
A Lower Bound for the Pigeonhole Principle in Tree-like

Resolution by Asymmetric Prover-Delayer Games

Olaf Beyersdorff 1 ∗ Nicola Galesi 2 † Massimo Lauria 2

1 Institut für Theoretische Informatik, Leibniz Universität Hannover, Germany
2 Dipartimento di Informatica, Sapienza Università di Roma, Italy

Abstract

In this note we show that the asymmetric Prover-Delayer game developed in [3] for
Parameterized Resolution is also applicable to other tree-like proof systems. In particular,
we use this asymmetric Prover-Delayer game to show a lower bound of the form 2Ω(n log n)

for the pigeonhole principle in tree-like Resolution. This gives a new and simpler proof of
the same lower bound established by Dantchev and Riis [5].

1 Introduction

Proving lower bounds by games is a very fruitful technique in proof complexity [1, 8–10]. In
particular, the Prover-Delayer game of Pudlák and Impagliazzo [10] is one of the canonical tools
to study lower bounds in tree-like Resolution [2,10] and tree-like Res(k) [6]. The Prover-Delayer
game of Pudlák and Impagliazzo arises from the well-known fact [7] that a tree-like Resolution
proof for a formula F can be viewed as a decision tree which solves the search problem of finding
a clause of F falsified by a given assignment. In the game, Prover queries a variable and Delayer
either gives it a value or leaves the decision to Prover and receives one point. The number of
Delayer’s points at the end of the game is then proportional to the height of the proof tree.
It is easy to argue that showing lower bounds by this game only works if (the graph of) every
tree-like Resolution refutation contains a balanced sub-tree as a minor, and the height of that
sub-tree then gives the size lower bound.

In [3] we developed a new asymmetric Prover-Delayer game which extends the game of
Pudlák and Impagliazzo to make it applicable to obtain lower bounds to tree-like proofs when
the proof trees are very unbalanced. In [3] we used the new asymmetric game to obtain lower
bounds in tree-like Parameterized Resolution, a proof system in the context of parameterized
proof complexity recently introduced by Dantchev, Martin, and Szeider [4]. The lower bounds
we obtain in [3] for tree-like Parameterized Resolution are of the form Ω(nk) (n is the formula
size and k the parameter), but the tree-like Parameterized Resolution refutations of the formulas
in question only contain balanced sub-trees of height k.

The aim of this note is to show that the asymmetric Prover-Delayer game is also applicable
to other (non-parameterized) tree-like proof systems. One of the best studied principles is the
pigeonhole principle. Dantchev and Riis [5] show that the pigeonhole principle requires tree-
like Resolution refutations of size roughly n! while its tree-like Resolution proofs only contain

∗This work was done while the first author was visiting Sapienza University of Rome under support of DFG
grant KO 1053/5–2.
†Supported by grant “Limiti di compressione in combinatoria e complessità computazionale” by Sapienza

University Rome.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 81 (2010)

balanced sub-trees of height n. Therefore the game of Pudlák and Impagliazzo only yields a
2Ω(n) lower bound which is weaker than the optimal bound 2Ω(n logn) established by Dantchev
and Riis. Here we provide a new and easier proof of this lower bound by our asymmetric
Prover-Delayer game.

2 Preliminaries

A literal is a positive or negated propositional variable and a clause is a set of literals. A clause
is interpreted as the disjunctions of its literals and a set of clauses as the conjunction of the
clauses. Hence clause sets correspond to formulas in CNF. The Resolution system is a refutation
system for the set of all unsatisfiable CNF. Resolution uses as its only rule the Resolution rule

{x} ∪ C {¬x} ∪D
C ∪D

for clauses C,D and a variable x. The aim in Resolution is to demonstrate unsatisfiability of a
clause set by deriving the empty clause. If in a derivation every derived clause is used at most
once as a prerequisite of the Resolution rule, then the derivation is called tree-like, otherwise it
is dag-like. The size of a Resolution proof is the number of its clauses. Undoubtedly, Resolution
is the most studied and best-understood propositional proof system (cf. [11]).

