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Abstract

In an unpublished Russian manuscript Razborov proved that a matrix family with high
rigidity over a finite field would yield a language outside the polynomial hierarchy in commu-
nication complexity.

We present an alternative proof that strengthens the original result in several ways. In
particular, we replace rigidity by the strictly weaker notion of toggle rigidity.

It turns out that Razborov’s astounding result is actually a corollary of a slight general-
ization of Toda’s First Theorem in communication complexity, and that matrix rigidity over
a finite field is a lower-bound method for bounded-error modular communication complexity.

We also give evidence that Razborov’s strategy is a promising one by presenting a protocol
with few alternations for the inner product function mod two and by discussing problems
possibly outside the communication complexity version of the polynomial hierarchy.

1. Introduction
In communication complexity (Kushilevitz & Nisan 1997) communication models are studied where
several players want to cooperatively solve a problem. The resource under consideration is com-
munication, i.e., the number of communicated bits. In general, the players have to communicate
because the input is distributed among them. The arguably simplest communication model is
Yao’s model (Yao 1979) where two players Alice and Bob want to compute the value f(x, y) of a
function f : X ×Y → Z. Here, Alice has x ∈ X and Bob has y ∈ Y and they may send each other
messages (bits) according to a fixed protocol. Enriching this model with resources like random-
ization, guessing, or alternation leads to various variants, and studying the relative power of these
models is a recurring theme in communication complexity.

One approach, that brings the relative power of the different modes of comunication into promi-
nence, is a structural one, initiated by Babai et al. (1986), where communication complexity classes
like Pcc, NPcc, MODkPcc, PPcc, PHcc, PSPACEcc, etc. are defined analogously to the ones in
the Turing-machine setting. While much more is known about the inclusion relationships of these
communication complexity classes than about such relationships between classical ones, it is still
a challenging open problem whether or not the polynomial hierarchy PHcc is a proper subset of
polynomial space PSPACEcc.

In an unpublished Russian manuscript Razborov (1989) proposed a possible strategy to solve
this problem, based on a remarkable theorem saying that a matrix family with high rigidity over a
finite field would yield a language outside the polynomial hierarchy in communication complexity.
His theorem refers to the concept of matrix rigidity, which measures how many entries in a matrix
one has to change in order to reduce the rank of the matrix below a given bound. Rigidity
was originally introduced by Valiant (1977) for proving circuit lower bounds. Today, it plays an
important role in several branches of theoretical computer science (see e.g., Lokam 2009).

The purpose of this article is to present an alternative proof of Razborov’s Theorem that
strengthens the original result in several ways. Namely, instead of using Valiant’s definition of
rigidity, we define and use the weaker notion of toggle rigidity. The improvements to Razborov’s
result are thus twofold:
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First of all, the definition of toggle rigidity involves an arbitrary probability distribution on
the matrix entries enabling us to put high weight on hard parts of the matrix and low weight on
easier parts. In contrast, Valiant’s definition corresponds to the equiponderant case, where a fixed
uniform distribution is used.

Secondly, toggle rigidity severely restricts the allowed changes for rank reduction. Here, only
toggling values between 0 and 1 is allowed, while in the classical definition a matrix entry can be
replaced with an arbitrary field element. We give an example showing that toggle rigidity is indeed
strictly weaker than classical rigidity.

In addition, we remark that over the field of real numbers high lower bounds for restricted
versions of rigidity have already been obtained by Lokam (2001). These results imply high lower
bounds for toggle rigidity over the field of real numbers.

Hence, as the paper at hand provides toggle rigidity as a new tool, equipped with toggle rigidity,
it might be easier to prove high lower bounds in the future.

As an English translation of Razborov’s work is unfortunately not available, a comparison
between the techniques used in his proof and the ones used here could not be made.

Toda (1991) proved two theorems that caused astonishment. First of all, he showed that in
the Turing-machine setting the polynomial hierarchy is contained in a certain complexity class,
BP · ⊕P. We refer to this result as his First Theorem. His Second Theorem states that the latter
class is contained in P(PP), the Turing closure of probabilistic polynomial time.

We show that these theorems also hold in communication complexity, the reason being that
Razborov’s result will turn out to be a corollary of a slight generalization of Toda’s First Theorem
in communication complexity. Consequently, matrix rigidity (over a finite field) is actually a
lower-bound method for bounded-error modular communication complexity, a measure based on
randomization and guessing where the players accept an input with bounded error according to a
modular acceptance mode.

Furthermore, we give evidence that Razborov’s strategy is a promising one by presenting a
protocol with few alternations for the inner product function mod two, and by discussing candidate
problems possibly outside the communication complexity version of the polynomial hierarchy. This
will lead us into the field of sparse quasi-random graphs (Chung & Graham 2002).

Outline. In Section 2 below we fix notation and give basic definitions used throughout this
article. To set the stage for the proof of our main result and to make this article more self-
contained we survey parts of communication complexity in Section 3 and structural complexity in
Section 4. The informed reader, on tiptoes with expectation, may safely skip these and turn right
to Section 5, where Toda’s Theorems are transferred to communication complexity, followed by
Section 6 containing the main result, a strengthening of Razborov’s Theorem. In the final Section 7
we discuss Razborov’s strategy.

2. Preliminaries

We fix notation and give basic definitions used throughout this article.
We denote with [n] the set {1, . . . , n} of the first n natural numbers. For a set S we write

(
S
k

)
for the set of all subsets of S with cardinality k. For a real number r we denote with floor r, brc,
the largest integer not exceeding r, and with ceiling r, dre, the smallest integer greater than or
equal to r. The logarithm to the basis 2 is denoted with log. For a prime power q, we denote with
Fq the finite field with q elements.

Occasionally, in order to avoid ugly case distinctions we use Iverson’s bracket [P ] defined on
predicates P , which evaluates to 1, if P is true, and to 0 otherwise.

We define matrices with arbitrary finite index sets for rows and columns. Accordingly, a matrix
M over Z is just a map M : X × Y → Z for finite sets X and Y. We write Mx,y for M ’s entry in
row x ∈ X and column y ∈ Y.

We only work with the binary alphabet B := {0, 1}. The length of a word x ∈ B∗ is denoted by
|x|. For two words x, y ∈ B∗ the word y is a prefix of x, if there exists z ∈ B∗ such that x = yz. A
set S ⊆ B∗ is prefix-free if for all distinct x, y ∈ S we have that y is not a prefix of x. An example
of a prefix-free encoding of x is x := 0|x|1x. In order to encode pairs of words x, y ∈ B∗ we use the
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pairing function 〈x, y〉 := xy. For a mathematical object o contained in an at most countable set
we denote with 〈o〉 a suitable prefix-free encoding of o.

Functions with range B are called Boolean functions.
For an excellent introduction to graph theory we refer the reader to Diestel (2005). Given a

graph G we write V (G) to denote its nodes (vertices) and E(G) to denote its edges. As usual, the
adjacency matrix of G, AG, is defined by

AG
x,y := [{x, y} ∈ E(G)] , for all x, y ∈ V (G) .

For subsets X,Y ⊆ V (G) we define the set of edges between X and Y as

EG(X,Y ) :=
{
{x, y} ∈ E(G)

∣∣x ∈ X, y ∈ Y }
.

Finally, we define
eG(X,Y ) := |EG(X,Y )|+ |EG(X ∩ Y,X ∩ Y )|

as the number of edges with one endpoint in X and the other one in Y . If an edge belongs to the
intersection X ∩ Y , then it is counted twice in eG(X,Y ).

3. Communication Complexity

In this section we give a comparably short introduction to parts of communication complexity. In
particular, we describe Yao’s model and state some important basic results that are used later.
We refer the reader to Kushilevitz & Nisan (1997) for an excellent introduction to the field of
communication complexity.

3.1. Deterministic protocols. In his seminal work, Yao (1979) introduced a simple commu-
nication model. In Yao’s model, there are two players (parties) Alice and Bob with unlimited
computational power, who want to cooperatively compute a function f : X ×Y → Z, where X , Y,
and Z are finite sets. Both have complete information about f but receive only parts of the input.
Alice is given x ∈ X , Bob is given y ∈ Y, and they exchange messages (bits) in order to compute
f(x, y). The players communicate according to a fixed (deterministic) protocol Π (over domain
X × Y with range Z) that specifies how the communication is carried out. At each stage of the
computation, the protocol must determine whether the run has terminated. In this case, it must
specify the output value. Otherwise, it must specify the player who speaks next. Each message
sent by a player must solely depend on the player’s input and the messages communicated so far,
because this is the only “information” the player has about the inputs.

There do exist different formalizations of the notion protocol depending on the applications the
protocol designer has in mind. Since we want to analyze protocols, we formalize them via binary
trees. See e.g., Hromkovic (2000) for a definition that is equivalent but different from ours. It is
known that this combinatorial view on protocols has many advantages. In particular, it allows
us to prove high lower complexity bounds in this model in contrast to many other computation
models. A formal definition of protocols is given below.

Definition 3.1 (Deterministic protocol). A deterministic protocol Π (over domain X × Y with
range Z) is a labeled directed finite binary tree (protocol tree). Each leaf ` is labeled by an output
value z` ∈ Z. If v is an inner node of Π, then it has a left and a right child v0 and v1, respectively,
and the arc from v to vb is labeled by b ∈ B. The node v is labeled either by a function av : X → B
or by a function bv : Y → B. The root of the protocol tree of Π is denoted by root(Π), the set of
nodes by VΠ , and the set of leaves by LΠ , respectively.

Let Alice have x ∈ X , and let Bob have y ∈ Y. When they communicate according to a protocol
Π, they start at root(Π). The nodes of the protocol tree of Π can be interpreted as (common)
“computation states”. If both players are in such a state v during the run of the protocol, then
one of two things can happen: If v is a leaf, the communication ends and both players know the
output value zv. If v is an inner node, we say that Alice speaks, if v is labeled by av. In this case,
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Alice sends the bit b := av(x) and both players change their computation state to vb, analogously,
if Bob speaks.

We say that an input (x, y) reaches a node v of Π if the players arrive at v when running the
protocol on the respective input. We denote by Rv ⊆ X × Y the set of inputs reaching v.

The concatenation of the messages communicated during a run of a protocol Π on input (x, y)
is called transcript and is denoted by Π(x, y).

For each input (x, y) the execution of a deterministic protocol Π leads to exactly one output
value. This defines a function fΠ . We say that Π computes a function f : X ×Y → Z, if f = fΠ .

Having now introduced a computation model and a resource, it is time to define corresponding
cost and complexity measures.

Definition 3.2 (Worst-case deterministic communication cost). Let Π be a deterministic proto-
col over domain X × Y. The worst-case deterministic communication cost of Π, D(Π), is defined
as

D(Π) := max
(x,y)∈X×Y

|Π(x, y)| .

Definition 3.3 (Closeness). Let f and g be two functions defined on the same domain D, let µ
be a probability distribution on D, and let ε ≥ 0 be a real number. The functions f and g are
(µ, ε)-close, if µ(f 6= g) := µ{z ∈ D | f(z) 6= g(z)} ≤ ε.

Definition 3.4 (Distributional error). Let f : X × Y → Z be a function, let µ be a probability
distribution on X × Y, let ε ≥ 0 be a real number, and let Π be a deterministic protocol over
domain X ×Y with range Z. We say that Π computes f with (µ, ε)-distributional error, if f and
fΠ are (µ, ε)-close.

Definition 3.5 (Worst-case deterministic communication complexity). Let f : X × Y → Z be a
function, let µ be a probability distribution on X × Y, and let ε > 0 be a real number.

(i) The worst-case deterministic communication complexity of f , D(f), is the minimum worst-
case deterministic communication cost of a deterministic protocol computing f .

(ii) The worst-case (µ, ε)-distributional deterministic communication complexity of f , Dµ
ε (f),

is the minimum worst-case deterministic communication cost of a deterministic protocol
computing f with (µ, ε)-distributional error.

The following property should be obvious:

Observation 3.6. Let f : X ×Y → Z be a function, let µ be a probability distribution on X ×Y,
and let ε > 0 be a real number. Then we have

Dµ
ε (f) = min{D(f̃) | f̃ and f are (µ, ε)-close} .

