The assumption of Theorem 2 that 1-branching programs of width 3 need to be weakly oblivious can indeed be removed (cf. Footnotes 1 and 2 on p. 3 and p. 15 , respectively). It follows from equations (64) and (65) that Theorem 3 holds for a stronger richness condition (cf. the original definition on p. 5): $A \subseteq\{0,1\}^{*}$ is strongly ε-rich if for sufficiently large n, for any index set $I \subseteq\{1, \ldots, n\}$, and for any partition $\left\{R_{1}, \ldots, R_{r}\right\}$ of I (where $r \geq 0$) the following implication holds: If $\prod_{j=1}^{r}\left(1-1 / 2^{\left|R_{j}\right|}\right) \geq \varepsilon$, then for any $c \in\{0,1\}^{n}$ and for any $Q \subseteq\{1, \ldots, n\} \backslash I$ satisfying $|Q| \leq \log n$ there exists $a \in A \cap\{0,1\}^{n}$ such that $a_{i}=c_{i}$ for every $i \in Q$, and for every $j \in\{1, \ldots, r\}$ there exists $i \in R_{j}$ such that $a_{i} \neq c_{i}$.

This stronger richness condition can then be employed in the proof of Theorem 2 for non-oblivious width-3 1-branching programs as follows. Since (nonoblivious) P is read-once, the classes R_{b} (see the definition in Paragraph 5.1) are pairwise disjoint for different blocks b except for the special case of $m_{b-1}=\nu_{b}$ for non-empty block $b>1$. In this special case, we know $q_{b}=0$ (i.e. no $Q_{b j}$ is defined for block b) and either $t_{12}^{\left(m_{b-1}\right)}=t_{32}^{\left(m_{b-1}\right)}=\frac{1}{2}$ and $t_{33}^{\left(m_{b-1}\right)}=1$ if $\gamma_{b}=\nu_{b}$ or $t_{13}^{\left(m_{b-1}\right)}=t_{33}^{\left(m_{b-1}\right)}=\frac{1}{2}$ and $t_{32}^{\left(m_{b-1}\right)}=1$ if $\gamma_{b}<\nu_{b}$ (cf. the sentence following equation (31) on p. 19). Thus, index $i \in R_{b}$ of the variable that is tested either at node $v_{2}^{\left(m_{b-1}-1\right)}$ if $\gamma_{b}=\nu_{b}$ or at node $v_{3}^{\left(m_{b-1}-1\right)}$ if $\gamma_{b}<\nu_{b}$ may possibly be included also in R_{b-1}. In order to secure that R_{b} and R_{b-1} are disjoint we redefine $R_{b}^{\prime}=R_{b} \backslash\{i\}$ in this special case, which replaces $|R|$ with $|R|+1$ in equation (32) while inequality (37) remains still valid. This ensures that the classes R_{b} are pairwise disjoint also for non-oblivious P.

For the recursive step in Paragraph 7.2, the stronger richness condition for $Q=\emptyset$ coincide with the original one. In the end of recursion (Section 8), on the other hand, inequality (61) ensures there is $Q=Q_{b^{*} j^{*}}$ for some $b^{*} \in$ $\{1, \ldots, r+1\}$ and $j^{*} \in\left\{1, \ldots, q_{b^{*}}\right\}$ such that $|Q| \leq \log n$ according to (64), and the stronger richness condition can be employed for Q and $R_{1}, \ldots, R_{b^{*}-1}$ according to (40), provided that $R_{b} \cap Q=\emptyset$ for every $b=1, \ldots, b^{*}-1$. This disjointness follows from the fact that P is read-once except for the special case of $R_{b^{*}-1} \cap Q=\emptyset$ for $j^{*}=1, \kappa_{b^{*} 1}=\sigma_{b^{*} 1}=m_{b^{*}-1}$, and $t_{23}^{\left(m_{b^{*}-1}\right)}=0$ (see the definition of Q in Paragraph 5.2). In this particular case, however, it clearly suffices to use the stronger richness condition for $R_{1}, \ldots, R_{b^{*}-2}$ and Q.

