifiable puzzles’ (as usual in
the circuit model, these DPTs require 7" to shrink with k). Our techniques appear unrelated to
theirs.

We also prove new DPTs for relation problems (for which direct sum theorems were proved
recently by Jain, Klauck, and Santha [JKSI10]), learning tasks, search problems, and errorless
heuristics, as well as a DPT in which decision tree size, rather than depth, is the resource of
interest. A DPT for decision tree size was shown previously in [IRW94], which gave an ‘ideal’
success probability decay p’ = p*, but in the case where the size is not allowed to scale with k, i.e.,
the setting 7’ = T. By contrast, in our DPT, the success probability decays as p*) = (1 — &)k,
while the size bound T’ scales as T¢%). Finally, we give a further generalization of our DPTs, in
which the k£ objects being queried are dynamic entities rather than static strings.

In order to ease notation, in this paper we discuss only DPTs for total functions, but our
results apply to partial functions (functions with a restricted domain) as well; the proofs are the
same. Similarly, our theorems and proofs carry over without change to handle non-Boolean input
alphabets, as well as heterogeneous query costs. Taken as a whole, our results provide a fairly
complete picture of the ‘direct product phenomenon’ for randomized query complexity (although
there may be room for improvement in some of our bounds). We hope this work may also help lead
to a better understanding of the direct product problem in other, richer computational models.



1.3 Our methods

We first explain our method to prove our ‘basic’ direct product theorem, Theorem[I] As mentioned
earlier, Shaltiel [Sha03|] proved an optimal DPT for ‘fair’ decision trees, in which each of the &k inputs
receives T queries. Our proof method for Theorem [I] also yields an alternate proof of Shaltiel’s
result, and it is helpful to sketch how this works first. (Really, this ‘alternate proof’ is little more
than a rephrasing of Shaltiel’s proof technique, but the rephrasing gives a useful perspective which
helps us to prove our new results.)

Suppose that every T-query algorithm for computing f succeeds with probability at most (1—¢)
on an input from the distribution p. Consider a fair Tk-query algorithm D for f®*, running on
k independent inputs from p. We think of the algorithm as a ‘gambler’ who bets at k ‘tables’,
and we define a random variable X;; € [1/2,1] which represents the gambler’s ‘fortune’ at the j-th
table after D has made ¢ queries overall to the k inputs. Roughly speaking, X;; measures how well
the algorithm is doing in determining the value of f on the j-th input. When D queries the j-th
input, the j-th fortune may rise or fall, according to the bit seen; we regard each bit revealed to be
generated sequentially at random, conditioned on the bits queried so far. The fortunes are defined
so that X9 <1 — ¢ for each j (reflecting the assumed hardness of f on p), and so that no action
by the algorithm leads to an expected gain in fortune It follows that E[[];cp Xjre] < (1 — ).
But the fortunes are defined so that E[[] el X ;. 7k) upper-bounds the success probability of D in

computing f®*. This gives the DPT for fair algorithms.

If D is no longer required to be fair, but instead makes at most aeTk queries, then the individual
fortune X;; we define no longer has the same intuitive meaning after the j-th input has been
queried more than T times. However, the success probability of D can still be upper-bounded by
E[[];cs XjaeTk], where S is the (random) set of inputs which receive at most 7" queries. Counting
tells us that fewer than aek of the inputs can lie outside of S, and each fortune is always at least
1/2, so the success probability is at most 2a5kE[Hje[k] X oerk] < 29°F(1—¢)¥, giving the statement
of Theorem [l

Our worst-case DPT for Boolean functions is a straightforward corollary of Theorem Our
DPT for decision tree size requires a somewhat different analysis, in which we track the ‘size-usage’
of each of the k inputs rather than their number of queries, but the basic approach is exactly
the same as in Theorem In generalizing our method to prove our other results, however, we
face a new wrinkle: the natural definitions of the ‘fortunes’ X;; in these settings are no longer
bounded from below by 1/2. For example, if f : {0,1}" — B then we have X;; > |B|™!, and a
straightforward modification of the method described above gives a DPT whose strength degrades
as |B| grows. In other settings (e.g., the k-fold XOR setting), we will only have X, > 0, and the
method fails completely[]

To overcome this difficulty, we adopt a more general perspective. Our previous proof hinged on
the fact that, if a gambler plays neutral or unfavorable games at k tables with an initial (nontrans-
ferable) endowment of 1 — ¢ at each table, then the probability he reaches a fortune of 1 at every
table is at most (1 — )¥. Note, this is just the success probability he would achieve if he followed

“In standard probabilistic terms, each individual sequence X 0, X, 1,... is a supermartingale. We will not use this
terminology in the paper.

50One way to work around the problem is to simply add a small ‘buffer term’ to the fortunes Xj.t. However, this
leads to poorer bounds, and does not yield our generalized threshold DPTs.



an independent ‘all-or-nothing bet’ strategy at each table. It is natural to wonder whether this
strategy remains optimal if the gambler wants merely to reach a fortune of 1 at ‘sufficiently many’
tables. Indeed, we show by a simple induction that this is true, where the meaning of ‘sufficiently
many’ can be specified by any monotone collection of subsets of [k]. Most of our generalizations
of Theorem [, as well as our XOR lemma, will follow readily from this handy ‘gambling lemma’
(Lemma [9).

1.4 Organization of the paper

In Section [2] we review preliminaries that are used throughout the paper and that are needed to
state and prove our ‘basic’ DPTs, Theorems [l and [2} We will introduce other definitions as needed
in later sections. In Section [3| we prove Theorem [1 and in Section [4 we use Shaltiel’s examples to
analyze the tightness of this result. We prove Theorem [2]in Section

In Section [] we prove our ‘gambling lemma’, Lemma [0 and use it to prove a generalized
threshold DPT for relation problems. Theorem [4 will follow as a special case. We also explain how
our threshold DPT implies a DPT for the query complexity of certain learning tasks. We prove
Theorem 3, our XOR lemma, in Section (7| (also using Lemma E[) We define search problems and
errorless heuristics in Section [8] and give DPTs for these settings.

We prove our DPT for decision tree size in Section[d] In Section we describe generalizations
of our DPTs to settings involving interaction with dynamic entities. We end with some questions
for future work.

2 Preliminaries

All of our random variables will be defined over finite probability spaces. We let supp(X) denote
the support of a random variable X, i.e., the set of values with nonzero probability. Let u®* denote
k independent copies of distribution pu.

2.1 Randomized decision trees and query complexity

A (deterministic) decision tree D over {0,1}" is a rooted, full binary tree (i.e., each node has either
0 or 2 children), in which interior vertices v are labeled by indices ind(v) € [n| and leaf vertices
are labeled by values ¢(v) in some finite set B (often B = {0,1}). The height of D is the length of
the longest descending path in D. D defines a function fp : {0,1}" — B in the following way. On
input  we start at the root and follow a descending path through D; at interior node v, we pass
to the left subchild of v if x;,4(,) = 0, otherwise we pass to the right subchild of v. When we reach
a leaf vertex v, we output the value £(v). Any deterministic algorithm to compute f which queries
at most t bits of x on any input can be modeled as a height-t decision tree, and we will freely refer
to such a tree as a ‘t-query deterministic algorithm’.

A randomized decision tree is a probability distribution R over deterministic decision trees.
Upon receiving the input z, the algorithm samples D ~ R, then outputs D(x). (Every randomized
query algorithm can be modeled in this fashion.) We write R(x) to denote the random variable
giving the output of R on input x. We say that R is a t-query randomized decision tree if every
decision tree in the support of R has height at most ¢.



For € € [0,1] and a function f (not necessarily Boolean), we say that R e-computes f if for
all inputs z, Pr[R(z) = f(z)] > 1 — e. Similarly, if x is a distribution over inputs = € {0,1}", we
say that R e-computes f with respect to p if Pry,[R(x) = f(z)] > 1 — €, where the probability is
taken over the random sample z ~ p and the randomness used by R.

For a function f : {0,1}" — B, we define Ra(f), the 2-sided-error randomized query complezity
of f, as the minimum ¢ for which there exists a t-query randomized decision tree which 1/3-
computes f. We define Sucr,(f) := 1 — ¢, where ¢ > 0 is the minimum value for which some
T-query randomized algorithm R e-computes f with respect to p. By standard arguments, this
maximum exists (and is attained by a deterministic height-T" decision tree).

For f : {0,1}" — B and k > 1, define f®* : {0,1}*" — {0,1}*, the k-fold direct product
of f, as fEk(x, ... 2F) == (f(2'),..., f(2¥)). If f is Boolean, define the k-fold XOR of f as
fEF@, . 2h) = faY) @ ... @ f(2F), where @ denotes addition mod 2.

