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Abstract

An algebraic branching program (ABP) is given by a directed acyclic graph with source and
sink vertices s and t, respectively, and where edges are labeled by variables or field constants.
An ABP computes the sum of weights of all directed paths from s to t, where the weight of
a path is taken to be the product of the edge labels on the path. For a read-once ABP every
variable appears at most once in the graph. More generally, we consider preprocessed RO-ABPs
(PRO-ABP), which are obtained by allowing univariate polynomials on the edges (at most one
non-constant polynomial Ti(xi) per variable xi).

We study the problem of polynomial identity testing sums of k many PRO-ABPs (Σk-PRO-
ABPs). For the main technical part of this paper we develop a recursive property of polynomials
in terms of second order partial derivatives and zero substitutions, which we call alignment. Us-
ing this notion we obtain the following results, in case edges are labeled by univariate polynomials
of degree at most d, and provided the underlying field has enough elements (more than 2k2d2n5

suffices):

1. Given free access to the PRO-ABPs in the sum, we get a deterministic algorithm that runs
in time O(dk2n7s2) + (dn)O(k), where s bounds the size of any largest PRO-ABP given
on the input. This implies we have a deterministic polynomial time algorithm for testing
whether the sum of a constant number of poly-degree bounded PRO-ABPs computes the
zero polynomial or not.

2. Given black-box access to the PRO-ABPs computing the individual polynomials in the
sum, we get a deterministic algorithm that runs in time k2(dn)O(log n) + (dn)O(k).

3. Given only black-box access to the polynomial computed by the sum of the k PRO-ABPs,
we obtain a (dn)O(k+log n) time deterministic algorithm.

Items 1. and 3. above strengthen two main results of Shpilka and Volkovich [SV09] (Theo-
rems 2 and 3, respectively), who considered polynomial identity testing of sums of k preprocessed
read-once formulas (Σk-PRO-formulas).

1 Introduction

In this paper we study the polynomial identity testing problem (PIT): given an arithmetic circuit
C with input variables x1, x2 . . . xn over a field F, test if C(x1, x2, . . . , xn) computes the zero poly-
nomial in the ring F[x1, x2, . . . xn]. This is a well-studied algorithmic problem with a long history
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and a variety of connections and applications. Efficient randomized algorithms were proposed in-
dependently by Schwartz [Sch80] and Zippel [Zip79]. Obtaining a deterministic algorithm for the
problem seems surprisingly elusive.

Historically, the connection between derandomizing PIT and proving (algebraic) circuit lower
bounds was first noticed in a 1980’s paper by Heintz and Schnorr [HS80]. Then after a relatively
quiet period, Kabanets and Impagliazzo [KI04] drew renewed attention to this, by showing that
giving a deterministic polynomial time (even subexponential time) identity testing algorithm means
either that NEXP 6⊆ P/poly, or that the permanent has no polynomial size arithmetic circuits.
While advocating this research direction towards lower bounds, Agrawal [Agr05] showed that giving
a black-box1 derandomization of PIT implies the existence of an explicit multilinear polynomial
that has no subexponential size arithmetic circuits. Recently, there has been a lot of progress in
the area. We refer to a survey by Saxena [Sax09] for an overview.

1.1 Read-Once Formulas and Beyond

Shpilka and Volkovich [SV09, SV08] studied the arithmetic read-once formula model. An arithmetic
read-once formula (RO-formula) is given by a tree whose nodes are taken from the set {+,×}, and
whose leaves are variables or field constants, subject to the restriction that each variable xi appears
at most once. More generally, preprocessed RO-formulas (PRO-formulas) are obtained by allowing
univariate polynomials as edge labels instead of variables (at most one non-constant polynomial
Ti(xi) per variable xi). For “moderate” k, efficient deterministic PIT algorithms were given in
[SV09, SV08] for sums of k many PRO-formulas (Σk-PRO-formulas).

Given the status of PIT, it is important to enlarge upon any known techniques that solve special
cases of the problem (like those in [SV09, SV08]) for as much as possible, even if only to establish
more clearly the cases of the problem where apparently radically new techniques are required. In
this paper, we consider the generalization of RO-formulas to global read-once algebraic branching
programs2.

An algebraic branching program (ABP) is a layered directed acyclic graph with two special
vertices s and t. Each edge is assigned a weight, which is an element of X ∪ F, where X is a set of
variables. For a path in the graph its weight is taken to be the product of the weight on its edges.
The output of the ABP is defined to be the sum of weights of all paths from s to t. The ABP is
said to be global read-once if each variable appears on at most one edge. For simplicity we drop the
adjective “global” for the rest of this paper, and merely talk about read-once ABPs (RO-ABPs).
We call a polynomial f ∈ F[X] a RO-ABP-polynomial, if there exists a RO-ABP which computes
f . Similarly as with RO-formulas, we also consider the generalization to preprocessed RO-ABPs
(PRO-ABPs), by allowing edge labels that are univariate polynomials (at most one non-constant
polynomial Ti(xi) per variable xi).

We note that RO-ABPs are a natural generalization to consider. Applying a construction by
Valiant [Val79], if f can be computed by a RO-formula of size s, then f can be computed by a
RO-ABP of size O(s). Non-black box identity testing a single RO-ABP is easily solved by phrasing
it as a reachability problem (See Section 3.1). In this case it is more interesting to consider
black-box PIT. PIT of RO-ABPs can be seen to be a special case of the more general problem
of black-box identity testing “read-once determinantal expressions”, i.e. expressions of the form

1In the black-box model one can only query an oracle holding the circuit C for the output of C on a given input.
2See Section 2 for a formal definition.
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det M(x1, x2, . . . , xn), where each variable xi appears at most once in the matrix M . It is well-
known the bipartite perfect matching problem (BIPARTITE-PM) reduces to identity testing such
expressions. By giving a black-box PIT algorithm for this, Agrawal, Hoang and Thierauf [AHT07]
put BIPARTITE-PM for graphs with polynomially bounded number of perfect matchings inside
NC2. They conjectured this approach to work for the general problem. Perhaps further progress on
black-box PIT of RO-ABPs can be a first step towards the more general case of black-box testing
read-once determinantal expressions.

We remark that RO-ABPs are strictly more powerful than RO-formulas. Appendix C shows
a RO-ABP computing g = x1x2 + x2x3 + · · · + x2n−1x2n. Example 3.12 in [SV08] shows that g
can not be computed by a RO-formula, if n ≥ 2. We note that, like the RO-formula, the RO-ABP
model is still not universal, e.g. for n ≥ 3,

∑

1≤i<j≤n xixj , is not an RO-ABP-polynomial (See
Appendix A).

For black-box identity testing a single RO-formula, the following construction is given in
[SV09]: Let A = {a1, a2, . . . , an} ⊆ F be a set of size n. For every i ∈ [n], let ui(w) be
the ith Lagrange interpolation polynomial on A. Then ui(w) is a polynomial of degree n − 1
satisfying that ui(aj) = 1 if j = i and 0 otherwise. For every i ∈ [n] and k ≥ 1, define
Gi

k(y1, y2, . . . , yk, z1, z2, . . . , zk) =
∑

j∈[k] ui(yj)zj . and let Gk(y1, y2, . . . , yk, z1, z2, . . . , zk) : F2k →

Fn, be defined by Gk = (G1
k, G

2
k, . . . , G

n
k). We refer to the polynomial mapping Gk as the kth-order

SV-generator, or SV-generator for short. Given its track record3, it is important to investigate how
far this construction will take us towards our ultimate PIT goals. We demonstrate it takes us fur-
ther than was known previously, by showing it provides a black-box test for PRO-ABP-polynomials.
Namely, we have the following lemma. (For a proof see Section 3.2):

Lemma 1. Let d > 0 be an integer, and assume that |F| > d. If f ∈ F[X] is a nonzero polynomial
with |V ar(f)| ≤ 2m, for some m ≥ 0, that is computable by a PRO-ABP that has univariate
polynomials with degrees bounded by d, then f(Gm+1) 6≡ 0.

The above lemma implies that we have an explicit hitting set S of size (nd)O(log n), such that
any nonzero PRO-ABP-polynomial in n variables with individual degrees bounded by d evaluates
to a nonzero value for at least one element of S.

1.2 Main Results

To make further progress, we consider sums of k many PRO-ABPs. In this case we manage to give
an explicit hitting-set of size (dn)O(k+log n), resulting in the following theorem:

Theorem 1. Let f =
∑

i∈[k] fi be a sum of k PRO-ABP-polynomials in n variables with individual

degrees at most d. Let F be a field with |F| > k2d2n5 + kdn4. Given black-box access to f , it can be
decided deterministically in time (dn)O(k+log n) whether f ≡ 0.

This strengthens a main result of [SV09], namely Theorem 3, which provides a deterministic
(dn)O(k+log n) time black-box PIT algorithm for Σk-PRO-formulas. By previous remarks, any Σk-
PRO-formula computable polynomial is Σk-PRO-ABP computable, with negligible blow-up in size.

3Very recently, this generator has also been applied to identity testing multilinear depth 4 circuits with bounded
top fan-in [KMSV09].
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Moreover, we sketch4 in Appendix B a dimension argument that shows there exists a RO-ABP-
polynomial in n variables that requires k = Ω(n) in the Σk-PRO-formula model. Hence we have a
strict separation for k = o(n).

In the non-black-box setting we will prove the following result:

Theorem 2. Let {Ai}i∈[k] be a set of k PRO-ABPs in n variables with individual degrees bounded
by d. Let F be a field with |F| > dkn2. Given {Ai}i∈[k] on the input, it can be decided determinis-

tically in time O(dk2n7s2) + (dn)O(k) whether
∑

i∈[k] fi ≡ 0, where fi is the PRO-ABP-polynomial
computed by Ai, for i ∈ [k].