3.2. Randomized protocols. We refer the reader to Motwani & Raghavan (1995) for an ex-
cellent introduction to the exciting field of randomized algorithms. Often, randomized algorithms
are both simpler and faster than every known deterministic algorithm solving the same problem.
The same applies if one adds randomness to Yao’s deterministic two-player model. Randomized
communication complexity was also defined in the seminal paper of Yao (1979). In the randomized
model, the players are allowed to “toss coins” during the execution of a protocol, and the messages
they send each other may also depend on the outcomes of the coin tosses. Consequently, the mes-
sages, the transcript and the computed function become random variables. We distinguish between
two types of randomized protocols, namely “public-coin” and “private-coin” ones. In a public-coin
protocol, Alice and Bob share a common public coin whose outcomes are known to both players.
In a private-coin protocol, each player has its own random coin to flip. We want to emphasize
that Alice cannot see Bob’s coin flips and vice versa. While the latter model seems more realistic
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than the public-coin model, it was shown by Newman (1991) that the models are essentially the
same. We note that a randomized protocol can be interpreted as a probability distribution over
deterministic protocols.

Definition 3.7 (Randomized protocol).

(i) A randomized public-coin protocol Π (over domain X ×Y with range Z) is defined as a pair
Π := (Π ′,C), where C is a random variable over a finite set C, and Π ′ is a deterministic
protocol over domain (X × C)× (Y × C) with range Z. The random variable C is called the
common coin.

(ii) A randomized private-coin protocol Π (over domain X×Y with range Z) is defined as a triple
Π := (Π ′,A,B), where A and B are random variables over finite sets A and B, respectively,
and Π ′ is a deterministic protocol over domain (X ×A)×(Y×B) with range Z. The random
variable A is called Alice’s coin, B is called Bob’s coin.

Definition 3.8 (Computed function). Let Π be a randomized protocol over domain X ×Y with
range Z. We define the function fΠ computed by Π as the random variable fΠ := ((x, y) 7→
fΠ′(x,C, y,C)) over X × Y → Z, if Π = (Π ′,C) is a randomized public-coin protocol, and as
fΠ := ((x, y) 7→ fΠ′(x,A, y,B)), if Π = (Π ′,A,B) is a randomized private-coin protocol.

Definition 3.9 (Transcript). Let Π be a randomized protocol. Given an input (x, y), we define
the transcript Π(x, y) as the random variable Π(x, y) := Π ′(x,C, y,C), if Π = (Π ′,C) is a ran-
domized public-coin protocol, and as Π(x, y) := Π ′(x,A, y,B), if Π = (Π ′,A,B) is a randomized
private-coin protocol.

Definition 3.10 (Worst-case randomized communication cost). Let Π be a randomized protocol
over domain X × Y. The worst-case randomized communication cost of Π, R(Π), is defined as

R(Π) := max
(x,y)∈X×Y

max
c∈C

|Π ′(x, c, y, c)| ,

if Π = (Π ′,C) is a randomized public-coin protocol with common coin C defined over the finite
set C, and as

R(Π) := max
(x,y)∈X×Y

max
a∈A,b∈B

|Π ′(x, a, y, b)| ,

if Π = (Π ′,A,B) is a randomized private-coin protocol with Alice’s coin A defined over A and
Bob’s coin B defined over B for finite sets A and B, respectively.

Definition 3.11 (error ε). Let f : X × Y → Z be a function, and let ε ≥ 0 be a real number.
A randomized protocol Π over domain X × Y with range Z computes f with error ε, if for all
(x, y) ∈ X × Y we have

Pr [fΠ(x, y) 6= f(x, y)] ≤ ε .

In the literature, a randomized protocol that computes a function with bounded error, i.e., with
an error bounded away from one half by a constant, is sometimes called Monte Carlo protocol.

Definition 3.12 (Worst-case randomized communication complexity). Let f be a function, and
let ε > 0 be a real number. The worst-case randomized public-coin ε-error communication com-
plexity of f , Rpub

ε (f), is defined as the minimum worst-case randomized communication cost of a
randomized public-coin protocol computing f with error ε.

For randomized private-coin protocols one can define the complexity measure Rpriv
ε (f) analo-

gously to the one for public-coin protocols.
As mentioned above, public- and private-coin complexities are not far apart. For a proof of the

following result, see e.g., (Kushilevitz & Nisan 1997, p. 33, Theorem 3.14; p. 34, Exercise 3.15).
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Fact 3.13 (Newman). Let f : Bn ×Bn → B be a Boolean function. For every ε > 0 and δ > 0 we
have

Rpriv
ε+δ (f) ≤ Rpub

ε (f) +O(log n+ log(1/δ)) .

Newman’s result also shows that the size of the probability space can be restricted to 2polylog(n)

for inputs of size n, if one allows a small increase in communication cost and error probability.
An important technique in the theory of randomized algorithms is probability amplification,

i.e., one reduces the error probability of a randomized algorithm to an arbitrarily small constant
by running the algorithm on the same input several times with independent coin tosses and then
taking the majority vote of the outcomes. This can be done for randomized protocols, too.

The following fact can be found in (Köbler et al. 1993, p. 70, Lemma 2.14). We make use of
this Chernoff-like result in Theorem 6.18.

Fact 3.14 (Probability amplification). Let E be an event that occurs with probability 1
2 + ε,

0 < ε ≤ 1
2 . Then E occurs within t independent trials (t odd) at least t/2 times with probability

at least

1− 1
2
·
(
1− 4 · ε2

)t/2
.

Many lower-bound methods for randomized communication complexity are based on the fol-
lowing simple application of Yao’s Minimax-principle (see e.g., Kushilevitz & Nisan 1997, p. 36,
Theorem 3.20 or Yao 1983) relating randomized and distributional complexity.

Fact 3.15 (Yao). For every Boolean function f and every ε > 0 we have

Rpub
ε (f) = max

µ
Dµ

ε (f) .

3.3. Counting protocols. Analogously to the Turing-machine model, one can add the power
of counting to Yao’s model. The concept of counting means that the players can make nondeter-
ministic guesses during a computation. As on different guesses the output values may be different,
one has to specify an acceptance mode, a predicate that tells us which inputs are considered to be
accepted based on the number of accepting and rejecting computations.

There are several possibilities to define counting protocols (via proof systems, covers, etc.). We
choose the following variant.

Definition 3.16 (Counting protocol). A counting protocol (over domain X×Y) is a deterministic
protocol over domain (X ×BgA)× (Y ×BgB ) with range B, where gA, gB ≥ 0 are natural numbers
denoting the lengths of the guess strings.

Note that one could define counting protocols using abstract guess sets instead of BgA and BgB ,
respectively. We do not do this here, because the above definition corresponds more closely with
the definition of complexity class operators in Section 5. In addition, it is important to bound the
number of guess bits used. If we had used an abstract guess set, we would have to encode the
guess elements as strings and then we were back in Bg∗ .

As in the case of randomized protocols, we should distinguish between “public-guess” and
“private-guess” counting protocols. A public-guess counting protocol is only defined for inputs
(〈x,w〉, 〈y, w〉), where w is the public-guess string of Alice and Bob, while a private-guess counting
protocol is defined for all inputs (〈x,wA〉, 〈y, wB〉). Here, wA denotes Alice’s guess, while wB

denotes Bob’s.
In the sequel, we refrain from distinguishing between these two variants of counting protocols,

because we only consider counting protocols with guess strings bounded polylogarithmically in the
length of the “real” input (x, y). In this case, these variants are essentially equivalent.
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Definition 3.17. For a counting protocol Π we denote with

accΠ(x, y) :=
∣∣ {Π((x,wA), (y, wB)) | fΠ((x,wA), (y, wB)) = 1}

∣∣ and

rejΠ(x, y) :=
∣∣ {Π((x,wA), (y, wB)) | fΠ((x,wA), (y, wB)) = 0}

∣∣
the number of accepting and rejecting transcripts of Π on input (x, y), respectively.

Definition 3.18 (Computed function). Given a counting protocol Π and an acceptance mode Ξ,
the function computed by Π in acceptance mode Ξ, fΞ

Π , is defined as

fΞ
Π (x, y) := [Ξ(accΠ(x, y), rejΠ(x, y))] .

We say that Π computes f in acceptance mode Ξ, if fΞ
Π = f .

We list the most prominent acceptance modes:

N1(acc, rej ) := (acc > 0) ,

N0(acc, rej ) := (rej = 0) ,
PP(acc, rej ) := (acc > rej ) ,

MODk(acc, rej ) := (acc mod k = 1) , k ≥ 2,
⊕P(acc, rej ) := MOD2(acc, rej ) .

N1 is the nondeterministic, N0 the co-nondeterministic, PP the probabilistic, MODk the mod-k,
and ⊕P the parity acceptance mode.

Definition 3.19 (Worst-case communication cost). We define the worst-case communication cost
of a (public- or private-guess) counting protocol as the worst-case deterministic communication
cost, when viewed as a deterministic protocol, plus the lengths of the guess strings.

Definition 3.20 (Counting complexities).

(i) The nondeterministic communication complexity of f , N1(f), is defined as the minimum
worst-case communication cost of a counting protocol computing f in nondeterministic ac-
ceptance mode.

(ii) The co-nondeterministic communication complexity of f , N0(f), is defined as the minimum
worst-case communication cost of a counting protocol computing f in co-nondeterministic
acceptance mode.

(iii) The probabilistic communication complexity of f , PP(f), is defined as the minimum worst-
case communication cost of a counting protocol computing f in probabilistic acceptance
mode.

(iv) Let k ≥ 2 be a natural number. The mod-k communication complexity of f , MODk(f), is
defined as the minimum worst-case communication cost of a counting protocol computing f
in mod-k acceptance mode.

(v) The parity communication complexity of f , ⊕P(f), is defined as MOD2(f).

Analogously to distributional deterministic communication complexity, we define a distribu-
tional mod-k communication complexity. For this measure one can prove an analogous Minimax-
statement (Observation 3.29) for the bounded-error mod-k communication complexity (Defini-
tion 3.27) as for bounded-error randomized communication complexity (Fact 3.15).
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Definition 3.21 (Computed function). Let f : X ×Y → B be a Boolean function, let k ≥ 2 be a
natural number, let µ be a probability distribution on X ×Y, and let ε > 0 be a real number. We
say that a counting protocol Π computes f in mod-k acceptance mode with (µ, ε)-distributional
error, if f and fMODk

Π are (µ, ε)-close.

Definition 3.22 (Distributional modular communication complexity).
The (µ, ε)-distributional mod-k communication complexity of f , MODµ

k,ε(f), is defined as the
minimum worst-case communication cost of a counting protocol computing f in mod-k acceptance
mode with (µ, ε)-distributional error.

Similar to Observation 3.6 we have

Observation 3.23. Let f be a Boolean function, let k ≥ 2 be a natural number, and let ε > 0 be
a real number. Then we have

MODµ
k,ε(f) = min{MODk(f̃) | f̃ and f are (µ, ε)-close} .

We will see later that interesting effects occur when one combines counting with randomization.

Definition 3.24 (Randomized counting protocol). A (public-coin) randomized counting proto-
col Π (over domain X × Y) is a probability distribution over counting protocols, i.e., Π :=
({Πa}a∈A, α), where α is a random variable with values in a set A, and each Πa, a ∈ A, is a
counting protocol over domain X × Y.

Definition 3.25 (Computed function). Let f : X ×Y → B be a Boolean function, let k ≥ 2 be a
natural number, and let ε > 0 be a real number. A randomized counting protocol Π computes f
in mod-k acceptance mode with error ε, if for all (x, y) ∈ X × Y we have

Pr
α

[
fMODk

Πα
(x, y) 6= f(x, y)

]
≤ ε .

In this case, we call Π an ε-error mod-k protocol for f .

Definition 3.26 (Communication cost). The communication cost of a randomized counting pro-
tocol Π := ({Πa}a∈A, α) is defined as the maximum communication cost of the counting protocols
Πa that have non-zero weight under the probability distribution on A induced by α.

Definition 3.27 (Bounded-error modular comunication complexity).
Let f be a Boolean function, let k ≥ 2 be a natural number, and let ε > 0 be a real number. The
(public-coin) ε-error mod-k communication complexity of f , BP · MODpub

k,ε (f), is defined as the
minimum communication cost of an ε-error mod-k protocol for f .

Observation 3.28. For every Boolean function f , every natural number k ≥ 2 and every real
number ε > 0 the ε-error mod-k communication complexity of f can be upper-bounded by

BP ·MODpub
k,ε (f) ≤ min{D(f),MODk(f),Rpub

ε (f)} .

An adaptation of Fact 3.15 yields

Observation 3.29. For every Boolean function f , every natural number k ≥ 2 and every real
number ε > 0 we have

BP ·MODpub
k,ε (f) = max

µ
MODµ

k,ε(f) .
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3.4. Alternating protocols. The concept of alternation was originally defined for the Turing-
machine model as a generalization of nondeterminism. Alternation can be translated to Yao’s
model. This was done in (Babai et al. 1986, p. 339) by defining players East, West, North, and
South. We give an equivalent definition of alternating protocols.

