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Abstract

The “direct product problem” is a fundamental question in complexity theory which
seeks to understand how the difficulty of computing a function on each of k indepen-
dent inputs scales with k. We prove the following direct product theorem (DPT) for
query complexity: if every T -query algorithm has success probability at most 1 − ε

in computing the Boolean function f on input distribution µ, then for α ≤ 1, every
αεTk-query algorithm has success probability at most (2αε(1− ε))k in computing the
k-fold direct product f⊗k correctly on k independent inputs from µ. In light of exam-
ples due to Shaltiel, this statement gives an essentially optimal tradeoff between the
query bound and the error probability. Using this DPT, we show that for an absolute
constant α > 0, the worst-case success probability of any αR2(f)k-query randomized
algorithm for f⊗k falls exponentially with k. The best previous statement of this type,
due to Klauck, Špalek, and de Wolf, required a query bound of O(bs(f)k).

Our proof technique involves defining and analyzing a collection of martingales
associated with an algorithm attempting to solve f⊗k. Our method is quite general
and yields a new XOR lemma and threshold DPT for the query model, as well as
DPTs for the query complexity of learning tasks, search problems, and tasks involving
interaction with dynamic entities. We also give a version of our DPT in which decision
tree size is the resource of interest.

1 Introduction

1.1 Direct product theorems

Suppose some Boolean function f(x) on n input bits is “hard to compute” for a certain com-
putational model. It seems that computing the k-tuple f⊗k(x1, . . . , xk) := (f(x1), . . . , f(xk))
on independent inputs x1, . . . , xk should be “even harder.” The intuition is that the k tasks
to be performed appear separate and unrelated, and that with more tasks one is more likely
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to make a mistake. One way to make this idea more precise is to study the direct product
problem, in which we try to prove statements of the following form:

Suppose every algorithm using resources at most T has success probability at most p in
computing f . Then, every algorithm using resources at most T ′ has success probability at
most p′ in computing f⊗k on k independent inputs to f .

Such a result is called a direct product theorem (DPT). The direct product problem can
be contrasted with a second, related question, the direct sum problem, which studies how the
complexity of solving k instances of a problem scales with k, when we are only interested in
algorithms which succeed with high probability (or probability 1). For a recent overview of
the direct sum problem in query complexity, and proofs of some new results, see [JKS10].

Depending on the computational model and our interests, T and T ′ might measure time,
communication, or any other resource. The success probability could be with respect to
some input distribution µ, in which case it is natural to assume in the k-fold setting that
the inputs are drawn independently from µ; we call this the average-case setting. However,
one can also consider the case where p is a bound on the worst-case success probability of a
randomized algorithm, ranging over all inputs to f ; we then try to establish an upper-bound
p′ on the worst-case success probability of query-bounded algorithms for f⊗k. The strength
of a direct product theorem can be measured in terms of the dependence of the parameters
T ′, p′ on T, p, k, and, possibly, on the function f itself. We want T ′ to be large and p′ to be
small, to establish that the k-fold problem is indeed “very hard.”

There is also an important variant of the direct product problem, in which we are inter-
ested in computing the “k-fold XOR” f⊕k(x1, . . . , xk) := f(x1)⊕ . . .⊕f(xk) of k independent
inputs to f . An XOR lemma is a result which upper-bounds the success probability p′ achiev-
able by algorithms for f⊕k using T ′ resources, under the assumption that any algorithm using
T resources has success probability at most p.1 An obvious difference from DPTs is that
in an XOR lemma, p′ must always be at least 1/2, since f⊕k is Boolean and the algorithm
could simply guess a random bit. The hope is that (p′ − 1/2) decays exponentially with k.
Research on XOR lemmas has proceeded in parallel with research on direct product theo-
rems; the known results are of similar strength (with some exceptions), and in some cases
there are reductions known from XOR lemmas to DPTs or vice versa; see [Ung09, IK10] for
an overview and recent results of this type.

The direct product problem has been studied extensively in models such as Boolean cir-
cuits, e.g., in [GNW95, IW97, IJKW10]; communication protocols [IRW94, Sha03, KŠdW07,
LSŠ08, VW08]; and query algorithms [IRW94, NRS99, Sha03, KŠdW07]. In all of these mod-
els, an optimal T -bounded algorithm which attempts to compute f can always be applied
independently to each of k inputs, using at most T ′ = Tk resources and succeeding with
probability p′ = pk, so these are the “ideal,” strongest parameters one might hope for in
a DPT. However, direct product statements of such strength are generally false, as was
shown by [Sha03], who gave a family of counterexamples which applies to all “reasonable”

1Terminology varies somewhat in the literature. For instance, what we call XOR lemmas are called “direct
product theorems” in [Sha03], and what we refer to as direct product problems are called the “concatenation
variant” by Shaltiel.
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computational models. We will describe these examples (specialized to the query model) in
Section 4.2

Thus, all DPTs shown have necessarily been weaker in one of several ways. First, re-
searchers have restricted attention to algorithms of a special form. [Sha03] showed a DPT
with the “ideal” parameters above holds for the query model, if the algorithm is required
to query each of the k inputs exactly T times. He called such algorithms “fair.”3 A similar
result for a special class of query algorithms called “decision forests” was shown earlier in
[NRS99].

Second, DPTs have been shown for unrestricted algorithms, but using resource bounds
whose strength depends on properties of the function f . These results require the resource
bound T ′ to scale as D(f)k, where D(f) is some complexity measure that can be significantly
smaller than the resources needed to compute a single instance of f . For example, [KŠdW07]
showed that for any f and any γ > 0, a DPT holds for f in which the achievable worst-case
success probability p′ is at most (1/2 + γ)k, provided T ′ ≤ α · bs(f)k for some constant
α = α(γ) > 0. Here bs(f) is the block sensitivity of f [Nis91, BdW02], a complexity measure
known to be related to the randomized query complexity by the inequalities R2(f)

1/3 ≤
bs(f) ≤ R2(f) (suppressing constant factors). Now, one can always compute f correctly
on k instances with high probability using O(R2(f)k log k) queries. For many functions,
including random functions, bs(f) = Θ(R2(f)) so in these cases the DPT of [KŠdW07] gives
a fairly tight result. However, examples are known [BdW02] where bs(f) = O(

√

R2(f)), so
the number of queries allowed by this DPT can be significantly less than one might hope.

Klauck, Špalek, and de Wolf also proved DPTs for quantum query algorithms computing
f , in which the worst-case success probability p′ drops exponentially in k if the number of
allowed quantum queries is O(

√

bs(f)k). For symmetric functions, direct product theorems
of a strong form were proved for quantum query complexity by [ASdW09]. [Š08] proved
a DPT for quantum query algorithms where the resource bound T ′ scales in terms of a
complexity measure called the multiplicative quantum adversary. After a preprint of our
paper appeared, a sequence of works [She11, AMRR11, LR11] dramatically advanced our
understanding of the direct product problem in the quantum query model. This culminated
in a DPT for quantum queries [LR11] in which the success probability decays exponentially
even as the query bound scales as Ω(Q2(f)k). Here, Q2(f) is the bounded-error quantum
query complexity of a (possibly non-Boolean) function f .

In the model of communication protocols, several types of results have been shown. DPTs
have been given for specific functions: e.g., in [KŠdW07] a DPT was proved for the quantum
communication complexity of the Disjointness function, and a classical analogue was proved
by [Kla10]. On the other hand, general DPTs have been given, whose resource bound scales
in terms of complexity measures that may be significantly smaller than the communication

2Shaltiel calls a DPT “strong” if it applies to all p, T and its parameters satisfy p′ ≤ pΩ(k) and T ′ ≥ Ω(Tk).
His counterexamples rule out strong DPTs for most computational models. In later works, the modifier
“strong” has been used in a somewhat broader way. We will not use this terminology in the present paper.

3Actually, Shaltiel proved, in our terms, an optimal XOR lemma for fair algorithms, but as he noted, this
implies an optimal DPT, and his proof method can also be modified to directly prove an optimal DPT for
fair algorithms.
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complexity of f . For example, in communication complexity, DPTs have been shown whose
strength is related to the so-called discrepancy of f [Sha03, LSŠ08].

Since the present work, there has been significant progress in the communication model.
In the public-coin randomized setting, [Jai11] showed a strong general-purpose DPT for
one-way communication, and new DPTs were shown for two-way communication in [Jai11,
JPY12]. Sherstov [She11] gave a new DPT for quantum communication, whose resource
bound scales as Ω(GDM(f)k), where GDM(f) is the lower bound on quantum communica-
tion complexity obtained by the generalized discrepancy method—the strongest lower-bound
technique known in the quantum setting.

In the Boolean circuit model, despite intensive study, the known results are quantitatively
much weaker, and in particular require T ′ to shrink as k grows in order to make the success
probability p′ decay as k grows. It is at least known that, under this limitation, a DPT with
p′ = pk can be shown using [Imp95, Hol05], as remarked in [IK10].

1.2 Our results

Our first result is the following direct product theorem in the average-case setting:

Theorem 1.1. Suppose f is a Boolean function and µ is a distribution over inputs to f , such
that any T -query randomized algorithm has success probability at most (1− ε) in computing
f on an input from µ. Then for 0 < α ≤ 1, any randomized algorithm making αεTk queries
has success probability at most (2αε(1− ε))k < (1 − ε + .84αε)k in computing f⊗k correctly
on k inputs drawn independently from µ.

We use Shaltiel’s examples to show that the tradeoff in Theorem 1.1 between the query
bound and the error probability is essentially best-possible, at least for general functions f
and for small values α < .01. (For specific functions, the success probability will in some
cases decay exponentially even when the number of queries allowed scales as Tk rather than
εTk.) Theorem 1.1 reveals that small values of ε, as used in Shaltiel’s examples, are the only
major “obstruction” to strong, general direct product statements in the query model.

Using Theorem 1.1, we obtain the following DPT for worst-case error, which strengthens
the worst-case DPT of [KŠdW07] mentioned earlier:

Theorem 1.2. For any Boolean function f and 0 < γ < 1/4, any randomized algorithm
making at most γ3R2(f)k/11 queries has worst-case success probability less than (1/2 + γ)k

in computing f⊗k correctly.

It seems intuitive that some statement like Theorem 1.2 should hold, and proving such
a DPT was arguably one of the major open problems in classical query complexity.4

We also prove a new XOR lemma. Let Bk,p denote the binomial distribution on k trials
with success probability p.

4While classical query algorithms can be viewed as a subclass of quantum query algorithms, we note
that Theorem 1.2 is incomparable to the more-recent quantum DPT proved in [LR11]: our result shows
exponentially-decaying success probability for a more restricted class of algorithms, but under a potentially
larger query bound.
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Theorem 1.3. Suppose that any T -query randomized algorithm has success probability at
most (1− ε) in computing the Boolean function f on an input from µ. Then for 0 < α ≤ 1,
any randomized algorithm making αεTk queries and attempting to compute f⊕k on k inputs
drawn independently from µ has success probability at most

1

2

(

1 + Pr
Y∼Bk,1−2ε

[Y > (1− αε)k]

)

,

which is less than 1
2

(

1 + [1− 2ε+ 6α ln(2/α)ε]k
)

.

Compare the probability bound above with the success probability 1
2
(1+(1−2ε)k), which

can be attained using Tk queries by attempting to solve each instance independently and
outputting the parity of the guessed bits. The concrete estimate given in Theorem 1.3 is
meant to illustrate how our bound approaches this value as α → 0. By a more careful use
of Chernoff inequalities, one can get somewhat tighter bounds for specific ranges of α, ε. An
XOR lemma for the worst-case setting can also be derived from our result.

