
Lower bounds for width-restricted clause
learning on small width formulas

Eli Ben-Sasson1 and Jan Johannsen2

1 Computer Science Department, Technion – Israel Institute of Technology,
Haifa, Israel

2 Institut für Informatik, LMU München, Munich, Germany

Abstract. It has been observed empirically that clause learning does
not significantly improve the performance of a SAT solver when restricted
to learning clauses of small width only. This experience is supported by
lower bound theorems. It is shown that lower bounds on the runtime
of width-restricted clause learning follow from resolution width lower
bounds. This yields the first lower bounds on width-restricted clause
learning for formulas in 3-CNF.

1 Introduction

Most SAT solvers are based on extensions of the basic backtracking procedure
known as the DLL algorithm [10]. The recursive procedure is called for a formula
F in conjunctive normal form and a partial assignment α (which is empty in the
outermost call). If α satisfies F , then it is returned, and if α causes a conflict,
i.e., falsifies a clause in F , then the call fails. Otherwise a variable x unset by
α is chosen according to some heuristic, and the procedure is called recursively
twice, with α extended by x := 1 and by x := 0. If one recursive call returns
a satisfying assignment, then it is returned, otherwise — if both recursive calls
fail — the call fails.

Contemporary SAT solvers employ several refinements and extensions of the
basic DLL algorithm. One of the most successful of these extensions is clause
learning [22], which works as follows: When the procedure encounters a conflict,
then a sub-assignment α′ of α that suffices to cause this conflict is computed.
This sub-assignment α′, thought of as the reason for the conflict, can then be
stored in form of a new clause C added to the formula, viz. the unique largest
clause C falsified by α′. This way, when in a later branch of the search another
partial assignment extending α′ occurs, the procedure can backtrack earlier since
then the added clause C becomes falsified and causes a conflict.

When clause learning is implemented, a heuristic is needed to decide which
learnable clauses to keep in memory, because learning a large number of clauses
leads to excessive consumption of memory, which slows the solver down rather
than helping it. Many early heuristics for clause learning were such that the
width, i.e., the number of literals, of learnable clauses was restricted, so that the
solver learned only clauses whose width does not exceed a certain threshold.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 85 (2010)

Experience has shown that such heuristics are not very helpful, i.e., learning
only short clauses does not significantly improve the performance of a DLL
algorithm for hard formulas. The present paper continues a line of work that
aims at supporting this experience with rigorous mathematical analyses in the
form of lower bound theorems.

The first lower bound for width-restricted clause learning was shown [9] for
the well-known pigeonhole principle clauses PHPn. These formulas require time
2Ω(n log n) to solve when learning clauses of width up to n/2 only, whereas they
can be solved in time 2O(n) when learning arbitrary clauses. While this example
in principle shows that learning wide clauses can yield a speed-up, it is not fully
satisfactory, since even with arbitrary learning, the time required is exponential
in n.

Another lower bound was shown [15] for a a set of clauses Ordn based on the
ordering principle on n elements. These formulas can be solved in polynomial
time when learning arbitrary clauses, but require exponential time to solve when
learning clauses of size up to n/4 only.

Both lower bounds are asymptotically the same as the known lower bounds
[14, 8] on the time for solving the respective formulas by DLL algorithms without
clause learning.

In these previous lower bounds, the hard example formulas themselves con-
tain clauses of large width. Since it is conceivable that the necessity to learn wide
clauses is merely due to the presence of these wide initial clauses, the question
arose whether similar lower bounds can be shown for formulas of small width.
We answer this question by proving lower bounds on width-restricted clause
learning for small width formulas.

The lower bounds are shown by proving the same lower bounds on the length
of refutations in a certain resolution based propositional proof system called RTL
(see Section 2). The relationship of this proof system to the DLL algorithm with
clause learning has been established in several earlier works [9, 12]. We will show
that for formulas of small width, lower bounds for this proof system follow from
lower bounds on the width of resolution proofs. This also gives an easier proof of
a slightly weaker form of the previous lower bound [15] for the formulas Ordn.

The lower bound for clause learning algorithms on formulas requiring large
resolution width is somewhat dual to a result of Atserias et al. [4], who give a
small polynomial upper bound on the runtime of a clause learning algorithm
with restarts on formulas having resolution refutations of small width.