In an alternating protocol the players may guess bits. Each state of the protocol is either
rejecting (0), accepting (1), existential (∃), or universal (∀).

If a player guesses a bit in an existential state, then this guess is called existential; universal
guesses are defined similarly.

A formal definition is given below.

Definition 3.30 (Alternating protocol). An alternating protocol (over domain X×Y) is a labeled
binary tree, where leaves ` are labeled by z` ∈ B and inner nodes v are labeled by Qv ∈ {∃,∀}
and by functions av : X → {0, 1, ∗} or bv : Y → {0, 1, ∗}, respectively. Each inner node v has two
children v0 and v1.

If in a run of an alternating protocol the players are in common state v labeled by av, we
say that Alice guesses universally, if av(x) = ∗ and Qv = ∀, and that she guesses existentially, if
av(x) = ∗ and Qv = ∃, analogously, if it is Bob’s turn.

Definition 3.31 (Computed function). Given an alternating protocol Π over domain X ×Y, the
function computed by Π, fΠ : X ×Y → B, is defined as follows. We associate with each node v of
Π a function fv : X ×Y → B. For a leaf ` we define f`(x, y) := z`. For an inner node v labeled by
av we define

fv(x, y) :=

{
fvc(x, y) , if c := av(x) ∈ B ,

[Qvc ∈ B : fvc(x, y) = 1] , if av(x) = ∗ ,

similarly, for inner nodes labeled by bv. Finally, we define fΠ as the function computed at the
root.

An alternating protocol Π computes a function f , if fΠ = f .

Definition 3.32 (Alternating communication cost). For an alternating protocol Π, the worst-
case alternating communication cost of Π, A(Π), is defined as the maximum length of a path from
the root to a leaf in the protocol tree of Π.

Definition 3.33 (Alternating communication complexity). The worst-case alternating communi-
cation complexity of f , A(f), is defined as the minimum worst-case alternating communication cost
of an alternating protocol computing f .

We say that an alternating protocol has k alternations if starting in an existential state the
maximum number of alternations between existential and universal states on every path from the
root to a leaf of the protocol tree is bounded by k. With Ak(f) we denote the restriction of A(f)
to alternating protocols with k alternations.

3.5. Lower bounds. The complexity measures introduced in the preceding subsections are hard
to calculate, because in general it is extremely expensive to enumerate all protocols computing a
function in order to find one with minimal communication cost. This is why for each complexity
measure M one tries to find combinatorial measures M ′ ≤ M that are easily computable and
(hopefully) close to M .

For worst-case (co-)nondeterministic communication complexity such a combinatorial measure
is the rectangle-size method, and, as a special case, the fooling-set method. For definitions, appli-
cations and proofs we refer the reader to (Kushilevitz & Nisan 1997, Sections 1.3 and 2.4).

Many lower bound methods have been developed for randomized communication complexity.
The most prominent ones are the discrepancy method (Kushilevitz & Nisan 1997, p. 38, Section
3.5), the Fourier method of Raz (1995), the ε-monochromatic rectangle-size method (or corruption
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method, see e.g., Beame et al. 2006), and the factorization-norm method of Linial & Shraibman
(2007). The latter work investigates an approximate γ2-norm, γα

2 , and shows that most known
lower bounds for bounded-error randomized communication complexity are actually lower bounds
for bounded-error quantum communication complexity. Klauck (2001) gave a characterization of
the PP communication complexity via the discrepancy method. Alternative characterizations via
margin complexity and the equivalent γ∞2 -measure were obtained in Linial & Shraibman (2009a).

The most important method for worst-case deterministic communication complexity, the rank
method, was introduced in Mehlhorn & Schmidt (1982). The basic idea is to consider a function
f : X × Y → Z as a matrix Mf of dimensions |X | × |Y|. The rows of Mf are indexed by the
elements of X and the columns are indexed by the elements of Y. The (x, y)-entry Mf

x,y of Mf is
simply defined as f(x, y).

A basic fact is that a deterministic protocol computing f partitions the input space X ×Y into
monochromatic (i.e., f -constant) rectangles R1, . . . , Rt, where a (combinatorial) rectangle is a set
R = A×B, A ⊆ X , B ⊆ Y. As the rectangles form a partition of the input space, the matrix Mf

can be written as a sum
∑
zi ·Mi of t rank-one matrices M1, . . . ,Mt, where (Mi)x,y := [(x, y) ∈ Ri],

i.e., Mi has value one on the rectangle inputs and zero otherwise. Thus, F-rank(Mf ) ≤ t for every
suitable field F with Z ⊆ F.

The above considerations yield

Fact 3.34 (Mehlhorn & Schmidt). For every real-valued function f we have

log R-rank
(
Mf

)
≤ D(f) .

It is still open whether the rank method is polynomially tight for Boolean functions. (For
arbitrary functions one can show exponential gaps.)

Open Question 3.35 (Logarithmic-rank conjecture). Do we have

D(f) ≤
(
log R-rank

(
Mf

))O(1)

for every Boolean function f?

Non-constant gaps have been shown in Raz & Spieker (1993) and Nisan & Wigderson (1995).
For primes q, the logarithmic-rank conjecture for mod-q communication complexity was proved

in (Damm et al. 2004, Proposition 5.3). Using a different characterization via intersection graphs
the same result had been established earlier implicitly by Pudlák & Rödl (1994) for q = 2.

Fact 3.36. Let f be a Boolean function, and let q be a prime. Then we have

log Fq-rank
(
Mf

)
q − 1

≤ MODq(f) ≤ log Fq-rank
(
Mf

)
+O(1) .

We will use this important fact twice: first of all, in the derivation of a lower bound-method
for the bounded-error modular communication complexity in Section 6, and secondly, when we
consider the modular communication complexity of problems based on quasi-random graph families
in Section 7.

4. Structural Communication Complexity

The field of structural complexity theory is so broad and rich that we do not make any attempt to
give an overview of this field or at least to list the most important results. As an excuse, we would
like to cite (Hemaspaandra & Ogihara 2002, p. 263), where they say that

“it would be impossible to define or collect the field’s most important theorems”
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in their appendix (Appendix A Rogues’ Gallery of Complexity Classes) that has a size of 40 pages.
Instead, for thorough introductions to (parts of) structural complexity we refer the reader to the
excellent monographs of Balcázar et al. (1990, 1995); Du & Ko (2000); Köbler et al. (1993); Schöning
(1986). Good surveys on a variety of topics in this field can be found in Selman (1988); Selman &
Hemaspaandra (1997), especially on counting complexity in Schöning (1988) and Fortnow (1997),
respectively.

To a complexity theorist, structure is meaning. In order to understand computational resources
and their relationships one groups families of problems into complexity classes that can be solved
with a certain computational power stemming from the resources one has added to the model
under consideration.

Classically, in structural complexity theory one considers the Turing-machine model and mod-
els of Boolean and algebraic circuits. Depending on whether or not one admits the resources
randomization, counting or alternation to the Turing machine model, one obtains “standard” com-
plexity classes like deterministic polynomial time, P, nondeterministic polynomial time, NP, co-
nondeterministic polynomial time, coNP, bounded error probabilistic polynomial time, BPP, un-
bounded error probabilistic polynomial time, PP, parity polynomial time ⊕P, (Parity-P for short),
the polynomial-time hierarchy, PH =

⋃
k≥0 Σp

k, and polynomial space, PSPACE. By their very
definition one obtains a set of standard inclusions (see Table 4.1).

P ⊆ BPP ⊆ PP ⊆ PSPACE ,
P ⊆ NP, coNP ⊆ PH ⊆ PSPACE ,
P ⊆ PP,⊕P ⊆ PSPACE .

Table 4.1: Standard inclusions

Many complexity classes are (or can be formulated as) counting classes. These classes are
based on polynomial-time Turing machines that can guess bits together with a fixed acceptance
mode Ξ. Let accT (x) and rejT (x) denote the number of accepting and rejecting computations of
a Turing machine T on input x, respectively. Then an input is accepted by T in acceptance mode
Ξ, if Ξ(accT (x), rejT (x)) is true. A prominent example of such a counting class is ⊕P, defined by
Papadimitriou & Zachos (1983), where it was shown that ⊕P(⊕P) = ⊕P. Here, the acceptance
mode gives “true”, if the number of accepting computations is odd. The class #P contains all
functions accT (x), where T is a polynomial-time Turing machine that can guess bits.

The classes PH and PSPACE can be defined via the concept of alternation: problems in
PH are decidable by polynomial-time alternating Turing machines with a constant number of
alternations, problems in PSPACE with an efficient number (polynomial in the input size). An
alternating Turing machine can guess bits universally and existentially. An input is accepted, if all
successor configurations of a universal guess are accepting, and if for every existential guess there
exists an accepting successor configuration.

One can define operators on complexity classes, e.g., the useful BP-operator, which was defined
by Schöning (1989). Using the BP-operator and a relativized version of the so-called Valiant-
Vazirani Lemma (Valiant & Vazirani 1986), Toda was able to prove his celebrated theorems (Toda
1990, p. 38, Corollary 3.2.8(2) and Theorem 3.2.7) establishing the inclusions

PH ⊆ BP · ⊕P ⊆ P(#P) = P(PP) .

They tell us that counting (mod 2) plus the use of a random source is at least as powerful as
the whole polynomial-time hierarchy PH, and that the same applies to the closure of PP under
polynomial-time Turing reductions. See also Schöning (1991) for a proof sketch diaphanously
presenting the main ideas.

Research in structural communication complexity started with the work of Babai et al. (1986),
where some analogies between the Turing-machine classes mentioned above and corresponding
communication complexity classes Pcc, NPcc, PPcc, ⊕Pcc, PSPACEcc, PHcc =

⋃
k≥0 Σcc

k , etc.
were shown. Interestingly, while (almost) nothing is known about the standard classes in the
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P ( (?) BPP ( (?) PP ( (?) PSPACE ,
P ( (?) NP, coNP ( (?) PH ( (?) PSPACE ,
P ( (?) PP,⊕P ( (?) PSPACE ,

and what about the pairs NP vs. coNP(?), NP vs. PP(?),
NP vs. ⊕P(?), or PP vs. ⊕P(?), . . .

Table 4.2: Unknown inclusion relationships

Turing-machine model (see Table 4.2), almost everything is known about the inclusion relationships
between the respective communication complexity classes (see Table 4.3). One of the few exceptions
is the long-standing open problem, whether or not the polynomial hierarchy is strictly contained
in polynomial space. Besides Razborov, several authors proposed interesting strategies to tackle
this problem: one is by Sherstov (2008b), who proved that showing a suitable upper bound on
the statistical query dimension (a notion from learning theory) of the circuit class AC0 would
separate the respective communication complexity classes. Another one is by Lokam (2001), who
showed that high lower bounds on weak forms of rigidity over the field of real numbers would yield
the desired separation. Adapting Lokam’s proof by replacing rank with the γ2-norm, Linial &
Shraibman (2009a) were able to replace Lokam’s weak rigidity with mc-rigidity, an approximate
version of margin complexity. The latter result is not surprising when compared to Toda’s Second
Theorem, because margin complexity characterizes the class PPcc, and an approximate version
thus corresponds to “something” like the class BP ·PPcc.

Pcc ( BPPcc ( PPcc ( PSPACEcc ,
Pcc ( NPcc, coNPcc ( PHcc ,
Pcc ( PPcc,⊕Pcc ( PSPACEcc .

The following pairs are incomparable:
(NPcc, coNPcc), (NPcc,PPcc), (NPcc,⊕Pcc), (PPcc,⊕Pcc).

Table 4.3: Known inclusion relationships

For more ground work, in particular on closure properties, the Boolean communication hierar-
chy, or counting communication complexity classes like MODkPcc, see Halstenberg & Reischuk
(1990) or Damm et al. (2004). Klauck (2003) established separation results between the classes
MAcc and NPcc, MAcc and APPcc, and APPcc and PPcc, respectively. In recent research,
Buhrman et al. (2007) showed Σcc

2 ,Π
cc
2 6⊆ PPcc. This was improved to Σcc

2 ,Π
cc
2 6⊆ UPPcc by

Razborov & Sherstov (2008).
Formal languages are defined a bit differently here than in the Turing-machine world because

of the distributive nature of communication complexity. The set of pairs of strings of equal length
is denoted by B∗∗ := {(x, y) | x, y ∈ B∗, |x| = |y|}. A (formal) language L is a subset of B∗∗, its
n-bit section Ln is the set of all pairs (x, y) ∈ L of n-bit words x, y.

A communication complexity class is a set of languages. As our bounds on communication will
use floors, ceilings, and logarithms, the set of polynomials is not expressive enough, and we have
to define poly := {f : R+ → R+ | ∃ polynomial p : f ≤ p}, the set of functions with polynomial
growth.