In addition to our “ordinary” DPT (Theorem 1.1), we also prove a “threshold” DPT,
which bounds the probability that a query-bounded algorithm for f⊗k solves “many” of the
k instances correctly. As one special case, we prove:

Theorem 1.4. Let f be a (not necessarily Boolean) function such that any T -query algorithm
has success probability at most 1 − ε in computing f on an input from µ. Fix η, α ∈ (0, 1].
Consider any randomized algorithm R making at most αεTk queries on k independent inputs
from µ. The probability that R computes f correctly on at least ηk of the inputs is at most

Pr
Y∼Bk,1−ε

[Y ≥ (η − αε)k].

Using Chernoff inequalities, Theorem 1.4 gives success bounds which decay exponentially
in k for any fixed α, ε, η, provided η > 1 − ε + αε. As we will explain, Shaltiel’s examples
show that this cutoff is nearly best-possible. By setting η := 1 in Theorem 1.4, we also
get an ordinary DPT for non-Boolean functions, which for typical parameter settings is
stronger than the DPT we’d obtain by a straightforward generalization of our techniques for
Theorem 1.1. This is the simplest way we know to get such a DPT.

Threshold DPTs have been proved for a variety of models, including, recently, for arbi-
trary Boolean functions in the quantum query model [LR11]. [Ung09] showed how to derive
threshold DPTs from XOR lemmas, and recent work of [IK10] gave a way to derive thresh-
old DPTs from sufficiently strong DPTs; see also the earlier works cited in [Ung09, IK10].
However, the results of [IK10] do not apply for our purposes, and the threshold DPT we
prove is more general than we’d get by applying the results of [Ung09] to our XOR lemma.
In any case the proof of our threshold DPT is, we feel, quite natural, and actually forms
the basis for the proof of our XOR lemma. Our method for proving threshold DPTs applies
to very general threshold events: we give bounds on the probability that the set S ⊆ [k] of
instances solved correctly by a query-bounded algorithm is “large,” in a sense specified by
an arbitrary monotone collection A of subsets of [k]. Generalized threshold DPTs of this
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form were shown recently by [HS11] in the circuit model, for a rich class of computational
tasks called “weakly verifiable puzzles;” as usual in the circuit model, these DPTs require
T ′ to shrink with k. Our techniques appear unrelated to theirs.

We also prove new DPTs for relations (for which direct sum theorems were proved recently
by [JKS10]), learning tasks, search problems, and errorless heuristics. Deterministic query
algorithms can be equivalently viewed as decision trees, and we also prove a DPT for decision
trees in which decision tree size, rather than depth (i.e., number of queries), is the resource
of interest. Impagliazzo, Raz, and Wigderson [IRW94] gave a DPT for decision tree size
with “ideal” success probability decay p′ = pk, but in the case where the size is not allowed
to scale with k, i.e., the setting T ′ = T . By contrast, in our DPT, the success probability
decays as pΩ(k) = (1− ε)Ω(k), while the size bound T ′ scales as TΩ(εk).

Finally, we give a further generalization of our DPTs, in which the k objects being queried
are dynamic entities rather than static strings—that is, the answers to current queries may
depend on past queries. DPTs for dynamic interaction have been proved before [MPR07],
but only for the case in which the number of queries to each entity is fixed in advance. (This
is analogous to Shaltiel’s result for “fair” algorithms.) We further discuss the relation to
past work on dynamic interaction in Section 10.

In order to ease notation, in this paper we discuss only DPTs for total functions, but
our results apply to partial functions, that is, functions with a restricted domain; the proofs
are the same. Similarly, our theorems and proofs carry over without change to handle non-
Boolean input alphabets, as well as heterogeneous query costs. Taken as a whole, our results
provide a fairly complete picture of the “direct product phenomenon” for randomized query
complexity, although there may still be room for improvement in some of our bounds. We
hope this work may also help lead to a better understanding of the direct product problem
in other, richer computational models.

1.3 Our methods

We first explain our method to prove our “basic” direct product theorem, Theorem 1.1. As
mentioned earlier, Shaltiel [Sha03] proved an optimal DPT for “fair” decision trees, in which
each of the k inputs receives T queries. Our proof method for Theorem 1.1 also yields an
alternate proof of Shaltiel’s result, and it is helpful to sketch how this works first. (Really,
this “alternate proof” is little more than a rephrasing of Shaltiel’s proof technique, but the
rephrasing gives a useful perspective which helps us to prove our new results.)

Suppose that every T -query algorithm for computing f succeeds with probability at most
1 − ε on an input from the distribution µ. Consider a fair Tk-query algorithm D for f⊗k,
running on k independent inputs from µ. We think of the algorithm as a “gambler” who bets
at k “tables,” and we define a random variable Xj,t ∈ [1/2, 1] which represents the gambler’s
“fortune” at the j-th table after D has made t queries overall to the k inputs. Roughly
speaking, Xj,t measures how well the algorithm is doing in determining the value of f on the
j-th input. When D queries the j-th input, the j-th fortune may rise or fall, according to the
bit seen; we regard each bit revealed to be generated sequentially at random, conditioned on
the bits queried so far. The fortunes are defined so that Xj,0 ≤ 1−ε for each j (reflecting the
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assumed hardness of f on µ), and so that no action by the algorithm leads to an expected
gain in fortune.5 It follows that E[

∏

j∈[k]Xj,Tk] ≤ (1 − ε)k. But the fortunes are defined

so that E[
∏

j∈[k] Xj,Tk] upper-bounds the success probability of D in computing f⊗k. This
gives the DPT for fair algorithms. A key fact underlying the success of this proof strategy
is that, after conditioning on any initial sequence of outcomes to the first t ≤ T queries by
the algorithm, the k inputs remain independent.

If D is no longer required to be fair, but instead makes at most αεTk queries, then the
individual fortune Xj,t we define no longer has the same intuitive meaning after the j-th
input has been queried more than T times. (In this event we simply set Xj,t to 1/2, so that
the gambler cannot hope to increase the j-th fortune.) However, the success probability of
D can still be upper-bounded by E[

∏

j∈S Xj,αεTk], where S is the (random) set of inputs
which receive at most T queries. Counting tells us that fewer than αεk of the inputs can lie
outside of S, and each fortune is always at least 1/2, so the success probability is at most
2αεkE[

∏

j∈[k] Xj,αεTk] ≤ 2αεk(1− ε)k, giving the statement of Theorem 1.1.
Our worst-case DPT for Boolean functions follows straightforwardly from Theorem 1.1,

by an application of Yao’s minimax principle. Our DPT for decision tree size requires a
somewhat different analysis, in which we track the “size-usage” of each of the k inputs
rather than their number of queries, but the basic approach is the same as in Theorem 1.1.
In generalizing our method to prove our other results, however, we face a new wrinkle: the
natural definitions of the “fortunes” Xj,t in these settings are no longer bounded from below
by 1/2. For example, if f : {0, 1}n → B then we have Xj,t ≥ |B|

−1, and a straightforward
modification of the method described above gives a DPT whose strength degrades as |B|
grows. In other settings (e.g., the k-fold XOR setting), we will only have Xj,t ≥ 0, and the
method fails completely.6

To overcome this difficulty, we adopt a more general perspective. Our previous proof
hinged on the fact that, if a gambler plays neutral or unfavorable games at k tables with an
initial (nontransferable) endowment of 1− ε at each table, then the probability he reaches a
fortune of 1 at every table is at most (1 − ε)k. Note, this is just the success probability he
would achieve if he followed an independent “all-or-nothing bet” strategy at each table. It
is natural to wonder whether this strategy remains optimal if the gambler wants merely to
reach a fortune of 1 at “sufficiently many” tables. Indeed, we prove (by an induction on the
number of rounds of gambling) that this is true, where the meaning of “sufficiently many”
can be specified by any monotone collection of subsets of [k]. Most of our generalizations of
Theorem 1.1, as well as our XOR lemma, follow readily from this handy “gambling lemma,”
although care is required to define the correct fortunes in each case.

5In standard probabilistic terms, each individual sequence Xj,0, Xj,1, . . . is a supermartingale. We will
not use this terminology in the paper.

6One way to work around the problem is to simply add a small “buffer term” to the fortunes Xj,t.
However, this leads to poorer bounds, and does not yield our generalized threshold DPTs.
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1.4 Organization of the paper

In Theorem 2 we review preliminaries that are used throughout the paper and that are
needed to state and prove our “basic” DPTs, Theorems 1.1 and 1.2. We will introduce other
definitions as needed in later sections. In Section 3 we prove Theorem 1.1, and in Section 4
we use Shaltiel’s examples to analyze the tightness of this result. We prove Theorem 1.2 in
Section 5.

In Section 6 we prove our “gambling lemma” (Lemma 6.1), and use it to prove a general-
ized threshold DPT for relations. Theorem 1.4 will follow as a special case. We also explain
how our threshold DPT implies a DPT for the query complexity of certain learning tasks.
We prove Theorem 1.3, our XOR lemma, in Section 7 (also using Lemma 6.1). We define
search problems and errorless heuristics in Section 8, and give DPTs for these settings.

We prove our DPT for decision tree size in Section 9. In Section 10, we describe gener-
alizations of our DPTs to settings involving interaction with dynamic entities. We end with
some questions for future work.

2 Preliminaries

All of our random variables will be defined over finite probability spaces. We let supp(X)
denote the support of a random variable X, i.e., the set of values with nonzero probability.
Let µ⊗k denote k independent copies of distribution µ.

2.1 Randomized decision trees and query complexity

A decision tree D over {0, 1}n is a rooted, full binary tree (i.e., each node has either 0 or 2
children), in which interior vertices v are labeled by indices ind(v) ∈ [n] and leaf vertices are
labeled by values ℓ(v) in some finite set B (often B = {0, 1}). The height of D is the length
of the longest descending path in D. D defines a function fD : {0, 1}n → B in the following
way. On input x we start at the root and follow a descending path through D; at interior
node v, we pass to the left subchild of v if xind(v) = 0, otherwise we pass to the right subchild
of v. When we reach a leaf vertex v, we output the value ℓ(v). Any deterministic algorithm
to compute f which queries at most t bits of x on any input can be modeled as a height-t
decision tree, and we will freely refer to such a tree as a “t-query deterministic algorithm.”

A randomized decision tree is a probability distribution R over deterministic decision
trees. Upon receiving the input x, the algorithm samples D ∼ R, then outputs D(x).
(Every randomized query algorithm can be modeled in this fashion.) We write R(x) to
denote the random variable giving the output of R on input x. We say that R is a t-query
randomized decision tree if every decision tree in the support of R has height at most t.

For ε ∈ [0, 1] and a function f (not necessarily Boolean), we say that R ε-computes f
if for all inputs x, Pr[R(x) = f(x)] ≥ 1 − ε. Similarly, if µ is a distribution over inputs
x ∈ {0, 1}n, we say that R ε-computes f with respect to µ if Prx∼µ[R(x) = f(x)] ≥ 1 − ε,
where the probability is taken over the random sample x ∼ µ and the randomness used by
R.
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For a function f : {0, 1}n → B, we define R2(f), the two-sided-error randomized query
complexity of f , as the minimum t for which there exists a t-query randomized decision tree
which 1/3-computes f . We define

SucT,µ(f) := 1− ε,

where ε ≥ 0 is the minimum value for which some T -query-bounded randomized algorithm
R ε-computes f with respect to µ. By standard arguments, this minimum exists, and is
attained by a deterministic height-T decision tree.