We will now informally describe our proof method, see Section 2 for precise
definitions of the terms appearing below. Let F be an unsatisfiable formula
in conjunctive normal form (CNF) over n variables. For the sake of simplicity
assume that F is a 3-CNF, i.e., each clause in F contains at most 3 literals.
Suppose furthermore that F requires large resolution refutation width, i.e., every
resolution refutation of F must contain a clause with a large number w of literals,
where e.g. w ≈ √

n. Finally, suppose we try to solve F using a DLL algorithm
augmented with clause learning, where the width of learned clauses is limited to

be less than w, say w/3. In other words, the maximal width of a learned clause
is significantly smaller than the minimal refutation width of F .

Inspired by the combinatorial characterization of resolution width due to
Atserias and Dalmau [3] we classify the learned clauses of small width into
two categories. The useless clauses are those that can be derived from F via a
resolution derivation of width less than w, whereas the useful clauses are those
that can only be derived by going through a clause of width at least w. Our
main observation (Theorem 6) roughly says that learning useless clauses will not
significantly reduce the running time needed to obtain the first useful clause. In
fact, we show that 2w/3 steps will be needed before our algorithm learns its first
useful clause.

Using known constructions [8, 21, 3] of families of unsatisfiable 3-CNF for-
mulas that have short resolution refutations of polynomial in n size, but which
require large refutation width of about w ≈ √

n, we obtain in Section 5 a number
of results which show that, in certain cases, width-restricted clause learning DLL
algorithms will require exponentially longer running time than clause learning
algorithms with unrestricted width.

2 Preliminaries

A literal a is a variable a = x or a negated variable a = x̄. A clause C is a
disjunction C = a1 ∨ . . . ∨ ak of literals ai. The width of C is k, the number of
literals in C.

A formula in conjunctive normal form (CNF) is a conjunction F = C1 ∧ . . .∧
Cm of clauses, it is usually identified with the set of clauses

{
C1, . . . , Cm

}
. A

formula F in CNF is in k-CNF if every clause C in F is of width w(C) ≤ k.
We consider resolution-based refutation systems for formulas in CNF, which

are known to be strongly related to DLL algorithms. These proof systems have
two inference rules: the weakening rule, which allows to conclude a clause D
from any clause C with C ⊆ D, and the resolution rule, which allows to infer
the clause C ∨D from the two clauses C ∨x and D∨ x̄, provided that the variable
x does not occur in either C or D, pictorially:

C ∨ x D ∨ x̄

C ∨D

We say that the variable x is eliminated in this inference.
A resolution derivation of a clause C from a CNF-formula F is a directed

acyclic graph (dag) with a unique sink, in which every node has in-degree at
most 2, where every node v is labeled with a clause Cv such that:

1. The sink is labeled with C.
2. If a node v has one predecessor u, then Cv follows from Cu by the weakening

rule.
3. If a node v has two predecessors u1, u2, then Cv follows from Cu1 and Cu2

by the resolution rule.

4. A source node ν is labeled by a clause C in F .

A resolution refutation of F is a resolution derivation of the empty clause from F .
Resolution is sound and complete: a CNF-formula F has a resolution refutation
if and only if it is unsatisfiable.

We call a derivation tree-like if the underlying unlabeled dag is a tree, oth-
erwise we may call it dag-like for emphasis. As usual, for a dag that is a tree we
refer to the sink as the root, to the predecessors of a node as its children and to
a source node as a leaf.

The size of a resolution derivation is the number of nodes in the dag. The
width of a resolution refutation R is the maximal width of a clause occurring in
R. The resolution width of F is the minimal width of a resolution refutation of
F .

Ben-Sasson and Wigderson [7] have shown the following relation between
resolution width and size of tree-like resolution:

Theorem 1. If a d-CNF formula F requires resolution width at least w, then
every tree-like resolution refutation of F is of size at least 2w−d.

In the literature, resolution proof systems are sometimes defined without
the weakening rule, but since applications of this rule can be eliminated from
a tree-like resolution refutation without increasing the size or width, all lower
bounds shown for tree-like resolution without weakening apply to the system
with weakening as well.

Let X be a set of variables. A restriction ρ of X is a partial assignment
X → {0, 1}. A restriction ρ is extended to literals by setting

ρ(x̄) :=

{
1 if ρ(x) = 0
0 if ρ(x) = 1

For a clause C in variables X, we define

Cdρ :=





1 if ρ(a) = 1 for some a ∈ C∨

a∈C, ρ(a) 6=0

a otherwise,

where the empty disjunction is identified with the constant 0. For a CNF-formula
F over X, we define

F dρ :=





0 if Cdρ = 0 for some C ∈ F∧

C∈F, Cdρ6=1

Cdρ otherwise,

where the empty conjunction is identified with 1.

Proposition 2. Let R be a (tree-like) resolution derivation of C from F of size
s, and ρ a restriction. Then there is a (tree-like) resolution derivation R′ of Cdρ
from F dρ of size at most s.