Since the construction in [Val79] can be computed efficiently, this strengthens Theorem 2 in
[SV09]. Finally, if black-box access is granted to the individual fi’s, which we call the semi-black-box
setting, we obtain the following result:

Theorem 3. Let {fi}i∈[k] be a set of k PRO-ABP-polynomials in n variables with individual degrees
bounded by d. Let F be a field with |F| > dkn2. Given black-box access to each individual fi, it can
decided deterministically in time k2(dn)O(log n) + (dn)O(k) whether

∑

i∈[k] fi ≡ 0.

1.3 Techniques

The results for Σk-RO-ABP and Σk-PRO-ABP PIT are obtained through the hardness of repre-
sentation approach of [SV09, SV08]. There the PIT algorithms are derived from a statement that
x1x2 . . . xn cannot be expressed as a sum of k ≤ n/3 RO-formula computable polynomials {fi}i∈[k],
if the polynomials fi satisfy some special property. We do not need to define this special property
for the discussion here, except that we should name it: 0̄-justification.

Unfortunately, the property of 0̄-justification, does not work for the Σk-RO-ABP model. With
some thought it can be seen that the monomial x1x2 . . . xn is expressible as the sum of three
0̄-justified RO-ABP-polynomials. Our main technical contribution is the development of a new
“special property”, called alignment. For this property we show a hardness of representation
theorem can still be proved. Moreover, we show it can be enforced simultaneously for a collection
of PRO-ABP-polynomials by means of an efficiently computable coordinate shift.

Regarding the latter, consider f = f1 + f2 + . . . + fk, where each fi is a PRO-ABP-polynomial.
Then ∀v ∈ Fn, f ≡ 0 ⇐⇒ f(x1 + v1, x2 + v2, . . . , xn + vn) ≡ 0. With some technical work, we will
establish a sufficient condition for alignment. With it we show that we can compute a coordinate
shift v such that all fi(x + v) are aligned. Such a shift v is called a simultaneous alignment. In
the case of having only black-box access to f , we will show we have a “small” set of candidates
containing at least one simultaneous alignment. The PIT algorithms will follow from this.

The rest of this paper is organized as follows. Section 2 contains preliminaries and Section 3
presents the identity testing algorithms for a single PRO-ABP in the black-box and non-black-box
setting. In Section 4 we develop the tools regarding alignment. Section 5 contains the hardness
of representation theorems for RO-ABPs and PRO-ABPs. Then in Section 6 we show how to
compute a simultaneous alignment. From these developments we put the PIT algorithms together
in Section 7.

4For simplicity, the sketch is given for algebraically closed F, but can be adapted to other infinite fields of interest
like Q and R.
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2 Preliminaries

Let X = {x1, x2, . . . , xn} be a set of variables and let F be a field. For F with more than d elements,
we define Wn

k,d = {y ∈ Sn | wt(y) ≤ k}, where wt(y) counts the number of nonzeros in y, and
where we have fixed some arbitrary subset S of size d + 1 of F that contains 0.

An algebraic branching program (ABP) is a 4-tuple A = (G, w, s, t), where G = (V, E) is
an edge-labeled directed acyclic graph for which the vertex set V can be partitioned into levels
L0, L1, . . . , Ld, where L0 = s and Ld = t. Vertices s and t are called the source and sink of
B, respectively. Edges may only go between consecutive levels Li and Li+1. The label function
w : E → X ∪ F assigns variables or field constants to the edges of G. For a path p in G, we extend
the weight function by w(p) =

∏

e∈p w(e). Let Pi,j denote the collection of all directed paths p

from i to j in G. The program A computes the polynomial Â :=
∑

p∈Ps,t
w(p). The size of A is

defined to be |V |. An ABP is said to be global read-once if |w−1(xi)| ≤ 1, for each xi ∈ X. That
is, every variable is read at most once by the program. For simplicity, we will drop the adjective
“global” in the rest of this paper, and we will merely speak about read-once ABPs (RO-ABPs).
A polynomial f ∈ F[X] is called a RO-ABP-polynomial, if there exists a RO-ABP that computes
f . We use the following notation: for xi present on arc (v, w) in a RO-ABP A: begin(xi) = v and
end(xi) = w. We let source(A) and sink(A) stand for the source and sink of A. For any nodes
v, w in A, we denote the subprogram with source v and sink w by Av,w. A layer of a RO-ABP A is
any subgraph induced by two consecutive levels Li and Li+1 in A. We will assume RO-ABPs are
in the form given by the following straightforwardly proven lemma:

Lemma 2. If f ∈ F[X] is a RO-ABP-polynomial, then f can be computed by a RO-ABP A, where
every layer contains at most one variable-labeled edge.

For any fixed integer parameter d, we generalize the RO-ABP model to preprocessed read-once
ABPs (PRO-ABP) by allowing univariate poynomials as edges labels. Let T d be the set of monic
univariate polynomials T of degree at most d with T (0) = 0. Let Z = {zi : i ∈ [n]} be a set
of indeterminates. A preprocessed RO-ABP-polynomial (PRO-ABP-polynomial) is any polynomial
f ∈ F[X] that can be written as f = g(T1(x1), T2(x2), . . . , Tn(xn)), where g ∈ F[Z] is a RO-
ABP-polynomial, and each Ti ∈ T d. In this case (g, {Ti(xi)}i∈[n]) is called the d-decomposition of
f , and we say f is a d-decomposable PRO-ABP-polynomial. Note that both the classes of RO-
ABP-polynomials and PRO-ABP-polynomials are closed5 under coordinate shifting, i.e. for any f ,
f(x1 + v1, . . . , xn + vn) stays within the class, for all v ∈ Fn. The proof of the following proposition
is left as an exercise to the reader.

Proposition 1. If for g, h ∈ F[Z] we have that (g, {Ti(xi)}i∈[n]) and (h, {Ui(xi)}i∈[n]) are d-
decompositions of a PRO-ABP-polynomial f ∈ F[X], then 1) g = h, and 2) ∀xi ∈ V ar(f), Ti = Ui.

Let f be a polynomial in the ring F[X]. For α ∈ F, f |xi=α denotes the polynomial
f(x1, x2, . . . xi−1, α, xi+1, . . . , xn). Extending this to sets of variables, for a subset I ⊆ [n] and
an assignment a ∈ Fn, f |xI=aI

is the the polynomial resulting from setting the variable xi

to ai in f for every i ∈ I. The following two notions are taken from [SV09]. We say that
a polynomial f depends on a variable xi if there exists an a ∈ Fn and b ∈ F, such that

5Related to this, note that taking T d to be the set of arbitrary univariate polnomials of degree at most d instead,
would not change the class of PRO-ABP-polynomials, so wlog. we restrict ourselves to monic univariate polynomials
having constant term zero.

5



f(a1, a2, ai−1, ai, ai+1, . . . , an) 6= f(a1, a2, ai−1, b, ai+1, . . . , an). The set of variables xi that f de-
pends on is denoted by V ar(f).

For α ∈ F and f ∈ F[X], the partial derivative with respect to xi and direction α, denoted by
∂f

∂αxi
, is defined as f |xi=α − f |xi=0. By convention, if we do not mention the direction, it means

α = 1. For a set of variables J , ∂Jf denotes taking partial w.r.t. all variables in J (and direction
α = 1). Setting values to variables commutes with taking partial derivatives in the following way:

∀i 6= j, ∂f
∂αxi

|xj=a =
∂(f |xj=a)

∂αxi
. We will freely use the properties listed for this notion in [SV09].

Proposition 2. Suppose f ∈ F[X] has individual degrees bounded by r. For any S ⊆ F with
|S| > r, we have that f depends on xi ⇔ ∃α ∈ S, ∂f

∂αxi
6≡ 0.

The above proposition follows from the “Combinatorial Nullstellensatz”:

Lemma 3 (Lemma 2.1 in [Alo99]). Let f ∈ F[X] be a nonzero polynomial such that the degree of
f in xi is bounded by ri, and let Si ⊆ F be of size at least ri + 1, for all i ∈ [n]. Then there exists
(s1, s2, . . . , sn) ∈ S1 × S2 × . . . × Sn with f(s1, s2, . . . , sn) 6= 0.

Now we prove the following lemma.

Lemma 4. Let α ∈ F\{0} be given. We have 1) If f ∈ F[X] is a RO-ABP-polynomial,
then ∂f

∂αxi
is a RO-ABP-polynomial, and 2) Suppose f ∈ F[X] is a PRO-ABP-polynomial with

d-decomposition (g, {Ti(xi)}i∈[n]). Then ∂f
∂αxi

is a PRO-ABP-polynomial with d-decomposition

(Ti(α) ∂g
∂zi

, {Ti(xi)}i∈[n]).

We start by proving the first item. Let p = |V ar(f)|. In case p = 0 it is trivial. Assume
p > 0. If xi 6∈ V ar(f), then ∂f

∂αxi
≡ 0, in which case the property trivially holds. Now suppose

xi ∈ V ar(f). Hence xi must appear somewhere in A. Say xi is on the arc (v1, w1) from level Lj

to Lj+1, where Lj = {v1, v2, . . . , vm1} and Lj+1 = {w1, w2, . . . , wm2}, for certain j, m1, m2. We can
write

f =
∑

a∈[m1]

∑

b∈[m2]

fs,vaw(va, wb)fwb,t, (1)

where for any nodes p and q in A, fp,q is the polynomial computed by subprogram Ap,q. Then

∂f

∂αxi
= f|xi=α − f|xi=0

=
∑

a∈[m1]

∑

b∈[m2]

fs,vaw(va, wb)|xi=αfwb,t −
∑

a∈[m1]

∑

b∈[m2]

fs,vaw(va, wb)|xi=0fwb,t

=
∑

a∈[m1]

∑

b∈[m2]

fs,va

(

w(va, wb)|xi=α − w(va, wb)|xi=0

)

fwb,t

= αfs,v1fw1,t.

Hence we obtain a valid RO-ABP computing ∂f
∂αxi

from A by setting the label of the wire (v1, w1)
to α, and removing all other wires between layers Lj and Lj+1.

The second item follows easily by writing g = zi
∂g
∂zi

+ g|zi=0.
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3 Identity Testing a Single PRO-ABP

In this section we describe identity testing algorithms for a single PRO-ABP, in the Non-Black-Box
and Black-Box setting.