For f : {0, 1}n → B and k ≥ 1, define f⊗k : {0, 1}kn → Bk, the k-fold direct product of
f , as f⊗k(x1, . . . , xk) := (f(x1), . . . , f(xk)). If f is Boolean, define the k-fold XOR of f as
f⊕k(x1, . . . , xk) := f(x1)⊕ . . .⊕ f(xk), where ⊕ denotes addition mod 2.

2.2 Binomial distributions and Chernoff bounds

Let Bk,p denote the binomial distribution on k trials with bias p. That is, Bk,p is distributed

as Y =
∑k

i=1 Yi, where the Yi are independent and 0/1-valued with Pr[Yi = 1] = p. For
s ∈ {0, 1, . . . , k} we have the explicit formula Pr[Y = s] =

(

k
s

)

ps(1− p)k−s.
The following is a general form of Chernoff’s inequality:

Lemma 2.1 ([DP09], §1.3). Suppose Y ∼ Bk,p, with q := 1− p. Then for t ∈ [0, q),

Pr [Y > (p+ t)k] ≤

(

(

p

p+ t

)p+t(
q

q − t

)q−t
)k

.

The following form of Chernoff’s inequality will be more convenient for us.

Lemma 2.2. Let δ ∈ (0, 1), and let Y ∼ Bk,1−δ. If β ∈ (0, 1/2], then

Pr[Y > (1− βδ)k] < [1− δ + 6β ln(1/β)δ]k .

Proof. We apply Lemma 2.1 with t := (1− β)δ; we find

Pr [Y > (1− βδ)k] = Pr[Y > ((1− δ) + (1− β)δ)k]

≤

(

(

1− δ

1− βδ

)1−βδ (
δ

δ − (1− β)δ

)δ−(1−β)δ
)k

=

(

(

1− δ

1− βδ

)1−βδ

β−βδ

)k

≤
(

(1− δ + 2βδ)1−βδ β−βδ
)k

, (2.3)

using βδ ≤ 1/2.
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It is easy to verify that (1− δ + 2βδ) ≥ β, so that

(1− δ + 2βδ)−βδ · β−βδ ≤ β−2βδ = e2β ln(1/β)δ.

Now 2β ln(1/β)δ ≤ 2/e < .74. By convexity of ex, we have ex ≤ 1 + ((e.74 − 1)/.74) · x ≤
1+ 1.49x for all x ∈ [0, .74]. Thus, e2β ln(1/β)δ ≤ 1+ 3β ln(1/β)δ. Combining these facts with
Eq. 2.3, we get

Pr [Y > (1− βδ)k] ≤ [(1− δ + 2βδ)(1 + 3β ln(1/β)δ)]k

< [1− δ + 6β ln(1/β)δ]k .

The constant 6 in Lemma 2.2 is not best-possible. To apply the lemma, it is helpful to
understand the behavior of the function h(x) := x ln(1/x). This function is increasing on
(0, e−1], and as x → 0, h(x) approaches 0 only slightly more slowly than x itself: for an
integer n > 1 we have

h

(

1

2n lnn

)

=
1

2n lnn
· ln(2n lnn) =

1

n
·
ln(2n lnn)

ln(n2)
<

1

n
.

3 Proof of Theorem 1.1

In this section we prove our “basic” direct product theorem:

Theorem 1.1 (restated). Let f be a Boolean function for which SucT,µ(f) ≤ 1− ε. Then
for 0 < α ≤ 1, SucαεTk,µ⊗k(f⊗k) ≤ (2αε(1− ε))k < (1− ε+ .84αε)k.

There is no requirement that T be an integer; this will be useful later in proving The-
orem 1.2. The success bound (2αε(1 − ε))k above is actually valid for any α > 0, but the
bound is trivial whenever α ≥ 2, so we focus attention on a range where the bound is always
meaningful.

Proof. The statement is trivial if T = 0 or ε = 0, so assume both are positive. By convexity, it
is sufficient to show the statement for deterministic algorithms. Also, by a standard limiting
argument, it is enough to prove this result under the assumption that supp(µ) = {0, 1}n;
this ensures that conditioning on any sequence of query outcomes will be well-defined.

Next we set up some notation and concepts relating to the computation of f on a single
input; afterward we will apply our work to the direct-product setting.

For a string u ∈ {0, 1, ∗}n, let the distribution µ(u) be defined as a sample from µ,
conditioned on the event [xi = ui, ∀i such that ui ∈ {0, 1}]. Let |u| denote the number of
0/1 entries in u. Let u[xi ← b] denote the string u with the i-th coordinate set to b. In
our proof we consider the bits of an input y ∼ µ to be generated sequentially at random as
they are queried. Thus if an input is drawn according to µ, and u describes the outcomes
of queries made so far (with ∗ in the coordinates that have not been queried), we consider
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the input to be in the “state” µ(u). If some index i ∈ [n] is queried next, then the algorithm
sees a 0 with probability Pry∼µ(u) [yi = 0], in which case the input enters state µ(u[xi←0]);

with the remaining probability the algorithm sees a 1 and the input enters state µ(u[xi←1]).
Clearly this interpretation is statistically equivalent to regarding the input as being drawn
from µ before the algorithm begins (this is the “principle of deferred decisions” of probability
theory).

For each u ∈ {0, 1, ∗}n with |u| ≤ T , let

W (u) := SucT−|u|,µ(u)(f).

In words, W (u) measures our “winning prospects” of computing f on µ, if we begin with a
budget of T queries and our first |u| queries reveal the bits described by u, and if we follow an
optimal strategy thereafter. Clearly W (u) ∈ [1/2, 1], since an algorithm may simply guess a
random bit. We make two more simple claims about this function.

Lemma 3.1. 1. W (∗n) ≤ 1− ε.

2. For any u ∈ {0, 1, ∗}n with |u| < T , and any i ∈ [n], Ey∼µ(u) [W (u[xi ← yi])] ≤ W (u).

Proof. 1: This is immediate from our initial assumption SucT,µ(f) ≤ 1− ε.

2: If the i-th coordinate has already been queried (i.e., ui ∈ {0, 1}), then yi = ui with
probability 1, so u[xi ← yi] = u and the statement is trivial. So assume ui = ∗. Let R0, R1

be algorithms making at most T − (|u|+1) queries and maximizing the success probabilities
on µ(u[xi←0]), µ(u[xi←1]) respectively. Thus, the success probability of Rb is W (u[xi ← b]).
Consider an algorithm R which queries xi, then runs Rb if the bit seen is b. R makes at
most T −|u| queries, and the success probability of R is Ey∼µ(u) [W (u[xi ← yi])]. Thus W (u)
is at least this value.

Now we prove the Theorem. Let D be any deterministic algorithm making at most
M := ⌊αεTk⌋ queries, and attempting to compute f⊗k on input strings (x1, . . . ,xk) ∼ µ⊗k.
For j ∈ [k] and 0 ≤ t ≤ M , let uj

t ∈ {0, 1, ∗}
n be the random string giving the outcomes

of all queries made to xj after D has made t queries (to the entire input). We need the
following simple but important observation:

Lemma 3.2. Condition on any execution of D for the first t ≥ 0 steps, with query outcomes
given by u1

t , . . . , u
k
t . Then the input is in the state µ(u1

t ) × . . . × µ(uk
t ). That is, the k inputs

are independent, with xj distributed as µ(uj
t ).

Proof. Fix any j ∈ [k] and consider any assignment (xj′)j′∈[k]\{j} of values xj′ ∈ {0, 1}n to

the inputs other than the j-th input, where xj′ extends uj′

t for each j′ 6= j. We show that,
after conditioning on the query outcomes u1

t , . . . , u
k
t and on the event [xj′ = xj′ ∀j′ 6= j], the

j-th input xj is distributed according to µ(uj
t ). This will prove the Lemma.

Consider each y ∈ {0, 1}n which extends uj
t . Now u1

t , . . . , u
k
t are, by assumption, a

possible description of the first t queries made by D under some input. Since D is deter-
ministic, and (x1, . . . , xj−1, y, xj+1, . . . , xk) are consistent with (u1

t , . . . , u
k
t ), we conclude that
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(u1
t , . . . , u

k
t ) also describe the first t queries made by D on (x1, . . . , xj−1, y, xj+1, . . . , xk). Thus

the conditional probability that xj = y is

µ⊗k(x1, . . . , xj−1, y, xj+1, . . . , xk)
∑

z extends uj
t
µ⊗k(x1, . . . , xj−1, z, xj+1, . . . , xk)

=

µ(y) ·
∏

j′ 6=j µ(x
j′)

∑

z extends uj
t
µ(z) ·

∏

j′ 6=j µ(x
j′)

=

µ(y)
∑

z extends uj
t
µ(z)

= µ(uj
t )(y),

by definition of µ(uj
t ). This proves Lemma 3.2.

Next, define collections

X = {Xj,t}j∈[k],0≤t≤M , P = {Pt}0≤t≤M

of random variables, as follows. All the random variables are determined by the execution
of D on an input drawn from µ⊗k. Let Xj,t := W (ut

j) if |u
t
j| ≤ T ; otherwise let Xj,t := 1/2.

Let Pt :=
∏

j∈[k] Xj,t.

We claim that for each 0 ≤ t < M , E[Pt+1] ≤ E[Pt]. To see this, condition on any
outcomes to the first t queries, described by u1

t , . . . , u
k
t . Now suppose that for the (t+ 1)-st

query, D queries the i-th bit of the j-th input (i, j are determined by u1
t , . . . , u

k
t , since D is

deterministic). We note that Xj′,t+1 = Xj′,t for all j
′ 6= j. If |ut

j| ≥ T then also Xj,t+1 ≤ Xj,t,
which implies Pt+1 ≤ Pt. So assume |ut

j| < T . Then we have

E[Pt+1|u
1
t , . . . , u

k
t ] = E[Xj,t+1 ·

∏

j′ 6=j

Xj′,t+1|u
1
t , . . . , u

k
t ]

= E[Xj,t+1|u
1
t , . . . , u

k
t ] ·
∏

j′ 6=j

Xj′,t ≤ Xj,t ·
∏

j′ 6=j

Xj′,t = Pt,

where we used Lemma 3.2 and part 2 of Lemma 3.1. We conclude

E[Pt+1] = E[E[Pt+1|u
1
t , . . . , u

k
t ]] ≤ E[Pt],

as claimed. It follows that E[PM ] ≤ E[P0]. But we can bound P0 directly: P0 = W (∗n)k ≤
(1− ε)k (Lemma 3.1, part 1). Thus E[PM ] ≤ (1− ε)k.

Now we argue that this implies an upper bound on the success probability ofD. Condition
on the bits u1

M , . . . , uk
M seen by D during a complete execution; these determine the k output

bits of D. For each j ∈ [k], at least one of two possibilities holds: either |uj
M | > T , or the

j-th input is in a final state µ(uj
M ) for which Pr

y∼µ
(u

j
M

)
[f(y) = 1] ∈ [1 − Xj,M , Xj,M ]. Since

the k inputs remain independent under our conditioning, the conditional probability that D
computes f⊗k correctly is at most

∏

j:|uj
M |≤T

Xj,M .
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D makes at most αεTk queries, so simple counting tells us that there are fewer than αεk
indices j for which |uj

M | > T . Thus,

∏

j:|uj
M |≤T

Xj,M ≤

∏

j∈[k]Xj

(minj∈[k]Xj,M)αεk
≤ 2αεkPM

(since Xj,M ≥ 1/2 for all j). Taking expectations, we find that the overall success probability
of D is at most E[2αεkPM ] ≤ (2αε(1− ε))k.