In particular, if Cdρ = 0 then R′ is a resolution refutation of F dρ. As usual, we
denote the derivation R′ by Rdρ.

A resolution derivation is called regular if on every path through the dag, no
variable is eliminated twice. This condition is inessential for tree-like resolution
since minimal tree-like refutations are always regular [24], but regular dag-like
refutations can necessarily be exponentially longer than general ones [1].

Tree-like resolution exactly corresponds to the DLL algorithm by the follow-
ing well-known correspondence: the search tree produced by the run of a DLL
algorithm on an unsatisfiable formula F forms a tree-like resolution refutation
of F , and from a given tree-like regular resolution refutation of F one can con-
struct a run of a DLL algorithm showing the unsatisfiability of F that produces
essentially the given search tree.

In order to define proof systems that correspond to the DLL algorithm with
clause learning in the same way, we define resolution trees with lemmas (RTL).
In these proof systems, the order of branches in the proof tree is significant, thus
the underlying trees need to be ordered.

An ordered binary tree is a rooted tree in which every node has at most 2
children, and where every node with 2 children has a distinguished left and right
child. The post-ordering ≺ of an ordered binary tree is the order in which the
nodes of the tree are visited by a post-order traversal, i.e., u ≺ v holds for nodes
u, v if u is a descendant of v, or if there is a common ancestor w of u and v such
that u is a descendant of the left child of w and v is a descendant of the right
child of w.

An RTL-derivation of a clause C from a CNF-formula F is an ordered binary
tree, in which every node v is labeled with a clause Cv such that:

1. The root is labeled with C.
2. If a node v has one child u, then Cv follows from Cu by the weakening rule.
3. If a node v has two children u1, u2, then Cv follows from Cu1 and Cu2 by

the resolution rule.
4. A leaf v is labeled by a clause D in F , or by a clause C labeling some node

u ≺ v. In the latter case we call C a lemma.

An RTL-derivation is an RTL(k)-derivation if every lemma C is of width w(C) ≤
k. An RTL-refutation of F is an RTL-derivation of the empty clause from F .

A subsystem WRTI of RTL was defined by Buss et al. [9], which exactly
corresponds to a general formulation of the DLL algorithm with clause learning:
the size of a refutation of an unsatisfiable formula F in WRTI has been shown [9]
to be polynomially related to the runtime of a schematic algorithm DLL-L-UP on
F . This schema DLL-L-UP subsumes most clause learning strategies commonly
used in practice, including first-UIP [22], all-UIP, decision [25] and rel-sat [5].
A variant of DLL-L-UP which incorporates these learning strategies and also
allows for non-chronological backtracking [5] was described by Hoffmann [13]
and shown to be likewise simulated by WRTI.

In addition to clause learning, most state-of-the-art satisfiability solvers also
use restarts [11], therefore their performance is not modeled by RTL. The run-
time of a DLL algorithm with clause learning and restarts was shown to be

polynomially related to the size of general dag-like resolution refutations, for
certain particular learning strategies [6] and more recently also for most natural
learning strategies [20]. However, these simulations of general dag-like resolu-
tion proofs, as well as the clause learning algorithm of Atserias et al. [4] that
simulates resolution proofs of small width, use a particular restart policy: they
perform a restart after every conflict. An interesting question is whether general
resolution proofs can be simulated with more natural restart policies.

It follows from the mentioned results of Buss et al. [9] that if an unsatisfiable
formula F can be solved by a DLL algorithm with clause learning in time t, then
it has an RTL-refutation of size polynomial in t. Moreover, if the algorithm learns
only clauses of width at most k, then the refutation is in RTL(k). In this work
we prove lower bounds on the size of RTL(k)-refutations, which thus yield lower
bounds on the runtime of DLL algorithms with width-restricted clause-learning.

3 Resolution Width and Systems of Restrictions

Let X be a set of variables, and w ∈ N with w ≤ |X|. A w-system of restrictions
over X is a non-empty set H of restrictions with the following properties:

– |ρ| ≤ w for all ρ ∈ H,
– downward closure: if ρ ∈ H and ρ′ ⊆ ρ, then ρ′ ∈ H,
– the extension property: if ρ ∈ H with |ρ| < w, and x ∈ X \dom ρ, then there

is ρ′ ∈ H with ρ′ ⊇ ρ and x ∈ dom ρ′.

We say that H avoids a clause C if Cdρ 6= 0 for every ρ ∈ H, and H avoids a
formula F if H avoids every clause C ∈ F .