A family of Boolean functions f := (fn)n∈N, fn : Bn×Bn → B, can be considered as a family of
characteristic functions that defines a language Lf := {(x, y) ∈ B∗∗ | f|x|(x, y) = 1}. For the other
direction, a language L defines a family of functions χL := (χLn)n∈N, where χLn : Bn × Bn → B,
χLn(x, y) := [(x, y) ∈ Ln].

In the sequel, we often do not distinguish between languages and characteristic function families.
In particular, for a complexity measure M we write M(Ln), where it should correctly read M(χLn).
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We call a protocol over domain Bn ×Bn an n-bit protocol. A protocol family (Πn)n∈N of n-bit
protocols Πn decides a language L if each Πn computes the characteristic function of Ln.

In each structural theory, the standard set of complexity classes is defined based on the standard
set of complexity measures (deterministic, randomized, nondeterministic, etc.) and a notion of
efficiency. In structural communication complexity, if a problem can be solved with communication
complexity polylogarithmically in the input length, then we consider this as efficient.

Definition 4.1 (Some standard classes).

Pcc := {L ⊆ B∗∗ | ∃p ∈ poly : D(Ln) ≤ p(log n)} ,

BPPcc := {L ⊆ B∗∗ | ∃p ∈ poly : Rpub
1/3 (Ln) ≤ p(log n)} ,

PPcc := {L ⊆ B∗∗ | ∃p ∈ poly : PP(Ln) ≤ p(log n)} ,
NPcc := {L ⊆ B∗∗ | ∃p ∈ poly : N1(Ln) ≤ p(log n)} ,

coNPcc := {L ⊆ B∗∗ | ∃p ∈ poly : N0(Ln) ≤ p(log n)} ,
MODkPcc := {L ⊆ B∗∗ | ∃p ∈ poly : MODk(Ln) ≤ p(log n)} ,

⊕Pcc := MOD2Pcc .

In the Turing-machine model the complexity classes PSPACE and PH are defined based on
the resource “space”. The important observation that these classes can be defined via alternating
Turing machines opened the possibility to define analogous classes in structural communication
complexity.

Definition 4.2 (Alternating classes).

PSPACEcc := {L ⊆ B∗∗ | ∃p ∈ poly : A(Ln) ≤ p(log n)} ,

PHcc :=
⋃
k≥0

Σcc
k ,

Σcc
0 := Pcc , Σcc

k+1 := {L ⊆ B∗∗ | ∃p ∈ poly : Ak(Ln) ≤ p(log n)} , k ≥ 0 .

From the plethora of function classes we only need the class Sharp-P, #Pcc, in the sequel. It
contains all function families accΠ := (accΠn)n∈N defined by protocol families Π := (Πn)n∈N of
n-bit counting protocols Πn that are efficient, i.e., there exists a p ∈ poly such that for all n the
communication cost of Πn is bounded by p(log n).

An important concept in structural complexity is relativization. Analogous to oracle Turing
machines one can define oracle protocols. A deterministic, randomized, counting, or alternating
protocol Π over X ×Y is an oracle protocol with oracle family O = (Om)m∈N, if Π contains oracle
nodes in its protocol tree. Associated with an oracle node v are two functions av : X → Bmv

and bv : Y → Bmv . If Alice and Bob reach an oracle node v during a computation on input
(x, y) ∈ X×Y, they compute by themselves x′ := av(x) and y′ := bv(y), respectively, and call Omv

on (x′, y′). The oracle node v has exactly |range(Omv
)| many successors. Alice and Bob continue

the computation on one of them according to the returned value Omv (x′, y′). The communication
cost for each oracle call is dlog |range(Omv )|e. Relativized communication complexity classes are
defined via efficient oracle protocol families, where for each oracle node v the query length mv is
bounded by 2polylog(n). For example, Pcc(L′) contains all languages L which can be decided by
an efficient protocol family (Πn)n∈N of deterministic n-bit oracle protocols Πn with oracle family
(L′m)m∈N.

Reductions play a central role in structural complexity. In Babai et al. (1986) different kinds
of reductions were defined analogously to the Turing-machine model. In structural communication
complexity, many-one reductions defined below are also called rectangular reductions.

Definition 4.3 (Reductions). Let L and L′ be languages.

(i) L is many-one reducible to L′, if there exist a bound b ∈ poly and a family of function pairs
{(fn, gn)}n∈N, fn, gn : Bn → Bd2b(log n)e, such that for all n-bit input pairs (x, y) we have

(x, y) ∈ L ⇐⇒ (fn(x), gn(y)) ∈ L′ .
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(ii) L is Turing reducible to L′, if L ∈ Pcc(L′).

(iii) L is majority reducible to L′, if there exist bounds b, t ∈ poly and a family of function pairs
{(fn, gn)}n∈N, fn, gn : Bn → B∗, such that for all n-bit input pairs (x, y) we have

fn(x) = 〈x1, . . . , x`〉 ,
gn(y) = 〈y1, . . . , y`〉 ,

where ` := dt(log n)e, |xi| = |yi| ≤ d2b(log n)e and

(x, y) ∈ L ⇐⇒ (xi, yi) ∈ L′ for the majority of the indices i ∈ [`].

(iv) L is conjunctively reducible to L′, if there exist bounds b, t ∈ poly and a family of function
pairs {(fn, gn)}n∈N, fn, gn : Bn → B∗, such that for all n-bit input pairs (x, y) we have

fn(x) = 〈x1, . . . , x`〉 ,
gn(y) = 〈y1, . . . , y`〉 ,

where ` := dt(log n)e, |xi| = |yi| ≤ d2b(log n)e and

(x, y) ∈ L ⇐⇒ (xi, yi) ∈ L′ for all indices i ∈ [`].

5. Toda’s Theorems
In this section we prove a slight generalization of Toda’s remarkable theorems (see e.g., Toda 1991)
in the setting of communication complexity.1

In order to formulate and prove the respective statements we must first define several complexity
class operators and state some of their properties.

Crucial to a translation of these proofs is the consequent use of complexity class operators,
because relativizing statements like the Lemma of Valiant & Vazirani (1986) seems to be impossible
in communication complexity.

Definition 5.1 (Complexity class operators). For a language L and a bound p ∈ poly we define

∀p(L) :=
{

(x, y) ∈ B∗∗
∣∣∣ ∀w ∈ Bdp(log |x|)e : (〈x,w〉, 〈y, w〉) ∈ L

}
,

∃p(L) :=
{

(x, y) ∈ B∗∗
∣∣∣ ∃w ∈ Bdp(log |x|)e : (〈x,w〉, 〈y, w〉) ∈ L

}
,

MODp
k(L) :=

{
(x, y) ∈ B∗∗

∣∣∣ |{w ∈ Bdp(log |x|)e | (〈x,w〉, 〈y, w〉) ∈ L}| mod k 6= 0
}

,

⊕p(L) := MODp
2(L) .

For a communication complexity class C we define

co · C :=
{
L | L ∈ C

}
,

∀ · C := {∀p(L) | L ∈ C, p ∈ poly} ,

∃ · C := {∃p(L) | L ∈ C, p ∈ poly} ,

MODk · C := {MODp
k(L) | L ∈ C, p ∈ poly} ,

⊕ · C := MOD2 · C .

Furthermore, we define the communication complexity version of the BP-operator introduced in
Schöning (1989).

A language L is in BP · C if there exist a language L′ ∈ C and a bound q ∈ poly such that for
all n-bit input pairs (x, y) we have

(x, y) ∈ L =⇒
∣∣∣{r ∈ Bdq(log n)e

∣∣∣ (〈x, r〉, 〈y, r〉) ∈ L′
}∣∣∣ /

2dq(log n)e ≥ 2/3 ,

(x, y) /∈ L =⇒
∣∣∣{r ∈ Bdq(log n)e

∣∣∣ (〈x, r〉, 〈y, r〉) ∈ L′
}∣∣∣ /

2dq(log n)e ≤ 1/3 .

1In an unpublished manuscript, Lokam (1996) claimed without proof that Toda’s Second Theorem holds in the
setting of communication complexity.
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A careful reader familiar with randomized communication complexity might wonder why the
operators above are defined in a public-coin style, i.e., both players get the same witness/random
string. Indeed, one can define the operators such that each player gets his/her own witness/random
string (private-coin style). These definitions are equivalent, if the operators are simulated by a
protocol. Alice can guess Bob’s witness and send it to him, or she can send him her random string,
because the length of witnesses/random strings is bounded polylogarithmically in the length of the
input.

Furthermore, one can ask if such bounds on the witness length are really necessary. The answer
to this question depends on the operator under consideration. Let BPunbd· and ∃unbd· denote
the unbounded versions of the BP- and ∃-operator, respectively, i.e., the witness bound q is not
restricted to be chosen from poly. On the one hand, Newman’s Theorem (Fact 3.13) shows how to
replace a large probability space by a small one. This implies that there is no essential difference
between BP· and BPunbd·, i.e., under natural conditions on the communication complexity class
C we have BPunbd · C = BP · C. On the other hand, it is easy to see that every counting class is
contained in ∃unbd · ∀ ·Pcc. Let C be based on an acceptance mode µ, let L ∈ C, and let Π be an
efficient counting protocol for L. On an input (x, y) of length n = |x|, Alice existentially guesses
a string v containing all 2polylog(n) outputs of Π on input (x, y). If the guess string v obeys the
acceptance mode µ, Alice and Bob check the correctness of Alice’s guess. They universally guess
witnesses wA, wB , respectively, simulate Π((x,wA), (y, wB)) =: t, and accept iff the t-th bit of v
equals the output of Π.

The following observation shows that the operators are defined in the “right” way, and that the
names given to them are compatible with the names of classical communication complexity classes,
if the operators are applied to Pcc.

Observation 5.2 (Compatibility).

NPcc = ∃ ·Pcc , MODkPcc = MODk ·Pcc ,

coNPcc = ∀ ·Pcc , ⊕Pcc = ⊕ ·Pcc ,

BPPcc = BP ·Pcc .

Observation 5.3. For every natural number k ≥ 2 we have

BP ·MODkPcc = {L | ∃p ∈ poly : BP ·MODpub
k,1/3 (Ln) ≤ p(log n)} .

We observe the following properties of the communication complexity class operators. The
respective proofs are so easy that we omit most of them for brevity.

Observation 5.4 (Probability amplification). Let C be a communication complexity class closed
under majority reductions, and let b ∈ poly. If a language L is in BP · C, then there exist a
language L′ ∈ C and a bound q ∈ poly such that for all n-bit input pairs (x, y) we have

(x, y) ∈ L =⇒
∣∣∣{r ∈ Bdq(log n)e

∣∣∣ (〈x, r〉, 〈y, r〉) ∈ L′
}∣∣∣ /

2dq(log n)e ≥ 1− 2−b(log n) ,

(x, y) /∈ L =⇒
∣∣∣{r ∈ Bdq(log n)e

∣∣∣ (〈x, r〉, 〈y, r〉) ∈ L′
}∣∣∣ /

2dq(log n)e ≤ 2−b(log n) .

Observation 5.5 (Inclusion). Let C be a communication complexity class that is closed under
many-one reductions. Then for every operator Op ∈ {∀,∃,MODk,⊕,BP} we have C ⊆ Op · C.

Observation 5.6 (Monotonicity). Let C and D be two communication complexity classes such
that C ⊆ D. Then for every operator Op ∈ {co,∀,∃,MODk, ⊕,BP} we have Op · C ⊆ Op · D.
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Observation 5.7 (Idempotency). Let C be a communication complexity class that is closed under
many-one reductions. Then for every operator Op ∈ {∀,∃,⊕} we have Op ·Op · C = Op · C.

Under certain closure properties of the communication complexity class C one could prove the
idempotency of the MODq-operator for a prime q. We prove a stronger statement in the following
lemma:

Lemma 5.8 (Lowness). For every prime q we have

MODqPcc (MODqPcc) = MODqPcc .

In particular, MODqPcc is closed under complementation, as well as Turing, majority, and con-
junctive reductions.

The above result is well-known in the Turing-machine setting. For the case q = 2, it was proved
in Papadimitriou & Zachos (1983). For an arbitrary prime q, this “lowness” result is a consequence
of Fermat’s Little Theorem (see Beigel & Gill 1992).

