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Abstract

We show how to efficiently simulate the sending of a message M to a receiver who has
partial information about the message, so that the expected number of bits communicated in
the simulation is close to the amount of additional information that the message reveals to the
receiver.

We use our simulation method to obtain several results in communication complexity.

• We prove a new direct sum theorem for bounded round communication protocols. For
every k, if the two party communication complexity of computing a function f is C > k,
then the complexity of computing n copies of f using a k round protocol is at least
Ω(n(C − O(k +

√
Ck))). This is true in the distributional setting under any distribution

on inputs, and also in the setting of worst case randomized computation.

• We prove that the internal information cost (namely the information revealed to the par-
ties) involved in computing any functionality using a two party interactive protocol on any
input distribution is exactly equal to the amortized communication complexity of com-
puting independent copies of the same functionality. Here by amortized communication
complexity we mean the average per copy communication in the best protocol for comput-
ing multiple copies of a functionality, with a fixed error in each copy of the functionality.

• Finally, we show that the only way to prove a strong direct sum theorem for communication
complexity is by solving a particular variant of the pointer jumping problem that we define.
If this problem has a cheap communication protocol, then a strong direct sum theorem
must hold. On the other hand, if it does not, then the problem itself gives a counterexample
for the direct sum question. In the process we show that a strong direct sum theorem for
communication complexity holds if and only if efficient compression of communication
protocols is possible.
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1 Introduction

Suppose a sender wants to transmit a message M that is correlated with an input X to a receiver
that has some information Y about X. What is the best way to carry out the communication in
order to minimize the expected number of bits transmitted? A natural lowerbound for this problem
is the mutual information between the message and X, given Y : I(M ;X|Y ), i.e. the amount of
new information M reveals to the receiver about X. In this work, we give a protocol that has the
same effect as sending M , yet the expected number of bits communicated is asymptotically close
to optimal — it is the same as the amount of new information that the receiving party learns from
M , up to a sublinear additive term.

Our result is a generalization of classical data compression, where Y is empty (or constant),
and M is a deterministic function of X. In this case, the information learnt by the receiver is equal
to the entropy H(M), and the compression result above corresponds to classical results on data
compression first considered by Shannon [Sha48] — M can be encoded so that the expected number
of bits required to transmit M is H(M) + 1 (see for example the text [CT91]). In more recent
decades, several works have considered the version where M is not necessarily determined by X
[JRS03, HJMR07], but to our knowledge, there has been no successful study of the case described
above, where the receiver has some partial information about the sender’s message1.

This problem has received a significant amount of attention in computer science because of
its connection to one of the most basic questions in the field: the direct sum question. The
direct sum question is: what is the complexity of computing n copies of a function f(x, y), in
terms of the complexity of computing one copy? A related variant is the direct product question:
what is the success probability of computing n copies of f with few resources, in terms of the
success probability of computing one copy? Famous examples of direct product theorems include
Yao’s XOR Lemma [Yao82] and Raz’s Parallel Repetition Theorem [Raz95]. In the context of
communication complexity, Shaltiel [Sha03] gave a direct product theorem for the discrepancy of a
function, but it remains open to give such a theorem for the success probability of communication
tasks. While the direct sum question for general models such as Boolean circuits has a long history
(cf [Uhl74, Pau76, GF81]), no general results are known, and indeed they cannot be achieved by
the standard reductions used in complexity theory, as a black-box reduction mapping a circuit C
performing n tasks into a circuit C ′ performing a single task will necessarily make C ′ larger than C,
rather than making it smaller. Indeed it is known that at least the most straightforward/optimistic
formulation of a direct sum theorem for Boolean circuits is false.2

In communication complexity, a form of this question first appeared in a work by Karchmer, Raz,
and Wigderson [KRW91], who conjectured a certain direct sum result for deterministic communi-
cation complexity of relations, and showed that it would imply that P * NC1. Feder, Kushilevitz,
Naor, and Nisan [FKNN91] gave a direct sum theorem for non-deterministic communication com-
plexity, and deduced from it a somewhat weaker result for deterministic communication complexity

1We observe that if X,Y,M are arbitrary random variables, and the two parties are tasked with sampling M
efficiently (as opposed to one party transmitting and the other receiving), it is impossible to succeed in communication
comparable to the information revealed by M . For example, if M = f(X,Y ), where f is a boolean function with high
communication complexity on average for X,Y , M reveals only one bit of information about the inputs, yet cannot
be cheaply sampled.

2The example comes from fast matrix multiplication. By a counting argument, there exists an n×n matrix A over
GF(2) such that the map x 7→ Ax requires a circuit of Ω(n2/ log n) size. But the map (x1, . . . , xn) 7→ (Ax1, . . . , Axn)
is just the product of the matrices A and X (whose columns are x1, . . . , xn) and hence can be carried out by a circuit
of O(n2.38) ≪ n · (n2/ log n). See Shaltiel’s paper [Sha03] for more on this question.
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— if a single copy of a function f requires C bits of communications, then n copies require Ω(
√
Cn)

bits. Feder et al also considered the direct sum question for randomized communication complexity
(see also Open Problem 4.6 in [KN97]) and showed that the dependence of the communication on
the error of the protocol for many copies can be better than that obtained by the näıve protocol
for many copies.

Direct sum results for randomized communication complexity are closely related to results about
compressing randomized communication protocols. Chakrabarti et al [CSWY01] were the first to
relate the compression question to the direct sum question in this context. They introduced a notion
that they called the information cost of a protocol, to measure the amount of information that an
observer learns about the inputs of the parties by watching the messages and public randomness
of the protocol. In our work we refer to this as the external information cost, to contrast it with
the internal information cost (defined in [BBCR10]), that measures the information learnt by the
parties in the protocol.