The notion was introduced by Atserias and Dalmau [3], who showed the
following characterization of resolution width:

Theorem 3. A formula F requires resolution width at least w if and only if
there is a w-system of restrictions over var(F) that avoids F .

Atserias and Dalmau [3] called a w-system of restrictions avoiding F a winning
strategy for the Duplicator in the Boolean existential w-pebble game on F , which
is explained by the origin of the notion in the existential k-pebble game [16] in
finite model theory. Since we make no use of the model-theoretic background,
we chose to use a shorter name for the concept.

For our application we shall use the concept of a system of restrictions being
restricted by one of its elements, which we define now.

Lemma 4. If H is a w-system of restrictions over X, and ρ ∈ H with |ρ| = r <
w, then the set

Hdρ :=
{

σ ; domσ ⊆ X \ dom ρ and σ ∪ ρ ∈ H and |σ| ≤ w − r
}

is a (w − r)-system of restrictions over X \ dom ρ.

Note that Hdρ would be empty, and hence not a system of restrictions in the
sense of the definition, if the definition were extended to restrictions ρ /∈ H: if
there is a σ ∈ Hdρ, then by definition σ ∪ ρ ∈ H, and by downward closure
ρ ∈ H.

Proof. Every σ ∈ Hdρ has |σ| ≤ w − r by definition. If σ ∈ Hdρ and σ′ ⊆ σ,
then σ′ ∪ ρ ⊆ σ ∪ ρ, and thus by downward closure of H we have σ′ ∪ ρ ∈ H.
Therefore σ′ ∈ Hdρ, hence Hdρ is downward closed.

If σ ∈ Hdρ is a restriction with |σ| < w − r and x ∈ X \ ρ is a variable with
x /∈ dom σ, then |σ ∪ ρ| < w, and hence by the extension property of H there is
σ′ ⊇ σ∪ρ in H with x ∈ domσ′. Then σ′ \ρ ⊇ σ is in Hdρ, and x ∈ dom(σ′ \ρ).
Therefore Hdρ has the extension property, and hence is a (w − r)-system of
restrictions over X \ dom ρ. ut
Lemma 5. If H is a w-system of restrictions that avoids F , and ρ ∈ H, then
Hdρ avoids F dρ.
Proof. Assume that Hdρ does not avoid F dρ, i.e., there is a clause C in F dρ
and a restriction σ ∈ Hdρ such that Cdσ = 0. Since C is in F dρ, there is a
clause D with Ddρ = 0 such that C ∨D ∈ F . By definition, σ′ = σ ∪ ρ ∈ H and
(C ∨D)dσ′ = Cdσ ∨Ddρ = 0, hence H does not avoid F , in contradiction to the
hypothesis. ut

4 The Lower Bound

We now prove our main theorem, which shows that lower bounds for RTL(k)-
refutations of F follow from lower bounds on the resolution width of F , for
formulas F of sufficiently small width.

Theorem 6. If F is a d-CNF that requires resolution width at least w to refute,
then for any k, every RTL(k)-refutation of F is of size at least

2w−(k+max{d,k}) ≥ 2w−(2k+d).

Proof. Let R be an RTL(k)-refutation of F . By Theorem 3, there is a w-system
of restrictions H that avoids F .

Let C be the first clause in R of small enough width w(C) ≤ k to be used as
a lemma, and that is not avoided by H. In particular, every lemma in R derived
before C is avoided by H. Let ρ be the smallest restriction in H with Cdρ = 0,
so that we have r := |ρ| = w(C) ≤ k.

Let RC be the subtree of R below C, so RC is an RTL(k)-derivation of C
from F . Let G be the set of lemmas used in RC , so RC is a tree-like resolution
derivation of C from F ∧ G, and thus R′ := RCdρ is a tree-like resolution refu-
tation of F ′ := (F ∧G)dρ. Note that every clause in F is of width d, and every
clause in G is of width k, therefore w(F ′) ≤ w(F ∧G) ≤ max{d, k}.

By the choice of C we know that H avoids every clause in G, and hence H
avoids F ∧ G. It follows by the lemmas above that Hdρ is a (w − r)-system of
restrictions that avoids F ′.

Therefore, by Theorem 3, F ′ requires resolution width w − r ≥ w − k, and
thus by Theorem 1, the refutation RCdρ, and therefore R, is of size at least
2(w−k)−w(F ′) ≥ 2w−(k+max{d,k}) as claimed. ut

5 Applications

We now instantiate our general lower bound to prove several lower bounds for
RTL(k)-refutations of certain concrete formulas.