Proof. First of all, we prove that MODqPcc is closed under complement. Let L be a language
in MODqPcc. Then there exists an efficient protocol family Π := (Πn)n∈N of n-bit counting
protocols Πn deciding L in mod-q acceptance mode. From Π we construct an efficient protocol
family Π ′ := (Π ′

n)n∈N deciding L in mod-q acceptance mode such that accΠ′
n

= accq−1
Πn

. Note that
by Fermat’s Little Theorem we have

accΠn
(x, y) mod q = 0 =⇒ accΠ′

n
(x, y) mod q = 0 ,

accΠn
(x, y) mod q 6= 0 =⇒ accΠ′

n
(x, y) mod q = 1 .

From Π ′ we construct an efficient protocol family Π :=
(
Πn

)
n∈N deciding L in mod-q acceptance

mode. On an n-bit input Alice guesses a bit b and sends it to Bob. If b = 1, the corresponding
subtree of the protocol contains q − 1 accepting transcripts. (For example, Alice sends a guess
string w of length q − 1 to Bob and they accept iff w is of the form 0i10q−2−i, 0 ≤ i ≤ q − 2.) If
b = 0 they execute Π ′

n.
Note that accΠn

= (q − 1) + accΠ′
n

implying

(x, y) ∈ L =⇒ accΠn
(x, y) mod q = (q − 1) + 1 mod q = 0 ,

(x, y) 6∈ L =⇒ accΠn
(x, y) mod q = (q − 1) + 0 mod q 6= 0 .

Thus, L is in MODqPcc.
Now, we prove the lemma. Let L be a language in MODqPcc (MODqPcc). Then there exists

an efficient protocol family Π := (Πn)n∈N deciding L in mod-q acceptance mode, where each n-
bit counting protocol Πn has oracle access to a language L′ in MODqPcc. There exist efficient
protocol families Πb :=

(
Πb

n

)
n∈N, b ∈ {0, 1}, of n-bit counting protocols Πb

n deciding L′ for b = 0
and L′ for b = 1, respectively, in mod-q acceptance mode. We assume that the Fermat trick has
been applied to them such that the number of accepting transcripts is either 0 or 1 mod q.

We construct an efficient protocol family Π ′ := (Π ′
n)n∈N deciding L in mod-q acceptance mode

as follows. On an n-bit input (x, y) Alice and Bob simulate Πn. At each oracle node instead of
calling the oracle Alice guesses the oracle answer and sends it to Bob. At the end, if Πn rejects they
reject the input, too. Otherwise, let v1, . . . , vk be the visited oracle nodes with attached function
pairs ai, bi, i ∈ [k], and let c1, . . . , ck be the guessed oracle answers. For each i ∈ [k] Alice and Bob
execute Πci on input (ai(x), bi(y)). They accept (x, y) iff all executions are accepting. �

The idempotency of the BP-operator follows from its probability amplification property (Ob-
servation 5.4).

Observation 5.9 (Idempotency of BP·). We have BP · BP · C = BP · C for every communication
complexity class C closed under majority reductions.
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Observation 5.10 (co· vs. ∃·, ∀· and BP·). Let C be a communication complexity class. We have
co · ∃ · C = ∀ · co · C, co · ∀ · C = ∃ · co · C, and co · BP · C = BP · co · C.

Definition 5.11 (Intersection & union). Let C and D be communication complexity classes. The
class C is closed under D-intersection iff for all A ∈ C and B ∈ D we have A ∩ B ∈ C, and it is
closed under D-union iff for all A ∈ C and B ∈ D we have A ∪B ∈ C.

Definition 5.12 (Normal class). We call a communication complexity class C normal iff it is
closed under Pcc-intersection, Pcc-union, and many-one reductions, and if it contains Pcc.

Swapping lemmata are well-known in the field of structural complexity theory. Below, we give
a proof of a lemma of this type for the sake of completeness. The main ingredient is the probability
amplification property of the BP-operator (Observation 5.4).

Lemma 5.13 (Swapping). Let C be a communication complexity class closed under majority re-
ductions. Then ∃ · BP · C ⊆ BP · ∃ · C.

Proof. Let L be a language in ∃ ·BP · C. Then there exist a language L′ in BP · C and a bound
p′ ∈ poly such that L = ∃p′(L′). As L′ ∈ BP · C and C is closed under majority reductions we use
probability amplification to obtain a language L′′ in C and a bound p′′ ∈ poly such that

(〈x,w〉, 〈y, w〉) ∈ L′ =⇒ Pr
r

[(〈〈x,w〉, r〉, 〈〈y, w〉, r〉) ∈ L′′] ≥ 1− 2−`′n−2 , and

(〈x,w〉, 〈y, w〉) /∈ L′ =⇒ Pr
r

[(〈〈x,w〉, r〉, 〈〈y, w〉, r〉) ∈ L′′] ≤ 2−`′n−2

for every n-bit input pair (x, y) and witness w. Here, `′n := dp′(log n)e, and the random string r is
uniformly drawn from B`′′n , where `′′n := dp′′(log n)e.

Furthermore, we define

L′′′ :=
{
(〈〈x, r1〉, w1〉, 〈〈y, r2〉, w2〉)

∣∣ (〈〈x,w1〉, r1〉, 〈〈y, w2〉, r2〉) ∈ L′′
}
.

This language is in C, because C is closed under many-one reductions. Hence, L′′′′ := ∃p′(L′′′) ∈ ∃·C.
It is easy to see that

(x, y) ∈ L =⇒ ∃w : (〈x,w〉, 〈y, w〉) ∈ L′

=⇒ Pr
r

[∃w : (〈〈x,w〉, r〉, 〈〈y, w〉, r〉) ∈ L′′] ≥ 3
4

=⇒ Pr
r

[∃w : (〈〈x, r〉, w〉, 〈〈y, r〉, w〉) ∈ L′′′] ≥ 3
4

=⇒ Pr
r

[(〈x, r〉, 〈y, r〉) ∈ L′′′′] ≥ 3
4
,

and that

(x, y) /∈ L =⇒ ∀w : (〈x,w〉, 〈y, w〉) /∈ L′

=⇒ Pr
r

[∃w : (〈〈x,w〉, r〉, 〈〈y, w〉, r〉) ∈ L′′] ≤ 2`′n · 2−`′n−2

=⇒ Pr
r

[(〈x, r〉, 〈y, r〉) ∈ L′′′′] ≤ 1
4
.

We conclude L ∈ BP · ∃ · C. �

The Lemma of Valiant & Vazirani (1986) is a classical result in structural complexity theory.
Valiant and Vazirani observed that if one randomly (using randomness (R)) adds certain clauses
ψ(R) to a satisfiable SAT-formula φ, then with non-negligible probability φ ∧ ψ(R) has a unique
satisfying assignment. As “1” is an odd number and SAT is complete for the class NP, we can
rephrase the statement in terms of complexity classes.
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Lemma 5.14 (Valiant & Vazirani). NP ⊆ RP · ⊕P.

Here, RP · C denotes the closure of C under randomized many-one reductions with one-sided
error.

Is it possible to make an analogous statement in the setting of communication complexity?
Indeed, it is. The set intersection function, SI, and the inner product function mod two, IP,
correspond to SAT and ⊕SAT, respectively.

Definition 5.15 (Set intersection). The set intersection function is defined as SI := (SIn)n∈N,
where SIn(x, y) := [∃i ∈ [n] : xi = yi = 1 ] for all x = x1 · · ·xn and y = y1 · · · yn.

Definition 5.16 (Inner product function mod two). The inner product function mod two, IP :=
(IPn)n∈N, is defined as IPn(x, y) :=

∑
i∈[n] xiyi mod 2 for all x = x1 · · ·xn and y = y1 · · · yn.

On inputs x = x1 · · ·xn and y = y1 · · · yn Alice and Bob randomly reduce SIn to IPn as follows.
First of all, they randomly choose a natural number k. The “right” k would obey 2k−2 ≤ |S| < 2k−1,
where S := {i ∈ [n] | xi = yi = 1}. Then they randomly choose a pairwise independent hash
function h : [n] → {0, 1}k that selects a subset Sh := {i ∈ [n] | h(i) = 0k} of the indices [n]. They
call IPn on x′ = x′1 · · ·x′n and y′ = y′1 · · · y′n, where x′i := xi for i ∈ Sh, and x′i := 0 otherwise;
analogously for y′i. With non-negligible probability there is a unique index i ∈ Sh satisfying
x′i = y′i = 1. Thus, we have obtained

Lemma 5.17 (Valiant & Vazirani). NPcc ⊆ RP · ⊕Pcc.

As we have seen, it is no problem to prove a Valiant-Vazirani Lemma in communication com-
plexity. But what about the relativized version?

Open Question 5.18. Let A be a language. Do we have

NPcc(A) ⊆ RP · ⊕Pcc(A) ?

In the setting of communication complexity, relativization seems to destroy the possibility to
construct an efficient reduction. Let ΠA := (ΠA

n )n∈N be an efficient oracle protocol family for a
language L ∈ NPcc(A). Then ΠA

n may have 2polylog(n) many oracle nodes. Hence, the different
oracle answers might lead to 22polylog(n)

many different partitions of the input space. A simple
many-one reduction via characteristic vectors does not seem to work.

This problem can be circumvented by the use of complexity class operators. It is possible to
prove Toda’s Theorem in the setting of communication complexity via the respective complexity
class operators and the following operator-theoretical version of the Valiant-Vazirani Lemma (see
Wunderlich 2009).

Lemma 5.19 (Valiant & Vazirani). Let C be a normal communication complexity class closed un-
der conjunctive reductions. Then ∃ · C ⊆ BP · ⊕ · C.

As we want to prove a slight generalization of Toda’s First Theorem, we slightly adapt the
Valiant-Vazirani Lemma.

Lemma 5.20. For every prime q we have

∃ ·MODqPcc ⊆ BP ·MODqPcc .

Proof. The proof is an adaptation of an algebraic proof due to Fortnow in (Fortnow 1997, p.
88, Lemma 3.12). Let L be a language in ∃ ·MODqPcc. There exist a language L′ ∈ MODqPcc

and a bound p ∈ poly such that L = ∃p(L′). Define `n := dp(log n)e. We fix an input (x, y) ∈ L,
|x| = |y| = n. Let S := {w ∈ B`n | (〈x,w〉, 〈y, w〉) ∈ L′} be the set of witnesses of (x, y) and
d := |S| its size. We will pick a natural number m such that log(2`nd) < m ≤ log(4`nd) and
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encode the witnesses as polynomials over F := F2m , the finite field with 2m elements. We will then
consider pairs (a, b) ∈ F 2 and show that for a sizable fraction of them there will be exactly one
polynomial p representing a witness such that p(a) = b. The statement follows by choosing m, a
and b at random.

For a string s = s1 · · · s` we define the polynomial ps(X) :=
∑`

i=1 siX
i−1. We fix a witness w in

S. An element a of F is called w-good, if for all witnesses w′ 6= w in S we have pw(a) 6= pw′(a). Since
pw and pw′ can agree on at most `n elements, there are at least |F | − `nd many w-good elements
in F . Consider the set Aw containing all pairs (a, pw(a)) for w-good elements a. The sets Aw and
Aw′ are disjoint for different strings w and w′. Define A :=

⋃
w∈S Aw. Then |A| ≥ d(|F | − `nd).

We define the language L′′ in MODqPcc by

L′′ :=
{
(〈〈x, r〉, w〉, 〈〈y, r〉, w〉)

∣∣n := |x| = |y|, r = 〈m∗, a, b〉,m∗ ∈ [2`n],

a, b ∈ F2m∗ , |w| = `n, pw(a) = b, (〈x,w〉, 〈y, w〉) ∈ L′
}
,

where r = 〈m∗, a, b〉 means that we use r as an encoding of a natural number m∗ and field elements
a and b. Furthermore, we define

L′′′ := MODp
q(L

′′) ∈ MODqPcc (MODqPcc) = MODqPcc .

If (x, y) /∈ L then for all w and r the pair (〈〈x, r〉, w〉, 〈〈y, r〉, w〉) is not in L′′, and thus (x, y) /∈ L′′′.
If (x, y) ∈ L then with probability 1/2`n we have m = m∗ as m ≤ log(4`nd) ≤ 2`n. In case

m = m∗ the size of A is at least `nd2, the size of F 2 is at most 16`2nd
2. If we choose (a, b) at

random in F 2 we have a 1/16`n chance of being in A. Consequently, for a fixed input (x, y) the
probability of choosing r at random such that m = m∗ and (a, b) ∈ A is at least 1/32`2n. In this
case, there is exactly one witness w for (〈x, r〉, 〈y, r〉) showing (x, y) ∈ L′′′.

The class MODqPcc is closed under majority reductions by Lemma 5.8. Thus, probability
amplification is possible, and we finally obtain L ∈ BP ·MODqPcc. �

Below, we provide a characterization of the polynomial hierarchy based on complexity class
operators.