2.2 Binomial distributions and Chernoff bounds

Let By, ; denote the binomial distribution on £ trials with bias p. That is, By is distributed as ¥ =
Zle Y;, where the Y; are independent and 0/1-valued with Pr[Y; = 1] = p. For s € {0,1,...,k}
we have the explicit formula Pr[Y = s] = (lz)ps(l — p)Fs.

The following form of Chernoff’s inequality will be convenient for us. The proof is in Ap-
pendix [A]

Lemma 5. Let 6 € (0,1), and let Y ~ By 1_5. If € (0,1/2], then
Pr[Y > (1 — B8)k] < [1—6+2181In(1/8)d]" .

To apply Lemma [5] it is helpful to understand the behavior of the function h(z) := zIn(1/x).
This function is increasing on (0,e7!], and as x — 0, h(z) approaches 0 only slightly more slowly
than z itself. For example, if n > 1 we have

L ( 1 ) 1 1 In(2nlnn) 1

= -In(2n1 = — 5 .
2nlnn 2nlnn n(2nlnn) n  In(n?) n

3 Proof of Theorem (1

In this section we prove our ‘basic’ direct product theorem:

Theorem 1 (restated). Let f be a Boolean function for which Sucr,(f) < 1 —e. Then for
0 < a <1, Suc,epp eon(fEF) < (2°9(1 —€))* < (1 — &+ .84ae)*.

Proof. First we make some simplifying observations. The statement is a triviality if T = 0 or
e = 0, so assume both are positive. Also, by convexity, it is sufficient to show the statement for
deterministic algorithms. Finally, by a standard limiting argument, it is enough to prove this result
under the assumption that supp(p) = {0,1}"; this ensures that conditioning on any sequence of
query outcomes will be well-defined.

Next we set up some notation and concepts relating to the computation of f on a single input;
afterwards we will apply our work to the direct-product setting.



For a string u € {0, 1, *}", let the distribution 1) be defined as a sample from p, conditioned
on the event [x; = w;, Vi such that u; € {0,1}]. Let |u| denote the number of 0/1 entries in u.
Let u[x; < b] denote the string u with the i-th coordinate set to b. In our proof we consider the
bits of an input y ~ u to be generated sequentially at random as they are queried. Thus if an
input is drawn according to u, and u describes the outcomes of queries made so far (with * in the
coordinates that have not been queried), we consider the input to be in the ‘state’ p@ . If some
index i € [n] is queried next, then the algorithm sees a 0 with probability Pr, ) [y; = 0], in which
case the input enters state u(“[xieo]); with the remaining probability the algorithm sees a 1 and the
input enters state u(“[f”i‘_l]). Clearly this interpretation is statistically equivalent to regarding the
input as being drawn from g before the algorithm begins (this is the ‘principle of deferred decisions’
of probability theory).

For each u € {0,1,%}", and each deterministic algorithm D on n input bits, let W (u,D) :=
Pr, . ([Dy) = f(y)]. If [u] <T, we define W*(u) := maxp W (u, D), where the max ranges over
all deterministic algorithms D making at most (7" — |u|) queries. Clearly W*(u) € [1/2, 1], since an
algorithm may simply guess a random bit. We make two more simple claims about this function.

Lemma 6. 1. W*(x") <1 —e.

2: For any u € {0,1,%}" with |u| < T, and any i € [n|, E (W (u[z; < y;])] < W*(u).

y~p()
Proof. 1: This is immediate from our initial assumption Sucr ,(f) < (1 —¢).

For 2: If the i-th coordinate has already been queried (i.e., u; € {0,1}), then y, = w; with
probability 1, so ulzx; + y;] = u and the statement is trivial. So assume u; = *. Let Dy, D;
be algorithms making at most 7" — (|u| + 1) queries and maximizing the success probabilities on
plelie 0D -y uleiet)) pespectively; that is, W(u[z; < 0],Dg) = W*(ulz; + 0]) and W(u[z;
1], Dy) = W*(u[z; < 1]). Consider an algorithm D which queries z;, then runs Dy, if the bit seen
is b. D makes at most T' — |u| queries, and we compute W (u, D) =E, o) [W*(u[z; < y;])]. Thus
W*(u) is at least this value. O

Now we prove the Theorem. Let D be any deterministic algorithm making at most M := |aeTk]|
queries, and attempting to compute f®k on input strings z', ..., z* sampled from u®*. For j € (k]
and 0 <t < M, let u] € {0,1,%}" be the random string giving the outcomes of all queries made to
2/ after D has made t queries (to the entire input). We need the following important observation:

Lemma 7. Condition on any execution of D for the first t > 0 steps, with query outcomes given by

up, .. ,u,’f. Then the input is in the state u(“tl) X ... X ,u(“f); that is, the k inputs are independent,

with 7 distributed as ,u(“{).
We include the simple proof in Appendix [B]

Define collections
X ={Xj}iemo<t<rrs P ={Pi}o<t<m
of random variables, as follows. All the random variables are determined by the execution of D
on an input drawn from u®*. Let Xj; := W*(u?) if |u§| < T; otherwise let X;; := 1/2. Let

Py = TLiem Xit-
We claim that for each 0 <t < M, E[P,11] < E[P]. To see this, condition on any outcomes
to the first ¢ queries, described by u}, ..., uf Now suppose that for the (¢ + 1)-st query, D queries



the i-th bit of the j-th input (i, ] are determined by u}, ..., uF, since D is deterministic.). We note
that X441 = Xy, for all j/ # 5. If |u§| > T then also X ;41 < X, which implies P11 = P;. So
assume |uf| < T. Then we have

E[Prluf, ... uf] = B[Xje1 - [ Xjasalui,. .. uf]

J'#7
= E[Xjalup, .. uf]- ] X
J'#J
<X [[Xpe =P,
J#]

where we used part 2 of Lemma [6] We conclude
E[Py41] = E[E[Ppya|u;,. .., uf]] < E[P],

as claimed. It follows that E[Py;] < E[Py]. But we can bound Py directly: Py = W*(x")F < (1—¢)k
(Lemma@ part 1). Thus E[Py/] < (1 —¢)F.

Now we argue that this implies an upper bound on the success probability of D. For j € [k],
define the random variable A; := X; s — 1/2, so A; € [0,1/2]. Condition on the bits ul,, ..., uk,
seen by D during a complete execution. For each j € [k], there are two possibilities: either \ug\/[] >T,
N‘u(u%{)[f(x) = 1] S [1/2 - Aj, 1/2 + AJ]
Since the k inputs remain independent under our conditioning, the conditional probability that D
computes f&* correctly is at most Hj:|u§'w|§T(1/2 +Aj) = Hj:\ugw\gT Xim-

D makes at most aeT'k queries, so simple counting tells us that there are fewer than ack indices
j for which |u},| > T. Thus,

or the j-th input is in a final state M(uiw) for which Pr
x

H Xy < Hje[k’} Xj < Py - gack
; T (mingepg Xjm ack —
Jihu1<T (it X500

(since X ps > 1/2 for all j). Taking expectations, we find that the overall success probability of D
is less than B[Py, - 20°K] < (295(1 — ¢))*.

Finally, we simplify our bound. We claim 2% < 1+ .84z on (0,1/2]. To see this, just note
that 20 = 1, that 21/2 < 1.42 = 1 + .84(1/2), and that 2% is a convex function on R. Then, since
0 < ae <1/2, we have 2%¢(1 —¢) < (14 .84ae)(1 —€) <1 — e+ .84ae. The Theorem follows. [J

We remark that, as claimed in the Introduction, the proof above can be easily adapted to give
an alternate proof of Shaltiel’s optimal direct product theorem for ‘fair’ algorithms making Tk
queries: we define the random variables X, exactly as before and note that |u]| < T for all j,t.

4 Tightness of the Bounds in Theorem

In this section we describe a family of functions and input distributions, due to Shaltiel [Sha03],
and explain why they show that the query/success tradeoff in Theorem [1] is nearly best-possible,
at least when o < .001 and when (1 — ¢)¥ is also at most a small constant.
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Fixing an integer T' > 0, define fr : {0,1}772 — {0,1} as follows: let fr(z) := xo if 71 = 1,
otherwise fr(z):=22®...® x740. Given € € (0,1/2), let e be the distribution over {0,1}7*2 in
which all bits are independent, Prjz; = 1] =1 —2¢, and Pr[z; = 1] =1/2 for alli € {2,...,T +2}.
Note that if y ~ p., a T-query-bounded algorithm can gain no information about the value of f
when 21 = 0, so any such algorithm succeeds with probability at most (1 —2¢)1+ (2¢)3 =1—¢ in
computing f(y).