3.1 Non-Black-Box Testing a Single RO-ABP

Consider a RO-ABP A. Denote the source and sink of A by s and t, respectively. Suppose that xi

labels the edge (si, ti). Wlog. assume that the order of variable layers in A is x1, x2, . . . , xn. We
have the following easy proposition:

Proposition 3. Suppose 1 ≤ i1 < i2 < · · · < ik ≤ n. For a RO-ABP A, xi1xi2 . . . xik appears in
Â if and only if the constant terms in Â(s, si1), Â(tim , sim+1), for all m ∈ [k − 1], and Â(tk, t) are
not zero.

We build a directed graph GA = (V, E) for RO-ABP A with vertex set V = {s, t, x1, x2, . . . , xn}.
Edges are given as follows:

1. (s, xi), if the constant term in Â(s, si) is nonzero.

2. (xi, t), if the constant term in Â(ti, t) is nonzero.

3. (xi, xj), i < j, if the constant term in Â(ti, sj) is nonzero.

We have the following corollary of Proposition 3:

Corollary 1. Â(x1, . . . , xn) ≡ 0 if and only if t is not reachable form s in GA.

The algorithm for testing A is to construct GA and to test connectivity. This can be done in
time O(n2s2), where s bounds the size of A.

3.2 Black-Box Testing a Single PRO-ABP

In this subsection, we give a proof of Lemma 1 which demonstrates that the generator described
in [SV09] provides a black-box test for PRO-ABP polynomials. We restate the lemma first.

Lemma 5. Let d > 0 be an integer, and assume that |F| > d. If f ∈ F[X] is a nonzero polynomial
with |V ar(f)| ≤ 2m, for some m ≥ 0, that is computable by a PRO-ABP that has univariate
polynomials with degrees bounded by d, then f(Gm+1) 6≡ 0.

Proof. Let p = |V ar(f)|. The proof proceeds by induction on p. The bases p = 0 and p = 1
trivially hold. Suppose p > 1. Hence m ≥ 1. Consider arbitrary PRO-ABP A computing f . Wlog.
assume that any nonconstant edge label in A is given by a monic univariate polynomial Ti(xi) with
Ti(0) = 0. Let s and t be the source and sink of A, respectively. Wlog. assume that only the
p variables in V ar(f) are present in A, and assume A satisfies the condition yielded by Lemma
2. Observe that for some variable xi there are at most p/2 variables in layers before the layer
containing xi, and at most p/2 variables in layers after. (If p is odd it splits ((p− 1)/2), (p− 1)/2)
if p is even it splits (p/2 − 1, p/2)).
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Say we have univariate polynomial Ti(xi) on the arc (v1, w1) from layer Lj to Lj+1, where
Lj = {v1, v2, . . . , vm1} and Lj = {w1, w2, . . . , wm2}, for certain j, m1, m2. We can write

f =

m1
∑

a=1

m2
∑

b=1

fs,vafwb,tw(va, vb), (2)

where for any nodes p and q in A, fp,q is the polynomial computed by subprogram of Ap,q. Consider
f ′ = f(G1

m, . . . , Gi−1
m , xi, G

i+1
m , . . . , Gn

m).

Claim 1. f ′ depends on xi.

Proof. Since f depends on xi, by Proposition 2, there exists nonzero α ∈ F such that f ′′ := ∂f
∂αxi

6≡ 0.

By Proposition 2, it suffices to show that ∂f ′

∂αxi
6≡ 0. Note that ∂f ′

∂αxi
= f ′′(Gm). We have that

∂f
∂αxi

= Ti(α)fs,v1fw1,t. Note that |V ar(fs,v1)| and |V ar(fw1,t)| are both at most p/2. Since f ′′ 6≡ 0,
both fs,v1 and fw1,t are not identically zero and Ti(α) 6= 0. As p/2 < p, the induction hypothesis
applies. Since p/2 ≤ 2m−1, it yields that fs,v1(Gm) 6≡ 0 and fw1,t(Gm) 6≡ 0. Therefore f ′′(Gm) 6≡ 0.
This proves the claim.

Recall the set A = {a1, . . . , an} used for the construction of the SV-generator. By Observa-
tion 5.2 in [SV09], f(Gm+1)|ym+1=ai

= f ′
|xi=Gi

m+zm+1
. Since zm+1 does not appear in Gj

m for any j,

we get by Claim 1 that f(Gm+1)|ym+1=ai
6≡ 0. Hence f(Gm+1) 6≡ 0.

4 X-Aligned RO-ABP and PRO-ABP polynomials

A first requirement of our new “special property” is that we can bring out linear factors somehow.
The following lemma shows that partial derivatives can be used for this.

Lemma 6. Let f ∈ F[X] be a RO-ABP-polynomial with |V ar(f)| ≥ 3. Then for any xi ∈ V ar(f),

there exist distinct xj , xk ∈ X\{xi} such that ∂2f
∂xj∂xk

= g·(βxi−α), where g is a RO-ABP-polynomial

that does not depend on xi, and α, β ∈ F.

Proof. Let A be a RO-ABP computing f . Wlog. assume all variables in X appear in A. By
Lemma 2 assume wlog. that A has at most one variable per layer. Let xr1 , xr2 , . . . , xrn be the
variables in X as they appear layer-by-layer, when going from the source to the sink of A. Consider
an arbitrary xi ∈ V ar(f). First, we handle the case that i = rm, for some 1 < m < n.

Let j = rm−1 and k = rm+1. So xj and xk are the variables right before and right after xi

in A, respectively. Assume that xj and xk label the edges (u, v) and (m, n) respectively. Then
∂2f

∂xj∂xk
= fs,ufv,mfn,t, where fs,ufv,m, and fn,t are computed by the subprograms As,u, Av,m, and

An,t, respectively. Observe that fv,m is of form βxi − α, for α, β ∈ F. Take g = fs,ufv,m, which is
easily seen to be RO-ABP-computable by putting As,u and Av,m in series.

The special case where i = r1 (i = rn), i.e. xi is the first (last) variable in A, is handled similarly
as above, by choosing xk ∈ X\{xi, xj} arbitrarily and appealing to Lemma 4.

Recall that one of our goals is to show that small sums of RO-ABP-polynomials satisfying the
“special property” cannot represent Pn := x1x2 . . . xn. In the above, if β 6= 0, setting xi = α/β,

kills ∂2f
∂xj∂xk

. As will become clear in the Hardness of Representation Theorem 4, it is extra nice to
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do so with α/β 6= 0, since Pn stays self-similar under such a substitution. Note it also does when
taking ∂xj∂xk. We encapsulate this as follows:

Definition 1. Let S ⊆ X. Every RO-ABP-polynomial f ∈ F[X] with |V ar(f)| ≤ 2 is X-pre-
aligned on S. A RO-ABP-polynomial f ∈ F[X] with |V ar(f)| > 2 is X-pre-aligned on S, if the
following condition is satisfied: for every xi ∈ S, there exist distinct xj , xk ∈ X\{xi} such that

∂2f
∂xj∂xk

= g · (βxi − α), where g is a RO-ABP-polynomial that does not depend on xi, and α, β ∈ F

satisfy that α = 0 ⇒ β = 0.

If f is X-pre-aligned on V ar(f), we simply say that f is X-pre-aligned. Another requirement,
stemming from the “Vanishing Theorem” to be proved later, is that the “special property” holds
recursively w.r.t. zero substitution. For technical reasons, we need to keep a separation between
concepts (Think of the following as “special property++”). We make an inductive definition.

Definition 2. Every RO-ABP-polynomial f ∈ F[X] with |V ar(f)| ≤ 2 is X-aligned. A RO-ABP-
polynomial f ∈ F[X] with |V ar(f)| > 2 is X-aligned, if the following conditions are satisfied: 1) f
is X-pre-aligned, and 2) for every xi ∈ V ar(f), f|xi=0 is X\{xi}-aligned.

For a PRO-ABP-polynomial f with d-decomposition (g, {Ti(xi)}i∈[n]), where g ∈ F[Z], we say
it is X-pre-aligned on S if g is Z-pre-aligned on S′, where S′ = {zi ∈ Z : xi ∈ S}. Note that due to
Proposition 1, this is well-defined. Similarly, we say that f is X-aligned provided g is Z-aligned.

Next we prove our notions are well-behaved, which show yet more constraints that needed to be
satisfied for the proof to go through. Mostly, it will be sufficient to establish these results for the
unpreprocessed case only. Then finally, we also need to show that X-alignment can be enforced by
coordinate shifting (simultaneously for several PRO-ABP-polynomials). This is left for Section 6.

Proposition 4. If RO-ABP-polynomial f ∈ F[X] is X-pre-aligned, then ∀µ ∈ F, µ · f is X-pre-
aligned. The same statement holds with aligned instead of pre-aligned.

One main requirement is that alignment is preserved when taking partial derivatives which is
given by the following lemma.

Lemma 7. For any RO-ABP-polynomial f ∈ F[X] and any xr ∈ X, the following hold: 1) If f
is X-pre-aligned, then ∂f

∂xr
is (X\{xr})-pre-aligned. 2) If f is X-aligned, then ∂f

∂xr
is (X\{xr})-

aligned.

Proof. We first show that Item 1 holds. Let f ′ = ∂f
∂xr

and X ′ = X\{xr}. By Lemma 4, we know
that f ′ is a RO-ABP-polynomial. Assume that |V ar(f ′)| ≥ 3, since otherwise the statement holds
trivially. Consider arbitrary xi ∈ V ar(f ′). Then xi ∈ V ar(f), so there exist distinct xj and xk in

X\{xi}, such that ∂2f
∂xj∂xk

= g · (βxi − α), where g is a RO-ABP-polynomial that does not depend

on xi, and α = 0 ⇒ β = 0. Consider the following two cases:

Case I: “r 6∈ {j, k}”. Hence xj , xk ∈ X ′\{xi}. We have that ∂2f ′

∂xj∂xk
= ∂3f

∂xj∂xk∂xr
= ∂g

∂xr
·(βxi−α).