Observation 5.21 (Polynomial hierarchy). Each level of the polynomial hierarchy PHcc is ex-
pressible as

Σcc
0 = Pcc , Σcc

k+1 = ∃ · co ·Σcc
k , k ≥ 0.

Toda’s First Theorem 5.22. For every prime q we have

PHcc ⊆ BP ·MODqPcc .

Proof. The proof is analogous to the one in the Turing-machine setting. We prove Σcc
k ⊆

BP ·MODqPcc by induction on k:
Case k = 0: This follows from Σcc

0 = Pcc ⊆ MODqPcc and the inclusion poperty of the BP-
operator (Observation 5.5).
Case k → k + 1: We have

Σcc
k+1 = ∃ · co ·Σcc

k(5.23)
⊆ ∃ · co · BP ·MODqPcc(5.24)
= ∃ · BP · co ·MODqPcc(5.25)
= ∃ · BP ·MODqPcc(5.26)
⊆ BP · ∃ ·MODqPcc(5.27)
⊆ BP · BP ·MODqPcc(5.28)
= BP ·MODqPcc .(5.29)

(5.23) By Observation 5.21.
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(5.24) By the induction hypothesis for Σcc
k and monotonicity (Observation 5.6) of the operators co·

and ∃·.

(5.25) By commutativity of co· and BP-operator (Observation 5.10).

(5.26) By closure under complement of MODqPcc (Lemma 5.8).

(5.27) By the Swapping Lemma (Lemma 5.13). This can be applied, because MODqPcc is closed
under majority reductions (Lemma 5.8).

(5.28) By the Valiant-Vazirani Lemma (Lemma 5.20) and monotonicity of the BP-operator (Obser-
vation 5.6).

(5.29) By idempotency of the BP-operator (Observation 5.9). This holds, because MODqPcc is
closed under majority reductions (Lemma 5.8).

�

For the Turing-machine model the fact below was established in Angluin (1980).

Fact 5.30 (Angluin). Pcc(PPcc) = Pcc(#Pcc).

Proof. The proof is analogous to the one in the Turing-machine setting. Alice and Bob can
compute every #Pcc-function f by binary search with polylog communication asking oracle queries
to Graph≤(f) ∈ PPcc, where Graph≤(f) := {(〈x, v〉, 〈y, v〉) | (v)2 ≤ f(x, y)}, and (v)2 is the binary
value of the string v. �

Toda’s Second Theorem 5.31. BP · ⊕Pcc ⊆ Pcc(#Pcc).

Proof. The proof is analogous to the one in the Turing-machine setting. If Π := (Πn)n∈N
is an efficient family of counting protocols with accΠ := (accΠn

)n∈N in #Pcc, and if we choose
p ∈ poly, then there exists an efficient family of counting protocols Π ′ := (Π ′

n)n∈N such that
accΠ′

n
(x, y) = (1 + accΠn(x, y)dp(log n)e)dp(log n)e. The family accΠ′ is in #Pcc, because the class

#Pcc contains all constant functions and is closed under addition and multiplication. �

We close this section with a corollary summing up the previous results.

Corollary 5.32. For every prime q we have obtained the following chain of inclusions:

PHcc ⊆ BP ·MODqPcc ⊆ PSPACEcc .

Furthermore,

PHcc ⊆ BP · ⊕Pcc ⊆ Pcc(#Pcc) = Pcc(PPcc) ⊆ PSPACEcc .

6. Razborov’s Theorem
The first difficulty one encounters when one tries to separate the polynomial hierarchy from poly-
nomial space in communication complexity is that we do not have any measures/lower-bound
methods for alternating communication complexity. Fortunately, we have Toda’s First Theorem,

PHcc ⊆ BP ·MODqPcc ⊆ PSPACEcc , q prime,

telling us that the classes BP ·MODqPcc are in a “sandwich” position between the two alternating
classes. It is an important observation that these classes are not based on the concept of alternation,
enabling us to derive measures, namely approximate ranks, that even characterize these classes.
This will be done in Section 6.1. Finally, as to each notion of approximate rank there is an
equivalent notion of matrix rigidity, we are able to reprove and strengthen Razborov’s Theorem in
Section 6.2.
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6.1. Approximate rank. We define notions of approximate F-rank for fields F, which to the
author’s knowledge have not appeared in the published literature before. In particular, we are
interested in approximate toggle ranks, because they characterize bounded-error modular commu-
nication complexity.

Definition 6.1 (Approximate F-rank). Let F be a field, let M be a matrix over F with row index
set X and column index set Y, let µ be a probability distribution on X × Y, and let ε ≥ 0 be a
real number. The (µ, ε)-approximate F-rank of M is defined as

F-rankµ
ε (M) := min{F-rank(M̃) | µ(M̃ 6= M) ≤ ε, M̃ a matrix over F} .

Here, µ(M̃ 6= M) := µ{(x, y) | M̃x,y 6= Mx,y}.
The ε-approximate F-rank of M is defined as

F-rank∗ε (M) := max
µ

F-rankµ
ε (M) .

Definition 6.2 (Approximate toggle F-rank). Let F be a field, let M be a Boolean matrix with
row index set X and column index set Y, let µ be a probability distribution on X × Y, and let
ε ≥ 0 be a real number. The (µ, ε)-approximate toggle F-rank of M is defined as

toggle F-rankµ
ε (M) := min{F-rank(M̃) | µ(M̃ 6= M) ≤ ε, M̃ a Boolean matrix} .

The ε-approximate toggle F-rank of M is defined as

toggle F-rank∗ε (M) := max
µ

F-rankµ
ε (M) .

Clearly, approximate F2-rank and approximate toggle F2-rank coincide. To become more fa-
miliar with these notions of approximate ranks, we provide two examples. The first one is perhaps
surprising.

Example 6.3. Let U denote the uniform distribution. For every n×n-matrix N over F2 with full
rank n we have

F2-rankU
1/n2(N) = n− 1 .

This can be seen by looking at the determinant of N . First-row-expansion gives

1 = |N | =
n⊕

i=1

N1,i ·
∣∣∣N (1,i)

∣∣∣ .

Here, N (1,i) denotes the matrix N with row 1 and column i deleted.
Thus, there exists an odd set I of indices such that

N1,i ·
∣∣∣N (1,i)

∣∣∣ = 1

for all i ∈ I. Complementing a single (1, i0)-entry of N for an i0 ∈ I reduces the rank by one. ♦

Proving high lower bounds for approximate ranks seems to be a challenging open problem.
Nevertheless, it might be easier to prove lower bounds for approximate toggle ranks, because
toggling values from 0 to 1 or from 1 to 0 is far more restrictive than replacing entries with
arbitrary field elements.

The next example shows that our intuiton is right, i.e., for primes q > 2, approximate toggle
rank is indeed a strictly weaker notion.
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Example 6.4. Again, let U denote the uniform distribution. Consider the following matrix:

M :=

0 1 1
1 0 1
1 1 0

 .

On the one hand, it holds
toggle F3-rankU

1/9(M) = 3 ,

because for every x ∈ {0, 1} we have∣∣∣∣∣∣
x 1 1
1 0 1
1 1 0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 1 1
1 x 1
1 1 0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 1 1
1 0 1
1 1 x

∣∣∣∣∣∣ = 2− x

and ∣∣∣∣∣∣
0 x 1
1 0 1
1 1 0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 1 x
1 0 1
1 1 0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 1 1
x 0 1
1 1 0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 1 1
1 0 x
1 1 0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 1 1
1 0 1
x 1 0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 1 1
1 0 1
1 x 0

∣∣∣∣∣∣ = 1 + x .

On the other hand, by setting x := 2 the above calculation also shows that

F3-rankU
1/9(M) = 2 .

♦

The next theorem states that the logarithm of approximate toggle Fq-rank is a measure char-
acterizing the bounded-error mod-q communication complexity of a function.

Theorem 6.5 (Characterization). Let f be a Boolean function, let q be a prime, and let ε ≥ 0 be
a real number. Then we have

BP ·MODpub
q,ε (f) ≥

log
(
toggle Fq-rank∗ε

(
Mf

))
q − 1

,

BP ·MODpub
q,ε (f) ≤ log

(
toggle Fq-rank∗ε

(
Mf

))
+O(1) .

Proof. For the lower bound, we observe that

(q − 1) · BP ·MODpub
q,ε (f) = (q − 1) ·max

µ
MODµ

q,ε(f)(6.6)

= max
µ

min
f̃ : µ(f̃ 6=f)≤ε

(q − 1) ·MODq(f̃)(6.7)

≥ max
µ

min
f̃ : µ(f̃ 6=f)≤ε

log Fq-rank
(
M f̃

)
(6.8)

= log max
µ

min
f̃ : µ(f̃ 6=f)≤ε

Fq-rank
(
M f̃

)
= log max

µ
min

M̃ : µ(M̃ 6=Mf )≤ε
Fq-rank(M̃)

= log max
µ

(
toggle Fq-rankµ

ε

(
Mf

))
= log

(
toggle Fq-rank∗ε

(
Mf

))
,

where (6.6) holds by Observation 3.29, (6.7) by Observation 3.23, and (6.8) by Fact 3.36, respec-
tively. The upper bound can be derived similarly using

MODq(f̃) ≤ log Fq-rank(M f̃ ) +O(1)

of Fact 3.36. �
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6.1.1. Digression: approximate real rank. The same argument with R-rank shows

Theorem 6.9. Let f be a Boolean function, and let ε > 0 be a real number. Then we have

Rpub
ε (f) ≥ log

(
toggle R-rank∗ε

(
Mf

))
.

Thus, we have obtained that the logarithm of the approximate toggle R-rank is a measure for
bounded-error public-coin randomized communication complexity. Note that if the logarithmic-
rank conjecture (Open Question 3.35) holds, then bounded-error public-coin randomized commu-
nication complexity and the logarithm of approximate toggle R-rank are polynomially tight. It
would be very interesting to know if one of the known lower-bound methods developed for bounded-
error public-coin randomized communication complexity yields exponentially better lower bounds
than the logarithm of approximate toggle R-rank, because this would disprove the logarithmic-rank
conjecture.

6.2. Matrix rigidity. The concept of (matrix) rigidity was introduced by Valiant (1977) as a
tool to derive lower bounds in circuit complexity. (For an introduction, we refer the reader to
Codenotti 2000.) A matrix has high rigidity, if small perturbations, i.e., changes of a small number
of entries in the matrix, do not lower the rank much. Proving a strong enough lower bound on the
rigidity of a matrix implies a non-trivial lower bound, i.e., a superlinear size or a superlogarithmic
depth, on the complexity of any linear circuit computing the set of linear forms associated with it.

In this subsection we establish an explicit connection between measures of communication
complexity and matrix rigidity leading to a stengthening of Razborov’s Theorem.

The formal definition of matrix rigidity is given below for the sake of completeness.

Definition 6.10 (Hamming weight). For a matrixM over a field F we define the Hamming weight
of M , wt(M), as the number of nonzero entries in M .

Definition 6.11 (Rigidity). Let M be a matrix over a field F, and let r be a natural number.
The (matrix) rigidity RF

M of M is defined as

RF
M (r) := min{wt(M̃ −M) | F-rank(M̃) ≤ r, M̃ a matrix over F} ,

i.e., the minimum number of entries in M that must be changed in order to reduce the rank to r.

In order to obtain a close correspondence between rigidity and approximate rank, we generalize
rigidity via arbitrary probability distributions on matrix entries.

Definition 6.12 (Rigidity). Let F be a field, let M be a matrix over F with row index set X and
column index set Y, let µ be a probability distribution on X × Y, and let r be a natural number.
We define

F-rigidityµ
M (r) := min{µ(M 6= M̃) | F-rank(M̃) ≤ r, M̃ a matrix over F} ,

F-rigidity∗M (r) := max
µ

F-rigidityµ
M (r) .

Note that RF
M (r) = |X ×Y|·F-rigidityU

M (r), where U denotes the uniform distribution on X×Y.
Most importantly, we introduce a new variant defined for Boolean matrices we call toggle

rigidity, where only toggling values between 0 and 1 is allowed for rank reduction. This notion
corresponds to approximate toggle rank (Definition 6.2).

Definition 6.13 (Toggle rigidity). Let F be a field, let M be a Boolean matrix with row index
set X and column index set Y, let µ be a probability distribution on X ×Y, and let r be a natural
number. We define

toggle F-rigidityµ
M (r) := min{µ(M 6= M̃) | F-rank(M̃) ≤ r, M̃ a Boolean matrix} ,

toggle F-rigidity∗M (r) := max
µ

toggle F-rigidityµ
M (r) .