Now consider the following algorithm D attempting to compute f®* on inputs z!, ..., z* ~ &k,
First D queries the first two bits of each input. Call an input =¥ ‘bad’ if its first bit is 0, ‘good’ if
its first bit is 1. Let B C [k] denote the set of bad inputs. Note that D learns the value of f on each
good input. Next, D chooses arbitrarily a set S C B of |ack| bad inputs, and spends T" additional
queries on each input in S to determine the value of f on these inputs (if there are fewer than
|aek| bad inputs, D queries them all and determines the value of f®¥ with certainty). Finally, D
outputs the answer bits it has learned and makes random guesses for the remaining values.

Observe that D uses at most 2k + aeTk queries total. To analyze the success probability of D,
first consider an algorithm D’ which uses only 2k queries to look at the first index of each input,
outputting the correct value on good inputs and guessing randomly on bad inputs. It is easy to
see that D’ succeeds with probability (1 — €)* in computing f®*. Also, if D and D’ are both run
on a common k-tuple of inputs drawn from u®*, and we condition on the event that |B| > |ack],
then the conditional success probability of D is 2l%%] times the conditional success probability of
D', since D has |aeck] fewer random guesses to make. Thus,

Pr [D succeeds] > Pr[|B| > ack] - 2Lk pr [D’ succeeds

|B| > aak}

= 2Lk Py [D' succeeds A |B| > ack]
> glack]. (Pr [D' succeeds| — Pr[|B| < ack])
— glask] ((1 — &)k —Pr[|B| < ask]) . (1)
Define the indicator variable Y; := 1j;¢p; then the Y;’s are independent, with p = Prly; =1] =
1—2¢. Let Y := Y1+...4Y,. Weapply Lemmato Y, with the settings 6 := 2 and 8 := /2 < 1/2,
to obtain
Pr]|B| < ack] = Pr[Y > (1 — ae)k]
=Pr[Y > (1 — (2¢)(a/2))k]
< [1 =2+ 21(a/2) In(2/a)(2¢)]" .

This can be made less than (1 —1.5¢)" if « is a small enough positive constant (o < .001 will work).
Now if (1 — )" is also at most a sufficiently small constant, then (1 — 1.5¢)* < .1(1 — ¢)* so

that, by Eq. ,
Pr [D succeeds] > .9 - 2l2k)(1 — g)*,

which is close to the maximum success probability allowed by Theorem [1| if D used acTk queries
(recall, though, that D uses 2k + aeTk queries).
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5 Proof of Theorem [2

We now prove Theorem [2| from the Introduction, our DPT for worst-case error, by combining
Theorem (1| with a version of Yao’s minimax principle [Yao77], which allows us to convert worst-
case hardness assumptions in query complexity into average-case assumptions.

Define Ry 5(f) as the minimum T for which there exists a randomized T-query algorithm which
computes f(z) correctly with probability at least 1 — ¢ for every x. The following is a common
version of Yao’s principle, which can be proved directly using the Minimax Theorem of game theory.

Lemma 8. Fiz 0 < 6 < 1/2 and a Boolean function f. There exists a distribution s over inputs to
f, such that every randomized algorithm making fewer than Ry s(f) queries succeeds in computing
f on us with probability less than 1 — 4.

Proof of Theorem[3. Let f be given. Let § := 1/2 — ~/2, and let p := ps be as provided by
Lemma |8, so that every algorithm making fewer than Ry ;(f) queries succeeds in computing f on
w with probability less than 1 —§. We apply Theorem [l|to f, u, where we have e > § > 3/8. With
the setting a := «y, we conclude that any algorithm making fewer than aeRs 5(f)k queries succeeds
with probability less than

o (1— (11— 849)(1/2 — 7/2))"
< (1/2 4 42y +~/2)F
< (1/2+y)F

(1— (1 - .847)0)

in computing f®* on inputs z', ..., zF ~ p®F

than this amount.

Now we relate R 5(f) to Ro(f) by standard sampling ideas. Say R; is an algorithm making
Ry 5(f) queries, which computes f(x) with probability at least 1 —§ = 1/2 + /2 on each input.
Let R be the algorithm which given an input z, runs Rs(x) for m := [3/42] trials, outputting
the majority value. For ¢ € [m], define the indicator variable Y; for the event [R5 succeeds on
the i-th trial], and let Y := Y7 4+ ... + Y,,,. Then the probability that R(x) outputs an incorrect
value is at most the probability that Y < E[Y] — ym/2, which by Hoeffding’s inequality is at most
e~ M/ < =32 < 1/3.

Thus, Rao(f) < Ras(f) - [3/72] < 4R25(f)/+? (using v < 1/4). Now

v’ Ra(f)k/11 < 7(3/8)(v*Ra(f)/4)k < acRa5(f )k,

so any algorithm making at most v3Ra(f)k/11 queries has worst-case success probability less than
(1/2 +7)* in computing f®*. O

. So, the worst-case success probability is also less

6 Threshold Direct Product Theorems

In this section we prove our ‘gambling lemma’, Lemma [J] and use it to prove generalized threshold
DPTs for relation problems (defined in Section[6.2)). This will yield DPTs for non-Boolean functions
as well as for the query complexity of learning tasks. Further applications of Lemma [ will appear
in later sections.
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Let P([k]) denote the collection of subsets of [k]. Say that a subcollection A C P([k]) is
monotone if A € A; A C B implies B € A. Monotone collections play an important role in what
follows.

6.1 A gambling lemma

We now prove a technical result, Lemma [J] below, that will play a key role in the rest of the paper.
Like the proof of Theorem [I] this Lemma’s statement is best explained by a gambling metaphor.
Suppose that a gambler gambles at k tables, bringing an initial endowment of p; € [0,1] to the
j-th table. He cannot transfer funds between tables, or go into debt at any table; he can only
play games for which his expected winnings are nonpositive; and the different tables’ games use
independent randomness. However, the gambler can choose which game to play next at each table.

The gambler wants to reach a fortune of 1 at ‘sufficiently many’ of the tables, where the meaning
of ‘sufficiently many’ is specified by a monotone subset A C P([k]). One way the gambler may
attempt to reach this goal is to simply place an ‘all-or-nothing’ bet independently at each table;
that is, at the j-th table, the gambler wins a fortune of 1 with probability p;, and loses his j-th
endowment with the remaining probability. The following Lemma states that this is in fact the
gambler’s best strategy.

Lemma 9. Suppose k, N > 1 are given, along with a collection {X,U} of random variables (over a
finite probability space). Here X = {Xy,..., Xy}, where for each j € [k], Xj = {X 0, Xj1,..., XN}
is a sequence of variables in the range [0, 1] (think of X, as the gambler’s fortune at the j-th table
in the first ¢ steps). U = {Up, U1, ...,Un—1} is a sequence of random variables taking values over
some finite set (think of U; as describing the form and outcomes of all gambles in the first ¢ steps).
Assume that for all0 <t' <t < N,j € [k], X;p is determined by U, and that E[X;41|Us] < Xt
Also assume that { X1 ¢11,..., Xkty1} are independent conditioned on Uy.
Then, if X;o < pj € [0,1] for all j € [k], and A is a monotone subset of P([k]), we have

Pri{j e [k] : X;n =1} € A < Pr[D € A],
where D C [k] is generated by independently including each j € [k] in D with probability p;.

Note that we assume the gambler never attains a fortune greater than 1 at any table; this
restriction is easily removed, but it holds naturally in the settings where we’ll apply the Lemma.

Proof. We use the term ‘A-success’ to refer to the event [{j € [k] : X; v = 1} € A] whose probability
we are bounding.

We first make a simplifying observation: we claim it is without loss of generality to assume that
between each consecutive times (t,¢+ 1), at most one of the fortunes changes, and that the fortune
subject to change is determined by t. To see this, consider any family X obeying the Lemma’s
assumptions, and ‘split’ each transition (¢,¢+1) into a sequence of k transitions, in the j-th of which
the j-th fortune is subject to change (according to the same distribution governing its transition
between ¢ and ¢ + 1 in the original sequence). The Lemma’s assumptions continue to hold for this
modified family of sequences; here we are using our original assumption that {Xq 41,..., Xp 41}
are independent conditioned on U;. Also, the probability of A-success is unchanged. So assume
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from now on that X obeys this extra assumption, and for 0 < ¢ < N, let j; € [k] be the index of
the fortune subject to change between times ¢ and ¢ + 1.