By Lemma 4, ∂g
∂xr

is a RO-ABP-polynomial, and it clearly does not depend on xi, so we conclude
that f ′ is X ′-pre-aligned on {xi}.

Case II: “r ∈ {j, k}”. Wlog. assume r = j. Then xk ∈ X ′\{xi}. Since |V ar(f ′)| ≥ 3,
there must be at least one more variable xl in V ar(f ′) distinct from each of xk and xi. Then

xl ∈ X ′\{xi}. We have that ∂f ′

∂xk
= g · (βxi −α). Hence ∂2f ′

∂xk∂xl
= ∂g

∂xl
· (βxi −α). We again conclude

f ′ is X ′-pre-aligned on {xi}.
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Item 2 is proved by induction on |X|. The base case is when |X| ≤ 3. Then |V ar(f ′)| ≤ 2, and
hence f ′ is X ′-aligned. Now suppose |X| > 3. Assume |V ar(f ′)| > 2, since otherwise it is trivial.
By Item 1, we know f ′ is X ′-pre-aligned. Consider an arbitrary xi ∈ V ar(f ′). Then xi ∈ V ar(f).

We have that f ′
|xi=0 =

(

∂f
∂xr

)

xi=0
=

∂f|xi=0

∂xr
. Since f|xi=0 is (X\{xi})-aligned, we can apply the

induction hypothesis to conclude that
∂f|xi=0

∂xr
is (X\{xi})\{xr} = (X ′\{xi})-aligned.

In addition to the above, we crucially need the following “Nearly Unique Nonalignment Lemma”.

Lemma 8. Let f ∈ F[X] be an X-pre-aligned RO-ABP-polynomial for which ∂2f
∂xp∂xq

6≡ 0, for any

distinct xp, xq ∈ X. Then there are at most two γ ∈ F such that f|xn=γ is not (X\{xn})-pre-aligned.

Before giving the proof, we need a lemma.

Lemma 9. Let f ∈ F[X] be a RO-ABP-polynomial with |V ar(f)| ≥ 3 that is X-pre-aligned on S,

for some S ⊆ V ar(f). Assume that for any distinct xp, xq ∈ X, ∂2f
∂xp∂xq

6≡ 0. In any RO-ABP A
computing f , for any xi ∈ S,

1. if there exists a non-constant layer with variable xa right before the xi-layer, and there exists
a non-constant layer with variable xb right after the xi-layer, then

∂2f

∂xa∂xb
= g · (βxi − α),

where g is a RO-ABP-polynomial that does not depend on xi, and α, β ∈ F satisfy that
α = 0 ⇒ β = 0. Furthermore, −α equals the sum of weights of all paths from end(xa) to
begin(xb) that do not go over xi.

Proof. Consider xi ∈ S. Since f is X-pre-aligned on S, we know there exist distinct xj , xk ∈ X\{xi}

with ∂2f
∂xj∂xk

= h · (β′xi − α′), where h is a RO-ABP-polynomial that does not depend on xi, and

α′, β′ ∈ F satisfy that α′ = 0 ⇒ β′ = 0. Since ∂2f
∂xj∂xk

6≡ 0, it must be that α′ 6= 0.

Case I: In A, the xi-layer lies in between the xj-layer and xk layer.
Wlog assume the xi layer lies before the xk-layer and after the xj-layer (according to the order

of the DAG underlying A). Write ∂2f
∂xj∂xk

= p1p2 · (q1q2xi + q3), where

• p1 is the sum of weights over all paths in A from source(A) to begin(xj), and p2 is the sum
of weights over all paths in A from end(xk) to sink(A).

• q3 is the sum of weights over all paths from end(xj) to begin(xk) that bypass the xi-edge, q1

is the sum of weights over all paths from end(xj) to begin(xi), and q2 is the sum of weights
over all paths from end(xi) to begin(xk).

Now we have that p1p2 · (q1q2xi + q3) = h · (β′xi −α′). Since both p1p2 and h do not depend on
xi, it must be that (β′xi − α′) | (q1q2xi + q3). Note that β′ cannot equal 0, since then one of q1, q2

would be zero. The latter implies that ∂2f
∂xi∂xj

≡ 0 or ∂2f
∂xi∂xk

≡ 0, which is a contradiction. Since

β′ 6= 0, we can conclude that q3 = µq1q2 for some µ ∈ F, µ 6= 0. Now we need the following claim:
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Claim 2. Given an RO-ABP A computing f(x1, . . . , xn), if for any distinct xp, xq ∈ X, ∂2f
∂xp∂xq

6≡ 0,

then
∏

i∈[n] xi appears in f . Furthermore, for two variables xi and xj, if xi is before xj in A, if
we let S be the set of variables in between xi and xj, then

∏

xm∈S xm is a term in the polynomial

Â(end(xi), begin(xj)).

Proof. Suppose the variable layers in A are arranged according to the permutation φ : [n] → [n],
that is, xφ(i) labels the ith variable layer. Then we that

1. Â(s, begin(xφ(1))) 6≡ 0 (Since otherwise ∂2f
∂xφ(1)∂xφ(2)

≡ 0),

2. Similarly Â(end(xφ(n)), t) 6≡ 0, and

3. For i ∈ [n − 1], Â(begin(xφ(i)), end(xφ(i+1))) 6≡ 0 (Since otherwise ∂2f
∂xφ(i)∂xφ(i+1)

≡ 0).

The coefficient of
∏

i∈[n] xi is just

Â(s, begin(xφ(1))) · Â(end(xφ(n)), t)
∏

i∈[n−1]

Â(begin(xφ(i)), end(xφ(i+1))),

and hence
∏

i∈[n] xi appears in f . A similar argument yields the statement for Â(end(xi), begin(xj))
and finishes the proof of the claim.

As in the proof of Lemma 6, write ∂2f
∂xa∂xb

= g · (βxi−α), where g is a RO-ABP-polynomial that
does not depend on xi, and −α equals the sum of weights over all paths from end(xa) to begin(xb)
not going over xi. We have three cases:

1. Neither xj nor xk is the most adjacent variable to xi in A. By above claim, xa appears in a
monomial of q1, and xb appears in a monomial q2. Hence, there is a monomial in q1q2 with
xaxb. As q3 = µq1q2, for µ 6= 0, the same can be said for q3. But this implies α 6= 0, as the
coefficient of xaxb is −α · Â(end(xj), begin(xa))Â(end(xb), begin(xk)).

2. xj is not the most adjacent variable to xi in A, but xk = xb. Then similarly q1q2 has
a monomial with xa in it, and therefore the same holds for q3. Therefore α 6= 0, as the
coefficient of xa in q3 is −α · Â(end(xj), begin(xa)).

3. xj = xa, but xk is not the most adjacent variable to xi in A. This is argued similarly as the
second item.

This concludes the argument for this case.

Case II: In A, the xi-layer lies before the xj-layer and xk-layer.
Wlog. assume that the xj layer lies before the xk layer. Similarly as in Case I, we write

∂2f
∂xj∂xk

= p1p2 · (q1q2xi + q3), but where now we have that

• p1 = Âend(xj),begin(xk), and p2 = Âend(xk),sink(A),

• q1 = Âsource(A),begin(xi),
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• q2 = Âend(xi),begin(xj),

• q3 = ˆA[xi = 0]source(A),begin(xj)
.

Then p1p2 · (q1q2xi + q3) = h · (β′xi − α′). Since both p1p2 and h do not depend on xi, it must
be that (β′xi − α′) | (q1q2xi + q3). Similarly as before, we get q3 = µq1q2 for some µ ∈ F, µ 6= 0.

The rest of the proof is similar to Case I. One argues that 1) when xj 6= xb, q1q2 contains a
monomial with xaxb. To make xaxb appear in a monomial q3 we need α 6= 0, and 2) when xj = xb,
q1q2 contains a monomial with xa, and to make xa appear in a monomial of q3, we need α 6= 0.

Case III: In A, the xi-layer lies after the xj-layer and xk-layer.
This case is symmetrical to Case II.

We also need the following proposition:

Proposition 5. Let f ∈ F[X] be a RO-ABP-polynomial with |V ar(f)| ≥ 3, and let S ⊆ V ar(f).
Then f is X-pre-aligned on S if and only if f ′ := (xn+1 + 1)f is X ∪ {xn+1}-pre-aligned on S.

Proof. Let X ′ = X ∪{xn+1}. It is easy to see that assuming f is X-pre-aligned on S, we have that
f is X ′-pre-aligned on S.

Conversely, assume f ′ is X ′-pre-aligned on S. Let xi ∈ S. Then there exist xj , xk ∈ X ′\{xi},

such that ∂2f ′

∂xj∂xk
= g(βxi + α), where g is a RO-ABP-polynomial that does not depend on xi, and

α = 0 implies β = 0. If xn+1 6∈ {xj , xk}, then ∂2f ′

∂xj∂xk
= ∂2f

∂xj∂xk
(xn+1 +1). Setting xn+1 = 0, we have

that ∂2f
∂xj∂xk

= (g|xn+1=0)(βxi+α). So we get the required X-pre-alignment of f on {xi}. Otherwise,

say wlog. xj = xn+1. We have that ∂f
∂xk

= ∂2f ′

∂xn+1∂xk
= g(βxi + α). One easily obtains the required

X-pre-alignment of f on {xi}, by taking one more ∂xl, for some variable xl ∈ X\{xi, xk}, and then
using Lemma 4.

Proof of Lemma 8: The proof proceeds by induction on |X|. For the base case we take |X| ≤ 3,
in which case the statement clearly holds. Now suppose |X| > 3. Let f ′ = f|xn=γ , for some γ. Let
X ′ = X\{xn}. Suppose f ′ is not X ′-pre-aligned. Hence |V ar(f ′)| ≥ 3. We want to show this can
happen for at most one γ.