Formally, given a distribution on inputs X,Y to a communication problem, the external in-
formation cost is the mutual information I(XY ;π) between the inputs (XY ), and the messages
sent and the public randomness in the protocol π. The internal information cost is the sum
I(X;π|Y )+ I(Y ;π|X). It is the total new information learnt by each of the parties through partic-
ipation in the protocol, over the information that they already knew via their inputs. The internal
information cost is smaller or equal to the external information cost, which in turn does not exceed
the communication complexity of a protocol.

The two measures of information are the same when X is independent of Y , and in this case
an optimal direct sum theorem can be proved for the external information cost (and consequently
for the internal information cost). Chakrabarti et al showed that from a protocol computing n
copies of f on independent inputs with communication C, one can obtain a protocol computing f
with external information cost C/n, as long as the inputs X,Y to f are independent of each other.
Thus the problem of proving direct sum theorems for independent inputs reduces to the problem
of simulating a protocol τ with small external information cost with a protocol ρ that has small
communication. That is, the direct sum question reduces to the problem of protocol compression.
Chakrabarti et al used this idea to give a direct sum theorem in the case that the communication
involves one simultaneous round of messages. This was followed by a few works [JRS03, HJMR07]
that obtained stronger direct sum theorems by designing more efficient compression algorithms
that could compress each round of the communication in turn. These results applied to protocols
where the number of rounds of communication for the protocol computing n copies was restricted
to being sufficiently smaller than the communication complexity of computing one copy, and only
applied when the inputs were independent of each other, since this is the only scenario where the
external information cost could be bounded in the reduction for multiround protocols. Jain et al
[JRS05] did manage to get results for arbitrary distributions on inputs as long as the protocols were
restricted to being non-interactive (i.e. there is a single simultaneous round of communication). In
this case they showed that computing n copies of f must require Ω(n) times the communication
for computing a single copy.

For arbitrary input distributions, if n copies of f can be computed with communication C,
then there is a protocol with internal information cost C/n and communication C that computes
one copy of f , as shown implicitly in [BYJKS04] and explicitly in our prior work with Barak and
Chen [BBCR10]. In that work we showed how to compress the communication globally, rather
than round by round. As a result, we obtained direct sum results with no restrictions on the
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dependence between inputs or on the number of rounds. Ignoring polylogarithmic factors, we
showed that any protocol involving C bits of communication whose internal information cost is I can
be compressed to give a protocol with communication complexity

√
C · I. If the external information

cost is Iext ≥ I, we gave a different compression scheme that gives a protocol with communication
complexity Õ(Iext). A consequence is a direct sum theorem proving that computing n copies of a
function requires

√
n times the communication, with no restrictions on the number of rounds of

communication, under any input distribution, and even for worst case randomized computation.
In the case that the inputs are independent of each other, our second compression scheme shows
that n times the communication is required (again ignoring polylogarithmic factors), thus yielding
a near-optimal direct sum theorem for distributional complexity over product distributions.

The main challenge that remains is to find a more efficient way to compress protocols whose
internal information cost is small. Indeed, as we discuss below, in this work we show that this is
essentially the only way to make progress on the direct sum question, in the sense that if there is
some protocol that cannot be compressed well, then there is a way to compute n copies of some
function surprisingly efficiently.

1.1 Our Results

Our main technical result is a protocol for two parties to efficiently sample from a distribution P
that only the sender knows, by taking advantage of a distribution Q known only to the receiver. We
obtain a protocol whose communication complexity can be bounded in terms of the informational
divergence D (P ||Q) =

∑

x P (x) log(P (x)/Q(x)).

Theorem 1.1. Suppose that player A is given a distribution P and player B is given a distribution

Q over a universe U . There is a public coin protocol that uses an expected

D (P ||Q) + log(1/ε) +O
(

√

D (P ||Q) + 1
)

bits of communication such that at the end of the protocol:

• Player A outputs an element a distributed according to P ;

• Player B outputs b such that for each x ∈ U , P[b = x| a = x] > 1− ε.

As a corollary, we obtain the formulation discussed earlier. For any distribution X,Y and
message M that is independent of Y once X is fixed, we can have the sender set P to be the
distribution of M conditioned on her input x, and the receiver set Q to be the distribution of M
conditioned on her input y. The expected divergence D (P ||Q) turns out to be equal to the mutual
information I(M ;X|Y ). If we apply Theorem 1.1 to each round of communication in a multiround
protocol, we can show the following corollary.

Corollary 1.2. Let X,Y be inputs to an r round communication protocol π whose internal infor-

mation cost is I. Then for every ε > 0, there exists a protocol τ such that at the end of the protocol,

each party outputs a transcript for π. Furthermore, there is an event G with P[G] > 1 − rε such

that conditioned on G, the expected communication of τ is I + O(
√
rI + 1) + r log(1/ε), and both

parties output the same transcript distributed exactly according to π(X,Y ).

The proof appears in Section 5.1. Let fn denote the function that computes n copies of f on n
different inputs. Protocol compression yields the following direct sum theorem:

3



Corollary 1.3 (Direct Sum for Bounded Rounds). Let C be the communication complexity of the

best protocol for computing f with error ρ on inputs drawn from µ. Then any r round protocol

computing fn on the distribution µn with error ρ − ε must involve at least Ω(n(C − r log(1/ε) −
O(

√
C · r))) communication.