Fix any k > 1; we prove the statement by induction on N > 1. First suppose N = 1, and
let jo be as defined above. Let S C [k] \ {jo} be the set of indices j # jo for which p; = 1.
First suppose S € A; then Pr[D € A] = 1, since each j € S is included in D with probability 1.
In this case the conclusion is trivially satisfied. Next suppose S U {j} ¢ A. In this case, Pr[A-
success| = 0, and again the conclusion is trivially satisfied. So suppose S ¢ A, SU {j} € A, and
condition on any value Uy = u. Then A-success occurs iff X, 1 = 1. By Markov’s inequality,
Pr(Xjo1 = 1|Uy = u] < E[Xj,1|Up = u] < X0 < pj, = Pr[D € A]. This proves the statement for

N =1.
So let N > 1 and assume the statement proved for {1,..., N —1}; we prove it for N. Condition
on any value Uy = wu, and condition further on the value X; 1 = a € [0,1]. The equalities

X1 = Xjo < pj are forced for all j # jo; the residual collection of random variables {Xj; : j €
[k],1 <t < N}U{U;:1 <t < N} under our conditioning obey the Lemma’s assumptions, along
with our added assumption; and these sequences are shorter by a step than our initial sequences.
Thus our induction hypothesis implies that

Pr|A-success|Uy = u, Xj,1 = a] < Pr[D'Y € A, (2)

where D(@ is generated just like D except that jo is now included in D® with probability a.
Let go := Pr[D\ {jo} € A] and q1 :=Pr[DU{jo} € A]. Note that gy < ¢1, since A is monotone.
We have
Pr[D € Al = (1 — a)qo + aq.

Taking expectations over a in Eq. ,

Pr[A-success|Up = u| < (1 — E[Xj,1|Uo = u])qo + E[Xjy,1/Uo = u] - 1
< (1= pjo)eo + pjonr
(since qop < ¢1 and E[X, 1|Uy = u] < Xj; .0 < pjo)
=Pr[D € A|.

As u was arbitrary, this extends the induction to N, and completes the proof. ]

6.2 Application to threshold DPTs

Now we prove our generalized threshold direct product theorem. First we define relation problems.
A relation (with Boolean domain) is a subset P C {0,1}" x B, for some finite set B. The relation
is total if for all x € {0,1}", there exists b € B such that (z,b) € P. For each total relation P there
is a natural computational problem: given an input z, try to output a b for which (z,b) € P. Of
course, computing a function f : {0,1}" — B is equivalent to solving the relation problem for the
total relation Py := {(z,b) : f(x) = b}.

If R is a (possibly randomized) query algorithm producing outputs in B, and P is a total
relation, say that R e-solves the relation problem P if for all inputs z, Pr[(z,R(z)) € P] > 1 —e.
Similarly, if p is a distribution over inputs x € {0, 1}", we say that R e-solves the relation problem
P with respect to p if Pry~,[(z, R(x)) € P] > 1 — ¢. Define Sucﬁiilu(P) :=1—¢, where £ > 0 is the
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minimum value for which some T-query randomized algorithm R e-solves P with respect to pu. As
usual, this maximum exists and is attained by a deterministic height-T decision tree. Given any
randomized algorithm R making queries to k > 1 inputs z = (x!,... ,:zk) to the relation problem
P and producing an output in B¥, let Rj(x) € B be the j-th value outputted by R.

Given A, B C [k|, define the distance d(A,B) := [(A\ B) U (A \ B)|. Given a set family
A C P([k]), and a real number r > 0, define the strict r-neighborhood of A, denoted N,(A), as

N, (A):={B:d(A,B) < r for some A € A}.

We have A C N,.(A). Note also that if A is monotone then so is N, (A). We are now prepared to
state our generalized threshold DPT:

Theorem 10. Let P C {0,1}" x B be a total relation for which Suc{,ﬁiL(P) < 1—e. Fizing any

randomized algorithm R making queries to inputs x = (x',...,2%) ~ u®* and producing output in

B¥, define the (random,) set
Slz] = {j € [k] : (27, R;(z)) € P}.

Suppose R is aeTk-query-bounded for some o € (0,1], and A is any monotone subset of P([k]).
Then:

1. Pr[S[z] € A] < |B|*¢k - Pr[D € A], where D C [k] is generated by independently including
each j € [k] in D with probability (1 — ¢).

2. Also, for D as above, Pr[S[z] € A] < Pr[D € Ny (A)].

Proof. As in Theorem we may assume &, T > 0, supp(p) = {0,1}". We have ¢ <1 —|B|™! < 1,
since P is total and an algorithm may output a random element of B.

For w € {0,1,%}", and for a deterministic algorithm D on n input bits, let Wp(u,D) =
Pr, (¥, D(y)) € P|. If [u]| <T, define Wi(u) := maxp Wp(u, D), where the max ranges over
all deterministic algorithms D making at most (7' — |u|) queries. Then W3(u) € [|B|71,1]. We
have the following claim, whose proof follows that of Lemma [6}

Lemma 11. 1. Wp(x") <1 —e.

2. For any u € {0,1,*}" with |u| < T, and any i € [n], E (Wh(ulz; < y;])] < Wp(u).

y~p()

Now we prove the Theorem. Let R be given; as in Theorem|[I] we may assume R is deterministic,
so call it D instead. Let M := |aeTk] as before, and recall the random strings u] defined in
Theorem [1}

Define random variables {X; ¢} je[x].0<t< > determined by an execution of D on inputs (z', ..., z") ~
u® by letting X, := Wp(ul) if [ul| < T, otherwise X;; := |B|~!. Next, the natural idea is to
apply Lemma @ First, however, we need to extend the sequences for one additional (non-query)
step. That is, we will define random variables X as41 for each j € [k]. We will use X' to denote
the collection of enlarged sequences. ‘

Our definition of X; ps41 depends on whether |u},| < T, that is, on whether D made at most T
queries to 27 on the current execution. If ]ug\/[| < T, let Xjnm+1:= 1j@i p;(x)ep) be the indicator

variable for the event that D solves the relation problem on the j-th input. If |u},| > T, let
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X m41 = 1 with probability |B|™!, and let X; 41 := 0 with the remaining probability. We let
each such ‘coin-flip’ be independent of the others and of (z',...,z").

Define the collection U = {Uy,...,Un} by U; := (u}, ..., uF). We argue that the conditions of
Lemma@ are satisfied by (X,U), with N := M + 1. First, for 0 < ¢’ <t < M, X is determined
by Uy as needed (since D is deterministic). For 0 < ¢ < M, there is always at most one index j € [k]
for which X ;41 # X, and this index is determined by U; (again since D is deterministic). Thus,
conditioned on Uy, the variables X1 ¢41,..., X; 41 are independent. Using part 2 of Lemma (11| and
the fact (Lemma ) that 27 ~ ,u(“g) conditioned on Uy, we have E[X;4+1|U;] < X for each j.

Now consider the final, added step. Condition on any value of Uy; = (u}\/[, ces ,u’fw) Lemma
tells us that ', ..., 2" are independent under this conditioning, and D’s outputs are determined by
U, so the variables { X 511} are independent conditioned on Ups. If [u),| < T then E[X; pr11|Un] <
X,m by part 2 of Lemma If |u3\/l| > T then E[X; p41] = |B|™! = X, m-

Thus the assumptions of Lemma, |§| are satisfied, with p; = X9 <1 —e. We conclude that for
any monotone C C P([k]),

Prl{j € [k] : X,y =1} € C] < Pr[D € (], (3)

where each j € [k] is independently included in D with probability (1 — €).

To prove statement 1 of the Theorem, let C := A. Note that S[z] and u}\/[, ces ,u’fw are determined
by x, since D is deterministic. Condition on any value of x for which S[z] € A. Under this
conditioning, if j € [k] satisfies |u},] < T and j € S[z], then X,y = 1. On the other hand, if
\ugw\ > T, then [X; x = 1] holds with probability |B|~!, and these events are independent for each
such j. By the query bound on D, there are fewer than ack indices j in our conditioning for which
|u),| > T. Thus,

Pr[{j € [k] : X; v = 1} € A|S[z] € A] > |B|7°°F,

which in combination with implies
Pr[S[z] € A] < |B|** . Pr[D € A,
as needed. To prove statement 2 of the Theorem, let C := Na.i(A) in Eq. (3)): we find
Pr({j € [k : X;w = 1} € Nack(A)] < Pr(D € Nocg (A)]. (4)

Arguing as above, S[z]\{j € [k] : X; v = 1} is always a set of size less than aek, so [S[x] € A implies
[{j€[k]: Xjn =1} € Noer(A)]. Thus, Eq. () implies Pr[S[z] € A] < Pr[D € Nyer(A)]. O

Part 1 of Theorem [10|is a proper generalization of Theorem |1 To see this, just set A := {[k]},
P := Pj, and note that in this case, Pr[D € A] = (1 — ¢)*. As another immediate corollary, we
obtain the following threshold DPT for relation problems, which specializes to an ordinary DPT
for this setting (statement 3 in the Theorem below).