Consider an arbitrary RO-ABP A computing f . Let fe = f(xn+1+1)(xn+2+1)(xn+3+1)(xn+4+
1). Let Xe := X ∪ {xn+1, xn+2, xn+3, xn+4}. By Proposition 5, fe is Xe-pre-aligned on V ar(f).
Let f ′

e := (fe)|xn=γ and X ′
e := X ′ ∪ {xn+1, xn+2, xn+3, xn+4}. Note that f ′

e = f ′(xn+1 + 1)(xn+2 +
1)(xn+3 +1)(xn+4 +1). So also by Proposition 5, f ′

e is not X ′
e-pre-aligned on V ar(f ′) if and only if

f ′ is not X ′-pre-aligned on V ar(f ′). We will show the former happens for at most one γ. So let us
assume that f ′

e is not X ′
e-pre-aligned on V ar(f ′). We can easily obtain a RO-ABP Ae from A, which

computes fe. In this, we make sure xn+1 and xn+2 are the first and second variable in Ae, and xn+3

and xn+4 are the fore-last and last variable in Ae. For each xi ∈ V ar(f ′), let xji
be the variable

right after xi in Ae, and let xki
be the variable before xi in Ae. Note that we have made sure these

always exist in Ae. Since fe is Xe-pre-aligned on V ar(f), by Lemma 9, ∂2fe

∂xji
∂xki

= g · (βixi − αi),

where g is a RO-ABP-polynomial that does not depend on xi, and αi = 0 ⇒ βi = 0. Furthermore,
we have that αi is the sum of weights of all paths from end(xki

) to begin(xn), which do not go over
xi in Ae. Consider the following two cases:
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Case I: n 6∈ {ji, ki}, for any xi ∈ V ar(f ′).

Then for any i, ∂2f ′
e

∂xji
∂xki

= (gi)|xn=γ · (βixi − αi), which contradicts the assumption that f ′
e is

not X ′
e-pre-aligned on V ar(f ′).

Case II: n ∈ {ji, ki}, for some xi ∈ V ar(f ′).
By symmetry we can assume wlog. that ji = n (the case ki = n is handled similarly). Since

∂2f
∂xji

∂xki

6≡ 0, and αi = 0 implies βi = 0, We have that αi 6= 0.

We know that in Ae there still exists a variables layer, say with variables xl, right after the
xji

-layer. Let bi = begin(xi), ei = end(xi), bn = begin(xn), and en = end(xn). Let s = end(xki
)

and t = begin(xl). Then write:

∂2fe

∂xl∂xki

= p1p2(cs,bi
cei,bn

cen,txixn + cs,bi
cei,txi + cs,bn

cen,txn + cs,t),

where in the above each constant cv,w is the sum of weights over all paths from v to w going over
constant labeled edges only. Note that cs,bn

= αi 6= 0. Furthermore, p1 is the sum of weights of all
paths from source(Ae) to begin(xki

), and p2 is the sum of weights over all paths from end(xl) to
sink(Ae). Then

∂2f ′
e

∂xl∂xki

= p1p2((cs,bi
cei,bn

cen,tγ + cs,bi
cei,t)xi + cs,bn

cen,tγ + cs,t),

We have that f ′
e can only not be X ′

e-pre-aligned on {xi} if cs,bn
cen,tγ + cs,t = 0. This can happen

for more than one γ only if cs,bn
cen,t = 0. Since cs,bn

6= 0, this happens only if cen,t = 0, but the

latter implies that ∂2fe

∂xl∂xn
≡ 0, which in turn implies that ∂2f

∂xl∂xn
≡ 0, which is a contradiction.

Finally, putting together from what we observed from the above two cases, note that, Case II
can apply at most twice for a variable xi ∈ V ar(f ′). Namely, possibly once for the variable right
before xn, and possibly once for the variable after xn. We conclude the lemma holds.

Finally, we require that we can drop linear factors, while maintaining the pre-alignment property,
which is what the following lemma gives us:

Lemma 10. Let g, h ∈ F[X] be RO-ABP-polynomials such that h = g · (βxn − α), for β ∈ F\{0}
and α ∈ F. If h is X-pre-aligned, then g is (X\{xn})-pre-aligned.

Proof. If |X| ≤ 3 it is trivial, so assume |X| > 3. Let xi ∈ X\{xn}. Since h is X-pre-aligned,

there exist j, k ∈ [n]\{i} such that ∂2h
∂xj∂xk

= h′ · (β′xi − α′), where h′ does not depend on xi and

α′ = 0 ⇒ β′ = 0. We consider two cases. First, suppose n 6∈ {j, k}. Since g = h|xn=(1+α)/β, we

get ∂2g
∂xj∂xk

= h′
|xn=(1+α)/β · (β′xi − α′). Now suppose n ∈ {j, k}, and wlog. assume j = n. Then

∂2h
∂xj∂xk

= β ∂g
∂xk

= h′ · (β′xi − α′). Since |X| > 3, we can easily take partial w.r.t. another variable

xl so that ∂2g
∂xk∂xl

is of the required form.

We are now ready to prove the hardness of representation theorems.
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5 Hardness of Representation Theorems

The following theorem is an adaption of Theorem 6.1 in [SV09] to the notion of X-pre-alignment.

Theorem 4. Let n > 2 be an integer and X = {xi : i ∈ [n]} be a set of indeterminates. Let
Pn =

∏

i∈[n] xi. If {fi ∈ F[X]}i∈[k] is a set of k many X-pre-aligned RO-ABP-polynomials for
which Pn =

∑

i∈[k] fi, then n < 7k.

Proof. The proof proceeds by induction on k. For the base case k = 1, since f1 = Pn, and f1

is X-pre-aligned, and n > 2, for xi ∈ V ar(Pn), whatever distinct xj , xl ∈ X\{xi} we select,
∂2f1

∂xj∂xl
= xi ·

∏

xr∈X\{xi,xj ,xl}
xr. This cannot be of the form g · (βxi + α) with g being an RO-ABP

not depending on xi, and α = 0 ⇒ β = 0, as Definition 1 requires. Namely, since g does not depend
on xi, it must be that β 6= 0. Hence α 6= 0, and thus g · (βxi + α) is not homogeneous. Since
xi ·

∏

xr∈X\{xi,xj ,xl}
xr is homogeneous, this is a contradiction. Now assume k > 1. Suppose we can

write Pn =
∑

i∈[k] fi. For purpose of contradiction, assume that n ≥ 7k. Hence n ≥ 14.

Case I: “∃ distinct p, q, r ∈ [n] and s ∈ [k], such that ∂3fs

∂xp∂xq∂xr
≡ 0”.

Wlog. assume that p = n−2, q = n−1, r = n and s = k. Then
∑

i∈[k−1]
∂3fi

∂xn−2∂xn−1∂xn
= Pn−3.

By Lemma 7, all of the terms ∂3fi

∂xn−2∂xn−1∂xn
are (X\{xn−2, xn−1, xn})-pre-aligned. By induc-

tion, it must be that n − 3 < 7(k − 1). Hence n < 7k − 4, which is a contradiction.

Case II: “∀ distinct p, q, r ∈ [n] and s ∈ [k], we have that ∂3fs

∂xp∂xq∂xr
6≡ 0”.

We know ∀i, |V ar(fi)| ≥ 3. Since fi is X-pre-aligned, there exist distinct xji
, xli ∈ X\{xn}

such that ∂2fi

∂xji
∂xli

= gi · (βixn − αi), where gi is a RO-ABP-polynomial that does not depend on

xn, and αi = 0 ⇒ βi = 0. Note that in this case, gi 6≡ 0, since otherwise a second order partial
vanishes. Hence both ji and li are certainly not equal to xn. It must be that βi 6= 0, since otherwise

∂3f
∂xji

∂xli
∂xn

≡ 0. Hence also αi 6= 0.

Claim 3. gi is (X\{xji
, xli , xn})-pre-aligned.

Proof. Assume that |V ar(gi)| ≥ 3, since otherwise the claim is trivial. Let h = gi · (βixn − αi).
By Lemma 7, h is (X\{xji

, xli})-pre-aligned. Since βi 6= 0, applying Lemma 10 yields that gi is
(X\{xji

, xli , xn})-pre-aligned.

Now, let A = {αi

βi
: i ∈ [k]}. Define for γ ∈ A,

Eγ = {i ∈ [k] : γ =
αi

βi
}

and
Bγ = {i ∈ [k] : γ 6=

αi

βi
and (fi)|xn=γ is not (X\{xn})-pre-aligned}.

Note that
∑

γ∈A |Eγ | = k. By Nearly Unique Nonalignment Lemma 8,
∑

γ∈A |Bγ | ≤ 2k. Hence
there exists γ0 ∈ A such that |Bγ0 | ≤ 2|Eγ0 |. Let I = Eγ0∪Bγ0 , and let J = {ji : i ∈ I}∪{ki : i ∈ I}.
We have that 2 ≤ |J | ≤ 2|I| ≤ 6|Eγ0 |. Observe that xn 6∈ J . Define for any i, f ′

i = ∂Jfi. We have
the following three properties:

1. Each f ′
i is an (X\J)-pre-aligned RO-ABP-polynomial, due to Lemma 7.
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2. For every i ∈ I, f ′
i = (βixn − αi)hi, where hi is a RO-ABP-polynomial. Namely, since

ji, li ∈ J , f ′
i = ∂J\{ji,li}[gi(βixn − αi)] = (βixn − αi) · ∂J\{ji,li}gi.

3. In the above, each hi is an (X\(J ∪{xn}))-pre-aligned RO-ABP-polynomial. Namely, since gi

is (X\{xji
, xli , xn})-pre-aligned. Hence, using Lemma 7, we get that hi is an (X\(J ∪{xn}))-

pre-aligned RO-ABP-polynomial.

For any i, define f ′′
i = (f ′

i)|xn=γ0
. Then we have the following three properties:

1. ∀i ∈ Eγ0 , f ′′
i ≡ 0.

2. ∀i ∈ Bγ0 , f ′′
i = (βiγ0 − αi)hi, so f ′′

i is an (X\(J ∪ {xn}))-pre-aligned RO-ABP-polynomial,
due to Proposition 4.