Finally, we simplify our bound. We claim 2x < 1+ .84x on (0, 1/2]. To see this, just note
that 20 = 1, that 21/2 < 1.42 = 1 + .84(1/2), and that 2x is a convex function on R. Then,
since 0 < αε ≤ 1/2, we have 2αε(1 − ε) < (1 + .84αε)(1 − ε) < 1 − ε + .84αε. The proof is
complete.

We remark that, as claimed in the Introduction, the proof above can be easily adapted
to give an alternate proof of Shaltiel’s optimal direct product theorem for “fair” algorithms
making Tk queries: we define the random variables Xj,t exactly as before and note that
|uj

t | ≤ T for all j, t.

4 Tightness of the bounds in Theorem 1.1

In this section we describe a family of functions and input distributions, due to [Sha03],
and explain why they show that the query/success tradeoff in Theorem 1.1 is nearly best-
possible, at least when α < .01 and when (1− ε)k is also at most a small constant.

Fixing an integer T > 0, define fT : {0, 1}T+2 → {0, 1} as follows: let fT (x) := x2 if
x1 = 1, otherwise fT (x) := x2 ⊕ . . . ⊕ xT+2. Given ε ∈ (0, 1/2), let µε be the distribution
over {0, 1}T+2 in which all bits are independent, Pr[x1 = 1] = 1− 2ε, and Pr[xi = 1] = 1/2
for all i ∈ {2, . . . , T + 2}. Note that if y ∼ µε, a T -query-bounded algorithm can gain
no information about the value of f when x1 = 0, so any such algorithm succeeds with
probability at most (1− 2ε)1 + (2ε)1

2
= 1− ε in computing f(y).

Now consider the following algorithmD attempting to compute f⊗k on inputs (x1, . . . ,xk) ∼
µ⊗kε . First D queries the first two bits of each input. Call an input xk “bad” if its first bit is
0, “good” if its first bit is 1. Let B ⊆ [k] denote the set of bad inputs. Note that D learns
the value of f on each good input. Next, D chooses arbitrarily a set S ⊆ B of ⌊αεk⌋ bad
inputs, and spends T additional queries on each input in S to determine the value of f on
these inputs (if there are fewer than ⌊αεk⌋ bad inputs, D queries them all and determines
the value of f⊗k with certainty). Finally, D outputs the answer bits it has learned and makes
random guesses for the remaining values.

Observe that D uses at most 2k+αεTk queries overall. To analyze the success probability
of D, first consider an algorithm D′ which uses only 2k queries to look at the two bits of each
input; D′ outputs the correct value on good inputs, and guesses randomly on bad inputs. It
is easy to see that D′ succeeds with probability (1− ε)k in computing f⊗k. Also, if D and D′
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are both run on a common k-tuple of inputs drawn from µ⊗kε , and we condition on the event
that |B| ≥ ⌊αεk⌋, then the success probability of D is 2⌊αεk⌋ times the success probability of
D′, since the inputs are independent and D has ⌊αεk⌋ fewer random guesses to make. Thus,
Pr [D succeeds] is at least

Pr [|B| ≥ αεk] · 2⌊αεk⌋ Pr

[

D′ succeeds

∣

∣

∣

∣

|B| ≥ αεk

]

= 2⌊αεk⌋ Pr [D′ succeeds ∧ |B| ≥ αεk]

≥ 2⌊αεk⌋ · (Pr [D′ succeeds]− Pr [|B| < αεk])

= 2⌊αεk⌋ ·
(

(1− ε)k − Pr [|B| < αεk]
)

. (4.1)

Define the indicator variable Yj := 1[j /∈B]; then the Yj’s are independent, with p = Pr[Yj =
1] = 1 − 2ε. Let Y := Y1 + . . . + Yk. We apply Lemma 2.2 to Y , with the settings δ := 2ε
and β := α/2 ≤ 1/2, to obtain

Pr[|B| < αεk] = Pr[Y > (1− αε)k]

= Pr[Y > (1− (2ε)(α/2))k]

< [1− 2ε+ 6(α/2) ln(2/α)(2ε)]k .

This can be made less than (1− 1.5ε)k if α is a small enough positive constant (α < .01 will
work).

Now if (1− ε)k is also at most a sufficiently small constant, then (1− 1.5ε)k < .1(1− ε)k

so that, by Eq. 4.1,
Pr [D succeeds] > .9 · 2⌊αεk⌋(1− ε)k,

which is close to the maximum success probability allowed by Theorem 1.1 if D used αεTk
queries. (Recall, though, that D uses 2k + αεTk queries.)

5 Proof of Theorem 1.2

We now prove Theorem 1.2 from the Introduction, our DPT for worst-case error, by com-
bining Theorem 1.1 with a version of Yao’s minimax principle [Yao77], which allows us to
convert worst-case hardness assumptions in query complexity into average-case assumptions.

Define R2,δ(f) as the minimum T for which there exists a randomized T -query algorithm
which computes f(x) correctly with probability at least 1− δ for every x. The following is a
common version of Yao’s principle, and can be proved directly using the minimax theorem
of game theory.

Lemma 5.1. Fix 0 < δ < 1/2 and a Boolean function f . There exists a distribution µδ

over inputs to f , such that every randomized algorithm making fewer than R2,δ(f) queries
succeeds in computing f on µδ with probability less than 1− δ.
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Proof of Theorem 1.2. Let f be given. Let δ := 1/2 − γ/2, and let µ := µδ be as provided
by Lemma 5.1. Now fix a tiny constant c ∈ (0, 1), and let T := R2,δ(f)− c; we have

SucT,µ(f) ≤ 1− ε,

for some value ε > δ > 3/8 (independent of c). Now set α := γ, and apply Theorem 1.1 to
find

SucγεTk,µ(f) < (1− (1− .84γ)ε)k < (1− (1− .84γ)δ)k .

Note that γεTk > γδR2,δ(f)k, if c is chosen sufficiently small. We conclude that any algo-
rithm making at most γδR2,δ(f)k queries succeeds with probability less than

(1− (1− .84γ)δ)k = (1− (1− .84γ)(1/2− γ/2))k

< (1/2 + .42γ + γ/2)k < (1/2 + γ)k

in computing f⊗k on inputs x1, . . . ,xk ∼ µ⊗k. So, the worst-case success probability is also
less than this amount.

Now we relate R2,δ(f) to R2(f) by standard sampling ideas. Say Rδ is an algorithm
making R2,δ(f) queries, which computes f(x) with probability at least 1 − δ = 1/2 + γ/2
on each input. Let R be the algorithm which given an input x, runs Rδ(x) for m := ⌈3/γ2⌉
trials, outputting the majority value. For i ∈ [m], define the indicator variable Yi for the
event [Rδ succeeds on the i-th trial], and let Y := Y1 + . . .+ Ym. Then the probability that
R(x) outputs an incorrect value is at most the probability that Y ≤ E[Y ]− γm/2, which by
Hoeffding’s inequality is at most e−2γ

2m/4 ≤ e−3/2 < 1/3.
Thus, R2(f) ≤ R2,δ(f) · ⌈3/γ

2⌉ < 4R2,δ(f)/γ
2 (using γ < 1/4). Then, we have

γ3R2(f)k/11 < γ(3/8)(γ2R2(f)/4)k < γδR2,δ(f)k,

from which Theorem 1.2 follows.

6 Threshold direct product theorems

In this section we prove our “gambling lemma,” Lemma 6.1, and use it to prove generalized
threshold DPTs for relations (relation problems are formally defined in Section 6.2). This
will yield DPTs for non-Boolean functions as well as for the query complexity of learning
tasks. Further applications of Lemma 6.1 will appear in later sections.

Let P([k]) denote the collection of subsets of [k]. Say that a subcollection A ⊆ P([k]) is
monotone if [A ∈ A, A ⊆ A′] implies A′ ∈ A. Monotone collections play an important role
in what follows.

6.1 A gambling lemma

Like the proof of Theorem 1.1, the statement of our next lemma is best explained by a gam-
bling metaphor. Suppose that a gambler gambles at k tables, bringing an initial endowment
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of pj ∈ [0, 1] to the j-th table. He cannot transfer funds between tables, or go into debt
at any table; he can only play games for which his expected winnings are nonpositive; and
the different tables’ games use independent randomness. However, the gambler can choose
which game to play next at each table.

The gambler wants to reach a fortune of 1 at “sufficiently many” of the tables, where
the meaning of “sufficiently many” is specified by a monotone subset A ⊆ P([k]). One
way the gambler may attempt to reach this goal is to simply place an “all-or-nothing” bet
independently at each table; that is, at the j-th table, the gambler wins a fortune of 1 with
probability pj, and loses his j-th endowment with the remaining probability. The following
lemma states that this is in fact the gambler’s best strategy.

Lemma 6.1. Suppose k,N ≥ 1 are given, along with a collection {X ,U} of random vari-
ables (over a finite probability space). Here X = {X1, . . . ,Xk}, where for each j ∈ [k],
Xj = {Xj,0, Xj,1, . . . , Xj,N} is a sequence of variables in the range [0, 1] (think of Xj,t as
the gambler’s fortune at the j-th table after the first t steps). U = {U0, U1, . . . , UN−1} is a
sequence of random variables taking values over some finite set (think of Ut as describing
the form and outcomes of all gambles in the first t steps). Assume that for all 0 ≤ t < N ,
Ut determines {X1,t, . . . , Xk,t}, and also determines Ut′ for all t′ < t. Also assume that
{X1,t+1, . . . , Xk,t+1} are independent conditioned on Ut. Then, if Xj,0 ≤ pj ∈ [0, 1] for all
j ∈ [k], and A is a monotone subset of P([k]), we have

Pr[{j ∈ [k] : Xj,N = 1} ∈ A] ≤ Pr[D ∈ A],

where D ⊆ [k] is generated by independently including each j ∈ [k] in D with probability pj.

Note that we assume the gambler never attains a fortune greater than 1 at any table;
this restriction is easily removed, but it holds naturally in the settings where we’ll apply the
Lemma.

Proof. We use the term “A-success” to refer to the event [{j ∈ [k] : Xj,N = 1} ∈ A] whose
probability we are bounding.

We first make a simplifying observation: we claim it is without loss of generality to
assume that between each consecutive times (t, t+ 1), at most one of the fortunes changes,
and that the fortune subject to change is determined by t. Call a family of sequences with
this property “nice.” To see this, consider any family X obeying Lemma 6.1’s assumptions,
and modify it by “splitting” each transition (t, t + 1) into a sequence of k transitions, in
the j-th of which the j-th fortune changes (according to the same distribution governing its
transition in the original sequence).

More formally, we define X ′j = {X
′
j,0, . . . , X

′
j,Nk} by letting X ′j,ℓ := Xj,⌊(ℓ+k−j)/k⌋; and we

define U ′ = {U ′0, U
′
1, . . . , U

′
Nk−1} by

U ′ℓ :=
(

U⌊ℓ/k⌋,
(

X ′j,ℓ′
)

j∈[k],ℓ′≤ℓ

)

.

(We add extra information into U ′ℓ to ensure that it determines the random variables it is
supposed to.) Lemma 6.1’s assumptions continue to hold for this modified, nice family of
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random variables; here we are using our original assumption that {X1,t+1, . . . , Xk,t+1} are
independent conditioned on Ut. Also, the probability of A-success is unchanged. So let us
assume from now on that (X ,U) is nice, and for 0 ≤ t < N , let jt ∈ [k] be the index of the
fortune subject to change between times t and t+ 1.