It is well known (cf. [7]) that a tree-like refutation of F can equivalently be described as
a boolean decision tree. A boolean decision tree for F is a binary tree where inner nodes are
labeled with variables from F and leafs are labeled with clauses from F . Each path in the tree
corresponds to a partial assignment where a variable x gets value 0 or 1 according to whether
the path branches left or right at the node labeled with x. The condition on the decision tree is
that each path � must lead to a clause which is falsified by the assignment corresponding to �.
Therefore, a boolean decision tree solves the search problem for F which, given an assignment �,
asks for a clause from F falsified by �. It is easy to verify that each tree-like Resolution refutation
of F yields a boolean decision tree for F and vice versa, where the size of the Resolution proof
equals the number of nodes in the decision tree. In the sequel, we will therefore concentrate on
boolean decision trees to prove our lower bound to tree-like Resolution.

3 Tree-like Lower Bounds via Asymmetric Prover-Delayer Games

We review the asymmetric Prover-Delayer game from [3]. Let F be a set of clauses in n
variables x1, . . . , xn. In the asymmetric game, Prover and Delayer build a (partial) assignment
to x1, . . . , xn. The game is over as soon as the partial assignment falsifies a clause from F .
The game proceeds in rounds. In each round, Prover suggests a variable xi, and Delayer either
chooses a value 0 or 1 for xi or leaves the choice to the Prover. In this last case, if the Prover
sets the value, then the Delayer gets some points. The number of points Delayer earns depends
on the variable xi, the assignment � constructed so far in the game, and two functions c0(xi, �)
and c1(xi, �). More precisely, the number of points that Delayer will get is

0 if Delayer chooses the value,
log c0(xi, �) if Prover sets xi to 0, and
log c1(xi, �) if Prover sets xi to 1.

Moreover, the functions c0(x, �) and c1(x, �) are chosen in such a way that for each variable x
and assignment �

1

c0(x, �)
+

1

c1(x, �)
= 1 (1)

2

holds. Let us call this game the (c0, c1)-game on F .
The connection of this game to size of proofs in tree-like Resolution is given by Theorem 1.

The theorem is essentially contained in [3], but for completeness we include the full proof.

Theorem 1 ([3]). Let F be unsatisfiable formula in CNF and let c0 and c1 be two functions
satisfying (1) for all partial assignments � to the variables of F . If F has a tree-like Resolution
refutation of size at most S, then the Delayer gets at most logS points in each (c0, c1)-game
played on F .

Proof. Let F be an unsatisfiable CNF in variables x1, . . . , xn and let Π be a tree-like Resolution
refutation of F . Assume now that Prover and Delayer play a game on F where they successively
construct an assignment �. Let �i be the partial assignment constructed after i rounds of the
game, i. e., �i assigns i variables a value 0 or 1. By pi we denote the number of points that
Delayer has earned after i rounds, and by Π�i we denote the sub-tree of the decision tree of Π
which has as its root the node reached in Π along the path specified by �i.

We use induction on the number of rounds in the game to prove the following claim:

∣Π�i ∣ ≤
∣Π∣
2pi

for any round i.

To see that the theorem follows from this claim, let � be an assignment constructed during the
game yielding p� points to the Delayer. As a contradiction has been reached in the game, the
size of Π� is 1, and therefore by the inductive claim

1 ≤ ∣Π∣
2p�

,

yielding p� ≤ log ∣Π∣ as desired.
In the beginning of the game, Π�0 is the full tree and the Delayer has 0 points. Therefore

the claim holds.
For the inductive step, assume that the claim holds after i rounds and Prover asks for a

value of the variable x in round i+1. If the Delayer chooses the value, then pi+1 = pi and hence

∣Π�i+1 ∣ ≤ ∣Π�i ∣ ≤
∣Π∣
2pi

=
∣Π∣

2pi+1
.

If the Delayer defers the choice to the Prover, then the Prover uses the following strategy to set
the value of x. Let �x=0

i be the assignment extending �i by setting x to 0, and let �x=1
i be the

assignment extending �i by setting x to 1. Now, Prover sets x = 0 if ∣Π�x=0
i
∣ ≤ 1

c0(x,�i)
∣Π�i ∣,

otherwise he sets x = 1. Because 1
c0(x,�i)

+ 1
c1(x,�i)

= 1, we know that if Prover sets x = 1, then

∣Π�x=1
i
∣ ≤ 1

c1(x,�i)
∣Π�i ∣. Thus, if Prover’s choice is x = j with j ∈ {0, 1}, then we get

∣Π�i+1 ∣ = ∣Π�x=ji
∣ ≤ ∣Π�i ∣

cj(x, �i)
≤ ∣Π∣
cj(x, �i)2pi

=
∣Π∣

2pi+log cj(x,�i)
=
∣Π∣

2pi+1
.