3. For every i ∈ [k]\I, (fi)|xn=γ0
is X\{xn}-pre-aligned. Hence, since n 6∈ J , f ′′

i = (f ′
i)|xn=γ0

=
∂J [f|xn=γ0

]. So by Lemma 7, f ′′
i is an (X\(J ∪ {xn}))-pre-aligned RO-ABP-polynomial.

Wlog. assume that J = {ñ + 1, ñ + 2, . . . , n − 2, n − 1}. Then |J | = n − 1 − ñ. Then
∑

i∈[k] f
′′
i = (∂JPn)|xn=γ0

= γ0 · Pñ. Let X̃ = {x1, . . . , xñ}. We have found a representation of

Pñ as a sum of k̃ X̃-pre-aligned RO-ABP-polynomials, where 7k̃ ≤ 7(k − |Eγ0 |) ≤ n − 7|Eγ0 | =
n − 1 − 6|Eγ0 | + 1 − |Eγ0 | ≤ ñ + 1 − |Eγ0 | ≤ ñ. This contradicts the induction hypothesis.

Next we generalize to PRO-ABP-polynomials.

Theorem 5. Let n > 2 be an integer and X = {xi : i ∈ [n]} be a set of indeterminates. Let
Pn =

∏

i∈[n] xi and let g ∈ F[X] be a nonzero polynomial. If {fi ∈ F[X]}i∈[k] is a set of k many
X-pre-aligned PRO-ABP-polynomials for which g · Pn =

∑

i∈[k] fi, then n < 7k.

Proof. We use induction on k. Let d be such that each fi is d-decomposable, and let
(hi, {T

i
j (xj}j∈[n]) be a d-decomposition of fi, where hi ∈ F[Z] and Z = {zi : i ∈ [n]}. By defi-

nition, each hi is Z-pre-aligned. Wlog. we can assume |F| is infinite, since if the statement holds
over some infinite extension field of F, then it holds for F.

For k = 0 the statement is trivial. For k = 1, for purpose of contradiction suppose that
g · Pn = f1 = h1(T

1
1 (x1), . . . , T

1
n(xn)), where h1 is Z-pre-aligned on Z = {zi : i ∈ [n]}. Hence

for any zi ∈ V ar(h1), there exist xj , xl ∈ Z\{zi}, such that ∂2h1
∂zj∂zl

= h′
1 · (βzi − α), where h′

1 is a

RO-ABP-polynomial not depending on zi, and α = 0 ⇒ β = 0.
Now let γ 6= 0 be such that g|xj=xl=γ 6≡ 0, which exists since g 6≡ 0 and |F| is infinite. We have

that
∂2f1

∂γxj∂γxl
= T 1

j (γ)T 1
l (γ) · h′

1(T
1
1 (x1), . . . , T

1
n(xn)) · (βT 1

i (x1) − α).

Therefore, ∂2f1

∂γxj∂γxl
contains a term without xi, if it is not identically zero. Also, ∂2f1

∂γxj∂γxl
=

γ2 · g|xj=xl=γ ·
∏

t∈[n]\{j,l} xt, which implies it is not identically zero, and every term contains the
variable xi. We have reached a contradiction and have proven the case k = 1.

For the induction step consider the case that k ≥ 2. For purpose of contradiction that suppose
n ≥ 7k and g · Pn =

∑

i∈[k] hi(T
i
1(x1), . . . , T

i
n(xn)). Let y and w be new variables. We make a

distinction between two cases.
Case I: ∀j ∈ [n], i ∈ [k], we have that y · g|xj=yT

i
j (w) ≡ w · g|xj=wT i

j (y).
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This implies for i1 6= i2 and any j ∈ [n], that T i1
j (y)/T i2

j (y) = T i1
j (w)/T i2

j (w). This means

T i1
j (y)/T i2

j (y) ∈ F, and since both polynomials are monic T i1
j (y)/T i2

j (y) = 1. Hence in this case
there exists a single set {Uj ∈ T d}j∈[n] such that ∀i ∈ [k], hi = fi(U1(x1, . . . , Un(xn)).

Observe that y · g|xj=y/Uj(y) = w · g|xj=w/Uj(w) and that consequenty for some g′j ∈ F[X] with
xj 6∈ V ar(g′j), y · g|xj=y/Uj(y) = g′j . Hence ∀i ∈ [n], Ui(xi) is a factor of g · Pn, and

g · Pn = c · U1(x1)U2(x2) . . . , Un(xn) = cPn(U1(x1), . . . , Un(xn)),

for some c ∈ F\{0}. Therefore,

∑

i∈[k]

hi(U1(x1), . . . , Un(xn)) =
∑

i∈[k]

fi = cPn(U1(x1), . . . , Un(xn)).

From which we conclude that
∑

i∈[k] hi(x1, . . . , xn) = cPn(x1), . . . , (xn)). By theorem 4 this implies
that n < 7k, which is a contradiction.

Case II: ∃j ∈ [n], i ∈ [k], such that y · g|xj=yT
i
j (w) 6≡ w · g|xj=wT i

j (y).
Wlog. assume that j = n and i = k. Since |F| is infinite, there exist α, β ∈ F, such that

α·g|xn=αT k
n (β) 6≡ β·g|xn=βT k

n (α). We have that ∂(g·Pn)
∂αxn

= α·g|xn=αPn−1 and ∂(g·Pn)
∂βxn

= β·g|xn=βPn−1.

Also

∂(g · Pn)

∂αxn
=

∑

i∈[k]

T i
n(α)

∂hi

∂xn
(T i

1(x1), . . . , T
i
n(xn))

and
∂(g · Pn)

∂βxn
=

∑

i∈[k]

T i
n(β)

∂hi

∂xn
(T i

1(x1), . . . , T
i
n(xn))

Hence

Pn−1

(

α · g|xn=αT k
n (β) − β · g|xn=βT k

n (α)
)

=
∑

i∈[k−1]

(T i
n(α)T k

n (β) − T i
n(β)T k

n (α))
∂hi

∂xn
(T i

1(x1), . . . , T
i
n(xn))

By Lemma 7, ∂hi

∂xn
is an Z-pre-aligned RO-ABP-polynomial. We conclude that for some polynomial

g′ 6≡ 0, we have a representation of Pn−1 · g
′ as sum of k− 1 X-pre-aligned PRO-ABP-polynomials.

By induction hypothesis, it must be that n < 7k − 6. This is a contradiction.

6 Computing a Simultaneous Alignment

A simultaneous X-alignment for a set of (P)RO-ABP-polynomials {fi ∈ F[X]}i∈[k] is any vector
v ∈ Fn such that fi(x1 + v1, x2 + v2, . . . , xn + vn) is X-aligned for every i ∈ [k]. We present an
algorithm for finding a simultaneous X-alignment for a set of PRO-ABP-polynomials. We assume
that we have a polynomial identity testing algorithm PITPRO-ABP for testing a single PRO-ABP.

First, we establish a sufficient condition, so for a given RO-ABP-polynomial f we can make
f(x1 + v1, x2 + v2, . . . , xn + vn) X-aligned, by means of computing some shift v ∈ Fn. For this, let

us call a polynomial f ∈ F[X] decent, if for all xa, xb ∈ V ar(f) with ∂2f
∂xa∂xb

6≡ 0, it holds that the
monomial xaxb appears in f with a nonzero constant coefficient.
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Lemma 11. A RO-ABP-polynomial f ∈ F[X] is X-aligned, if |V ar(f)| ≤ 2, or else for every
I ⊆ V ar(f) with |I| ≤ |V ar(f)| − 3, f|xI=0 is decent.

Proof (Induction on |V ar(f)|). For |V ar(f)| ≤ 2 it is trivial. Now assume |V ar(f)| > 2. Take

I = ∅. Then we get that for any xa, xb ∈ V ar(f), if ∂2f
∂xa∂xb

6≡ 0 then the monomial xaxb appears in
f with a nonzero constant coefficient. Let us first establish that f is X-pre-aligned. Consider an

arbitrary xi ∈ V ar(f). By Lemma 6, there exist distinct xj , xk ∈ X\{xi} such that p := ∂2f
∂xj∂xk

=

g · (βxi − α), where g is a RO-ABP-polynomial that does not depend on xi, and α, β ∈ F .
If β = 0, then f is X-pre-aligned on {xi}, so suppose β 6= 0. If p is identically zero, then we

know g ≡ 0, so ∂2f
∂xj∂xk

= g · (βxi − α′), for any arbitrary α′ 6= 0. If p is not identically zero, then

we know xjxk is in f , which implies that α 6= 0. We conclude that f is X-pre-aligned on {xi}.
In the above, we find that f is X-pre-aligned on {xi} in any of the considered cases. Since xi

was arbitrarily taken from V ar(f), we conclude that f is X-pre-aligned.
Next, we show Condition 2 of Definition 2 holds. Consider f ′ := f|xi=0, for an arbitrary xi ∈

V ar(f). We want to establish that the sufficient condition of Lemma 11 holds for f ′ ∈ F[X\{xi}],
since then we can by apply the induction hypothesis and conclude that f ′ is (X\{xi})-aligned.

If |V ar(f ′)| ≤ 2 the sufficient condition of the Lemma 11 clearly holds for f ′. Otherwise,
consider I ′ ⊆ V ar(f ′) of size at most |V ar(f ′)| − 3. Let I = I ′ ∪ {xi}. Then |I| ≤ |V ar(f)| − 3.

Now consider xa, xb ∈ V ar(f ′
xI′=0) = V ar(fxI=0). Suppose

∂2f ′
|x

I′=0

∂xa∂xb
6≡ 0. Since the latter equals

∂2f|xI=0

∂xa∂xb
6≡ 0, we know that xaxb appears with a nonzero constant coefficient in f|xI=0. This implies

xaxb appears with a nonzero constant coefficient in f|xI′=0. Hence f ′
xI′=0

is decent.
We conclude the sufficient condition of the Lemma 11 holds for f ′ ∈ F[X\{xi}]. Hence by the

induction hypothesis we conclude that f ′ is (X\{xi})-aligned.