Ordering Principle

The ordering principle expresses the fact that every finite linear ordering has a
maximal element. Its negation is expressed in propositional logic by the following
set of clauses Ordn over the variables xi,j for 1 ≤ i, j ≤ n with i 6= j:

x̄i,j ∨ x̄j,i for 1 ≤ i < j ≤ n (Ai,j)
xi,j ∨ xj,i for 1 ≤ i < j ≤ n (Ti,j)
x̄i,j ∨ x̄j,k ∨ x̄k,i for 1 ≤ i, j, k ≤ n pairwise distinct (∆i,j,k)

∨

1≤j≤n,j 6=i

xi,j for 1 ≤ i ≤ n (Mi)

The clauses Ai,j , Ti,j and ∆i,j,k state that in a satisfying assignment, the values
of the variables define a linear ordering on n points. The clause Mi expresses that
i is not a maximum in this ordering, therefore the formula Ordn is unsatisfiable.

The formulas Ordn were introduced by Krishnamurthy [17] as potential hard
example formulas for resolution, but short regular resolution refutations for them
were constructed by St̊almarck [23].

Proposition 7. There are dag-like regular resolution refutations of Ordn of size
O(n3).

Note that the size of the formula Ordn is Θ(n3), so the size of these refutations
is linear in the size of the formula. A general simulation of regular resolution
by WRTI [9] yields WRTI-refutations of Ordn of polynomial size. On the other
hand, a lower bound for RTL(k)-refutations of Ordn was shown by the second
author [15]:

Theorem 8. For k < n/4, every RTL(k)-refutation of Ordn is of size 2Ω(n).

Thus this lower bound shows the necessity to use wide lemmas to refute them
efficiently. But since the formula Ordn itself contains wide clauses, it is conceiv-
able that it is these wide clauses that cause this necessity. We therefore apply
our general lower bound to derive similar lower bounds for variants of the or-
dering principle formulas having small width. The most straightforward way to
obtain a formula of small width from any formula is to expand it into a 3-CNF,
as described below:

For a CNF-formula F , the 3-CNF-expansion E3(F) of F is obtained as fol-
lows: for every clause C = a1 ∨ . . . ∨ ak in F of width w(C) = k ≥ 4, introduce
k + 1 new extension variables yC,0, . . . , yC,k, and replace C by the clauses:

yC,0 ȳC,i−1 ∨ ai ∨ yC,i for 1 ≤ i ≤ k ȳC,k

The formula E3(F) is obviously in 3-CNF and is satisfiable if and only if F is
satisfiable.

Bonet and Galesi [8] show a lower bound of n/6 on the resolution width of
the 3-CNF expansion E3(Ordn) of the ordering principle. We show a larger lower
bound by exhibiting a suitable system of restrictions:

Theorem 9. The formula E3(Ordn) requires resolution width at least n/2.

For ease of notation, we denote the clauses in the 3-CNF expansion E3(Mi) of
the formula Mi as follows:

yi,0 . . . ȳi,i−1 ∨ xi,i+1 ∨ yi,i+1 . . . ȳi,n

For a non-empty set D ⊆ {1, . . . , n}, a total ordering ≺ on D and a partial
mapping s : D → D with the properties

– s(i) is defined for every i ∈ D except max≺ S,
– i ≺ s(i) for every i ∈ dom s,

we define a restriction ρ(D,≺, s) as follows:

xi,j 7→
{

1 if i, j ∈ D and i ≺ j

0 if i, j ∈ D and j ≺ i

yi,j 7→
{

1 if i ∈ D, s(i) is defined and j ≥ s(i)
0 if i ∈ D, s(i) is defined and j < s(i)

and is undefined in all other cases. Now let Hord be the set of restrictions σ such
that |σ| ≤ n/2 and σ ⊆ ρ(D,≺, s) for some subset D ⊆ {1, . . . , n}, ordering ≺
on D and suitable mapping s : D → D. Theorem 9 now follows immediately
from the following lemma by Theorem 3.

Lemma 10. Hord is an n/2-system of restrictions that avoids E3(Ordn).

Proof. Obviously, Hord is non-empty, and the size bound |σ| ≤ n/2 for all σ ∈
Hord and downward closure hold by definition. The clauses Ai,j , Ti,j and ∆i,j,k

are avoided since the variables xi,j are set according to the ordering ≺. The
clauses in E3(Mi) containing a variable xi,j for j 6= s(i) are avoided since both
extension variables are set to the same value, and one of them occurs positively
and the other negatively. The clause in E3(Mi) containing xi,s(i) is avoided since
this variable cannot be set to 0.