Although the information cost of solving a problem may be much smaller than its communication
complexity, we show that the internal information cost of computing a function f according to a
fixed distribution is exactly equal to the amortized communication complexity of computing many
copies of f . Specifically, let ICi

µ(f, ρ) denote the smallest possible internal information cost of any
protocol computing f with probability of failure at most ρ when the inputs are drawn from the
distribution µ. Denote byDµ,n

ρ (f) the communication complexity of the best protocol for computing
f on n independent inputs drawn from µ so that the error with respect to each coordinate is at
most ρ. We obtain the following:

Theorem 1.4. For any f , µ, and ρ,

IC
i
µ(f, ρ) = lim

n→∞

Dµ,n
ρ (f)

n
.

Finally, we define a communication problem we call Correlated Pointer Jumping – CPJ(C, I)
– that is parametrized by two parameters C and I such that C ≫ I. CPJ(C, I) is designed in a
way that the randomized communication complexity cost I < CC(CPJ(C, I)) < C. By combining
prior work with new results, we show that determining the worst case randomized communication
complexity CC(CPJ(C, I)) for I = C/n is equivalent (up to poly-logarithmic factors) to determining
the best parameter k(n) for which a direct sum theorem CC(fn) = Ω(k(n) · CC(f)) holds. For
simplicity, we formulate only part of the result here, see Section 5.3 for more details.

Theorem 1.5. If CC(CPJ(C,C/n)) = Õ(C/n) for all C, then a near optimal direct sum theorem

holds: CC(fn) = Ω̃(n · CC(f)) for all f .
On the other hand, if CC(CPJ(C,C/n)) = Ω((C logaC)/n) for all a > 0, then direct sum is

violated by CPJ(C,C/n):

CC(CPJ(C,C/n)n) = O(C logC) = o(n · CC(CPJ(C,C/n))/ loga C),

for all a.

1.2 Techniques

The key technical contribution of our work is a sampling protocol that proves Theorem 1.1. Recall
that the informational divergence D (P ||Q) is equal to

∑

x P (x) log P (x)
Q(x) . Intuitively, if this quantity

is small, then typically the ratio P (x)
Q(x) is close to 1. To illustrate our technique, let us focus on an

easy special case: suppose Q is the uniform distribution on some subset SQ of the universe U ,
and P is the uniform distribution on some subset SP ⊂ SQ. Then the informational divergence
D (P ||Q) is exactly log(|SQ|/|SP |).

In this case, the players use an infinite public random tape that samples an infinite sequence of
elements a1, a2, . . . uniformly at random from the universe U . Player A then picks the first element
that lies in SP to be his sample. If this element is ai, player A sends k = ⌈ i/|U| ⌉ to player B. In
expectation k is only a constant, so the expected number of bits for this step is only a constant.
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Next the players use the public randomness to sample a sequence of uniformly random boolean
functions on the universe. A then sends the value of approximately log(1/ε) of these functions
evaluated on his sample. B looks at her window of |U| elements and checks to see whether any of
them agree with the evaluations sent by A and are in her set SQ. If more than one agrees with A
she asks A to send more evaluations of random functions. They continue this process until there
is a unique element in the k’th interval that agrees with the evaluations and is in the set SQ. For
the analysis, note that the fraction of elements in the window that are in SQ but not in SP can be
bounded in terms of the divergence between P and Q.

Of course in general P and Q are not distributions that take uniformly random points in sets.
Still, our protocol for doing the sampling is simple, and is based on intuitions similar to those used
in the example above.

2 Preliminaries

Notation. We reserve capital letters for random variables and distributions, calligraphic letters
for sets, and small letters for elements of sets. Throughout this paper, we often use the notation |b
to denote conditioning on the event B = b. Thus A|b is shorthand for A|B = b.

We use the standard notion of statistical/total variation distance between two distributions.

Definition 2.1. Let D and F be two random variables taking values in a set S. Their statistical
distance is

|D − F | def= max
T ⊆S

(|Pr[D ∈ T ]− Pr[F ∈ T ]|) = 1

2

∑

s∈S

|Pr[D = s]− Pr[F = s]|

If |D − F | ≤ ε we shall say that D is ε-close to F . We shall also use the notation D
ε≈ F to mean

D is ε-close to F .

2.1 Information Theory

Definition 2.2 (Entropy). The entropy of a random variableX isH(X)
def
=
∑

x Pr[X = x] log(1/Pr[X =
x]). The conditional entropy H(X|Y ) is defined to be Ey∈

R
Y [H(X|Y = y)].

Fact 2.3. H(AB) = H(A) +H(B|A).

Definition 2.4 (Mutual Information). The mutual information between two random variables
A,B, denoted I(A;B) is defined to be the quantity H(A) − H(A|B) = H(B) − H(B|A). The
conditional mutual information I(A;B|C) is H(A|C)−H(A|BC).

In analogy with the fact that H(AB) = H(A) +H(B|A),

Proposition 2.5. Let C1, C2,D,B be random variables. Then

I(C1C2;B|D) = I(C1;B|D) + I(C2;B|C1D).

The previous proposition immediately implies the following:
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Proposition 2.6 (Super-Additivity of Mutual Information). Let C1, C2,D,B be random variables

such that for every fixing of D, C1 and C2 are independent. Then

I(C1;B|D) + I(C2;B|D) ≤ I(C1C2;B|D).

We also use the notion of divergence, which is a different way to measure the distance between
two distributions:

Definition 2.7 (Divergence). The informational divergence between two distributions isD (A||B)
def
=

∑

xA(x) log(A(x)/B(x)).