Theorem 12. Let P C {0,1}" x B be a total relation for which Sucgg}u(P) < 1-—¢. Fiz any

n € (0,1]. For any randomized algorithm R making queries to inputs x = (z',...,2%) ~ u®*,
define the (random) set S[z] as in Theorem [10} Then if R is acTk-query-bounded for a € (0,1],

we have:
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1. Pr[|S[z]| > nk] < |B|*¢F . Pry.p,, .[Y > nk], and also
2. Pr[|S[z]| = nk] < Pryp,, .[Y > (n — ag)k].

3. Pr[|S[z]| = [k] < min{|B|***(1 —&)¥,Pry.p,, . [Y > (1 — ag)k]}. If @ < 1/2 the second
bound in the min is at most
[1—¢c+2laln(l/a)elr.

Proof. Apply parts 1 and 2 of Theorem with the choice A := {A C [k] : |A] > nk}.

have Pr[D € A] = Pr[D; + ... + Dy > nk], where we define D; := 1jcp). These 0/1-valued
variables are independent with bias 1 — &, which gives statement 1. Similarly, Pr[D € Ny (A)] =
Pr[D; + ...+ Dy > (n — ac)k|, which gives statement 2. Statement 3 simply combines statements

1 and 2, under the setting n = 1. For the final bound in statement 3, we apply Lemma [5| with
B:=a,d:=c¢. O

Theorem I in the Introduction follows from the special case of Theorem E in which P := Py.

The success bound |B|*¢*(1 — ¢)¥ appearing above can also be derived by an easy modification
of the proof of Theorem |1 ' in which the condition X;; > 1/2 we exploit becomes X;; > |B|L.
When |B| is large, however, the alternative bound provided in Theorem [12| will tend to give better
results.

Note that part 2 of Theorem [I2] in conjunction with Chernoff inequalities, gives success bounds
which decay exponentially in k£ for any fixed «,e,n for which 5 > 1 — ¢ + ae. Shaltiel’s examples,
described in Section [ show that this cutoff is nearly tight: on those functions, the algorithm
described in Section {4 makes 2k + aeTk queries and (it is easily checked) typically solves about
(1 — e+ .bag)k of the instances correctly.

Threshold DPTs for the worst-case setting can also be derived from Theorems and by
the same reduction to the average-case setting used to prove Theorem

6.3 Direct product theorems for learning tasks

Theorems and readily imply direct product theorems for the query complexity of learning
tasks, as we explain next. Consider the scenario in a randomized algorithm R is given query access
to some unknown function h : {0,1}" — {0,1} drawn from some distribution p over hypothesis
class H. That is, for any string =, R can query the value h(x). The algorithm R attempts to output
a hypothesis i which is ‘close’ to h, that is, such that close(h, h) holds, where close C H x H is
some symmetric relation (assume close(h, h) always holds).

This task can be equivalently modeled as the relation problem associated with total relation

PH = {(h/y h,) : h7 h/ EHA ClOSG(h, h’,)}7

where h is given in truth-table form as a Boolean string, under the input distribution h ~ p. (We
don’t give a membership criterion for Py when h ¢ H; this is unimportant since supp(u) C H.)

In the k-fold learning problem associated with H, p1, the algorithm has query access to each of
k functions (h1,...,h;) ~ u®*, and the goal is to output guesses hi,...hy such that close(h;, h; ;)
holds for all or at least many’ 1ndices J € [k]. This task is equivalent to the k-fold relation problem
associated with Py, and Theorems [10] and [12] apply.
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7 Proof of the XOR lemma

The proof of our XOR Lemma, Theorem [3| from the Introduction, is modeled on the proof of our
threshold DPTs, and reuses Lemma [9

Proof of Theorem[3. As usual we first set up some preliminaries. For a deterministic algorithm D

over n input bits define
Ws(u,D):=2- Pr [D(y)=f(y)] -1
Yy ptt
If lu| T, let Wg(u) := maxp Wg(u, D), where the maximum ranges over all deterministic algo-
rithms making at most 7' — |u| queries.

Lemma 13. 1. Wji(+") <1 — 2e.

2. For any u € {0,1,*}" with [u] <T, and any i € [n], E, ) [Wg(uz; < y])] < Wg(u).

Lemma [13| follows immediately from Lemma [6 since Wg(u) = 2W*(u) — 1.

Now we prove the Theorem. As in the proof of Theorem |1, we may assume e, T > 0, supp(u) =
{0,1}™, and it is enough to prove the success bound for each deterministic aeTk-query algorithm
D attempting to solve f&%(z!, ... zF) on inputs !, ..., zF ~ u®*. Recall the definitions of u/ (for
J € [k],0 <t < M) from Theorem [I} For a deterministic algorithm D define { X} e 0<i<ar as
follows: if |ul| < T, set X1 = W5 (ué), otherwise, set X, := 0.

We will extend the random sequences {X;} for one additional (non-query) step, and will let X
denote our enlarged collection. To set up our extension, we first define random variables b;,7;, a;
for j € [k], determined by ug\/[, as follows. Let b; € {0,1} be defined as the likeliest value of f(y),
where y ~ M(uﬂ\/,) (break ties arbitrarily). Let r; := Pr[f(y) = b;] € [1/2,1], where again y ~ u(ugu).
Let aj :=2r; — 1 € [0,1].

If |u3\/[| > T, set Xjn41 = 0. If instead \u?\/[| < T, our random process ‘inspects’ the actual
value of the bit f(z7) to help determine X as41. If f(27) # b;, let X a1 := 0. If f(27) = b;, let
X m+1 = 1 with probability a;/r;, and X 41 := 0 with the remaining probability, where this
random decision is independent of all others. Thus in this case,

E[Xjara1lups, - ulg] =1 - (a5/r5) = aj < Xju,

where the last inequality holds by the definition of Wé(uﬁw) since |u§\/l| <T.

Let U = (U, ..., Usr), where Uy := (u},...,uf). By an argument analogous to that in the proof
of Theorem we verify that (X',U) obey the assumptions of Lemma |§|, this time with p; := 1—2¢
(since Xjo <1 —2¢). Applying Lemma [9|to A :={A C [k] : |A| > (1 — ae)k}, we find

Pri{j : Xjm+1 =1} > (1 —ae)k] < Pr[D € A, (5)

where each j € [k] is independently included in D with probability (1 — 2¢). We have Pr[D € A] =
PTYNBk,172e [Y > (1 — as)k].

We analyze events F of form F := [Upy = (ul, .. .,uﬁ“w),XLMH =21,..., Xpm41 = 2i). Note
that conditioning on F' does not condition on the particular values f(z’) which helped determine
the values z;. Focus attention on any such event F for which |{j : X;py1 = 1} < (1 — ae)k.
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Since D makes at most aeTk queries, there are fewer than ack indices j for which ]ug\4| >T. In
particular, there exists a j* € [k] for which \ui}\ < T and X y4+1 < 1 (so, by our definitions,
Xj*,M—i—l = 0)

Now let the event F” be defined just like F', except that F” makes no conditioning on X« ar41
(so, F' = F" A [Xjx pr+1 = 0]). Then,

Pr[f(2?") = bj«|F] = Pr[f(27") = bj|F' A Xjo pre1 = 0]
_ Pr[f(:rj*) = bj* A X]’*’MJFl = 0|F/]
PI‘[X]‘*7M+1 = O‘F/]

B Pr(f(27") = bj«| F'] - Pr[Xje ar41 = O|F, f(27") = bju]

N Pr[f(a:j*) = j*|F’] . Pr[Xj*,M—i-l = 0|F/,f($j*) = bj*] + Pr[f(.’z:j*) 75 bj*|F/] . PI“[Xj*7M+1 = 0|F/,f($j*) 7& bj*]

_ T‘j*(l — aj*/’rj*)
’I”j*(]. —aj*/rj*) + (]. —Tj*) -1

(using the fact that z!,. .. ,z¥ are independent conditioned on Uy, by Lemma and the additional

fact that {X; 41} ek are independent conditioned on Uyy)
1
_ o —aj_ p(+a) —ay

= = =1/2.
1—aj* 1—aj* /

Thus, f(27") is an unbiased random bit conditioned on F. Consequently, f&*(z! ... %) = f(z/")®
fER=L(gl A YA S ,2¥) is an unbiased random bit conditioned on F. Thus under this
conditioning, D’s output bit equals the k-fold XOR with probability no more (and no less) than
1/2. Now F was an arbitrary outcome of Ups, X1 pr41, -+, Xi, 41 for which [{j : X1 =1} <
(1 — ae)k. It follows that

Pr [D@) = f¥(@)] < Pr(l{j: Xpare = 1} > (L a0k + 5 Pr{l{ Xjarn = 1} < (1 - 0)K

Trop®k
1 )
=3 (1 +Pr{j: Xjms1 =1} > (1 — ae)k])
1
< Z _
<3 <1 + YNEEI,%[Y > (1 ae)k]) ,

using Eq. .