It follows right from the definition that rigidities are monotonically decreasing functions. In
addition, we observe that matrix rigidity and approximate rank are equivalent concepts.
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Observation 6.14 (Equivalence). Let F be a field, let M be a matrix over F, let µ be a probability
distribution on M ’s entries, and let ε ≥ 0 be a real number. Then

F-rankµ
ε (M) ≤ r ⇐⇒ F-rigidityµ

M (r) ≤ ε .

If M is Boolean, then

toggle F-rankµ
ε (M) ≤ r ⇐⇒ toggle F-rigidityµ

M (r) ≤ ε .

Main Theorem 6.15. Let F be a finite field, let f := (fn)n∈N be a family of Boolean functions
fn : Bn × Bn → B, let (µn)n∈N be a family of probability distributions µn on Bn × Bn, let r(n) ≥
2(log n)ω(1)

be a sequence of natural numbers, and let ε(n) ≥ 1/2(log n)O(1)
be a sequence of real

numbers. If
toggle F-rigidityµn

Mfn

(
r(n)

)
> ε(n)

then the language Lf associated with f is not in the polynomial hierarchy PHcc.

Proof. It suffices to prove the theorem for finite fields Fq with q prime, since Fqn -rank(A) ≤
Fq-rank(A) for every matrix A over Fq and every n ≥ 1. By probability amplification (Fact 3.14),

BP ·MODpub
q,ε(n)(fn) ≤ (log n)O(1) · BP ·MODpub

q,1/3(fn) .

By Theorem 6.5,

log
(
toggle Fq-rank∗ε(n)

(
Mfn

))
≤ (q − 1) · BP ·MODpub

q,ε(n)(fn) .

By the assumption and Observation 6.14,

2(log n)ω(1)
≤ r(n) ≤ toggle Fq-rank∗ε(n)

(
Mfn

)
.

This yields BP ·MODpub
q,1/3(fn) ≥ (log n)ω(1). �

As a corollary we obtain

Razborov’s Theorem 6.16. Let F be a finite field, and let f := (fn)n∈N be a family of Boolean
functions. If

RF
Mfn

(
2(log n)ω(1)

)
>

22n

2(log n)O(1) ,

then the language Lf associated with f is not in the polynomial hierarchy PHcc.

Note that the strengthening of Razborov’s Theorem (Main Theorem 6.15) is twofold:
First of all, by placing an arbitrary probability distribution on the matrix entries instead of

using the uniform distribution one can put high weight on hard parts of the matrix and low weight
on easier parts. This has proven useful for other communication complexity measures. For example,
Babai et al. (1986) showed that Dµ

ε (SIn) ≤ O(
√
n log n) for every product distribution µ, while there

exists a non-product distribution ν such that Dν
ε (SIn) ≥ Ω(n). (For this fact, see Kalyanasundaram

& Schnitger 1992 and Razborov 1992.) Sherstov (2008b) even showed exponential gaps for an
explicit function family and arbitrary gaps for a non-explicit function family in Sherstov (2008a).
Such effects might occur in the rigidity setting as well.

Secondly, we think that the use of the toggle variant of rigidity instead of classical rigidity will
play an important role in future progress on proving high lower bounds. Recall that we have already
proved a separation between approximate rank and approximate toggle rank in Example 6.4 giving
us higher lower bounds when using toggle rigidity instead of classical rigidity by Observation 6.14.

In addition, high lower bounds for restricted versions of rigidity over the field of real numbers
have already been obtained by Lokam (2001). These results imply high lower bounds for toggle
rigidity over the field of real numbers.
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6.2.1. Digression: concentration of measure. As the name suggests concentration-of-mea-
sure results state that a measure puts high weight on a specific set of small size. Several con-
centration-of-measure results have been established for communication complexity measures, see
e.g., Alon et al. (1985); Linial & Shraibman (2009b); Orlitsky & El Gamal (1990) showing that
most functions have high complexity. The same is true for bounded-error modular communication
complexity by an old result from (Valiant 1977, p. 172–173, Theorem 6.4(ii)), where it was shown
that over a finite field most Boolean matrices have high rigidity.

Fact 6.17 (Valiant). Let q be a prime. For all natural numbers n and r, a (1 − 1/n)-fraction of
all Boolean n× n-matrices M has rigidity

RFq

M (r) ≥
(n− r)2 − 2n(logq 2)− log n

2 logq n+ 1
,

if r < n−
√

2n(logq 2) + log n.

Theorem 6.18. Let q be a prime. For n sufficiently large, a (1 − 1/2n)-fraction of all Boolean
functions f : Bn × Bn → B has bounded-error mod-q communication complexity

BP ·MODpub
q,1/4(f) ≥ Ω

(
n

log n

)
.

Proof. By Fact 6.17 there exists a constant c such that for n sufficiently large a (1 − 1/2n)-
fraction of all Boolean functions f : Bn × Bn → B has rigidity

RFq

Mf (r) ≥ c · (2n − r)2

n
,

if r ≤ 2n−1. Fix such a function f . Define b(n) := BP · MODpub
q,1/4(f), t(n) := 6 · log(2n/c), and

ε(n) := 1
2 · (

3
4 )t(n)/2. By probability amplification (Fact 3.14), we have

BP ·MODpub
q,ε(n)(f) ≤ t(n)b(n) .

Assume for a contradiction that b(n) < n−1
(q−1)t(n) . Let U be the uniform distribution on Bn × Bn.

Define
rU (n) := Fq-rankU

ε(n)

(
Mf

)
≤ 2(q−1)BP·MODpub

q,ε(n)(f) =: r(n) .

Then RFq

Mf

(
rU (n)

)
≤ ε(n) · 22n by Observation 6.14. By monotonicity we have

1
2
·
(

3
4

)t(n)/2

≥
RFq

Mf

(
r(n)

)
22n

≥ c

n
·
(
1− 2t(n)b(n)(q−1)−n

)2

≥ c

4n
,

contradicting ( 3
4 )t(n)/2 = ( 27

64 )log(2n/c) < ( 1
2 )log(2n/c) = c

2n . We conclude

BP ·MODpub
q,1/4(f) = b(n) ≥ n− 1

(q − 1)t(n)
.

�

7. Discussion
Concerning proofs of high lower bounds for matrix rigidity the reader may abandon himself to de-
spair after glancing his eye over existing results. Despite considerable efforts by many researchers,
see e.g., Cheraghchi (2005); Codenotti et al. (2000); Friedman (1993); Lokam (2000, 2001); Midri-
janis (2005); Pudlák (1994); Pudlák & Rödl (1994); Shokrollahi et al. (1997); de Wolf (2006), no
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explicit construction of a rigid family of matrices over finite fields is known. (For infinite fields
Lokam 2006 was able to derive quadratic lower bounds for the rigidity of (in an algebraic sense)
explicit matrix families using the concept of (generalized) Smolensky-Shoup-dimension.)

Thus, it is justified to ask if Razborov’s strategy to separate PHcc from PSPACEcc is a
promising one. It could be the case that BP ·MODqPcc = PSPACEcc. Then his strategy fails
even if PHcc ( BP ·MODqPcc. In the next subsection we give evidence that this scenario does
not occur by presenting a protocol with few alternations for the inner product function mod two
suggesting BP ·⊕Pcc ( PSPACEcc. In the subsequent subsection we ask what properties possible
candidates outside the polynomial hierarchy must have that possibly enable us to prove high lower
bounds for them.

7.1. A protocol with few alternations for the inner product function mod two. We
want to develop an alternating protocol with few alternations for the inner product function mod
two.

For the moment, let LIP denote the language corresponding to IP. It is complete for the class
⊕Pcc under many-one reductions. This is one of many reasons why the inner product function
mod two has been studied extensively:

In (Kushilevitz & Nisan 1997, p. 12, Exercise 1.25) it was shown that R0(IPn) ≥ N0(IPn) ≥ n−
1 using the rectangle-size method. This implies LIP /∈ coNPcc. The lower bound Rpub

0 (IPn) ≥ n−1
for the public-coin model was shown in (Dietzfelbinger & Wunderlich 2007, p. 249, Example 3.7).

The distributional communication complexity of IP was studied in Chor & Goldreich (1988)
improving on a result of Vazirani (1987). See also (Babai et al. 1986, p. 345, Lemma 9.3, Corollary
9.4). A proof similar to Chor & Goldreich (1988) was given in (Kushilevitz & Nisan 1997, p. 39,
Example 3.29; p. 40, Exercise 3.30) that shows R 1

2−ε(IPn) ≥ n − O(log 1
ε ) using the discrepancy

method. This implies LIP /∈ BPPcc. Klauck (2003) showed a strong connection between majority
covers and the discrepancy method. Hence, the result above actually gives PP(IPn) = Θ(n). This
implies LIP /∈ PPcc. In the work of Forster (2002), a linear lower bound was established in the
unbounded-error communication complexity model, implying even LIP /∈ UPPcc.

Lemma 7.1. Let x = x1 · · ·xn and y = y1 · · · yn be inputs. Divide them into an odd number k of
blocks, i.e., x = x(1) · · ·x(k) and y = y(1) · · · y(k). Then for b ∈ {0, 1} the following are equivalent:

(i) IPn(x, y) = b.

(ii) There exists an odd number of blocks indexed by elements in S ⊆ [k] such that IP(x(i), y(i)) =
b for i ∈ S and IP(x(j), y(j)) = 1− b for j ∈ S.

Proof. (ii) =⇒ (i): The cardinality of S is even. Thus, we have

IPn(x, y) =
∑
i∈[k]

IP(x(i), y(i)) mod 2

=
∑
i∈S

IP(x(i), y(i)) +
∑
j∈S

IP(x(j), y(j)) mod 2

= |S| · b+ |S| · (1− b) mod 2 = b .

(i) =⇒ (ii): Define S := {i ∈ [k] | IP(x(i), y(i)) = b}. By the assumption, we have b = IPn(x, y) =
|S| ·b+ |S| ·(1−b) mod 2. If b = 0 then |S| is even, implying |S| odd. If b = 1 then |S| mod 2 = 1. �

The simple lemma above leads to a “divide and conquer”-strategy to compute the inner product
function mod two with few alternations. This is implemented in protocol Ik(s, t, b) (Algorithm 1).

Observation 7.2. On n-bit inputs x = x1 · · ·xn and y = y1 · · · yn the protocol

Ik(s, t, b) accepts ⇐⇒ IPt−s+1(xs · · ·xt, ys · · · yt) = b .

Consequently, the protocol Ik(1, n, 1) computes IPn(x, y).
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Proof. The correctness of the protocol follows from Lemma 7.1 by induction on t− s+ 1. �

There are two alternations in each round of the protocol, and the number of rounds is bounded
by t = log n/ log k. If we choose an odd natural number k of size (log n)O(1), then the com-
munication cost in each round is O(k) bits, and the number of alternations is O(log n/ log log n),
substantially less than allowed. Recall that PSPACEcc was defined as the class of languages which
can be recognized by protocols using (log n)O(1) communication and (log n)O(1) many alternations.
In particular, the number of alternations is allowed to be proportional to the communication cost.

We consider this as evidence that the class ⊕Pcc is much “easier” than the class PSPACEcc,
because the ⊕Pcc-complete problem LIP needs so few alternations. Finally, we conjecture that
even the class BP · ⊕Pcc is much “easier” than PSPACEcc, because Schöning’s generalization
BP · C ⊆ ∃ · ∀ · C ∩ ∀ · ∃ · C of the classical result of Lautemann, which is easily transferred into the
communication complexity context (see e.g., Babai et al. 1986), tells us that randomization with
bounded error can be replaced with just two additional alternations.

Algorithm 1: Protocol Ik(s, t, b)
Input: Alice has x = x1 · · ·xn and Bob has y = y1 · · · yn

Data: Both know s, t, b and the odd natural number k
if (k ≥ t− s+ 1) then

begin
/* Trivial protocol: Alice sends her input; both compute the value by

themselves. */
Alice and Bob compute b′ := IPt−s+1(xs · · ·xt, ys · · · yt) using the trivial protocol;
/* They return 1, if b equals b′, and 0 otherwise: */
return (b == b′);

end
else

begin
/* Alice guesses the following strings and sends them to Bob: */
Guess existentially S ⊆ [k], |S| odd;
Guess universally i ∈ S;
Guess universally j ∈ S;
Guess universally h ∈ {i, j};
/* Both compute for themselves (no communication)

d := t− s+ 1 , s1 := s+ (h− 1) ·B ,

B := dd/ke , t1 := min{t, s+ h ·B} ,

b1 :=

{
b , h = i ,

1− b , h = j .