Fix any k ≥ 1; we prove the statement by induction on N ≥ 1. First suppose N = 1, and
let j0 be as defined above. Let S ⊆ [k] \ {j0} be the set of indices j 6= j0 for which pj = 1.
First suppose S ∈ A; then Pr[D ∈ A] = 1, since each j ∈ S is included in D with probability
1. In this case the conclusion is trivially satisfied. Next suppose S ∪ {j0} /∈ A. In this
case, Pr[A-success] = 0, and again the conclusion is trivially satisfied. So suppose S /∈ A,
S ∪ {j0} ∈ A, and condition on any value U0 = u. Then A-success occurs iff Xj0,1 = 1. By
Markov’s inequality, Pr[Xj0,1 = 1|U0 = u] ≤ E[Xj0,1|U0 = u] ≤ Xj0,0 ≤ pj0 = Pr[D ∈ A].
This proves the statement for N = 1.

So let N > 1 and assume the statement proved for {1, . . . , N − 1}; we prove it for N .
Condition on any value U0 = u, and condition further on the value Xj0,1 = a ∈ [0, 1]. The
equalitiesXj,1 = Xj,0 ≤ pj are forced for all j 6= j0; the residual collection of random variables
{Xj,t : j ∈ [k], 1 ≤ t ≤ N} ∪ {Ut : 1 ≤ t < N} under our conditioning obey Lemma 6.1’s
assumptions, along with our added assumption; and these sequences are shorter by a step
than our initial sequences. Thus our induction hypothesis implies that

Pr[A-success|U0 = u,Xj0,1 = a] ≤ Pr[D(a) ∈ A], (6.2)

where D(a) is generated just like D except that j0 is now included in D(a) with probability
a.

Let q0 := Pr[D \ {j0} ∈ A] and q1 := Pr[D ∪ {j0} ∈ A]. Note that q0 ≤ q1, since A is
monotone. We have

Pr[D(a) ∈ A] = (1− a)q0 + aq1.

Taking expectations over a in Eq. 6.2, Pr[A-success|U0 = u] is at most

(1− E[Xj0,1|U0 = u])q0 + E[Xj0,1|U0 = u] · q1

≤ (1− pj0)q0 + pj0q1

(since q0 ≤ q1 and E[Xj0,1|U0 = u] ≤ Xj0,0 ≤ pj0)

= Pr[D ∈ A].

As u was arbitrary, this extends the induction to N , and completes the proof.

6.2 Application to threshold DPTs

Now we prove our generalized threshold direct product theorem. Our theorem will be within
the framework of solving relation problems, a more general task than computing functions.
A relation (with Boolean domain) is a subset P ⊆ {0, 1}n × B, for some finite set B. The
relation is total if for all x ∈ {0, 1}n, there exists b ∈ B such that (x, b) ∈ P . For each total
relation P there is a natural computational problem: given an input x, try to output a b for
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which (x, b) ∈ P . Computing a function f : {0, 1}n → B is equivalent to solving the relation
problem for the total relation Pf := {(x, b) : f(x) = b}.

If R is a (possibly randomized) query algorithm producing outputs in B, P is a total
relation, and µ a distribution, say that R ε-solves P with respect to µ if Prx∼µ[(x,R(x)) ∈
P ] ≥ 1 − ε. Define SucrelT,µ(P ) := 1 − ε, where ε ≥ 0 is the minimum value for which some
T -query randomized algorithm R ε-solves P with respect to µ. As usual, this minimum
exists and is attained by a deterministic height-T decision tree. For a randomized algorithm
R making queries to k ≥ 1 inputs x = (x1, . . . , xk) to P and producing an output in Bk, let
Rj(x) ∈ B be the j-th value outputted by R.

Given A,A′ ⊆ [k], define the distance d(A,A′) := |(A \A′)∪ (A′ \A)|. Given a set family
A ⊆ P([k]), and a real number r > 0, define the strict r-neighborhood of A, denoted Nr(A),
as

Nr(A) := {A′ : d(A,A′) < r for some A ∈ A}.

We have A ⊆ Nr(A). Note also that if A is monotone then so is Nr(A). We can now state
our generalized threshold DPT:

Theorem 6.3. Fix a finite set B, and let P ⊆ {0, 1}n × B be a total relation for which
SucrelT,µ(P ) ≤ 1 − ε. Fixing any randomized algorithm R making queries to inputs x =
(x1, . . . ,xk) ∼ µ⊗k and producing output in Bk, define the (random) set

S[x] := {j ∈ [k] : (xj,Rj(x)) ∈ P}.

Suppose R is αεTk-query-bounded for some α ∈ (0, 1], and A is any monotone subset of
P([k]). Then:

1. Pr[S[x] ∈ A] ≤ |B|αεk · Pr[D ∈ A], where D ⊆ [k] is generated by independently
including each j ∈ [k] in D with probability 1− ε.

2. Also, for D as above, Pr[S[x] ∈ A] ≤ Pr[D ∈ Nαεk(A)].

Proof. As in Theorem 1.1, we may assume ε, T > 0, supp(µ) = {0, 1}n. We have ε ≤
1− |B|−1 < 1, since P is total and an algorithm may output a random element of B.

For u ∈ {0, 1, ∗}n with |u| ≤ T , let

WP (u) := SucrelT−|u|,µ(u)(P ).

ThenWP (u) ∈ [|B|−1, 1]. We have the following claim, whose proof follows that of Lemma 3.1:

Lemma 6.4. 1. WP (∗
n) ≤ 1− ε.

2. For any u ∈ {0, 1, ∗}n with |u| < T , and any i ∈ [n], Ey∼µ(u) [WP (u[xi ← yi])] ≤
WP (u).

Let R be αεTk-query-bounded; as in Theorem 1.1, we may assume R is deterministic,
so call it D instead. Let M := ⌊αεTk⌋ as before, and recall the random strings uj

t defined
in Theorem 1.1.
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Define random variables {Xj,t}j∈[k],0≤t≤M , determined by an execution of D on inputs

(x1, . . . ,xk) ∼ µ⊗k, by letting Xj,t := WP (u
j
t) if |u

j
t | ≤ T , otherwise Xj,t := |B|

−1. Next, the
natural idea is to apply Lemma 6.1. First, however, we need to extend the sequences for
one additional (non-query) step. That is, we will define random variables Xj,M+1 for each
j ∈ [k]. We will use X to denote the collection of enlarged sequences.

Our definition of Xj,M+1 depends on whether |uj
M | ≤ T , that is, on whether D made at

most T queries to xj on the current execution. If |uj
M | ≤ T , let Xj,M+1 := 1[(xj ,Dj(x))∈P ]

be the indicator variable for the event that D solves P on the j-th input. If |uj
M | > T , let

Xj,M+1 := 1 with probability |B|−1, and let Xj,M+1 := 0 with the remaining probability. We
let each such “coin-flip” be independent of the others and of (x1, . . . ,xk).

Define the collection U = {U0, . . . , UM} by Ut := (u1
t , . . . , u

k
t ). We argue that the condi-

tions of Lemma 6.1 are satisfied by (X ,U), with N := M + 1. First, for 0 ≤ t′ ≤ t ≤ M ,
the stated conditions follow from Lemma 3.2 and part 2 of Lemma 6.4. Now consider the
final, added step. Condition on any value of UM = (u1

M , . . . , uk
M). Lemma 3.2 tells us

that x1, . . . ,xk are independent under this conditioning, and D’s outputs are determined
by UM , so the variables {Xj,M+1} are independent conditioned on UM . If |uj

M | ≤ T then
E[Xj,M+1|UM ] ≤ Xj,M by part 2 of Lemma 6.4. If |uj

M | > T then E[Xj,M+1] = |B|
−1 = Xj,M .

Thus the assumptions of Lemma 6.1 are satisfied, with pj = Xj,0 ≤ 1 − ε. We conclude
that for any monotone C ⊆ P([k]),

Pr[{j ∈ [k] : Xj,N = 1} ∈ C] ≤ Pr[D ∈ C], (6.5)

where each j ∈ [k] is independently included in D with probability 1− ε.
To prove statement 1 of Theorem 6.3, let C := A. Note that S[x] and u1

M , . . . , uk
M are

determined by x, since D is deterministic. Condition on any value of x for which S[x] ∈ A.
Under this conditioning, if j ∈ [k] satisfies |uj

M | ≤ T and j ∈ S[x], then Xj,N = 1. On the
other hand, if |uj

M | > T , then [Xj,N = 1] holds with probability |B|−1, and these events are
independent for each such j. By the query bound on D, there are fewer than αεk indices j
in our conditioning for which |uj

M | > T . Thus,

Pr[{j ∈ [k] : Xj,N = 1} ∈ A|S[x] ∈ A] ≥ |B|−αεk,

which in combination with Eq. 6.5 implies

Pr[S[x] ∈ A] ≤ |B|αεk · Pr[D ∈ A],

as needed. To prove statement 2 of Theorem 6.3, let C := Nαεk(A) in Eq. 6.5: we find

Pr[{j ∈ [k] : Xj,N = 1} ∈ Nαεk(A)] ≤ Pr[D ∈ Nαεk(A)].

Arguing as above, S[x] \ {j ∈ [k] : Xj,N = 1} is always a set of size less than αεk, so
[S[x] ∈ A] implies [{j ∈ [k] : Xj,N = 1} ∈ Nαεk(A)]. Thus, we have Pr[S[x] ∈ A] ≤ Pr[D ∈
Nαεk(A)].
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Part 1 of Theorem 6.3 is a proper generalization of Theorem 1.1. To see this, just set
A := {[k]}, P := Pf , and note that in this case, Pr[D ∈ A] = (1− ε)k. As another dividend,
we obtain the following threshold DPT for relations, which specializes to an ordinary DPT
for this setting (statement 3 in the Theorem below).

Theorem 6.6. Let P ⊆ {0, 1}n×B be a total relation for which SucrelT,µ(P ) ≤ 1− ε. Fix any
η ∈ (0, 1]. For any randomized algorithm R making queries to inputs x = (x1, . . . ,xk) ∼ µ⊗k,
define the (random) set S[x] as in Theorem 6.3. Then if R is αεTk-query-bounded for
α ∈ (0, 1], we have:

1. Pr[|S[x]| ≥ ηk] ≤ |B|αεk · PrY∼Bk,1−ε
[Y ≥ ηk], and also

2. Pr[|S[x]| ≥ ηk] ≤ PrY∼Bk,1−ε
[Y ≥ (η − αε)k].

3. Pr[|S[x]| = [k]] is at most the minimum of |B|αεk(1−ε)k and PrY∼Bk,1−ε
[Y ≥ (1−αε)k].

If α ≤ 1/2 the second bound in the min is at most [1− ε+ 6α ln(1/α)ε]k.

Proof. Apply parts 1 and 2 of Theorem 6.3, with the choice A := {A ⊆ [k] : |A| ≥ ηk}.
We have Pr[D ∈ A] = Pr[D1 + . . . + Dk ≥ ηk], where we define Dj := 1[j∈D]. These
0/1-valued variables are independent with bias 1 − ε, which gives statement 1. Similarly,
Pr[D ∈ Nαεk(A)] = Pr[D1 + . . . + Dk ≥ (η − αε)k], which gives statement 2. Statement
3 simply combines statements 1 and 2, under the setting η = 1. For the final bound in
statement 3, we apply Lemma 2.2 with β := α, δ := ε.

Theorem 1.4 in the Introduction follows from the special case of Theorem 6.6 in which
P := Pf .