Finally, to get the concrete bound claimed in the Theorem statement, first suppose e = 1/2;
in this case the bound follows easily since Y = 0 with certainty. Now if ¢ < 1/2, note that
(1—ag)k = (1—(«/2)(2¢)), and apply Lemma [f| with § :=2e < 1 and 8 := /2 < 1/2. O

8 Direct Product Theorems for Search Problems and Errorless

Heuristics

We define a fairly general notion of search problems in the query model for which a direct product
theorem can be proved. As a corollary we will obtain a direct product theorem for errorless
heuristics, defined in Section
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8.1 Search problems

We need some preliminary definitios. Given u,v € {0, 1, *}", say that v and v agree if u; € {0,1}
implies v; € {*,u;}. Note that this definition is symmetric in v and v. If u,v agree, define their
overlay uowv € {0,1,+}" by (uow); :=b € {0,1} if either u; = b or v; = b, otherwise (u o v); := .
Say that u extends v if v; € {0,1} implies u; = v;.

Say we are given a distribution p on {0,1}", and a (possibly randomized) query algorithm R;
if R runs on an input distributed according p, we denote by Ur , € {0,1,%}" the random string
describing the input bits seen by R.

A search problem is defined by a subset V' C {0, 1,*}". We say that R e-solves the search
problem V' with respect to an input distribution p over {0,1}" if, with probability > 1 —¢, Ugr,
extends some v € V. (We allow the possibility that some z € supp(x) do not extend any v € V.)
Define Sucy (V) := 1 — ¢, where ¢ is the minimal value such that some T-query randomized
algorithm e-solves search problem V on inputs from .

Define the k-fold search problem V& := {(vy,...,v;) : v; € V,Vj € [k]} C {0,1,«}*". Thus
to solve V& an algorithm must solve each of the k constituent search problems. We generalize
this notion in order to state a threshold DPT, which will imply our ordinary DPT. For a monotone
subset A C P([k]), define

VEA = {(vy,... ) {F€[k] v, € VY € A}

Thus to solve V¥, an algorithm must solve ‘sufficiently many’ of the k search problems, as specified
by A.

Recall the notation N, () from Section @ Our generalized threshold DPT for search problems
is as follows:

Theorem 14. Suppose the search problem V satisfies Sucr (V) < 1 —e€. Then for any o € (0,1]
and any monotone A C P([k]),

SU.CaaTk,M(gk (Vk’A) < Pr[D € Nyer(A)],
where each j € [k] is independently included in D with probability 1 — e.

Proof. In the search setting, € can potentially be any value in [0, 1]. The boundary cases are trivial,
so assume 0 < £ < 1. As usual, we can assume that 7' > 0 and supp(u) = {0, 1}", and it is enough
to bound the success probability of any deterministic agTk-query algorithm.

Following Theorem [I we first develop some concepts related to a computation on a single
input to the search problem V. For each u € {0,1,*}" for which |u| < T, let Valy(u) := 1
if u extends some v € V, otherwise Valy(u) := 0. For a deterministic query algorithm D let
Wy (u, D) := E[Val(uo Up ,w)]. (Note that u and Up ) always agree.) If [u| < T, let Wi (u) :=
maxp(Wy (u, D)), where the maximum ranges over all deterministic algorithms making at most
T — |u| queries. In other words, W75 (u) is the maximum success probability of any (7" — |u|)-query
algorithm in solving V on an input y ~ u(*), where we reveal the bits described by u ‘for free’ to
the algorithm. Then we have:

Lemma 15. 1. W (") <1—e.

2. For any u € {0,1,%}"™ with |u| < T, and any i € [n], E W (ulz; «— y;])] < Wi (u).

yN’LL(u)
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We omit the proof, which is essentially the same as that of Lemma [6]

Let D be any deterministic algorithm making at most M := |aeTk| queries and attempting
to compute V54 on inputs ', ..., 2" ~ pu®*. For 0 < t < M, and for j € [k], let u] be defined
as in the previous proofs. Let X = { X} s} eir,0<e<nmr, where Xy := Wi (uf) if Juf| < T, otherwise
X :=0.

Unlike in Theorem we have no need to add any additional steps to our random sequences.
For 0 <t < M, we let Uy := (u},...,uF) just as before. Setting N := M and reasoning as in
Theorem we verify that the assumptions of Lemma [J] are satisfied, with p; = X;0 < 1 —¢

(Lemma [15] part 1).
Applying Lemma [9] to the monotone set N.x(A), we conclude that

Pr({j € [k] : Xjar = 1} € Naci(A)] < Pr[D € Nor(A)], (6)

where each j € [k] is independently included in D with probability 1 — e.
Now condition on any execution of D, and consider any j € [k] such that X; < 1. By our
definitions, there are two possibilities: either |u},| > T (there are fewer than aek such indices j), or

ug\/[ does not extend any v € V. Thus if D solves the search problem V¥ on the present execution,
we have {j € [k] : Xj ;s = 1} € Nyer(A). Combining this with Eq. @ yields the Theorem. O

From Theorem we directly get an standard threshold DPT and an ordinary DPT for search
problems. First, given a search problem V C {0,1,%}" and a real number s € [0, k|, define
C[>s| :={ACk]:|A| > s}.

Theorem 16. Suppose Sucr (V) <1 —e. Then for any a € (0,1] and any n € (0,1],

SUCaaTk;,u@k(Vk’c[znk]) < YNB}?};_E Y > (n—ae)kl.

Proof. Apply Theorem [14] with C := C[> nk], and note that D € Nk (C[> nk]) iff |D| > nk — ack,
which is equivalent to [Dy + ...+ Dy > (n — ag)k], where D; := 1j;cp). These indicator variables
are independent with expectation 1 — e. O

Theorem 17. Suppose Sucr (V) <1 —e. Then for any a € (0, 1],

SuCoeryuon (V) < | Pr [V > (1= as)k].

Proof. Note that V& = VkCIZH | 5o the result follows from Theorem [16{ with n:=1. O

8.2 Errorless heuristics

An errorless heuristic for a (non-necessarily Boolean) function f is a randomized query algorithm
R outputting values in {0,1,7} such that for all z, R(z) € {f(x),?} with probability 1. We say
that an errorless heuristic R e-solves f with zero error with respect to input distribution g if
Proou[R(z) = f(x)] > 1 —¢. Let Suc%'fifr(f) :=1—¢, where ¢ is the minimal value such that some
T-query errorless heuristic e-solves f with zero error with respect to p. Note that SucOT'ifr( f) is
exactly Sucy ,(Vy), where the search problem Vy is defined as V; := {u € {0,1,*}" : u forces the
value of f}. Also, note that Vier = Vf®k. Thus the following result is immediately implied by
Theorem
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Theorem 18. Suppose Suc%‘jfr(f) <1—e¢. Then for a € (0,1],

0- Rk
SUCa:;wrk’“«@k (f77) < YNBE,il,E Y > (1 - ae)k].

Note that an errorless heuristic to compute the k-fold XOR f®* cannot produce any output
other than ‘?’, unless it has succeeded in determining f®*. Thus Theorem (18 also implies an XOR
lemma with the same success bound for errorless heuristics.

Next we prove a worst-case analogue of Theorem Define Ry(f), the zero-error randomized
query complexity of f, as the minimum 7 for which some algorithm R outputs f(z) with probability
1 for each z, and for which the expected number of queries made by R to any input is at most
T. The following is another variant of Yao’s minimax principle [Yao77]; we include a proof for
completeness.

Lemma 19. Let n € (0,1]. There exists a distribution p, over inputs to f, such that
0-err
SucnRo(f)wn(f) =7

Proof. Consider the following 2-player game: player 1 chooses a (possibly randomized) errorless
heuristic R for f which makes at most nRy(f) queries, and player 2 chooses (simultaneously) an
input = to f. Player 1 wins if R(x) = f(z). We claim there exists a randomized strategy for
player 2, that is, a distribution u =: u, over inputs to x, that beats any strategy of player 1 with
probability at least 1 — n. This will prove the Lemma.