For example, if B is the uniform distribution on {0, 1}n then D (A||B) = n−H(A).

Proposition 2.8. Let A,B,C be random variables in the same probability space. For every a in

the support of A and c in the support of C, let Ba denote B|A = a and Bac denote B|A = a,C = c.
Then I(A;B|C) = Ea,c∈

R
A,C [D (Bac||Bc)]

Lemma 2.9.

D (P1 × P2||Q1 ×Q2) = D (P1||Q1) +D (P2||Q2) .

2.2 Communication Complexity

Let X ,Y denote the set of possible inputs to the two players, who we name Px, Py. In this paper3,
we view a private coins protocol for computing a function f : X × Y → ZK as a rooted tree with
the following structure:

• Each non-leaf node is owned by Px or by Py.

• Each non-leaf node owned by a particular player has a set of children that are owned by the
other player. Each of these children is labeled by a binary string, in such a way that this
coding is prefix free: no child has a label that is a prefix of another child.

• Every node is associated with a function mapping X to distributions on children of the node
and a function mapping Y to distributions on children of the node.

• The leaves of the protocol are labeled by output values.

On input x, y, the protocol π is executed as in Figure 1.
A public coin protocol is a distribution on private coins protocols, run by first using shared

randomness to sample an index r and then running the corresponding private coin protocol πr.
Every private coin protocol is thus a public coin protocol. The protocol is called deterministic if
all distributions labeling the nodes have support size 1.

Definition 2.10. The communication complexity of a public coin protocol π, denoted CC(π), is
the maximum number of bits that can be transmitted in any run of the protocol.

Definition 2.11. The number of rounds of a public coin protocol is the maximum depth of the
protocol tree πr over all choices of the public randomness.

3The definitions we present here are equivalent to the classical definitions and are more convenient for our proofs.
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Generic Communication Protocol

1. Set v to be the root of the protocol tree.

2. If v is a leaf, the protocol ends and outputs the value in the label of v. Otherwise, the
player owning v samples a child of v according to the distribution associated with her input
for v and sends the label to indicate which child was sampled.

3. Set v to be the newly sampled node and return to the previous step.

Figure 1: A communication protocol.

Given a protocol π, π(x, y) denotes the concatenation of the public randomness with all the
messages that are sent during the execution of π. We call this the transcript of the protocol.
We shall use the notation π(x, y)j to refer to the j’th transmitted message in the protocol. We
write π(x, y)≤j to denote the concatenation of the public randomness in the protocol with the first j
message bits that were transmitted in the protocol. Given a transcript, or a prefix of the transcript,
v, we write CC(v) to denote the number of message bits in v (i.e. the length of the communication).

Definition 2.12 (Communication Complexity notation). For a function f : X × Y → ZK , a
distribution µ supported on X × Y, and a parameter ρ > 0, Dµ

ρ (f) denotes the communication
complexity of the cheapest deterministic protocol for computing f on inputs sampled according to
µ with error ρ. Rρ(f) denotes the cost of the best randomized public coin protocol for computing
f with error at most ρ on every input.

We shall use the following theorem due to Yao:

Theorem 2.13 (Yao’s Min-Max). Rρ(f) = maxµD
µ
ρ (f).

Recall that the internal information cost ICi
µ(π) of a protocol π is defined to be I(π(X,Y );X|Y )+

I(π(X,Y );Y |X).

Lemma 2.14. Let R be the public randomness used in the protocol π. Then ICi
µ(π) = ER

[

ICi
µ(πR)

]

Proof.

IC
i
µ(π) = I(π(X,Y );X|Y ) + I(π(X,Y );Y |X)

= I(R;X|Y ) + I(R;Y |X) + I(π(X,Y );X|Y R) + I(π(X,Y );Y |XR)

= I(π(X,Y );X|Y R) + I(π(X,Y );Y |XR)

= E
R

[

IC
i
µ(πR)

]

The following theorem was proved in [BYJKS04]. Here we cite a version appearing in [BBCR10]:

Theorem 2.15. For every µ, f, ρ there exists a protocol τ computing f on inputs drawn from µ with

probability of error at most ρ and communication at most D
µn

ρ (fn) such that ICi
µ(τ) ≤ Dµn

ρ (fn)
n .
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For our results on amortized communication complexity, we need the following definition: we
shall consider the problem of computing n copies of f , with error ρ in each coordinate of the
computation, i.e. the computation must produce the correct result in any single coordinate with
probability at least 1− ρ. We denote the communication complexity of this problem by Dµ,n

ρ (f) ≤
D
µn

ρ (fn). Formally,

Definition 2.16. Let µ be a distribution on X × Y and let 0 < ρ < 1. We denote by Dµ,n
ρ (f) the

distributional complexity of computing f on each of n independent pairs of inputs drawn from µ,
with probability of failure at most µ on each of the inputs.

The result above is actually much stronger, the same proof that appears in [BBCR10] shows
the following theorem:

Theorem 2.17. For every µ, f, ρ there exists a protocol τ computing f on inputs drawn from µ

with probability of error at most ρ and communication at most D
µ,n
ρ (fn) such that ICi

µ(τ) ≤ Dµ,n
ρ (f)
n .

3 Sampling From Correlated Distributions

Here we prove the following theorem

Theorem 3.1. Suppose that player A is given a distribution P and player B is given a distribution

Q over a universe U . There is a protocol that uses an expected

D (P ||Q) + log 1/ε +O(D (P ||Q)1/2 + 1)

bits of communication such that at the end of the protocol:

• player A outputs an element a distributed according to P ;

• for each x, P[b = a| a = x] > 1− ε.