The success bound |B|αεk(1− ε)k appearing above can also be derived by an easy modi-
fication of the proof of Theorem 1.1, in which the condition Xj,t ≥ 1/2 we exploit becomes
Xj,t ≥ |B|

−1. When |B| is large, however, the alternative bound provided in Theorem 6.6
will tend to give better results.

Note that part 2 of Theorem 6.6, in conjunction with Chernoff inequalities, gives success
bounds which decay exponentially in k for any fixed α, ε, η for which η > 1−ε+αε. Shaltiel’s
examples, described in Section 4, show that this cutoff is nearly tight: on those functions,
the algorithm D described in Section 4 makes 2k + αεTk queries and (it is easily checked)
typically solves about (1− ε+ .5αε)k of the instances correctly.

Threshold DPTs for the worst-case setting can also be derived from Theorems 6.3 and
6.6, by the same reduction to the average-case setting used to prove Theorem 1.2.

6.3 Direct product theorems for learning tasks

Theorems 6.3 and 6.6 readily imply direct product theorems for the query complexity of
certain learning tasks, as we explain next. Consider the scenario in which a randomized
algorithm R is given query access to an unknown function h : {0, 1}n → {0, 1} drawn from
some distribution µ over a hypothesis class H. That is, for any string x, R can query the
value h(x). The algorithm R attempts to output a hypothesis h̃ which is “close” to h. That
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is, we fix some symmetric relation close ⊆ H × H (assume close(h, h) always holds), and
we wish to find some h̃ such that close(h, h̃) holds.

This task can be equivalently modeled as the relation problem associated with the total
relation

PH := {(h, h′) : h, h′ ∈ H ∧ close(h, h′)},

where h is given in truth-table form as a Boolean string, under the input distribution h ∼ µ.
(We don’t give a membership criterion for PH when h /∈ H; this is unimportant since
supp(µ) ⊆ H.)

In the k-fold learning problem associated with H, µ, the algorithm has query access to
each of k functions (h1, . . . , hk) ∼ µ⊗k, and the goal is to output guesses h̃1, . . . h̃k such that
close(hj, h̃j) holds for all (or at least “many”) indices j ∈ [k]. This task is equivalent to the
k-fold relation problem associated with PH, and Theorems 6.3 and 6.6 apply.

7 Proof of the XOR lemma

The proof of our XOR Lemma, Theorem 1.3 from the Introduction, is modeled on the proof
of our threshold DPTs, and reuses Lemma 6.1.

Proof of Theorem 1.3. As usual we first set up some preliminaries. For a deterministic al-
gorithm D over n input bits define

W⊕(u) := 2 · SucT−|u|,µ(u)(f)− 1.

Lemma 7.1. 1. W⊕(∗
n) ≤ 1− 2ε.

2. For any u ∈ {0, 1, ∗}n with |u| < T , and any i ∈ [n], Ey∼µ(u) [W⊕(u[xi ← yi])] ≤
W⊕(u).

Lemma 7.1 follows immediately from Lemma 3.1, since W⊕(u) = 2W (u)− 1.
Now we prove the Theorem. As in the proof of Theorem 1.1, we may assume ε, T >

0, supp(µ) = {0, 1}n, and it is enough to prove the success bound for each deterministic
αεTk-query algorithm D attempting to solve f⊕k(x1, . . . ,xk) on inputs x1, . . . ,xk ∼ µ⊗k.
Recall the definitions of uj

t (for j ∈ [k], 0 ≤ t ≤ M := ⌊αεTk⌋) from Theorem 1.1. For a
deterministic algorithm D define {Xj,t}j∈[k],0≤t≤M as follows: if |uj

t | ≤ T , set Xj,t := W⊕(u
t
j);

otherwise, set Xj,t := 0.
We will extend the random sequences {Xj,t} for one additional (non-query) step, and will

let X denote our enlarged collection. To set up our extension, we first define random variables
bj, rj , aj for j ∈ [k], determined by uj

M , as follows. Let bj ∈ {0, 1} be defined as the likeliest

value of f(y), where y ∼ µ(uj
M ) (break ties arbitrarily). Let rj := Pr[f(y) = bj] ∈ [1/2, 1],

where again y ∼ µ(uj
M ). Let aj := 2rj − 1 ∈ [0, 1].

If |uj
M | > T , set Xj,M+1 := 0. If instead |uj

M | ≤ T , our random process “inspects” the
actual value of the bit f(xj) to help determine Xj,M+1. If f(xj) 6= bj, let Xj,M+1 := 0. If
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f(xj) = bj, let Xj,M+1 := 1 with probability aj/rj, and Xj,M+1 := 0 with the remaining
probability, where this random decision is independent of all others. Thus in this case,

E[Xj,M+1|u
1
M , . . . , uk

M ] = rj · (aj/rj) = aj ≤ Xj,M ,

where the last inequality holds by the definition of W⊕(u
j
M) since |uj

M | ≤ T .
Let U = (U0, . . . , UM ), where Ut := (u1

t , . . . , u
k
t ). By an argument analogous to that in

the proof of Theorem 6.3, we verify that (X ,U) obey the assumptions of Lemma 6.1, this
time with pj := 1− 2ε. Applying Lemma 6.1 to A := {A ⊆ [k] : |A| > (1− αε)k}, we find

Pr[|{j : Xj,M+1 = 1}| > (1− αε)k] ≤ Pr[D ∈ A], (7.2)

where each j ∈ [k] is independently included in D with probability (1 − 2ε). We have
Pr[D ∈ A] = PrY∼Bk,1−2ε

[Y > (1− αε)k].
We analyze events F of form F := [UM = (u1

M , . . . , uk
M), X1,M+1 = z1, . . . , Xk,M+1 = zk].

Note that conditioning on F does not condition on the particular values f(xj) which helped
determine the values zj. Focus attention on any such event F for which |{j : Xj,M+1 = 1}| ≤
(1−αε)k. Since D makes at most αεTk queries, there are fewer than αεk indices j for which
|uj

M | > T . In particular, there exists a j⋆ ∈ [k] for which |uj⋆

M | ≤ T and Xj⋆,M+1 < 1 (so, by
our definitions, Xj⋆,M+1 = 0).

Now let the event F ′ be defined just like F , except that F ′ makes no conditioning on
Xj⋆,M+1 (so, F = F ′ ∧ [Xj⋆,M+1 = 0]). Then,

Pr[f(xj⋆) = bj⋆|F ] = Pr[f(xj⋆) = bj⋆ |F
′ ∧Xj⋆,M+1 = 0]

=
Pr[f(xj⋆) = bj⋆ ∧Xj⋆,M+1 = 0|F ′]

Pr[Xj⋆,M+1 = 0|F ′]

=
Pr[f(xj⋆) = bj⋆ |F

′] · Pr[Xj⋆,M+1 = 0|F ′, f(xj⋆) = bj⋆ ]
∑

b∈{0,1} Pr[f(x
j⋆) = b|F ′] · Pr[Xj⋆,M+1 = 0|F ′, f(xj⋆) = b]

=
rj⋆(1− aj⋆/rj⋆)

rj⋆(1− aj⋆/rj⋆) + (1− rj⋆) · 1

(using the fact that x1, . . . ,xk are independent conditioned on UM , by Lemma 3.2, and the
additional fact that {Xj,M+1}j∈[k] are independent conditioned on UM)

=
rj⋆ − aj⋆

1− aj⋆
=

1
2
(1 + aj⋆)− aj⋆

1− aj⋆
= 1/2.

Thus, f(xj⋆) is an unbiased random bit conditioned on F . Consequently, f⊕k(x1, . . . ,xk) =
f(xj⋆) ⊕ f⊕k−1(x1, . . . ,xj⋆−1,xj⋆+1, . . . ,xk) is an unbiased random bit conditioned on F .
Thus under this conditioning, D’s output bit equals the k-fold XOR with probability exactly
1/2. Now F was an arbitrary outcome of UM , X1,M+1, . . . , Xk,M+1 for which |{j : Xj,M+1 =
1}| ≤ (1− αε)k. It follows that

Pr
x∼µ⊗k

[D(x) = f⊕k(x)] ≤ Pr [|{j : Xj,M+1 = 1}| > (1− αε)k] +
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1

2
Pr [|{j : Xj,M+1 = 1}| ≤ (1− αε)k]

=
1

2
(1 + Pr [|{j : Xj,M+1 = 1}| > (1− αε)k])

≤
1

2

(

1 + Pr
Y∼Bk,1−2ε

[Y > (1− αε)k]

)

,

using Eq. 7.2.
Finally, to get the concrete bound claimed in statement of Theorem 1.3, first suppose

ε = 1/2; in this case the bound follows easily since Y = 0 with certainty. If ε < 1/2, note that
(1−αε)k = (1−(α/2)(2ε)), and apply Lemma 2.2 with δ := 2ε < 1 and β := α/2 ≤ 1/2.

8 Direct product theorems for search problems and

errorless heuristics

We define a fairly general notion of search problems in the query model for which a direct
product theorem can be proved. We will also obtain a DPT for errorless heuristics, defined
in Section 8.2.

8.1 Search problems

We need some preliminary definitions. Given u, v ∈ {0, 1, ∗}n, say that u and v agree if
ui ∈ {0, 1} implies vi ∈ {∗, ui}. Note that this definition is symmetric in u and v. If u, v
agree, define their overlay u ◦ v ∈ {0, 1, ∗}n by (u ◦ v)i := b ∈ {0, 1} if either ui = b or vi = b,
otherwise (u ◦ v)i := ∗. Say that u extends v if vi ∈ {0, 1} implies ui = vi.

Say we are given a distribution µ on {0, 1}n, and a (possibly randomized) query algorithm
R; if R runs on an input distributed according µ, we denote by UR,µ ∈ {0, 1, ∗}

n the random
string describing the input bits seen by R.

A search problem is defined by a subset V ⊆ {0, 1, ∗}n. We say that R ε-solves the search
problem V with respect to an input distribution µ over {0, 1}n if, with probability ≥ 1− ε,
UR,µ extends some v ∈ V . (We allow the possibility that some x ∈ supp(µ) do not extend
any v ∈ V .) Define SucT,µ(V ) := 1−ε, where ε is the minimal value such that some T -query
randomized algorithm ε-solves search problem V on inputs from µ.

Define the k-fold search problem V ⊗k := {(v1, . . . , vk) : vj ∈ V, ∀j ∈ [k]} ⊆ {0, 1, ∗}kn.
Thus to solve V ⊗k, an algorithm must solve each of the k constituent search problems. We
generalize this notion in order to state a threshold DPT, which will imply our ordinary DPT.
For a monotone subset A ⊆ P([k]), define

V k,A := {(v1, . . . , vk) : {j ∈ [k] : vj ∈ V } ∈ A}.

Thus to solve V k,A, an algorithm must solve “sufficiently many” of the k search problems,
as specified by A.

Recall the notation Nr(·) from Section 6. Our generalized threshold DPT for search
problems is as follows:
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Theorem 8.1. Suppose the search problem V satisfies SucT,µ(V ) ≤ 1 − ε. Then for any
α ∈ (0, 1] and any monotone A ⊆ P([k]),

SucαεTk,µ⊗k(V k,A) ≤ Pr[D ∈ Nαεk(A)],

where each j ∈ [k] is independently included in D with probability 1− ε.

Proof. In the search setting, ε can potentially be any value in [0, 1]. The boundary cases are
trivial, so assume 0 < ε < 1. As usual, we can assume that T > 0 and supp(µ) = {0, 1}n,
and it is enough to bound the success probability of any deterministic αεTk-query algorithm.