It remains to show that Hord has the extension property. If σ ∈ σ ∈ Hord is
of size |σ| < n/2, then there is a set D of size |D| ≤ n− 2, an ordering ≺ on D

and a mapping s : D → D such that σ ⊆ ρ := ρ(D,≺, s). Let v /∈ domσ be a
variable left unset by σ.

If v = xi,j , then we set D′ := D ∪ {i, j}. If D′ = D, then ρ(v) is already
defined, and we set ≺′=≺ and s′ = s. Otherwise, if i ∈ D′ \ D, we extend ≺
and s to ≺′ and s′ by setting i ≺′ k for every k ∈ D and s′(i) := min≺D, and
similarly for j.

If v = yi,j and i ∈ D, then ρ(v) is already defined unless i = max≺D. In the
latter case, we pick an arbitrary k /∈ D and set D′ := D ∪ {k}, extend ≺ to ≺′
by setting i ≺′ k and s to s′ by setting s′(i) = k.

If v = yi,j and i /∈ D, then we set D′ := D ∪ {i}, and we extend ≺ to ≺′ by
setting i ≺′ k for all k ∈ D and s to s′ by setting s′(i) = min≺D.

In all cases ρ′ := ρ(D′,≺′, s′) is an extension ρ′ ⊇ ρ with v ∈ dom ρ′. Let
σ′ := σ∪{(v, ρ′(v))}, then we have |σ′| ≤ n/2, and σ′ ⊆ ρ′, hence we have found
σ′ ∈ Hord with v ∈ domσ′. ut

By Theorem 6, a lower bound for RTL(k)-refutations of E3(Ordn) follows
from Theorem 9: by choosing k = n/6 and observing that for n ≥ 18 we get
k ≥ 3, we obtain from Theorem 6 a lower bound of 2n/2−2n/6 = 2n/6.

Corollary 11. For n ≥ 18, every RTL(n/6)-refutation of E3(Ordn) is of size
2n/6.

It follows that a DLL algorithm with clause learning requires exponential time to
solve the formulas E3(Ordn) when only clauses of width n/6 are learned. On the
other hand, from the short regular resolution refutations of Ordn, short regular
refutations of E3(Ordn) are obtained easily. From those, one can construct a run
of a DLL algorithm with arbitrary clause learning on E3(Ordn) in polynomial
time. Hence we have an example of 3-CNF formulas for which learning wide
clauses is necessary to solve them efficiently.

Since the clauses Mi have tree-like derivations from E3(Mi) of size n, an
RTL(k)-refutation of Ordn of size s can be converted into an RTL(k)-refutation
of E3(Ordn) of size sn. Hence the Corollary 11 also yields an easier proof of a
slightly weaker variant of the lower bound from Theorem 8: every RTL(n/6)-
refutation of Ordn is of size at least 2n/6−log n.

Graph Ordering Principle

A different way to obtain a small width formula from the ordering principle is
to consider the restriction of it to a graph, as introduced by Segerlind et al.
[21]. The only wide clauses in Ordn are the clauses Mi stating that there is an
element larger than i, for every i. A formula of small width can be obtained by
defining for every i a small set of elements and requiring that one element in
this set is larger than i.

For a graph G = (V, E) on n vertices V = {1, . . . , n}, the formula Ord(G)
consists of the clauses Ai,j , Ti,j and ∆i,j,k of Ordn, plus the following restricted

version of the clauses Mi:
∨

j∈N(i)

xi,j for 1 ≤ i ≤ n (M ′
i)

Here N(i) denotes the neighborhood of i in G, i.e.., the set {j ∈ V ; {i, j} ∈ E}.
The formula requires that for every vertex, there is a larger one in the ordering
among its neighbors. Thus in this notation, the formula Ordn is Ord(Kn) for the
complete graph Kn on n vertices. If the graph G has maximum degree d ≥ 3,
then Ord(G) is a d-CNF.

A graph G on n vertices is called ε-neighborly, if for all pairs of disjoint
subsets A,B ⊆ V with |A|, |B| ≥ εn there is an edge {a, b} ∈ E with a ∈ A
and b ∈ B. A lower bound on the resolution width of Ord(G) depending on the
neighborliness of G was shown by Segerlind et al. [21]:

Theorem 12. If G is a connected graph on n vertices that is ε-neighborly for
0 < ε < 1/3, then Ord(G) requires resolution width at least (1−3ε

6)n.

The following lemma follows from known results about expander graphs that
can e.g. be found in the book of Alon and Spencer [2, Section 9.2]. In what follows
a family of graphs {Gn; n ∈ N} is said to be explicitly constructible if there exists
a polynomial time Turing machine that on input 1n outputs a description (say,
by means of its adjacency matrix) of the graph Gn.