*/
return Ik(s1, t1, b1);

end
end

7.2. Quasi-random graphs. We investigate a new connection between communication com-
plexity and the fascinating field of quasi-random graphs (see e.g., Chung et al. 1989). We think that
problems based on adjacency questions about quasi-random graph families have high bounded-error
modular communication complexity, and thus are good candidates for separating the polynomial
hierarchy from polynomial space.

While Chung & Tetali (1993) have shown that high communication complexity leads to quasi-
randomness, we prove that under certain conditions the opposite direction also holds. Unfortu-
nately, we cannot prove lower bounds for the bounded-error modular communication complexity,



28 7 DISCUSSION

but we are able to show that the modular communication complexity of such problems is lower-
bounded by log(1/P (n))−O(1), where P (n) denotes the edge density of the graph family. Thus,
known constructions of sparse quasi-random graph families like Erdös-Renyi graphs (defined below)
yield many explicit problems provably outside the classes MODqPcc, q prime.

7.2.1. Basic definitions. We consider D-regular graph families G := (Gn)n≥1 on N nodes, i.e.,
each Gn is a D(n)-regular graph on N(n) nodes. We define the edge density of G by

P (n) :=
|E(Gn)|∣∣∣(V (Gn)

2

)∣∣∣ = 2 · D(n)
N(n)− 1

.

We only consider graph families with P (n)N(n) → ∞ for n → ∞. A graph family is dense, if
D(n) = Θ(N(n)), and sparse, if D(n) = o(N(n)).

Graph families define problems in communication complexity. For a graph G let EDGEG

denote the Boolean function such that the communication matrix of EDGEG equals the adjacency
matrix of G. (In other words, Alice has x ∈ V (G), Bob has y ∈ V (G), and they want to know if
{x, y} ∈ E(G).) Then, a graph family G := (Gn)n∈N defines a family EDGEG := (EDGEGn

)n∈N of
Boolean functions.

Definition 7.3 (Discrepancy). A graph family G has the discrepancy property DISC(1), if for
all subsets X,Y ⊆ V (Gn) we have∣∣eGn

(X,Y )− P (n)|X||Y |
∣∣ = o

(
P (n)(N(n))2

)
.

Graph families with the discrepancy property have been thoroughly studied in the theory of
quasi-random graphs. For space reasons, we do not make any attempt to give an introduction to
this fascinating field, but we refer the reader to e.g., Chung & Graham (2002) and Krivelevich &
Sudakov (2006) as possible starting points.

From here on, we call a graph family quasi-random, if it has the discrepancy property.

7.2.2. Almost superregular problems. In our opinion, what makes sparse quasi-random
graph families amenable to high lower bounds in communication complexity are their superreg-
ularity properties.

Definition 7.4 (Almost superregular). Let A,B : N → N be functions, and let M := (Mn)n∈N be
a family of matrices Mn : Xn × Yn → F over a field F such that |Xn| = |Yn| =: N(n). We call the
family M almost (A, B)-superregular over F, if for every A(n)×A(n)-submatrix K of Mn we have
F-rank(K) ≥ B(n).

Furthermore, we call a function family (fn)n∈N almost (A, B)-superregular over F if the corre-
sponding family (Mfn)n∈N of communication matrices is almost (A, B)-superregular over F.

Of course, the definition above only makes sense for B ≤ A. Superregular matrices (over F)
were defined in Valiant (1977) as matrices such that every quadratic submatrix has full rank (over
F). Thus, for N(n) := 2n, a family of superregular N(n) × N(n)-matrices over F is almost (A,
A)-superregular over F for every function A.

Valiant himself constructed integer matrices superregular over the field of rational numbers (see
e.g., Lokam 2009, p. 22, Theorem 2.12). Unfortunately, families of Boolean superregular matrices
over a fixed finite field do not exist.

Theorem 7.5. For every fixed finite field F there do not exist families of superregular matrices.

Proof. First of all, we consider Boolean families over a fixed finite field F. Assume that there
exists a superregular family (Mn)n∈N of Boolean n × n-matrices. We define K(n) := n, and
N(n) := 2K(n)+2 logK(n). Choose an arbitrary natural number n0 ≥ 21. The matrixW := MN(n0)

is an edge coloring of the biclique KN(n0),N(n0). Bipartite Ramsey theory (see e.g., the result of
Conlon 2008 or prior work) tells us that in this big biclique there exists a small bicliqueKK(n0),K(n0)
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that is monochromatic under W . This means that W contains an n0×n0-submatrix T consisting of
zeros only, or ones only. Thus, F-rank(T ) ∈ {0, 1} in contradiction to the superregularity property
implying F-rank(T ) = n0 ≥ 21.

The same argument can be applied to arbitrary matrices over F. Then, one has to use |F|-
colorings instead of 2-colorings and the bound N is higher. �

In contrast, almost (A, B)-superregular matrix families do exist for certain functions A and B
over every finite field. As the reader might have already guessed, such families are given by the
adjacency matrices of sparse quasi-random graph families.

Almost superregularity over the field of real numbers can be elegantly proven via spectral
techniques. For this, we define

Definition 7.6 (Matrix norms). Let A be a complex n× n-matrix.

(i) The spectral norm of A is defined as ||A|| := maxx6=0 ||Ax||/||x||.

(ii) The Frobenius norm of A is defined as ||A||F :=
√∑

i,j |Ai,j |2.

Definition 7.7 (Approximate Hamming weight). Let θ > 0 be a real number. For a Boolean
n × n-matrix A we define the θ-approximate Hamming weight of A, w̃tθ(A), as the minimum
Hamming weight of a (θn)× (θn)-submatrix of A.

In other words, we consider all (θn)× (θn)-submatrices, count the number of ones in them, and
take the minimum.

Lemma 7.8. Let f := (fn)n∈N, fn : Bn × Bn → B, be a family of Boolean functions, and let

N(n) := 2n. Then for every constant real number θ > 0 the family f is almost
(
θN ,

w̃tθ(Mfn)
||Mfn ||2

)
-

superregular over R.

Proof. A basic fact from linear algebra (see e.g., Lokam 2001) is that for every submatrix B
of a matrix A we have R-rank(B) ≥ ||B||2F/||A||2. Note that for a Boolean matrix B we have
||B||2F = wt(B). �

Theorem 7.9. Let G := (Gn)n∈N be aD-regular quasi-random graph family on N nodes with edge
density P . For every constant real number θ > 0 the family EDGEG is almost

(
θN , Ω

(
θ2/P

))
-

superregular over R.

Proof. Let Mn := AGn . First of all, ||Mn|| = D(n), because Gn is D(n)-regular. Let B be a
(θN(n))× (θN(n))-submatrix of Mn that realizes w̃tθ(Mn). By the discrepancy property, we have

wt(B) = (1 + o(1)) · P (n) · (θN(n))2

≈ 2θ2D(n)N(n) , for n sufficiently large.

Applying Lemma 7.8 yields the lower bound. �

The following theorem shows that the result above can be generalized to any field, in particular,
finite fields. Of course, it is proved in a different way, because we do not have spectral techniques
over finite fields.
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Theorem 7.10. Let F be a field, and let G := (Gn)n∈N be a D-regular quasi-random graph family
on N nodes with edge density P . For every constant real number θ > 0 the family EDGEG is
almost

(
θN , Ω

(
θ2/P

))
-superregular over F.

Proof. Let n be sufficiently large. Let Mn := AGn , and define A := θN . Consider an arbitrary
A(n)× A(n)-submatrix T of Mn. We want to show that T has a high Fq-rank. Let U and W be
the subsets of V (Gn) of size A(n) that correspond to the rows and columns of T , respectively. By
the discrepancy property of G we have

eGn
(U,W ) ≈ P (n) · (A(n))2 ≈ 2θ2D(n)N(n) .

Let W ′ ⊆W contain all v ∈W such that eGn
(U, v) ≥ 1. Then |W ′| ≈ 2θ2N(n), because of

|W ′|D(n) ≥ eGn
(U,W ′) = eGn

(U,W ) ≈ 2θ2D(n)N(n) .

Let T ′ be the submatrix of T , where the columns are restricted to W ′. We successively permute
rows and columns of T ′ in order to obtain a “stair” of ones starting with the stairhead in the upper
left corner and going down, where each stair has length ≤ D(n). Hence, the number of stairs
is at least ≈ (2θ2N(n))/D(n) implying that B(n) := F-rank(T ) ≥ F-rank(T ′) ≈ 2θ2 D(n)

N(n) , for n
sufficiently large. We conclude that the family EDGEG is almost (A,B)-superregular over F.

Now, we permute T ′: Take the first column v1 ∈ W ′. By definition of W ′ there exists a row
u1 ∈ U that is a neighbor of v1. Take u1 as the new first row. It has t1 ≤ D(n) neighbors v1, . . . , vt1

in W ′. Permute the columns such that these neighbors form the first t1 columns of T ′. We created
the first stair. Again, take another column vt1+1 ∈W ′−{v1, . . . , vt1} and continue this process to
create the next stairs. This can be done at least |W ′|/D(n) many times. �

7.2.3. Lower bounds. The results obtained so far yield strong lower bounds for worst-case
deterministic and modular communication complexity.

Given two function families f := (fn)n∈N and g := (gn)n∈N, we call fn : X ′
n × Y ′n → Zn a large

subfunction of gn : Xn × Yn → Zn, if there exists a constant real number θ > 0 such that fn is
the restriction of gn to X ′

n × Y ′n for sets X ′
n ⊆ Xn, |X ′

n| ≥ θ|Xn|, and Y ′n ⊆ Yn, |Y ′n| ≥ θ|Yn|,
respectively.

Theorem 7.11. For a quasi-random D-regular graph family G := (Gn)n∈N with edge density P
we have

(7.12) D(EDGEGn
) ≥ log

(
1

P (n)

)
−O(1) .

This also holds for every family of large subfunctions of EDGEG .

Proof. Follows from Theorem 7.9 and Fact 3.34 (real-rank lower bound). �

Interestingly, the right hand side looks like an entropic quantity.
This lower bound cannot be tight for worst-case deterministic communication complexity, be-

cause it is actually a lower bound for modular communication complexity.

Theorem 7.13. Let q be a prime. For a quasi-random D-regular graph family G := (Gn)n∈N with
edge density P we have

(7.14) MODq(EDGEGn
) ≥ 1

q − 1
· log

(
1

P (n)

)
−O(1) .

This also holds for every family of large subfunctions of EDGEG .

Proof. Follows from Theorem 7.10 and Fact 3.36 (modular-rank lower bound). �

There is a variety of constructions of sparse quasi-random graph families that have appeared in
the literature. We exemplify our lower-bound method with the so-called Erdös-Renyi graphs that
arise from finite geometries.
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Definition 7.15 (Erdös-Renyi graphs). Let p be a prime power. We define the p-th Erdös-Renyi
graph, ERp, as follows: Let V (ERp) be the points of the projective plane over Fp. Nodes x =
(x0, x1, x2) and y = (y0, y1, y2) are adjacent iff we have x0y0 + x1y1 + x2y2 = 0 in Fp.

Fact 7.16. The p-th Erdös-Renyi graph has |V (ERp)| = (p3 − 1)/(p − 1) = p2 + p + 1 many
nodes. It is D(p)-regular with D(p) := (p2 − 1)/(p − 1), and it has the discrepancy property for
P̃ (p) := (p+ 1)/(p2 + p+ 1).

As P (2n) ≈ P̃ (N(n)) = Θ(1/N(n)), we obtain

Corollary 7.17. For a prime q, MODq(EDGEER2n ) ≥ n
q−1 −O(1) .

We note that similar high lower bounds can be obtained for explicit families based on Delsarte-
Goethals-Turyn graphs, generalized Erdös-Renyi graphs (defined over the projective geometry of
dimension t ≥ 2), certain incidence graphs of generalized m-gons, Ramanujan graphs, or projective-
norm graphs, see (Krivelevich & Sudakov 2006, p. 22–29) for details.

We expect that such lower bounds also hold for bounded-error modular communication com-
plexity, because these games on graphs are hard everywhere, i.e., the modular communication
complexity stays high even when restricting to a large subfunction. We leave this as an open
question.

Open Question 7.18. Let G := (Gn)n∈N be a quasi-random D-regular graph family with edge
density P . Do we have

BP ·MODpub
q,ε (EDGEGn) ≥ Ω

(
log

1
P (n)

)
?

Note the following trivial upper bound (see e.g., Linial & Shraibman 2009b, Thm. 35)

BP ·MODpub
q,ε (EDGEGn

) ≤ Rpub
ε (EDGEGn

) ≤ O(logD(n))

that holds for every D-regular graph family G := (Gn)n∈N. Therefore, possible candidates outside
the polynomial hierarchy must not be too sparse.
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