Following Theorem 1.1, we first develop some concepts related to a computation on
a single input to the search problem V . For each u ∈ {0, 1, ∗}n for which |u| ≤ T , let
ValV (u) := 1 if u extends some v ∈ V , otherwise ValV (u) := 0. For a deterministic query
algorithm D let WV (u,D) := E[Val(u ◦ UD,µ(u))]. (Note that u and UD,µ(u) always agree.)

If |u| ≤ T , let WV (u) := maxD(WV (u,D)), where the maximum ranges over all deter-
ministic algorithms making at most T − |u| queries. In other words, WV (u) is the maximum
success probability of any (T −|u|)-query algorithm in solving V on an input y ∼ µ(u), where
we reveal the bits described by u “for free” to the algorithm. Then we have:

Lemma 8.2. 1. WV (∗
n) ≤ 1− ε.

2. For any u ∈ {0, 1, ∗}n with |u| < T , and any i ∈ [n], Ey∼µ(u) [WV (u[xi ← yi])] ≤
WV (u).

We omit the proof, which is essentially the same as that of Lemma 3.1.
Let D be any deterministic algorithm making at most M := ⌊αεTk⌋ queries and attempt-

ing to compute V k,A on inputs drawn as (x1, . . . ,xk) ∼ µ⊗k. For 0 ≤ t ≤M , and for j ∈ [k],
let uj

t be defined as in the previous proofs. Let X = {Xj,t}j∈[k],0≤t≤M , where Xj,t := WV (u
j
t)

if |uj
t | ≤ T , otherwise Xj,t := 0.
Unlike in Theorem 6.3, we have no need to add any additional steps to our random

sequences. For 0 ≤ t < M , we let Ut := (u1
t , . . . , u

k
t ) just as before. Setting N := M and

reasoning as in Theorem 6.3, we verify that the assumptions of Lemma 6.1 are satisfied, with
pj = Xj,0 ≤ 1− ε (Lemma 8.2, part 1).

Applying Lemma 6.1 to the monotone set Nαεk(A), we conclude that

Pr[{j ∈ [k] : Xj,M = 1} ∈ Nαεk(A)] ≤ Pr[D ∈ Nαεk(A)], (8.3)

where each j ∈ [k] is independently included in D with probability 1− ε.
Now condition on any execution of D, and consider any j ∈ [k] such that Xj,M < 1. By

our definitions, at least one of two possibilities holds: either |uj
M | > T (there are fewer than

αεk such indices j), or uj
M does not extend any v ∈ V . Thus if D solves the search problem

V k,A on the present execution, we have {j ∈ [k] : Xj,M = 1} ∈ Nαεk(A). Combining this
with Eq. 8.3 yields the Theorem.

From Theorem 8.1, we will directly obtain a standard threshold DPT and an ordinary
DPT for search problems. First, given a search problem V ⊆ {0, 1, ∗}n and a real number
s ∈ [0, k], define C[≥ s] := {A ⊆ [k] : |A| ≥ s}.
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Theorem 8.4. Suppose SucT,µ(V ) ≤ 1− ε. Then for any α ∈ (0, 1] and any η ∈ (0, 1],

SucαεTk,µ⊗k(V k,C[≥ηk]) ≤ Pr
Y∼Bk,1−ε

[Y > (η − αε)k] .

Proof. Apply Theorem 8.1 with C := C[≥ ηk], and note that D ∈ Nαεk (C[≥ ηk]) iff |D| >
ηk − αεk, which is equivalent to [D1 + . . .+Dk > (η − αε)k], where Dj := 1[j∈D]. These
indicator variables are independent with expectation 1− ε.

Theorem 8.5. Suppose SucT,µ(V ) ≤ 1− ε. Then for any α ∈ (0, 1],

SucαεTk,µ⊗k(V ⊗k) ≤ Pr
Y∼Bk,1−ε

[Y > (1− αε)k] .

Proof. Note that V ⊗k = V k,C[≥k], so the result follows from Theorem 8.4 with η := 1.

8.2 Errorless heuristics

An errorless heuristic for a (not necessarily Boolean) function f is a randomized query algo-
rithm R outputting values in {0, 1, ?} such that for all x, R(x) ∈ {f(x), ?} with probability
1. We say that an errorless heuristic R ε-solves f with zero error with respect to input
distribution µ if Prx∼µ[R(x) = f(x)] ≥ 1−ε. Let Suc0-errT,µ (f) := 1−ε, where ε is the minimal
value such that some T -query errorless heuristic ε-solves f with zero error with respect to
µ. Note that Suc0-errT,µ (f) is exactly SucT,µ(Vf ), where the search problem Vf is defined as

Vf := {u ∈ {0, 1, ∗}n : u forces the value of f}.

Also, note that Vf⊗k = V ⊗kf . Thus the following result is immediately implied by Theo-
rem 8.5:

Theorem 8.6. Suppose Suc0-errT,µ (f) ≤ 1− ε. Then for α ∈ (0, 1],

Suc0-errαεTk,µ⊗k(f
⊗k) ≤ Pr

Y∼Bk,1−ε

[Y > (1− αε)k] .

Let us revisit the XOR problem in the current setting. It is easy to see that an errorless
heuristic to compute the k-fold XOR f⊕k, on inputs drawn from a product distribution,
cannot produce any output other than “ ? ” unless its queries allow it to determine the value
of f⊗k. Thus Theorem 8.6 also implies an XOR lemma with the same success bound for
errorless heuristics.

Next we prove a worst-case analogue of Theorem 8.6. Define R0(f), the zero-error ran-
domized query complexity of f , as the minimum T for which some algorithm R outputs f(x)
with probability 1 for each x, and for which the expected number of queries made by R to
any input is at most T . The following is another variant of Yao’s minimax principle [Yao77];
we include a proof for completeness.

Lemma 8.7. Let η ∈ (0, 1]. There exists a distribution µη over inputs to f , such that
Suc0-errηR0(f),µη

(f) ≤ η.
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Proof. Consider the following 2-player game: player 1 chooses a (possibly randomized) er-
rorless heuristic R for f which makes at most ηR0(f) queries, and player 2 chooses (simulta-
neously) an input x to f . Player 1 wins if R(x) = f(x). We claim there exists a randomized
strategy for player 2, that is, a distribution µ =: µη over inputs to x, that beats any strategy
of player 1 with probability at least 1− η. This will prove the Lemma.

To prove the claim, suppose for contradiction’s sake that no such strategy for player
2 exists. Then, by the minimax theorem, there exists a randomized strategy for player 1
which wins with probability greater than η against all choices of x. This strategy is itself a
randomized algorithm making at most ηR0(f) queries; let us call this algorithm R. Consider
the algorithmR′ for f that on input x, repeatedly appliesR to x untilR produces an output,
which R′ then outputs. We have R′(x) = f(x) on every input. Also, the expected number
of queries of R′ on any input is strictly less than

∑

m≥1

(1− η)m−1η (m · ηR0(f)) =

(

∑

m≥1

(1− η)m−1m

)

· η2R0(f)

=
1

η2
· η2R0(f)

= R0(f),

contradicting the definition of R0(f).

Theorem 8.8. For any (not necessarily Boolean) function f , and α ∈ (0, 1/2], any errorless
heuristic for f⊗k using at most α2R0(f)k/4 queries has worst-case success probability less
than (7α ln(1/α))k.

Proof. Set γ := α/2. Let µγ be the distribution given by Lemma 8.7, so that Suc0-errγR0(f),µγ
(f) ≤

γ. By Theorem 8.6 applied to α, with T := γR0(f) and ε := 1− γ,

Suc0-err
α(1−γ)γR0(f)k,µ

⊗k
δ

(f⊗k) ≤ Pr
Y∼Bk,γ

[Y > (1− α(1− γ))k] .

We have α2R0(f)k/4 ≤ α(1− γ)γR0(f)k (using γ ≤ 1/2), so that

Suc0-err
α2R0(f)k/4,µ

⊗k
γ
(f⊗k) ≤ Pr

Y∼Bk,γ

[Y > (1− α(1− γ))k]

< [1− (1− γ) + 6α ln(1/α)(1− γ))]k

(applying Lemma 2.2, with β := α ≤ 1/2 and δ := (1− γ))

< (α/2 + 6α ln(1/α))k

< (7α ln(1/α))k .
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9 A direct product theorem for decision tree size

We measure the size of a decision tree D, denoted size(D), as the number of leaf (output)
vertices. Note that this is at least 1/2 the total number of vertices. Define SucsizeT,µ(f) as
the maximum success probability of any size-T decision tree attempting to compute f on
an input drawn from distribution µ. We have the following DPT for size-bounded query
algorithms:

Theorem 9.1. Let f be a Boolean function. Suppose SucsizeT,µ(f) ≤ 1−ε. Then for 0 < α ≤ 1,

SucsizeTαεk,µ⊗k(f⊗k) ≤ 2αεk(1− ε)k.

Note how the size bound grows exponentially, rather than linearly, in k in the above
statement. It is natural to expect such a statement, since the k-fold application of a size-T
decision tree is described by a size-T k decision tree. Also note that, by convexity, Theorem 9.1
also bounds the success probability of any “randomized size-T αεk algorithm” R, i.e., of any
probability distribution over size-T αεk decision trees.

Proof. The proof follows that of Theorem 1.1, except that we need a new way to quantify
the resources used by each of the k inputs. First we develop some definitions pertaining to
a single input to f . Given u ∈ {0, 1, ∗}n and a real number Z ∈ [1, T ], let

Wsize(u, Z) := SucsizeZ,µ(u)(f).

Lemma 9.2. 1. Wsize(∗
n, T ) ≤ 1− ε.

2. Take any real numbers S(0), S(1) ≥ 1 and let S := S(0) + S(1). Then for any u ∈
{0, 1, ∗}n and any i ∈ [n],

Ey∼µ(u) [Wsize(u[xi ← yi], S
(yi))] ≤ Wsize(u, S).

The proof is very similar to that of Lemma 3.1, and is omitted.
Now let D be any deterministic algorithm of size at most T αεk attempting to compute

f⊗k on input strings x = (x1, . . . ,xk) ∼ µ⊗k. Let M := ⌊T αεk⌋; D always makes at most M
queries.

As in previous proofs, for j ∈ [k] and 0 ≤ t ≤M , let uj
t ∈ {0, 1, ∗}

n describe the outcomes
of all queries made to xj after D has taken t steps (here a “step” consists of a query, unless
D has halted, in which case a step has no effect).

Let St be defined as the size (number of leaf vertices) of the subtree of D reached after t
steps have been taken. Thus we have S0 ≤ T αεk, and St = 1 iff D has halted after at most t
queries. For each j ∈ [k], we define a sequence Zj,0, . . . , Zj,M , as follows. Let Zj,0 := T . For
0 ≤ t < M , if D has halted after t steps, let Zj,t+1 := Zj,t. Otherwise, if the (t+ 1)-st query
made by D is not to xj, we again let Zj,t+1 := Zj,t. If the (t+ 1)-st query is to xj, let

Zj,t+1 :=
St+1

St

· Zj,t.
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Let Xj,t := Wsize(u
t
j, Zj,t) if Zj,t ≥ 1; otherwise let Xj,t := 1/2. Let Pt :=

∏

j∈[k]Xj,t.