Lemma 13. For every 0 < ε < 1/3 there is a constant d = O(1/ε2) such that
there is an explicitly constructible family of ε-neighborly graphs {Gn;n ∈ N} on
n vertices of maximal degree d.

Proof. As explained in the mentioned book [2, Section 9.2] (and using the no-
tation there), the works of Lubotzky et al. [18] and of Margulis [19] explicitly
construct for every integer d of the form d = p+1, where p is a prime congruent
to 1 modulo 4, and for every sufficiently large n, a d-regular expander graph
Gn, with all eigenvalues of the adjacency matrix except for the largest being
bounded in absolute value by 2

√
d− 1 (such graphs are known as “Ramanujan”

expander graphs). For such graphs one may apply Corollary 9.2.5 in the book
[2] which implies that every two disjoint subsets of the vertices of Gn of size at
least 2n√

d
must be connected by an edge, i.e., Gn is 2√

d
-neighborly. ut

The lemma yields, e.g., a family of graphs Gn on n vertices of maximal degree
d = 150 that are 1/6-neighborly, and for these graphs Gn the formula Ord(Gn)
is a d-CNF that requires resolution width n/12. By invoking Theorem 6 with
k = n/36 we obtain the following lower bound for n large enough that k ≥ 150:

Corollary 14. For sufficiently large n, every RTL(n/36)-refutation of Ord(Gn)
for the graphs Gn is of size at least 2n/36.

As above, it follows that a DLL algorithm with clause learning requires expo-
nential time to solve Ord(Gn) when only clauses of width n/36 are learned. On
the other hand, short regular resolution refutations of Ord(Gn) are contained in

the refutations of Ordn. From those, one can again construct a run of a DLL
algorithm with arbitrary clause learning on Ord(Gn) in polynomial time. Hence
the formulas Ord(Gn) are another example of formulas of small width for which
learning wide clauses is necessary to solve them efficiently.

Dense Linear Ordering Principle

The dense linear ordering principle yields another family of formulas that have
short regular resolution refutations, but require large resolution width. It says
that a finite linear ordering cannot be dense. It gives rise to an unsatisfiable set
of clauses DLOn, in the variables xi,j representing the ordering as in Ordn, and
additional variables zi,j,k intended to express that j is between i and k in the
ordering. It consists of the clauses Ai,j , Ti,j and ∆i,j,k of Ordn, plus new clauses
containing the variables zi,j,k:

x̄i,j ∨ x̄j,k ∨ zi,j,k for 1 ≤ i, j, k ≤ n pairwise distinct
z̄i,j,k ∨ xi,j for 1 ≤ i, j, k ≤ n pairwise distinct
z̄i,j,k ∨ xj,k for 1 ≤ i, j, k ≤ n pairwise distinct

x̄i,k ∨
∨

1≤j≤n,j 6=i,k

zi,j,k for 1 ≤ i, k ≤ n with i 6= k (Di,k)

The first three groups of clauses enforce that the values of the variables zi,j,k

define the relation “j is between i and k”, and the clause Di,k states that if
i ≺ k, then there exists an element between i and k. Therefore the formula
DLOn expresses that there is a dense linear ordering on n points, and is thus
unsatisfiable.

Atserias and Dalmau [3] show a lower bound on the resolution width of the
3-CNF expansion E3(DLOn) of the dense linear ordering principle:

Theorem 15. The formula E3(DLOn) requires resolution width at least n/3.

Using Theorem 6 with k = n/9, it follows:

Corollary 16. For n ≥ 27, every RTL(n/9)-refutation of E3(DLOn) is of size
at least 2n/9.

Again, it follows that a DLL algorithm with clause learning requires exponential
time to solve E3(DLOn) when only clauses of width n/9 are learned. On the
other hand, short resolution refutations of DLOn and of E3(DLOn) are given
by Atserias and Dalmau [3], and these refutations are easily seen to be regu-
lar. Hence there is a run of a DLL algorithm with arbitrary clause learning on
E3(DLOn) in polynomial time, and thus learning wide clauses is necessary to
solve these formulas efficiently.

References

1. M. Alekhnovich, J. Johannsen, T. Pitassi, and A. Urquhart. An exponential sep-
aration between regular and general resolution. Theory of Computing, 3:81–102,

2007. Preliminary Version in Proc. 34th ACM Symposium on Theory of Comput-
ing, 2002.

2. N. Alon and J. Spencer. The Probabilistic Method. John Wiley and Sons, 2002.
3. A. Atserias and V. Dalmau. A combinatorial characterization of resolution width.