Lemma 12. Any decent RO-ABP-polynomial f ∈ F[X] is X-aligned.

Proof. We show that the condition of Lemma 11 is satisfied. If |V ar(f)| ≤ 2 this is clear. Otherwise,
consider arbitrary I ⊆ V ar(f) with |I| ≤ |V ar(f)| − 3. Let xa, xb ∈ V ar(f|xI=0), be such that
∂2f|xI=0

∂xa∂xb
6≡ 0. We have that xa, xb ∈ V ar(f), and it must be that ∂2f

∂xa∂xb
6≡ 0, since

∂2f|xI=0

∂xa∂xb
=

(

∂2f
∂xa∂xb

)

|xI=0
. Hence xaxb is in f . This implies that xaxb is in f|xI=0.

The above lemma leads the way towards computing a simultaneous X-alignment as follows:

Corollary 2. Let {fi}i∈[k] be a set of RO-ABP-polynomials in F[X]. If v ∈ Fn is a simultaneous

nonzero of { ∂2fi

∂xa∂xb
| ∂2fi

∂xa∂xb
6≡ 0}i∈[k],a,b∈[n], then v is a simultaneous X-alignment for {fi}i∈[k].

Proof. Consider {f ′
i = fi(x1 + v1, x2 + v2, . . . , xn + vn)}i∈[k]. Due to Lemma 12, we only need to

show that for every i, for every xa, xb ∈ V ar(fi), if
∂2f ′

i

∂xa∂xb
6≡ 0 then the monomial xaxb appears in f ′

i

with a nonzero constant coefficient. Observe that the monomial xaxb appears in f ′
i with a nonzero

constant coefficient ⇐⇒
∂2f ′

i

∂xa∂xb
(0̄) 6= 0. The latter holds, as

∂2f ′
i

∂xa∂xb
(0̄) = ∂2fi

∂xa∂xb
(v) 6= 0.

The above corollary can be generalized to PRO-ABP-polynomials
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Corollary 3. Let k > 0 and d > 0 be integers and suppose F is a field with more than knd
elements. Let {fi}i∈[k] be a set of PRO-ABP-polynomials in F[X]. Suppose fi has d-decomposition
(gi, {T

i
j (xj)}j∈[n]), where gi ∈ F[Z], for all i ∈ [k]. Suppose α ∈ F\{0} satisfies T i

j (α) 6= 0, for

all i ∈ [k] and xj ∈ V ar(fi). If v ∈ Fn is a simultaneous nonzero for { ∂2fi

∂αxa∂αxb
| ∂2fi

∂αxa∂αxb
6≡

0}i∈[k],a,b∈[n], then v is a simultaneous X-alignment of {fi}i∈[k].

Proof. For certain U i
1, . . . , U

i
n ∈ T d, we can write fi(x1 + v1, . . . , xn + vn) = gi(T

i
1(x1 +

v1), . . . , T
i
n(xn + vn)) = gi(U

i
1(x1) + T i

1(v1), . . . , U
i
n(xn) + T i

n(vn)). So letting g′i = gi(z1 +
T i

1(v1), . . . , zn +T i
n(vn)), gives us that (g′i, {U

i
1(xj)}j∈[n]) is a d-decomposition of fi(x1+v1, . . . , xn +

vn). We want to select a single v such that every RO-ABP-polynomial g′i is Z-aligned. Sim-
ilarly as in the proof of Corollary 2, we can arrange this by ensuring that for each i ∈ [k],

(T i
1(v), . . . , T i

n(v)) is a common nonzero of { ∂2gi

∂za∂zb
: ∂2gi

∂za∂zb
6≡ 0}a,b∈[n]. By Lemma 4, we

have that ∂2fi

∂αxa∂αxb
= T i

a(α)T i
b (α) ∂2gi

∂za∂zb
(T i

1(x1), . . . , T
i
n(xn)). Note that ∂2gi

∂za∂zb
6≡ 0 implies that

za, zb ∈ V ar(gi). Since the |F| > d, we have that for any j ∈ [n], xj ∈ V ar(fi) ⇔ zj ∈ V ar(gi).

Hence, it suffices to find a single v that is a nonzero of { ∂2fi

∂αxa∂αxb
| ∂2fi

∂αxa∂αxb
6≡ 0}i∈[k],a,b∈[n].

In order to apply the above corollary, we have to deal with the issue of finding the appropriate
direction α. This is not too difficult as any set of size knd + 1 contains such an element. Namely,
by Proposition 2, for any fi and xj ∈ V ar(fi), there can be at most d values for α with ∂fi

∂αxj
≡ 0.

Using the procedure PITPRO-ABP on the fi’s we can single out one correct element in the interval
[knd + 1].

Now we proceeds similarly as in Lemma 4.3 of [SV09], but with first order partial derivatives
replaced by second order ones. This yields the following theorem.

Theorem 6. Let d ≥ 1 be an integer, and suppose F is a field with |F| > dkn2. There exists an
algorithm for finding a simultaneous X-alignment for a set of d-decomposable PRO-ABP polyno-
mials {fi ∈ F[X]}i∈[k]. The algorithm makes oracle calls to the procedure PITPRO-ABP. The fis are
only accessed through this subroutine. The running-time of the algorithm is O(dk2n5 · t), where t
is an upper bound on the time needed for any subroutine call to PITPRO-ABP.

Proof. We assume that we have a polynomial identity testing algorithm PITPRO-ABP for testing
a single PRO-ABP, such that PITPRO-ABP outputs True if f ≡ 0 and False otherwise. We first
state Algorithm 1 for computing V ar(f) of a PRO-ABP-polynomial f . Its correctness follows from
Proposition 2.

Algorithm 1 Computing V ar(f).

Input: A d-decomposable PRO-ABP-polynomial f ∈ F[X]}.
Assumption: |F| > d.
Output: V ar(f).
Oracle: PIT algorithm PITPRO-ABP.

1: S = ∅
2: for all x ∈ X, α ∈ [d + 1] do

3: If PITPRO-ABP( ∂f
∂αx) = False, add x to S

4: end for

5: return S
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Algorithm 2 Alignment Finding.

Input: A set of d-decomposable PRO-ABP-polynomials {fi ∈ F[X]}i∈[k].
Assumption: |F| > dkn2.
Output: A simultaneous alignment v for {fi}i∈[k].
Oracle: PIT algorithm PITPRO-ABP.

1: Compute V ar(fi), for each i ∈ [k].
2: for all t ∈ [knd + 1] do

3: If for all i ∈ [k] and xj ∈ V ar(fi), PITPRO-ABP( ∂fi

∂txj
) = False, set α = t, exit for loop.

4: end for

5: L = ∅
6: for all fi and (xa, xb), a, b ∈ [n], a 6= b do

7: If PITPRO-ABP( ∂2fi

∂αxa∂αxb
) = False, add it to L

8: end for

9: for all j ∈ [n] do

10: Find c such that for every g ∈ L, PITPRO-ABP(g |xj=c) = False
11: vj ← c
12: For every g ∈ L, g ← g |xj=c

13: end for

14: return v

Correctness of Algorithm 2: We first make two remarks, which pertain to applying Algo-
rithm 2 in the setting where we only have black-box access to each fi. Consider the first for-loop.
Since we only have black-box access to fi, the given pseudocode should be interpreted symbolically.
Namely, by Lemma 4, f ′ := ∂fi

∂txj
is a PRO-ABP. Note that black-box access to fi is sufficient for

being able to compute f ′(a) for any a ∈ Fn. This is all the black-box algorithm PITPRO-ABP needs
to decide whether f ′ ≡ 0. A similar remark pertains to line 7.

Also similarly, on line 12 the substitution is not actually carried out, but done symbolically.
So it is just remembered that xj is set to c. For example, suppose that up to some point in
the execution the algorithm it has set xi = ci, for i ∈ [m]. Then on line 10, for evaluating
PITRO-ABP(g |xj=c), the black-box algorithm is granted access to a PRO-ABP in n − m variables
g(c1, c2, . . . , cm, xm+1, . . . , xn). The queries it makes can be answered with only black-box access
to g.

First the algorithm finds an α such that for all i ∈ [k] and xj ∈ V ar(fi),
∂fi

∂txj
6≡ 0. Note that

oen can derive using Lemma 3 that for each fi and any xj ∈ V ar(fi), there are at most d values

t in [knd + 1] for which ∂fi

∂txj
≡ 0. Hence for some t ∈ [knd + 1], all tests on line 3 will pass,

and an α will be set. Suppose that (hi, {T
i
1(xj)}j∈[n]) is a d-decomposition of fi, for all i ∈ [k].

Since ∂fi

∂txj
= T i

j (t)
∂hi

∂zj
(T1(x1), . . . , Tn(xn)), and since for any xj ∈ V ar(fi),

∂hi

∂zj
6≡ 0 (and therefore

∂hi

∂zj
(T1(x1), . . . , Tn(xn)) 6≡ 0), the selected α is a common nonzero of {T i

j : i ∈ [k], j ∈ V ar(fi)}.

Now, by Corollary 3 it suffices to find a common nonzero of the set L.
First however, we need to explain how to find c such that g |xj=c 6≡ 0. Let V ⊂ F with

|V | = dkn2 + 1 be given. We claim V always includes a good value. This is because we have at
most kn2 polynomials in L and each has individual degrees bounded by d. For specific polynomial
in L, there are at most d one bad values due to Lemma 3. The algorithm can simply try all elements
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in V to get the required c. The correctness of the algorithm is now evident, from the observation
that it simply maintains the invariant that all g ∈ L are not identically zero.

The running time of the algorithm is as follows. Line 1 takes O(dkn) time. For line 3 we
need O(k2n2d) calls to PITPRO-ABP. For line 7 we need O(kn2) calls to PITPRO-ABP. For line 10 we
need O(n · (dkn2 + 1) · (kn2)) = O(dk2n5) calls to PITPRO-ABP. Thus the total running time of the
algorithm is O(dk2n5 · t), where t is an upper bound on the time needed for any subroutine call to
PITRO-ABP.

For the black-box setting we need the following lemma.