Note that the second condition implies in particular that player B outputs an element b such that
b = a with probability > 1 − ε. The protocol requires no prior knowledge or assumptions on
D (P ||Q).

Proof. We prove the theorem by exhibiting such a protocol. The protocol runs as follows. Both
parties interpret the shared random tape as a sequence of uniformly selected elements {ai}∞i=1 =
{(xi, pi)}∞i=1 from the set A := U × [0, 1]. Denote the subset

P := {(x, p) : P (x) < p}

of A as the set of points under the histogram of the distribution P . Similarly, define

Q := {(x, p) : Q(x) < p}.

For a constant C ≥ 1 we will define the C-multiple of Q as

C · Q := {(x, p) ∈ A : (x, p/C) ∈ Q}.

We will also use a different part of the shared random tape to obtain a sequence of random
hash functions hi : U → {0, 1} so that for any x 6= y ∈ U , P[hi(x) = hi(y)] = 1/2.

We are now ready to present the protocol:
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Figure 2: An illustration on the execution of the protocol. The elements ai are selected uniformly
from A = U × [0, 1]. The first ai to fall in P is a6, and thus player A outputs x6. Player A sends
hashes of a6, which do not match the hashes of a5, the only ai in Q. Player B responds ‘failure’,
and considers surviving elements in 2Q, which are a6 and a9. After a few more hashes from A, a6
is selected by B with high probability.

1. Player A selects the first index i such that ai ∈ P, and outputs xi;

2. Player A sends Player B the binary encoding of k := ⌈i/|U|⌉;

3. Player A sends the values of hj(x) for j = 1, .., s0, where s0 := 2 + ⌈log 1/ε⌉;

4. Repeat, until Player B produces an output, beginning with iteration t = 0:

(a) set C := 2t
2

;

(b) if there is an ar = (y, q) with r ∈ {(k − 1) · |U| + 1, . . . , k · |U|} in C · Q such that
hj(y) = hj(x) for j = 1, .., st, Player B responds ‘success’ and outputs y; if there is more
than one such a, player B selects the first one;

(c) otherwise, Player B responds ‘failure’ and Player A sends 2t + 3 more hash values
hst+1(x), . . . , hst+t+1(x) and sets st+1 := st+2t+3 = 1+ ⌈log 1/ε⌉+(t+2)2, t := t+1.

It is easy to see that the output of Player A is distributed according to the distribution P . We
will show that for any choice of i and the pair (xi, pi) by A, Player B outputs the same xi with
probability > 1 − ε. In addition, we will show that the expected amount of communication is
D (P ||Q) + log 1/ε + O(D (P ||Q)1/2 + 1). Hence, in particular, if D (P ||Q) is finite, the protocol
terminates with probability 1. We start with the following claim.

Claim 3.2. For each n, P[k > n] < e−n.
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Proof. For each n, we have

P[k > n] = P[ai /∈ P for i = 1, . . . , n · |U|] = (1− 1/|U|)|U|·n < e−n.

Thus the expected length of the first two messages from Player A is log 1/ε + O(1) bits. It
remains to analyze Step 4 of the protocol. We say that an element a = (x, p) survives iteration t if
a ∈ 2t

2 · Q and it satisfies hj(x) = hj(xi) for all j = 1, . . . , st for this t.

Note that the “correct” element ai survives iteration t if and only if 2t
2 ≥ P (xi)/Q(xi).

Claim 3.3. Let Eai be the event that the element selected by player A is ai, which is the i-th
element on the tape. Denote k := ⌈i/|U|⌉. Conditioned on Eai , the probability that a different

element aj with j ∈ {(k − 1) · |U|+ 1, . . . , k · |U|} survives iteration t is bounded by ε/2t+1.

Proof. Without loss of generality we can assume that |U| ≥ 2, since for a singleton universe our
sampling protocol will succeed trivially. This implies that for any C > 0 and for a uniformly
selected a ∈ A,

P[a ∈ C · Q| a /∈ P] ≤ P[a ∈ C · Q]/P[a /∈ P] ≤ 2 ·P[a ∈ C · Q] ≤ 2C/|U|.

Denote K := k · |U|. Conditioning on Eai , the elements aK−|U|+1, . . . , ai−1 are distributed uniformly
on A\P, and ai+1, . . . , aK are distributed uniformly on A. For any such j = K−|U|+1, . . . , i− 1,
and for any C > 0,

P[aj ∈ C · Q] ≤ 2C/|U|.
For such a j, surviving round t means aj belonging to 2t

2 · Q and agreeing with ai on st =
1+ ⌈log 1/ε⌉+(t+1)2 random hashes h1, . . . , hst . The probability of this event is thus bounded by

P[aj survives round t] ≤ P[aj ∈ 2t
2 · Q] · 2−st ≤ 2 · 2t2

|U| · 2−st ≤

2t
2−st−1/|U| ≤ 2−2t−1ε/|U| ≤ ε/(|U| · 2t+1).

By taking a union bound over all j = K − |U|+ 1, . . . ,K, j 6= i, we obtain the ε/2t+1 bound.

Thus for any Eai , the probability of Player B to output anything other than xi conditioned on Eai

is <
∑∞

t=0 ε/2
t+1 = ε.