This completes the proof of the induction.

As remarked in [3] we get the game of Pudlák and Impagliazzo [10] by setting c0(x, �) =
c1(x, �) = 2 for all variables x and partial assignments �.

3

4 Tree-like Resolution Lower Bounds for the Pigeonhole Prin-
ciple

The weak pigeonhole principle PHPm
n with m > n uses variables xi,j with i ∈ [m] and j ∈ [n],

indicating that pigeon i goes into hole j. PHPm
n consists of the clauses⋁

j∈[n]

xi,j for all pigeons i ∈ [m]

and ¬xi1,j ∨¬xi2,j for all choices of distinct pigeons i1, i2 ∈ [m] and holes j ∈ [n]. We prove that
PHPm

n is hard for tree-like Resolution. Showing the lower bound by the asymmetric game from
the last section, requires a suitable choice of the functions c0 and c1 and then the definition of
the Delayer-strategy for the (c0, c1)-game.

Theorem 2. Any tree-like Resolution refutation of PHPm
n has size 2Ω(n logn).

Proof. Let � be a partial assignment to the variables {xi,j ∣ i ∈ [m], j ∈ [n] }. Let

pi(�) = ∣{ j ∈ [n] ∣ �(xi,j) = 0 and �(xi′,j) ∕= 1 for all i′ ∈ [m] }∣ .

Intuitively, pi(�) corresponds to the number of holes which are still free but are explicitely
excluded for pigeon i by � (we do not count the holes which are excluded because some other
pigeon is sitting there). We define

c0(xi,j , �) =
n
2 + 1− pi(�)
n
2 − pi(�)

and c1(xi,j , �) = n
2 + 1− pi(�) .

For simplicity we assume that n is divisible by 2. During the game it will never be the case
that Prover gets the choice when pi(�) ≥ n

2 . Therefore the functions c0 and c1 are always
greater than zero when the Delayer gets points, thus the score function is always well defined.
Furthermore notice that this definition satisfies (1).

Let us try to provide an intuitive explanation of why we choose the functions c0 and c1 and
thus the points for Delayer as above. As a first observation, Delayer always earns more when
Prover is setting a variable xi,j to 1 instead of setting it to 0. This is intuitively correct as
the amount of freedom for Delayer to continue the game is by far more diminished by sending
pigeon i to some hole j than by just excluding that hole j for pigeon i. Thus, when Prover
sets xi,j to 1, Delayer should earn a number of points approximately equal to the quantity of
the information that is not anymore available for that pigeon i after the choice of Prover. How
much is this information? We take as measure of information (approximately—hence the n

2)
the number of possible holes where Prover can choose to send pigeon i and hence are still free
for mapping that pigeon.

We now describe Delayer’s strategy in a (c0, c1)-game played on PHPm
n . If Prover asks for

a value of xi,j , then Delayer decides as follows:

set �(xi,j) = 0 if there exists i′ ∈ [m] ∖ {i} such that �(xi′,j) = 1 or
if there exists j′ ∈ [n] ∖ {j} such that �(xi,j′) = 1;

set �(xi,j) = 1 if pi(�) ≥ n
2 and there is no i′ ∈ [m] with �(xi′,j) = 1, and

let Prover decide otherwise.

Intuitively, Delayer leaves the choice to Prover as long as pigeon i does not already sit in a hole,
hole j is still free, and there are at most n

2 excluded free holes for pigeon i.

4

If Delayer uses this strategy, then the small clauses ¬xi1,j ∨ ¬xi2,j from PHPm
n will not be

violated in the game. Therefore, a contradiction will always be reached on one of the big clauses⋁
j∈[n] xi,j . Let us assume now that the game ends by violating

⋁
j∈[n] xi,j , i. e., for pigeon i all

variables xi,j with j ∈ [n] have been set to 0. As soon as the number pi(�) of excluded free
holes for pigeon i reaches the threshold n

2 , Delayer will not leave the choice to Prover. Instead,
Delayer will try to place pigeon i into some hole. If Delayer still answers 0 to xi,j even after
pi(�) > n

2 , it must be the case that some other pigeon already sits in hole j, i. e., for some i′ ∕= i,
�(xi′,j) = 1. Therefore, at the end of the game at least n

2 variables have been set to 1. W. l. o. g.
we assume that these are the variables xi,ji for i = 1, . . . , n2 .