To prove the claim, suppose for contradiction’s sake that no such strategy for player 2 exists.
Then, by the Minimax Theorem, there exists a randomized strategy for player 1 which wins with
probability greater than n against all choices of . This strategy is itself a randomized algorithm
making at most nRy(f) queries; let us call this algorithm R. Consider the algorithm R’ for f that
on input z, repeatedly applies R to x until R produces an output, which R’ then outputs. Then
R'(xz) = f(x) on every input. Also, the expected number of queries of R’ on any input is strictly
less than

ST (=)™ m-gRo(f) = (3 (L =)™ 'm) - n*Ro(f)

m>1 m>1
1
= ? - Ro(f)
= RO(f)a
contradicting the definition of Ry(f). O

Theorem 20. For o € (0,1/2], any errorless heuristic for f<* using at most a®Ro(f)k/4 queries
has worst-case success probability less than [22a/n(1/a)]F.

Proof. Set v := a/2. Let p be the distribution given by Lemma so that Sucg}%r(f)ﬂw(f) <.
By Theorem |18 applied to a, with T":= vRo(f) and € := 1 — 7,

0-err Qk B B
SUCa ot ) < B > (1 =all =)
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We have a?Ry(f)k/4 < a(l —v)yRo(f)k (using v < 1/2), so that

sucg';go(f)kwgk(f@k) <, b Y > (1—a(l =)k
<1 —=(1=79)+2laln(1/a)(1—~))]*
(applying Lemma [5 with 8:=a < 1/2 and § := (1 — 7))
< /2 4 21an(1/a)]¥
< [22aIn(1/a)]".

9 A Direct Product Theorem for Decision Tree Size

We measure the size of a decision tree D, denoted size(D), as the number of leaf (output) vertices.
Note that this is at least 1/2 the total number of vertices. Define SucSTiu’Z;j( f) as the maximum
success probability of any size-T decision tree attempting to compute f on an input drawn from
distribution . We have the following DPT for size-bounded query algorithms:

Theorem 21. Suppose Suc%ifﬁ(f) <1—e¢. Then for0 < a <1, Sucaii‘zh#@k(f@k) < 205k (] — gk,

Note how the size bound grows exponentially, rather than linearly, in £ in the above statement.
Also note that, by convexity, Theorem [21] also bounds the success probability of any ‘randomized
size-T°%F algorithm’ R, i.e., of any probability distribution over size-T%* decision trees.

Proof. The proof follows that of Theorem|[I] except that we need a new way to quantify the resources
used by each of the k inputs. First we develop some definitions pertaining to a single input to f.
As in Theorem [I} let W(u,D) := Pr,_,w[D(y) = f(y)]. Given a real number Z € [1,T7, let
Wz (u, Z) := maxp W (u, D), where the maximum is over all decision trees D of size at most Z.

size
(", T)<1-—e.

Lemma 22. 1. W,
2. Take any real numbers S, S, M) > 1 for which S = §© +SW . Then for any u € {0,1, %}
and any i € [n],

E Wese(ula; = y,], S¥)] < W*(u, 9).

size

ywu(u) [

The proof is very similar to that of Lemma [6] and is omitted.

Now let D be any deterministic algorithm of size at most T?* attempting to compute f€* on
input strings x = (z',...,2%) ~ u®k. Let M := |T°*|; D always makes at most M queries.

As in previous proofs, for j € [k] and 0 < ¢t < M, let u] € {0,1,+}" describe the outcomes of
all queries made to @’ after D has taken t steps (where a ‘step’ consists of a query, unless D has
halted, in which case a step has no effect).

Let S; be defined as the size (number of leaf vertices) of the subtree of D reached after t steps
have been taken (so, Sy = 1 iff D has halted after at most ¢ queries). For each j € [k], we define a
sequence Zjo, ..., Zj M, as follows. Let Z;o :=T. For 0 <t < M, if D has halted after ¢ steps, let
Zji+1 = Zj4. Otherwise, if the (¢4 1)-st query made by D is not to 27, we again let Zji41 = Zjy.

If the (¢ + 1)-st query is to 27, let Z; 141 := ng—“:l Ly
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Let X;; = W, ( i) if Zj > 1; otherwise let X;; = X;;—1. Let P := Hje[k] Xt
Arguing as in Theorem for each 0 <t < M, E[P4.] < E[P]. It follows that E[Py/] < E[Py] =
Wi (5, T)F < (1— )F

Condition on any complete execution of D, as described by u}w, ey uﬁ/l Notice that if Z; y > 1,
then (by the definitions) X 5 is an upper bound on the conditional success probability of guessing
f(z7) correctly. Also, X jt > 1/2 for all j,t, and all inputs are independent after our conditioning.
Thus the conditional success probability of computing f®*(z) is at most 2|81 Py;, where we define
the (random) set B := {j € [k] : Z; » < 1}.

Observe that Sy; = 1, since the algorithm halts after at most M steps. Then,

S S
S <50> <5M—1> %o
. <Hje[k1 ZJ%M) ok
Tlc

< T—‘B‘ i Taak.

Thus, |B| < ack always. So the overall success probability is at most E[2/BIPy,] < 29¢FE[Py,] <
(20¢(1 — ¢))¥. O

One can also prove variants of our XOR lemma and other results in which we impose bounds
on decision tree size rather than number of queries. We omit the details.

10 DPTs for Dynamic Interaction

So far, all of the computational tasks we have studied have involved algorithms querying a collection
of fixed input strings. However, in many situations in computer science it is natural to consider
more general problems of interaction with dyamic, stateful entities. An algorithm can still ‘query’
these entities, but these actions may influence the outcomes of future queries. In this section we
describe how our proof methods can yield DPTs for these more general problems. The methods
involved are essentially the same as in previous sections, and the theorem we give is just one example
of the kind of DPT we can prove for dynamic interaction, so we will only sketch the proofs here,
indicating the novel elements.

To make our scenario concrete, we first define the type of entity with which our query algorithms
interact. Define an interactive automaton (IA) as a 5-tuple

M = (seeds, states, queries, R, A), where:
e seeds, states, queries are each finite sets, and states contains a distinguished start state so;
e R :seeds x states x queries — {0, 1} is a response mapping;
e A :seeds X states x queries — states is a transition mapping.

We consider the scenario in which M is initialized to some seed z € seeds according to a
distribution pu, along with the start-state sg. The automaton retains the value z throughout an
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interaction with a query algorithm R (which does not know the value z), but changes its state-
value. If R selects the query ¢ € @ while M has internal state (z,s) € seeds x states, then M
returns the value R(z,s,q) to R and transitions to the state (2, A(z,s,q)).

There are several kinds of tasks one can associate with an IA. One such task for the query
algorithm R is to try to output a value b € B that satisfies some predicate P(z,b), where z is the
seed to M and P C seeds xB is a total relation over seeds and a finite set B. This, of course,
is a generalization of the relation problems we studied in Section [6] and it is natural to study the
k-fold setting, in which R interacts with k [As, querying one of them at each step. We assume that
each IA only updates its state or sends a response to R when it is queried. In particular, the IAs
do not communicate with each other.

We can transform the TA interaction scenario into an equivalent one which highlights the sim-
ilarity with the standard query model, and makes it easy to apply our previous work to state
and prove a DPT. For simplicity assume |seeds| = 2™. Given an IA M and an integer N > 0,
for each z € seeds we define a string £(z) € {0, 1} (laueries +DY * There are two types of en-
tries in this string. First there are m ‘ID’ entries, which simply contain a binary encoding of
z. Next there are (|queries| + 1)V ‘response’ entries, with each such entry indexed by an N-
tuple § = (q1,...,qn) € (queries U{*})N. We are only interested in response-entries of form
q=1(q1,-.-,qr, %, *,...,%), where qi,...,q, € queries. For such an entry we define {(2)5 € {0,1}
as the result of the following experiment: initialize M to state (z, sg), and perform the interaction
in which a query algorithm asks queries ¢1, ..., ¢ in that order. Let {(z)g be the final, r-th response
made by M.

Define a total relation P: C {0, 1}m+(\queri95|+1)N x B by

Pe :={(£(2),b) : z € seeds AP(z,b)}.

Also, given a distribution p over seeds, define pg ~ £(2), where z ~ p. In this way we map an
IA interaction task onto a relation problem of the type studied in Section [0 with a corresponding
map from initialization distributions to input distributions.

A standard query algorithm R (as studied in all previous sections) can faithfully simulate an
interaction with M initialized to an unknown z € seeds, if given query access to £(z). This works
in the natural way: if its simulated queries up to the r-th step are q1, ..., g, then for its r-th query
to £(2), R looks at the entry (qi,..., ¢y, *,*,...,%) to learn M’s r-th response. Call an algorithm
‘interaction-faithful’ if its sequence of queries to any input string always obey this format.