It remains to observe that Step 4 of the protocol is guaranteed to terminate when t2 ≥
log P (xi)/Q(xi) since ai belongs to

P (xi)
Q(xi)

· Q. Denote T :=
⌈

√

logP (xi)/Q(xi)
⌉

. Thus the amount

of communication in Step 4 is bounded by

ST − S0 + T = (T + 1)2 − 1 + T = T 2 + 3T < log P (xi)/Q(xi) + 2 + 5
√

logP (xi)/Q(xi),

and the expected amount of communication is bounded by

Exi∼P

[

log P (xi)/Q(xi) + 2 + 5
√

log P (xi)/Q(xi)
]

=

D (P ||Q) + 2 + 5 ·Exi∼P

√

log P (xi)/Q(xi) ≤

D (P ||Q) + 2 + 5 ·
√

Exi∼P logP (xi)/Q(xi) = D (P ||Q) +O(D (P ||Q)1/2 + 1),

where the inequality is by the concavity of
√

. This completes the proof.
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Remark 3.4. The sampling in the proof of Theorem 3.1 may take significantly more than one
round. In fact, the expected number of rounds is Θ(

√

D (P ||Q)). One should not hope to get rid
of the dependence of the number of rounds in the simulation on the divergence since D (P ||Q) is
not known to the players ahead of time, and the only way to “discover” it (and thus to estimate
the amount of communication necessary to perform the sampling task) is through interactive com-
munication. By increasing the expected communication by a constant multiplicative factor, it is
possible to decrease the expected number of rounds to O(logD (P ||Q)).

For technical reasons we will need the following easy extension of Theorem 3.1:

Lemma 3.5. In the setup of Theorem 3.1 there is an event E such that P[E] > 1 − ε, and

conditioned on E:

• both parties output the same value distributed exactly according to P ;

• the expected communication is still bounded by D (P ||Q) + log 1/ε+O(D (P ||Q)1/2 + 1).

Proof. Let E′ be the event when both parties output the same value (i.e. when the protocol
succeeds). Since the probability of success is > 1 − ε conditioned on the value being output by
Player A, there is an event E ⊂ E′ such that P[Player A outputs x|E] = P (x) for all x and
P[E] > 1− ε.

It remains to see that the communication guarantee holds. This is trivially true since assum-
ing the protocol succeeds the estimate on the communication amount depends exclusively on the
element x sampled, and the analysis in the proof of Theorem 3.1 carries conditioned on E.

4 Correlated Pointer Jumping

Here we define the correlated pointer jumping problem, that is at the heart of several of our results.
The input in this problem is a rooted tree such that

• Each non-leaf node is owned by Px or by Py.

• Each non-leaf node owned by a particular player has a set of children that are owned by the
other player. Each of these children is labeled by a binary string, in such a way that this
coding is prefix free: no child has a label that is a prefix of another child.

• Each node v is associated with two distributions on its children: child(v)x known to Px and
child(v)y known to Py.

• The leaves of the tree are labeled by output values.

The number of rounds in the instance is the depth of the tree.
The goal of the problem is for the players to sample the leaf according to the distribution that is

obtained by sampling each child according to the distribution specified by the owner of the parent.
We give a way to measure the correlation between the knowledge of the two parties in the problem.
Given an instance F of the correlated pointer jumping problem and a vertex from the tree, we
write Fv to denote the correlated pointer jumping problem associated with the tree rooted at v.
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Definition 4.1 (Divergence Cost). The divergence cost of a correlated pointer jumping instance
whose root is v, denoted D (F ), is recursively defined as follows:

D (F ) =











0 if the tree has depth 0

D (child(v)x||child(v)y) +Ew∈
R
child(v)x [D (Fw)] if v is owned by Px

D (child(v)y||child(v)x) +Ew∈
R
child(v)y [D (Fw)] if v is owned by Py

We can use our sampling lemma to solve the correlated pointer jumping problem.

Theorem 4.2. Let F be an r-round correlated pointer jumping instance. Then there is a protocol

to sample a leaf such that there is an event E, with P[E] > 1 − rε, and conditioned on E, the

sampled leaf has the correct distribution and conditioned on E, the expected communication of the

protocol is D (F ) + r log(1/ε) +O(
√

rD (F ) + r).

Proof. We prove the theorem by induction on the depth r. For r = 0 the statement is true, since the
sampling is trivial. Suppose the statement is true for depth (r−1) instances. Suppose, without loss
of generality, that the root v of F is owned by Px. Then for each w ∈ child(v) there is a protocol to
sample a leaf from Fw and an event Ew with P[Ew] > 1− (r−1)ε such that conditioned on Ew, the
expected communication of the protocol is D (Fw)+(r−1) log(1/ε)+C ·(

√

(r − 1)(D (Fw)+(r−1))
for a constant C. Denote Drt := D (child(v)x||child(v)y) and Dch := Ew∈

R
child(v)x [D (Fw)]. Then

by definition, D (F ) = Drt +Dch.
By the sampling theorem, and specifically by Lemma 3.5, there is a protocol for sending the

first message and an event E′ such that the expected communication conditioned on E′ is

Drt + log(1/ε) + C · (
√

Drt + 1),

and P[E′] > 1 − ε. Let E be the event that E′ holds, child w is sampled and Ew holds. Then
clearly P[E] > 1− rε, and conditioned of E holding the communication of the protocol is

Drt + log(1/ε) + C · (
√

Drt + 1)+

E
w∈

R
child(v)x

[

D (Fw) + (r − 1) log(1/ε) + C · (
√

(r − 1)D (Fw) + (r − 1))
]

≤

D (F ) + r log(1/ε) + C · r + C · (
√

Drt +
√

(r − 1)Dch) ≤
D (F ) + r log(1/ε) + C · r + C · (

√

r ·D (F ))

The first inequality is by the concavity of
√

, and the second one holds by the Cauchy Schwartz
inequality since D (F ) = Drt +Dch. This completes the proof of the inductive step.