Arguing as in Theorem 1.1, for each 0 ≤ t < M , E[Pt+1] ≤ E[Pt]. It follows that E[PM ] ≤
E[P0] = Wsize(∗

n, T )k ≤ (1− ε)k.
Condition on any complete execution of D, as described by u1

M , . . . , uk
M . Notice that

if Zj,M ≥ 1, then (by the definitions) Xj,M is an upper bound on the conditional success
probability of guessing f(xj) correctly. Also, Xj,t ≥ 1/2 for all j, t, and all inputs are
independent after our conditioning. Thus the conditional success probability of computing
f⊗k(x) is at most 2|B| · PM , where we define the (random) set B := {j ∈ [k] : Zj,M < 1}.

Observe that SM = 1, since the algorithm halts after at most M steps. Then,

1 = SM =

(

S1

S0

)

· . . . ·

(

SM

SM−1

)

· S0

≤

(

∏

j∈[k] Zj,M

T k

)

· T αεk

≤ T−|B| · T αεk.

Thus, |B| ≤ αεk always. So the overall success probability is at most E[2|B|PM ] ≤ 2αεkE[PM ] ≤
(2αε(1− ε))k.

One can also prove variants of our XOR lemma and other results in which we impose
bounds on decision tree size rather than number of queries. We omit the details.

10 DPTs for dynamic interaction

So far, all of the computational tasks we have studied have involved algorithms querying
a collection of fixed input strings. However, in many situations in computer science it is
natural to consider more general problems of interaction with dynamic, stateful entities.
An algorithm can still “query” these entities, but these actions may influence the outcomes
of future queries. In this section we describe how our proof methods can yield DPTs for
these more general problems. The methods involved are essentially the same as in previous
sections, and the theorem we give is just one example of the kind of DPT we can prove for
dynamic interaction, so we will only sketch the proofs here, indicating the novel elements.

We will propose a self-contained model of dynamic interaction. We make no claims of
conceptual novelty for this model, however. Dynamic interaction has been an important
concept for cryptography; in this context, [Mau02] proposed a model of random systems
that generalizes our model. All of our work in this section could in principle be carried
out in the random systems framework; we choose to use a different model that is somewhat
simpler and adequate to our needs, and that preserves a clear resemblance to our work in
previous sections.

Much of the work in the random systems framework studies various kinds of composition
of random systems; this work aims to understand how cryptographic primitives can be com-
bined into more complex protocols. In this vein, [MPR07] proved a result (see their Lemma
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6) that can be informally described as follows: if an agent is playing games with two or
more independent, non-communicating entities, then the maximum joint-success probability
is achieved by following independent strategies on the different games. This result estab-
lishes an “ideal” direct product property for interaction tasks with k independent entities,
in which the number of queries to each entity is fixed in advance. By contrast, our focus will
be on proving DPTs for query algorithms that can adaptively reallocate queries between the
k entities.

Now we formally define the type of entity with which our query algorithms interact.
Define an interactive automaton (IA) as a 5-tuple

M = (seeds, states,queries, R,∆), where:

• seeds, states,queries are each finite sets, and states contains a distinguished start
state s0;

• R : seeds× states×queries→ {0, 1} is a response mapping ;

• ∆ : seeds× states×queries→ states is a transition mapping.

These automata are deterministic, but we can incorporate randomness by providing random
bits as part of seeds.

We consider the scenario in whichM is initialized to some seed z ∈ seeds according to a
distribution µ, along with the start-state s0. The automaton retains the value z throughout
an interaction with a query algorithm R (which does not know the value z), but changes its
state-value. If R selects the query q ∈ Q whileM has internal state (z, s) ∈ seeds× states,
thenM returns the value R(z, s, q) to R and transitions to the state (z,∆(z, s, q)).7

There are several kinds of tasks one can associate with an IA. One such task for the
query algorithm R is to try to output a value b ∈ B that satisfies some predicate P (z, b),
where z is the seed toM and P ⊆ seeds×B is a total relation over seeds and a finite set
B. This, of course, is a generalization of the relation problems we studied in Section 6, and
it is natural to study the k-fold setting, in which R interacts with k IAs, querying one of
them at each step. We assume that each IA only updates its state or sends a response to R
when it is queried. In particular, the IAs do not communicate with each other.

We can transform the IA interaction scenario into an equivalent one which highlights the
similarity with the standard query model, and makes it easy to apply our previous work to
obtain a DPT. For simplicity assume | seeds | = 2m. Given an IAM and an integer N > 0,
for each z ∈ seeds we define a string ξ(z) ∈ {0, 1}m+(|queries |+1)N . There are two types of
entries in this string. First there are m “ID” entries, which simply contain a binary encoding
of z. Next there are (|queries | + 1)N “response” entries, with each such entry indexed by
an N -tuple q = (q1, . . . , qN) ∈ (queries∪ {∗})N . We are only interested in response-entries

7We can now sketch the modeling differences between our work and [Mau02]. Maurer’s “random sys-
tems” are modeled as inherently randomized; they may or may not be finite-state machines; and they are
specified “behaviorally” by their conditional distributions over query responses, conditioned on all possible
conversation transcripts.
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of form q = (q1, . . . , qr, ∗, ∗, . . . , ∗), where q1, . . . , qr ∈ queries. For such an entry we define
ξ(z)q ∈ {0, 1} as the result of the following experiment: initialize M to state (z, s0), and
perform the interaction in which a query algorithm asks queries q1, . . . , qr in that order. Let
ξ(z)q be the final, r-th response made byM.

Define a total relation Pξ ⊆ {0, 1}
m+(|queries |+1)N × B by

Pξ := {(ξ(z), b) : z ∈ seeds∧ P (z, b)}.

Also, given a distribution µ over seeds, define µξ ∼ ξ(z), where z ∼ µ. In this way we
map an IA interaction task onto a relation problem of the type studied in Section 6, with a
corresponding map from initialization distributions to input distributions.

A standard query algorithm R (as studied in all previous sections) can faithfully simulate
an interaction with M initialized to an unknown z ∈ seeds, if given query access to ξ(z).
This works in the natural way: if its simulated queries up to the r-th step are q1, . . . , qr,
then for its r-th query to ξ(z), R looks at the entry (q1, . . . , qr, ∗, ∗, . . . , ∗) to learn M’s
r-th response. Call an algorithm “interaction-faithful” if its sequence of queries to any input
string always obeys this format.

Of course, not all algorithms are interaction-faithful. For example, an unfaithful algo-
rithm could simply look at the ID-entries to learn z. Thus the relation problem (Pξ, µξ)
can be much easier than the IA interaction problem defined by (M, P, µ). However, if we
restrict attention to the class of interaction-faithful algorithms R, then it is not hard to
see that there is an exact correspondence between the “difficulty” of the two problems, at
least for interactions lasting at most N steps. That is, for T ≤ N , there is a T -query
IA-interaction algorithm for (M, P, µ) with success probability p, if and only if there is a
T -query interaction-faithful standard algorithm for (Pξ, µξ) with success probability p.

The good news is that we can prove a DPT for interaction-faithful query algorithms in
almost exactly the same way as for unrestricted query algorithms. In fact, it’s most natural
to prove a DPT for a more general notion of faithfulness, which we define next. Say we are
given n > 0 and a map τ : {0, 1, ∗}n → {0, 1}n, called a query-restriction map. Say that
a (standard) query algorithm R on n input bits is τ -faithful if for every execution of R on
any input, whenever the input bits seen by R seen so far are given by u ∈ {0, 1, ∗}n, then
R either halts, or chooses a next input bit xi to query whose index satisfies τ(u)i = 1. In
other words, a restriction map τ restricts the possible next queries which can be made by a
τ -faithful algorithm, in a way that depends only on the description u of the bits seen so far.
Note that interaction-faithfulness as defined earlier is indeed equivalent to τ -faithfulness for
an appropriately-defined τ = τint.

For k > 1, define the k-fold product of restriction map τ , denoted τ⊗k : {0, 1}kn →
{0, 1}kn, by τ⊗k(u1, . . . , uk) := (τ(u1), . . . , τ(uk)). The map τ⊗k can be interpreted as a
restriction map for algorithms making queries to a collection x1, . . . , xk of n-bit strings. Note
that R is τ⊗k-faithful exactly if for each j ∈ [k], R’s queries to the j-th input (considered
alone) are always τ -faithful. Thus, the k-fold IA interaction problem defined by (M, P, µ)
has “difficulty” equivalent to the k-fold relation problem defined by (Pξ, µξ) for τ

⊗k
int -faithful

algorithms, provided N is chosen large enough in the definition of ξ(·) (relative to the query
bounds we are interested in).
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In light of these observations, a DPT for IA interaction algorithms follows by straight-
forward translation from the following DPT (generalizing Theorem 6.3) for standard query
algorithms obeying a restriction map:

Theorem 10.1. Let P ⊆ {0, 1}n × B be a total relation such that any T -query, τ -faithful
algorithm solves P with probability at most 1− ε under input distribution µ.

For any algorithm R making queries to inputs x = (x1, . . . ,xk) ∼ µ⊗k and producing
output in Bk, define the random set S[x] as in Theorem 6.3.

Suppose R is τ⊗k-faithful and αεTk-query-bounded for some α ∈ (0, 1], and A is any
monotone subset of P([k]). Then conclusions 1 and 2 in Theorem 6.3 also hold for R.

Proof. (Sketch) The proof follows that of Theorem 6.3; we only describe the differences. For
u ∈ {0, 1, ∗}n, and for a deterministic algorithm D on n input bits, let

WP (u,D) := Pr
y∼µ(u)

[(y,D(y)) ∈ P ].

Let us say that D is u-inducing if, on any input x ∈ {0, 1}n which extends8 u, the outcome
of D’s first |u| queries to x are described by u.

If |u| ≤ T , define WP,τ (u) := maxDWP (u,D), where the max ranges over all determinis-
tic, u-inducing, τ -faithful algorithms D making at most T queries. We have:

Lemma 10.2. 1. WP,τ (∗
n) ≤ 1− ε.

2. For any u ∈ {0, 1, ∗}n with |u| < T , and any i ∈ [n] satisfying τ(u)i = 1, we have

Ey∼µ(u) [WP,τ (u[xi ← yi])] ≤ WP,τ (u).

The proof of Lemma 10.2 follows that of Lemma 3.1. The rest of the proof of Theorem 10.1
follows that of Theorem 6.3, with WP,τ (u) taking the place of WP (u).

One can also prove a DPT for search problems for τ -faithful query algorithms, along the
lines of Theorem 8.1. When applied to interactive automata via the translation described
earlier, search problems correspond to tasks whose success conditions are defined in terms
of the interaction itself (rather than the hidden seed of the IA, or any output produced by
the query algorithm).

11 Questions for future work

1. Can the bounds in our threshold DPTs and XOR lemma be improved? For example, in

Theorem 1.3, can one improve the success probability bound to 1
2

(

1 + [1− 2ε+O (αε)]k
)

?

8(as defined in Section 8.1)
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2. It is still unknown what worst-case success probability in computing f⊗k can be
achieved in general, when the number of queries allowed is αR2(f)k for α ≫ 1. The
corresponding question in the quantum query model was settled by [BNRdW07]. As
mentioned earlier, O(R2(f)k log k) queries always suffice to compute f⊗k with high
success probability; work of [FRPU94] implies that we cannot do better than this by
using a bounded-error randomized algorithm for f in a black-box fashion.

3. Can ideas from our work be helpful in obtaining new results in other computational
models? For example, [LR11] prove a threshold DPT for quantum query algorithms
computing Boolean functions, where the query bound scales as Ω(Q2(f)k). Can we
extend this to a generalized threshold DPT, analogous to our Theorem 6.3?

Acknowledgements

I thank Ronald de Wolf for numerous helpful comments, and in particular for encouraging
me to look at threshold DPTs. I also thank the anonymous reviewers.

References
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