Obviously, not all algorithms are interaction-faithful. For example, an unfaithful algorithm
could simply look at the ID-entries to learn z. Thus the relation problem (P, y1¢) can be much easier
than that of the IA interaction problem defined by (M, P, u). However, if we restrict attention to the
class of interaction-faithful algorithms R, then it is easy to see that there is an exact correspondence
between the ‘difficulty’ of the two problems, at least for interactions lasting at most IV steps. That
is, for T < N, there is a T-query IA-interaction algorithm for (M, P, u) with success probability
p, if and only if there is a T-query interaction-faithful standard algorithm for (P, p1¢) with success
probability p.

The good news is that we can prove a DPT for interaction-faithful query algorithms in almost
exactly the same way as for unrestricted query algorithms. In fact, it’s most natural to prove a
DPT for a more general notion of faithfulness, which we define next. Say we are given n > 0 and a
map 7 : {0,1,*}" — {0,1}", called a query-restriction map. Say that a (standard) query algorithm
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R on n input bits is 7-faithful if for every execution of R on any input, whenever the input bits
seen by R seen so far are given by u € {0,1,*}", R either halts, or chooses a next input bit x; to
query whose index satisfies 7(u); = 1. In other words, a restriction map 7 restricts the possible
queries which can be made by a 7-faithful algorithm, in a way that depends only on the description
u of the bits seen so far. Note that interaction-faithfulness as defined earlier is indeed equivalent
to T-faithfulness for an appropriately defined 7 = 7.

For k > 1, define the k-fold product of restriction map 7, denoted 7% : {0, 1}k — {0, 1}*,
by 79k (ul, ... uF) = (r(u!),...,7(u*)). The map 7®¥ can be interpreted as a restriction map
for algorithms making queries to k n-bit strings. Note that R is 7®*-faithful exactly if for each
j € [k], R’s queries to the j-th input (considered alone) are always 7-faithful. Thus, the k-fold TA
interaction problem defined by (M, P, 1) has ‘difficulty’ equivalent to the k-fold relation problem
defined by (P, ug) for Tg’tk—faithful algorithms, provided N is chosen large enough in the definition
of £(+) (relative to the query bounds we are interested in).

In light of these observations, a DPT for IA interaction algorithms follows by straightforward
translation from the following DPT (generalizing Theorem for standard query algorithms obey-
ing a restriction map.

Theorem 23. Let P C {0,1}" x B be a total relation such that any T-query, T-faithful algorithm
solves the relation problem for P with probability at most 1 — € under input distribution L.

For any algorithm R making queries to inputs x = (z',...,2%) ~ u®* and producing output in
B¥, define the random set S[x| as in Theorem .

Suppose R is T -faithful and aeTk-query-bounded for some o € (0, 1], and A is any monotone

subset of P([k]). Then conclusions 1 and 2 in Theorem[1(] also hold for the present setting.
Proof. (Sketch) The proof follows that of Theorem we only describe the differences. For u €
{0, 1, *}", and for a deterministic algorithm D on n input bits, let Wp(u, D) := Pr, (y,D(y)) €
P] as in Theorem Also, say that D is u-inducing if, on any input = € {0,1}" which extendsﬂ
u, the outcome of D’s first |u| queries to x are described by w.

If |u| < T, define Wp_(u) := maxp Wp(u, D), where the max ranges over all deterministic,
u-inducing, 7-faithful algo}ithms D making at most 1" queries. We have:

Lemma 24. 1. Wi _(¥") <1—e.
2. For any u € {0,1,%}" with [u| <T, and any i € [n], B, o W5, (u]z; = y;])] < WE_(u).
The rest of the proof follows Theorem (10, with Wp_(u) taking the place of Wi (u). O

One can also prove a DPT for search problems for 7-faithful query algorithms, along the lines
of Theorem When applied to interactive automata via the translation described earlier, search
problems correspond to tasks whose success conditions are defined in terms of the interaction itself
(rather than the hidden seed of the IA, or any output produced by the query algorithm).

11 Questions for Future Work

e Can the bounds in our threshold DPTs and XOR lemma be improved? For the threshold
DPTs, how does the tightness of these bounds depend on the monotone set A?

®(as defined in Section [8.1])
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e It is still unknown what worst-case success probability in computing f®* can be achieved in
general, when the number of queries allowed is aRy(f)k for o > 1. (As mentioned earlier,
O(R2(f)klog k) queries always suffice to achieve high success probability.) The corresponding
question in the quantum query model was settled by Buhrman et al. [BNRAWO05].

Our Theorem [I| would help resolve this question, if we could identify a function f and dis-
tribution p for which Sucyp,(f),.(f) approaches 1 not-too-quickly as o grows (say, not faster

than 1 — 2790 for a in a reasonable range). The AND/OR-tree evaluation problem, whose
randomized query complexity was studied in [SW86], might be a good candidate.

e Can our direct product theorem be extended to the quantum query model? The main difficulty
is that the natural analogue of the conditional-independence property we used in Theorem [1]is
false for quantum query algorithms. The close connection shown by Reichardt [Rei09] between
quantum query complexity and span programs may be useful in pursuing this question.

e Can the ideas in this paper help improve our understanding of the direct product problem in
the communication and circuit models, or other computational settings?
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A Proof of Lemma [5l

We use a general form of Chernoff’s inequality:

Lemma 25 ([DP09], §1.3). Suppose Y ~ By, with g :=1—p. Then fort € [0,q),

Pr[Y > (p+t)k] < ((;ﬁt)pﬁ (q - t>q_t>k

To prove Lemma |5, apply Lemma [25( with ¢ := (1 — 5)d. We have

Pr[Y > (1 — 86)k] = Pr[Y > ((1 — &) + (1 — B)d)k]

() i) )

Now 34 < 1/2 implies (1 — 85)~ < (1 +234). Also,

505 _ FI(1/8)5 < (ezﬁln(l//sw)l’“,

since 1 — 38 > 1/2. By our remarks on the function z In(1/z) in Section[2.2] we have 231n(1/8)d <
2¢716 < 1. Now we claim that e* < 1+ (e — 1)z < 1+ 1.8z for # € [0,1]. To see this, just

note that e® is convex on R, that e? = 1, and that e! =1 + (e —1)-1. Thus, (625111(1/6)6)1_’36 <
(14 1.8-281n(1/8)8) =7, Plugging in these observations,

)(1+ 2B6)(1 + 3.681n(1/B)8)| 1Ak
)(1+381In(1/8)8)(1 + 3.651n(1/5)5)] 1 ~F#O*
— 8)(1 + 1181n(1/B)5)) 1Pk

1— 6+ 1151n(1/8)8] 1Pk

_ [1-8+1181n(1/B)0]F

= [1—0+ 1151n(1/5)5]55k~

Pr[Y > (1 - B0)k] < [(1—6
(-0
(1
[

<
<
<
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We bound the denominator in Eq. @ by splitting into cases. First assume 6 < 1/2. In this
case we bound

[1—6+411581n(1/8)0)%% > (1 — §)7°*
> 9Bk _ ,—(In2)Bsk

Next assume § > 1/2. In this case we bound

[1—6+411581n(1/8)0)%% > (785)7
— B3I/ (TB8)k < —B5In(1/B)k

In either case, we conclude that Eq. is less than

[(1 —§+1181n(1/8)s) eﬂdln(l/m} < [(1— 6+ 1181n(1/8)8) (1 + 1.881n(1/8)0)]*
< [1—0+2181n(1/B)d]*.

B Proof of Lemma

Fix any j € [k] and consider any assignment (") ek} of values 27" € {0,1}" to the inputs other

than the j-th input, where 27" extends uil for each j' # j. We show that, after conditioning on

the query outcomes uj,...,uf and on the event [.'z:j/ =27’ Vj + 4], the j-th input 27 is distributed
according to M(ui). This will prove the Lemma.

Consider each y € {0,1}" which extends u]. Now uj,.. .,uf are, by assumption, a possible
description of the first ¢ queries made by D under some input. Since D is deterministic, and
(... 297y, 29 k) are comsistent with (u},...,uf), we conclude that (u},...,u}) also
describe the first ¢ queries made by D on (2!,... 2771, 5,27t ... 2%). Thus the conditional
probability that 2/ =y is

p@k (T T k) B () 'Hj’yéj (")
. k(pl j—1 j+1 kY . i’
Zzextendsui M® (33 peeen @ ,Z,I‘]+ peed ) Zzoxtondsug H(Z>.Hjl7fju(lij)
1(y) ]
— = p) (y),

Zz extends u{ 'U’(Z)

by definition of u(“g). This completes the proof.
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