A key fact is that both the internal and external information cost of a protocol can be used
to bound the expected divergence cost of an associated distribution on correlated pointer jumping
instances. Since, in this work, we only require the connection to internal information cost, we shall
restrict our attention to it.

Given a public coin protocol with inputs X,Y and public randomness R, for every fixing of
x, y, r, we obtain an instance of correlated pointer jumping. The tree is the same as the protocol
tree with public randomness r. If a node v at depth d is owned by Px, let M be the random variable
denoting the child of v that is picked. Then define child(v)x so that it has the same distribution as

12



M | X = x, π(X,Y )≤d = rv, and child(v)y so it has the same distribution as M | Y = y, π(X,Y )≤d =
rv. We denote this instance of correlated sampling by Fπ(x, y, r). Let µ denote the distribution on
X,Y . Next we relate the average divergence cost of this instance to the internal information cost
of π:

Lemma 4.3. EX,Y,R [D (Fπ(x, y, r))] = ICi
µ(π)

Proof. We shall prove that for every r, EX,Y,R [D (Fπ(x, y, r))] = ICi
µ(πr). The proof can then be

completed by Lemma 2.14.
So without loss of generality, assume that π is a private coin protocol, and write F (x, y) to

denote the corresponding divergence cost. We shall prove this by induction on the depth of the
protocol tree of π. If the depth is 0, then both quantities are 0. For the inductive step, without
loss of generality, assume that Px owns the root node of the protocol. Let M denote the child of
the root that is sampled during the protocol, and let F (x, y)m denote the divergence cost of the
subtrees rooted at m. Then

E
X,Y

[D (F (x, y))] = E
X,Y

[D (child(v)X ||child(v)Y )] + E
X,Y

[

E
M∈

R
child(v)X

[D (F (X,Y )M )]

]

(1)

Since for every x, y, M |xy has the same distribution as M |x, Proposition 2.8 gives that the
first term in Equation 1 is exactly equal to I(X;M |Y ) = I(X;M |Y )+ I(Y ;M |X). We can rewrite
the second term EM [EX,Y [D (F (X,Y )M )]]. For each fixing of M = m, we can use the inductive
hypothesis to show that the inner expectation is equal to I(X;π(X,Y )|Y m) + I(Y ;π(X,Y )|Xm).
Together, these two bounds imply that

E
X,Y

[D (F (x, y))]

= I(X;M |Y ) + I(Y ;M |X) + I(X;π(X,Y )|Y M) + I(Y ;π(X,Y )|XM)

= IC
i
µ(π)

5 Applications

In this section, we use Theorem 4.2 to prove a few results about compression and direct sums.

5.1 Compression and Direct sum for bounded-round protocols

We start by proving our result about compressing bounded round protocols:

Proof of Corollary 1.2. The proof follows by applying our sampling procedure to the correlated
pointer jumping instance Fπ(x, y, r). For each fixing of x, y, r, define the event Gx,y,r to be the
event E from Theorem 4.2. Then we have that P[G] > 1− rε. Conditioned on G, we sample from

13



exactly the right distribution, and the expected communication of the protocol is

E
X,Y,R

[

D (Fπ(X,Y,R)) + r log(1/ε) +O(
√

rD (Fπ(X,Y,R)) + r)
]

≤ E
X,Y,R

[D (Fπ(X,Y,R))] + r log(1/ε) +O

(

√

E
X,Y,R

[rD (Fπ(X,Y,R))] + r

)

,

where the inequality follows from the concavity of the square root function. By Lemma 4.3, this

proves that the expected communication conditioned onG is ICi
µ(π)+r log(1/ε)+O

(

√

rICi
µ(π) + r

)

.

5.2 Information = amortized communication

In this section we will show that Theorem 4.2 reveals a tight connection between the amount
of information that has to be revealed by a protocol computing a function f and the amortized
communication complexity of computing many copies of f . Recall that ICi

µ(f, ρ) denotes the
smallest possible internal information cost of any protocol computing f with probability of failure
at most ρ when the inputs are drawn from the distribution µ. Observe that ICi

µ(f, ρ) is an infimum
over all possible protocols and may not be achievable by any individual protocol. It is also clear
that ICi

µ(f, ρ) may only increase as ρ decreases.
We first make the following simple observation.

Claim 5.1. For each f , ρ and µ,

lim
α→ρ

IC
i
µ(f, α) = IC

i
µ(f, ρ)

Proof. The idea is that if we have any protocol with internal information cost I, error δ and input
length ℓ, for every ε we can decrease the error to (1− ε)δ at the cost of increasing the information
by at most ε · ℓ just by using public randomness to run the original protocol with probability 1− ε,
and with probability ε, run the trivial protocol where the players simply exchange their inputs.
Thus as α tends to ρ, the information cost of the best protocols must tend to each other.

Next we define the amortized communication complexity of f . We define it to be the cost of
computing n copies of f with error ρ in each coordinate, divided by n. Note that computing n
copies of f with error ρ in each coordinate is in general an easier task than computing n copies
of f with probability of success 1 − ρ for all copies. We use the notation Dµ,n

ρ (f) to denote the
communication complexity for this task, when the inputs for each coordinate are sampled according
to µ. Dµ,n

ρ (f) was formally defined in Definition 2.16.
It is trivial to see in this case that Dµ,n

ρ (f) ≤ n · Dµ
ρ (f). The amortized communication com-

plexity of f with respect to µ is the limit

AC(fµ
ρ ) := lim

n→∞
Dµ,n

ρ (f)/n,

when the limit exists. We prove an exact equality between amortized communication complexity
and the information cost:

Theorem 5.2.