Journal of Computer and System Sciences, 74:323–334, 2008. Preliminary version
in Proc. 18th IEEE Conference on Computational Complexity, 2003.

4. A. Atserias, J. K. Fichte, and M. Thurley. Clause learning algorithms with many
restarts and bounded-width resolution. In O. Kullmann, editor, Theory and Prac-
tice of Satisfiability Testing – SAT 2009, pages 114–127. Springer LNCS 5584,
2009.

5. R. J. Bayardo Jr. and R. C. Schrag. Using CSP look-back techniques to solver
real-world SAT instances. In Proc. 14th Natl. Conference on Artificial Intelligence,
pages 203–208, 1997.

6. P. Beame, H. A. Kautz, and A. Sabharwal. Towards understanding and harnessing
the potential of clause learning. Journal of Artificial Intelligence Research, 22:319–
351, 2004.

7. E. Ben-Sasson and A. Wigderson. Short proofs are narrow — resolution made
simple. Journal of the ACM, 48, 2001. Preliminary Version in Proc. 31st ACM
Symposium on Theory of Computing, 1999.

8. M. L. Bonet and N. Galesi. Optimality of size-width tradeoffs for resolution.
Computational Complexity, 10(4):261–276, 2001.

9. S. R. Buss, J. Hoffmann, and J. Johannsen. Resolution trees with lemmas: Reso-
lution refinements that characterize DLL algorithms with clause learning. Logical
Methods in Computer Science, 4(4), 2008.

10. M. Davis, G. Logemann, and D. W. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397, 1962.

11. C. P. Gomes, B. Selman, and N. Crato. Heavy-tailed distributions in combinatorial
search. In G. Smolka, editor, Principles and Practice of Constraint Programming
- CP97. Springer LNCS 1330, 1997.

12. P. Hertel, F. Bacchus, T. Pitassi, and A. van Gelder. Clause learning can effectively
p-simulate general propositional resolution. In D. Fox and C. P. Gomes, editors,
Proceedings of the 23rd AAAI Conference on Artificial Intelligence, AAAI 2008,
pages 283–290. AAAI Press, 2008.

13. J. Hoffmann. Resolution proofs and DLL-algorithms with clause learning. Diploma
Thesis, LMU München, 2007.

14. K. Iwama and S. Miyazaki. Tree-like resolution is superpolynomially slower than
dag-like resolution for the pigeonhole principle. In Proceedings of the 10th In-
ternational Symposium on Algorithms and Computation (ISAAC), pages 133–142,
1999.

15. J. Johannsen. An exponential lower bound for width-restricted clause learning.
In O. Kullmann, editor, Theory and Practice of Satisfiability Testing – SAT 2009,
pages 128–140. Springer LNCS 5584, 2009.

16. P. G. Kolaitis and M. Y. Vardi. On the expressive power of Datalog: Tools and a
case study. Journal of Computer and System Sciences, 51(1):110–134, 1995. Pre-
liminary version in Proc. 9th ACM Symposium on Principles of Database Systems,
1990.

17. B. Krishnamurthy. Short proofs for tricky formulas. Acta Informatica, 22:253–274,
1985.

18. A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

19. G. A. Margulis. Explicit group-theoretical constructions of combinatorial schemes
and their application to the design of expanders and concentrators. Problems of
Information Transmission, 24:39–46, 1988.

20. K. Pipatsrisawat and A. Darwiche. On the power of clause-learning SAT solvers
with restarts. In Proceedings of the 15th International Conference on Principles
and Practice of Constraint Programming (CP09), pages 654–668, 2009.

21. N. Segerlind, S. R. Buss, and R. Impagliazzo. A switching lemma for small re-
strictions and lower bounds for k-DNF resolution. SIAM Journal on Computing,
33(5):1171–1200, 2004. Preliminary version in Proc. 43rd IEEE Symposium on
Foundations of Computer Science, 2002.

22. J. P. M. Silva and K. A. Sakallah. GRASP - a new search algorithm for satisfia-
bility. In Proc. IEEE/ACM International Conference on Computer Aided Design
(ICCAD), pages 220–227, 1996.

23. G. St̊almarck. Short resolution proofs for a sequence of tricky formulas. Acta
Informatica, 33:277–280, 1996.

24. G. Tseitin. On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic, Part 2, pages 115–125, 1968.

25. L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict
driven learning in a Boolean satisfiability solver. In Proc. IEEE/ACM International
Conference on Computer Aided Design (ICCAD), pages 279–285, 2001.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