Let us check how many points Delayer earns in this game. We calculate the points separately
for each pigeon i = 1, . . . , n2 and distinguish two cases: whether xi,ji was set to 1 by Delayer
or Prover. Let us first assume that Delayer sets the variable xi,ji to 1. Then pigeon i was
not assigned to a hole yet and, moreover, there must be n

2 unoccupied holes which are already
excluded for pigeon i by �, i. e., there is some J ⊆ [n] with ∣J ∣ = n

2 , �(xi′,j′) ∕= 1 for i′ ∈ [m],
j′ ∈ J , and �(xi,j′) = 0 for all j′ ∈ J . All of these 0’s have been assigned by Prover, as Delayer
has only assigned a 0 to xi,j′ when some other pigeon was already sitting in hole j′, and this is
not the case for the holes from J (at the moment when Delayer assigns the 1 to xi,ji). Thus,
before Delayer sets �(xi,ji) = 1, she has already earned points for all n

2 variables xi,j′ , j
′ ∈ J ,

yielding
n
2
−1∑

p=0

log
n
2 + 1− p
n
2 − p

= log

n
2
−1∏

p=0

n
2 + 1− p
n
2 − p

= log
(n

2
+ 1
)

points for the Delayer. Let us note that because Delayer never allows a pigeon to go into more
than one hole, she will really get the number of points calculated above for every of the variables
which she set to 1.

If, conversely, Prover sets variable xi,ji to 1, then Delayer gets log(n2 + 1− pi(�)) points for
this, but she also received points for the pi(�) variables set to 0 before by Prover. Thus, in this
case Delayer earns on pigeon i

log(
n

2
+ 1− pi(�)) +

pi(�)−1∑
p=0

log
n
2 + 1− p
n
2 − p

= log(
n

2
+ 1− pi(�)) + log

n
2 + 1

n
2 − pi(�) + 1

= log
(n

2
+ 1
)

points. In total, Delayer gets at least

n

2
log
(n

2
+ 1
)

points in the game. Applying Theorem 1, we obtain 2
n
2

log(n2 +1) as a lower bound to the size of
each tree-like Resolution refutation of PHPm

n .

By inspection of the above Delayer strategy it becomes clear that the lower bound from
Theorem 2 also holds for the functional pigeonhole principle where in addition to the clauses
from PHPm

n we also include ¬xi,j1 ∨¬xi,j2 for all pigeons i ∈ [m] and distinct holes j1, j2 ∈ [n].

5

References

[1] A. Atserias and V. Dalmau. A combinatorial characterization of resolution width. Journal
of Computer and System Sciences, 74(3):323–334, 2008.

[2] E. Ben-Sasson, R. Impagliazzo, and A. Wigderson. Near optimal separation of tree-like
and general resolution. Combinatorica, 24(4):585–603, 2004.

[3] O. Beyersdorff, N. Galesi, and M. Lauria. Hardness of parameterized resolution. Technical
Report TR10-059, Electronic Colloquium on Computational Complexity, 2010.

[4] S. S. Dantchev, B. Martin, and S. Szeider. Parameterized proof complexity. In Proc. 48th
IEEE Symposium on the Foundations of Computer Science, pages 150–160, 2007.

[5] S. S. Dantchev and S. Riis. Tree resolution proofs of the weak pigeon-hole principle. In
Proc. 16th Annual IEEE Conference on Computational Complexity, pages 69–75, 2001.

[6] J. L. Esteban, N. Galesi, and J. Messner. On the complexity of resolution with bounded
conjunctions. Theoretical Computer Science, 321(2–3):347–370, 2004.

[7] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity Theory, volume 60
of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cam-
bridge, 1995.

[8] P. Pudlák. On the complexity of propositional calculus. In Sets and Proofs, Invited papers
from Logic Colloquium’97, pages 197–218. Cambridge University Press, 1999.

[9] P. Pudlák and S. R. Buss. How to lie without being (easily) convicted and the length
of proofs in propositional calculus. In Proc. 8th Workshop on Computer Science Logic,
volume 933 of Lecture Notes in Computer Science, pages 151–162. Springer-Verlag, Berlin
Heidelberg, 1994.

[10] P. Pudlák and R. Impagliazzo. A lower bound for DLL algorithms for SAT. In Proc. 11th
Symposium on Discrete Algorithms, pages 128–136, 2000.

[11] N. Segerlind. The complexity of propositional proofs. Bulletin of symbolic Logic, 13(4):482–
537, 2007.

6

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