AC(fµ
ρ ) = IC

i
µ(f, ρ).
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Proof. There are two directions in the proof:

AC(fµ
ρ ) ≥ ICi

µ(f, ρ). This is a direct consequence of Theorem 2.17.

AC(fµ
ρ ) ≤ ICi

µ(f, ρ). Let δ > 0. We will show that Dµ,n
ρ (f)/n < ICi

µ(f, ρ) + δ for all sufficiently
large n.

By Claim 5.1 there is an α < ρ such that ICi
µ(f, α) < ICi

µ(f, ρ) + δ/4. Thus there is a protocol
π that computes f with error < α with respect to µ and that has an internal information cost
bounded by I := ICi

µ(f, ρ)+ δ/2. Denote by C the communication complexity of π. C can be very
large compared to I. For every n, the protocol πn that is comprised of n independent copies of π
that are executed in parallel, computes n copies of f as per Definition 2.16 with error bounded by
α.

The internal information cost of πn is n ·I, and by Theorem 4.2 we can simulate πn with a total
error ε < ρ− α using

Cn := n · I + C · log 1/ε +O(
√
C · I · n+ C)

bits of communication. The total additional error is ε and hence the new protocol makes at most
an error α + ε < ρ on each copy of f . Hence Dµ,n

ρ (f) ≤ Cn. By letting n be large enough (with
respect to C and 1/ε) we see that we can make Dµ,n

ρ (f) ≤ Cn < n · I + nδ/2, thus completing the
proof.

5.3 A complete problem for direct sum

Let fn denote the function mapping n inputs to n outputs according to f . We will show that the
promise version of the correlated pointer jumping problem is complete for direct sum. In other
words, if near-optimal protocols for correlated pointer jumping exist, then direct sum holds for all
promise problems. On the other hand, if there are no near-optimal protocols for correlated pointer
jumping, then direct sum fails to hold, with the problem itself as the counterexample. Thus any
proof of direct sum for randomized communication complexity must give (or at least demonstrate
existence) of near-optimal protocols for the problem.

We define the CPJ(C, I) promise problem as follows.

Definition 5.3. The CPJ(C, I) is a promise problem, where the players are provided with a binary

instance4 F of a C-round pointer jumping problem, i.e. player Px is provided with the distributions
child(v)x and Py is provided with the distributions child(v)y for each v, with the following additional
guarantees:

• the divergence cost D (F ) ≤ I;

• let µF be the correct distribution on the leafs of F ; each leaf z of F are labeled with ℓ(z) ∈
{0, 1} so that there is a value g = g(F ) such that Pz∈

R
µF

[ℓ(z) = g(F )] > 1−ε, for some small
ε. The goal of the players is to output g(F ) with probability > 1− 2ε.

Note that players who know how to sample from F can easily solve the CPJ problem. It follows
from [BBCR10] that:

Theorem 5.4. If CPJ(C, I) has a randomized protocol that uses T (C, I) := CC(CPJ(C, I)) com-

munication, so that T (C,C/n) < C/k(n), then for each f ,

CC(fn) = Ω(k(n) · CC(f)).
4Each vertex has degree 2.
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In [BBCR10] a bound of T (C, I) = Õ(
√
C · I) is shown, which implies CC(fn) = Ω̃(

√
n ·CC(f))

for any f . Using Theorem 4.2 we are able to prove the converse direction.

Theorem 5.5. For any C > I > 0, set n := ⌊C/I⌋, then

CC(CPJ(C, I)n) = O(C log(nC/ε)).

Thus, if there are parameters C and n such that CPJ(C,C/n) cannot be solved using I = C/n
communication, i.e. T (C,C/n) > C/k(n) ≫ C/n, then CPJ(C,C/n) is a counterexample to direct
sum, i.e.

CC(CPJ(C, I)n) = O(C log nC/ε) = Õ(C) = Õ(k(n)CC(CPJ(C,C/n))) = o(n · CC(CPJ(C,C/n))).

Proof. (of Theorem 5.5) We solve CPJ(C, I)n by takingm := n log n copies of the CPJ(C, I) problem
representing log n copies of each of the n instances. The players will compute all the copies in parallel
with error < 2ε, and then take a majority of the log n copies for each instance. For a sufficiently
large n this guarantees the correct answer for all n instances except with probability < ε. Thus our
goal is to simulate m copies of CPJ(C, I). We view CPJ(C, I)m as a degree-2m, C-round correlated
pointer jumping problem in the natural way. Each node represents a vector V = (v1, . . . , vm) of
m nodes in the m copies of CPJ(C, I). The children of V are the 2m possible combinations of
children of {v1, . . . , vm}. The distribution on the children is the product distribution induced by
the distributions in v1, . . . , vm. We claim that

D
(

CPJ(C, I)nv1 ,...,vm
)

=

m
∑

i=1

D (CPJ(C, I)vi ) . (2)

This follows easily by induction on the tree, since the distribution on each node is a product
distribution, and for each independent pairs (P1, Q1), . . . , (Pm, Qm) we have

D (P1 × P2 × . . . × Pm||Q1 ×Q2 × . . .×Qm) = D (P1||Q1) + . . .+D (Pm||Qm) ,

by Lemma 2.9. By applying (2) to the root of the tree we see that D (CPJ(C, I)m) ≤ m·I ≤ C log n.
Thus Theorem 4.2 implies that CPJ(C, I)n can be solved with an additional error of ε/2 using an
expected

C log n+ C logC/ε+ o(C log n)

bits of communication.
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