Lemma 13. Let F be a field with |F| > k2d2n5 +kdn4, and let V ⊆ F with |V | = k2d2n5 +kdn4 +1
be given. Let {fi}i∈[k] be a set of PRO-ABP-polynomials in F[X]. Let Gm : F2m → Fn be the
mth-order SV-generator with m = ⌈log n⌉ + 1. Then Ak := Gm(V 2m) contains a simultaneous
X-alignment for {fi}i∈[k].

Proof. let L = { ∂2fi

∂αxa∂αxb
| ∂2fi

∂αxa∂αxb
6≡ 0}i∈[k],a,b∈[n],α∈[knd+1]. Let P (x1, . . . , xn) =

∏

g∈L g(x1, . . . , xn). By Lemma 4, each g ∈ L is a PRO-ABP-polynomial. Hence by Lemma 1,

for m = ⌈log n⌉ + 1, the SV-generator (G1
m, G2

m, . . . , Gn
m), satisfies that g(G1

m, G2
m, . . . , Gn

m) 6≡ 0,
for all g ∈ L. So P (G1

m, G2
m, . . . , Gn

m) 6≡ 0.
Note that there are 2m variables in P (G1

m, . . . , Gn
m), and the degree of every variable is bounded

by (knd + 1)kn2 · dn2 = k2d2n5 + kdn4. Thus by Lemma 3, ∃a ∈ V 2m, P (G1
m(a), . . . , Gn

m(a)) 6= 0.
Hence Ak = Gn(V 2m) is ensured to contain a nonzero of P . Any nonzero of P is a simultaneous
nonzero of all g ∈ L. By Corollary 3 and the remark after it regarding finding an appropriate α,
Ak contains a simultaneous X-alignment for {fi}i∈[k].

7 A Vanishing Theorem and the PIT Algorithms

Theorem 7. Let n > 2 and d > 0 be integers. Let {fi ∈ F[X]}i∈[k] be a set of k many d-
decomposable X-aligned PRO-ABPs. Let f =

∑

i∈[k] fi. Then f ≡ 0 ⇐⇒ ∀w ∈ Wn
7k,d, f(w) = 0.

Proof. (induction on n). We only argue “⇐”. Assume that ∀w ∈ Wn
7k,d, f(w) = 0. For n < 7k it

follows from Lemma 3 that f ≡ 0. Now assume that n ≥ 7k. Consider a variable xℓ, for ℓ ∈ [n]
and restriction of the polynomials fi’s and f to the subspace xℓ = 0. Each of the f ′

i = fi|xℓ=0

are (X \ {xℓ})-aligned. Let f ′ =
∑k

i=1 f ′
i . Clearly, ∀w ∈ Wn

7k,d, f(w) = 0 implies that ∀w ∈

Wn−1
7k,d , f ′(w) = 0. By induction, f ′ = f |xℓ=0 ≡ 0, which implies that xℓ divides f . So we get that

Pn =
∏k

i=1 xi divides f , i.e. for some polynomial g we have that Pn · g = f . Thus Pn · g is the sum
of k RO-ABPs which are also X-aligned. Since n ≥ 7k, by Theorem 4, we get g ≡ 0. So f ≡ 0.

Now we explain how to get the PIT algorithms for Σk-PRO-ABP-polynomials given by {fi ∈
F[X]}i∈[k] with individual degrees bounded by d. We use that ∀v ∈ Fn, f ≡ 0 ⇐⇒ f(x1 +
v1, x2 + v2, . . . , xn + vn) ≡ 0. If we have a common alignment v for {fi}i∈[k], we know that each
fi(x1 + v1, x2 + v2, . . . , xn + vn) is X-aligned. Then Theorem 7 is applicable, and it suffices to test
on the set Wn

7k,d. Based on three approaches to get a common alignment, we get the following:
(Black-box Setting) We have black-box access to f =

∑

i∈[k] fi. Let fv(x1, . . . , xn) = f(x1 +
v1, . . . , xn + vn). Then f ≡ 0 ⇐⇒ ∀v ∈ Ak,∀w ∈ Wn

7k,d, fv(w) = 0, where Ak is given by

Lemma 13. So we get running-time (kdn)O(log n+k) ≤ (dn)O(log n+k). This proves Theorem 1.
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(Non/Semi Black-box Settings) As we showed in Section 3.1, for non black-box, PITRO-ABP takes
time O(n2s2) for a RO-ABP-polynomial of size s in n variables. For a PRO-ABP-polynomial fj

with decomposition (gj , {Ti(xi)}i∈[n]), fj ≡ 0 ⇔ gj ≡ 0. Hence we get the same time bound for
PITPRO-ABP. By Lemma 1 and using Lemma 3, PITRO-ABP can be implemented in the black-box set-
ting to run in time (dn)O(log n), for RO-ABP-polynomials in n variables which are d-decomposable.
Theorems 2 and 3 are now proved using these observations and applying Theorem 6.
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A Example : RO-ABPs Are Not Universal

Proposition 6. The degree-2 elementary symmetric polynomial en(x1, x2, . . . , xn) =
∑

1≤i<j≤n xixj, n ≥ 3 can not be computed by a RO-ABP.

Proof. For the purpose of contradiction, suppose that some RO-ABP A computes en. For any xi

denote the edge it labels by gi = (si, ti). We can define an ordering < among gi’s, by taking gi < gj

if and only if the polynomial computed by the subprogram A(ti, sj) has a nonzero constant term.
Due to the fact that A is a DAG, we have for any i, j, if xi < xj , then not xj < xi.

The fact that for every (i, j) pair, xixj appears as a term in en implies that for any i 6= j, we
have one of xi < xj or xj < xi. Incidently, note this implies the ordering is transitive. Namely, if
xi < xj and xj < xk, then sj must be reachable from ti, and sk must be reachable from tj in A,
but then si can not be reachable from tk. Hence not xk < xj , which implies xj < xk.

In any case, observe there is a permutation φ : [n] → [n] for which xφ(1) < xφ(2) < · · · <
xφ(n). This implies that

∏

i∈[n] xi appears as a term in the polynomial computed by A, which is a
contradiction.

B Separation of Σk-PRO-Formula and Σk-PRO-ABP

We give the sketch of an argument that shows, there exists a RO-ABP-polynomial f in n variables
that can not be computed by a sum of k many PRO-formulas, if k = o(n). We assume that F is
algebraically closed to keep the algebraic geometry simple. First, we observe that since any such
f is multilinear, it suffices to argue that f can not be computed by a sum of k many RO-formulas.
Namely, for any RO-formula-polynomial g(z1, . . . , zn) that depend on zi, for any univariate polyno-
mials T1, . . . , Tn ∈ T d, if Ti has degree e, then the individual degree of xi in g(T1(x1), . . . , Tn(xn))
is e.

We think of multilinear polynomials as points in F2n

, as determined by the coefficients of its

2n many monomials. Let K = F(n
2). Let π : F2n

→ K be the projection given by restricting
to coefficient of monomials in the set {xixj : 1 ≤ i < j ≤ n}. Let V ⊆ F 2n

be the set of
points corresponding to all RO-ABP-polynomials, and let Wk ⊆ F 2n

correspond to the set of all
Σk-RO-formulas.

Consider the following generic RO-ABP with 2n + 2 nodes {v1, . . . , vn, vn+1 = t} ∪ {s =
u0, u1, . . . un}. We do not worry about levelling the ABP. For all i ∈ [n], there is an edge from vi

to ui with variable label xi. For all 0 ≤ i < j ≤ n + 1, the edge from ui to vi+1 carries the constant
label ci,j , yet to be determined. Let f be the output of this ABP. Observe that for every i < j, the
monomial xixj of f has coefficient c0,ici,jcj,n+1. Since all ci,j ’s can be set independently, we thus
have that π(V ) = K.

For a single RO-formula in n variables it is not too difficult to see that it always can be
simplified to have O(n) many gates. Namely, there is no need to pre-compute constants, as we
can use any element of F as a label. This means that we have an enumeration F1, F2, . . . , Fm,
of RO-formulas each having O(n) many “generic constants”, such that any RO-Formula can be
obtained from some Fi by specifying values in F for these generic constants. Let R be a bound
on the number of constants gates used in any Fi. We have that m is some large finite number
depending on n, which counts the number of structurally different RO-formulas in n variables with
at most R constant gates. Say Fi has r ≤ R = O(n) generic constants c1, . . . , cr. The coefficients
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of x~a := xa1
1 . . . xan

n of the polynomial computed by Fi is given by some polynomial pi
~a(c1, . . . , cr).

Let pi be the polynomial map Fr → F2n

given by the 2n-tuple of polynomials pi
~a, for all a ∈ {0, 1}n.

We conclude that
⋃

i∈[m] Image(pi) = W1. Eventhough m is a large number, this is a finite union,

and hence its dimension6 is bounded by the maximum dimension of any Image(pi), and hence is at
most O(n). Applying the projection π cannot increase the dimension, so we conclude that π(W1)
has dimension O(n). However, π(V ) = K, which is

(

n
2

)

-dimensional. Hence there exists v ∈ V \W1.
The latter means there exists some RO-ABP-polynomial that is not a RO-formula (This fact has
already been demonstrated by giving an explicit example, of course). To obtain the argument
for sum’s of k many RO-formulas one argues similarly, but now use the fact that the number of
constants in any sum of k RO-formulas after simplifications can be bounded by O(kn). Then we
obtain a finite enumeration of Σk-RO-formulas, each having O(kn) generic constants. Similarly as
before, for k = o(n) one fails to cover the entire space K for dimensional reasons.

C Figure 1

Figure 1 shows an RO-ABP computing x1x2 + x2x3 + xn−1xn, when n is even. The case when n is
odd is dealt with similarly. Unlabeled edges are labeled with 1.
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Figure 1: A RO-ABP computing x1x2 + x2x3 + . . . + x2n−1x2n.

6To complete the argument formally, we would take the dimension of a a set S ⊆ Fq, to mean the dimension of
the algebraic set S, where S denotes the closure of S in the Zariski topology.
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