
A Polynomial Time Construction of a Hitting Set
for Read-Once Branching Programs of Width 3∗

Jǐŕı Š́ıma
sima@cs.cas.cz

Stanislav Žák
stan@cs.cas.cz

Institute of Computer Science,
Academy of Sciences of the Czech Republic,
P.O. Box 5, 182 07 Prague 8, Czech Republic

Abstract
The relationship between deterministic and probabilistic computations is one of

the central issues in complexity theory. This problem can be tackled by construct-
ing polynomial time hitting set generators which, however, belongs to the hardest
problems in computer science even for severely restricted computational models. We
consider read-once branching (1-branching) programs of polynomial size for which
such constructions have been known only in the case of width 2 and in very restricted
cases of bounded width (e.g. permutation or regular oblivious read-once branching
programs). In this paper, we characterize the hitting sets for read-once branching
programs of width 3 by a necessary so-called richness condition, which is independent
of a rather technical formalism of branching programs. This condition proves to be
sufficient in a sense that any rich set extended with all strings within Hamming dis-
tance of 3 is a hitting set for width-3 1-branching programs that are weakly oblivious
(i.e. at each level where only one node branches to its two different successors, all
nodes are labeled with the same variable). Then, we prove that any almost O(log n)-
wise independent set satisfies the richness condition. By using such a set due to Alon
et al. (1992) our result provides an explicit polynomial time construction of a hitting
set for (weakly oblivious) read-once branching programs of width 3 with acceptance
probability ε >

√
12/13.

1 Introduction

An ε-hitting set for a class of Boolean functions of n variables is a set H ⊆ {0, 1}n such that
for every function f in the class, the following is satisfied: If a random input is accepted

∗The authors would like to thank Pavel Pudlák for pointing out the problem of hitting sets for width-3
1-branching programs. This research was partially supported by projects GA ČR P202/10/1333, MŠMT
ČR 1M0545, and AV0Z10300504.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 88 (2010)

by f with probability at least ε, then there is also an input in H that is accepted by f . An
efficiently constructible sequence of hitting sets for increasing n is a straightforward gener-
alization of the hitting set generator introduced in [5], which is a weaker (one-sided error)
version of pseudorandom generator [9]. For the class of Boolean functions of polynomial
complexity in any reasonable model, it is easy to prove the existence of ε-hitting set of
polynomial size, if ε > 1/nc for a constant c and n is the number of variables. The proof is
nonconstructive, since it uses a counting argument. An important problem in complexity
theory is to find polynomial time constructible hitting sets for functions of polynomial
complexity in different standard models like circuits, formulas, branching programs etc.
Such constructions would have consequences for the relationship between deterministic
and probabilistic computations in the respective models.

Looking for polynomial time constructions of hitting sets for unrestricted models be-
longs to the hardest problems in computer science. Hence, restricted models are investi-
gated. We consider read-once branching (1-branching) programs of polynomial size, which
is a restricted model of space-bounded computations [11] for which pseudorandom gen-
erators with seed length O(log2 n) have been known for a long time through a result of
Nisan [8]. Recently, considerable attention has been paid to improving this to O(log n) in
the constant-width case, which is a fundamental problem with many applications in circuit
lower bounds and derandomization [7]. The problem has been resolved for width 2 but
the known techniques provably fail for width 3 [2, 7], which applies even to hitting set
generators [4].

In the case of width 3, we do not know of any significant improvement over Nisan’s result
except for severely restricted so-called regular (oblivious) read-once branching programs of
constant width having the in-degree of every vertex equal to 2, for which pseudorandom
generators have recently been constructed with seed length O(log n log log n) [3, 4]. There
has also been some recent progress in the case of permutation (oblivious) read-once branch-
ing programs of bounded width whose edges labeled with 0 (respectively 1) define a one to
one mapping for each level-to-level transition [7], for which a pseudorandom generator has
been constructed with seed length O(log n) [6]. In our previous work [10], we have made
the first step for finding a polynomial time constructible hitting set for width 3. Using the
result due to Alon et al. [1] we achieved such a construction if an additional, rather tech-
nical restriction is imposed on the program structure. For example, this restriction is met
if one special pattern of level-to-level transitions in a normalized form of so-called simple
width-3 1-branching programs is excluded, which covers the regular and permutation cases
(see [10] for further details).

In the present paper, we provide a polynomial time construction of a hitting set for
(weakly oblivious) read-once branching programs of width 3 with acceptance probability
ε >

√
12/13, which is an important step in the effort of constructing hitting set generators

for the model of read-once branching programs of bounded width. For this purpose, we
first characterize the hitting sets for width-3 1-branching programs by a necessary so-called
richness condition which is independent of the notion of branching programs. This richness
condition proves to be ‘sufficient’ in a sense that any rich set extended with all strings within

2

Hamming distance of 3 is a hitting set for weakly oblivious1 read-once branching programs
of width 3. Our approach is based on a detailed analysis of structural properties of width-3
1-branching programs, which differs from the known techniques. Then, we prove that any
almost (C log n)-wise independent set which can be constructed in polynomial time by the
result due to Alon et al. [1] satisfies this richness condition for a suitable constant C, which
implies our result.

The paper is organized as follows. After a brief review of basic definitions regarding
branching programs in Section 2 (see [11] for more information), the richness condition
is formulated and proven to be necessary in Section 3 while its sufficiency is presented
in Section 4. The subsequent four Sections 5–8 are devoted to the technical proof of this
proposition. In addition, the richness of any almost O(log n)-wise independent set is shown
in Section 9. Finally, our result is summarized in Section 10.

2 Normalized Width-w 1-Branching Programs

A branching program P on the set of input Boolean variables Xn = {x1, . . . , xn} is a
directed acyclic multi-graph G = (V, E) that has one source s ∈ V of zero in-degree and,
except for sinks of zero out-degree, all the inner (non-sink) nodes have out-degree 2. In
addition, the inner nodes get labels from Xn and the sinks get labels from {0, 1}. For each
inner node, one of the outgoing edges gets the label 0 and the other one gets the label 1. The
branching program P computes Boolean function P : {0, 1}n −→ {0, 1} as follows. The
computational path of P for an input a = (a1, . . . , an) ∈ {0, 1}n starts at source s. At any
inner node labeled by xi ∈ Xn, input variable xi is tested and this path continues with the
outgoing edge labeled by ai to the next node, which is repeated until the path reaches the
sink whose label gives the output value P (a). Denote by P−1(a) = {a ∈ {0, 1}n |P (a) = a}
the set of inputs for which P outputs a ∈ {0, 1}. For inputs of arbitrary lengths, infinite
families {Pn} of branching programs, each Pn for one input length n ≥ 1, are used.

A branching program P is called read-once (or shortly 1-branching program) if every
input variable from Xn is tested at most once along each computational path. Here we
consider leveled branching programs in which each node belongs to a level, and edges lead
from level k ≥ 0 only to the next level k + 1. We assume that the source of P creates
level 0, whereas the last level is composed of all sinks. The number of levels decreased by
1 equals the depth of P which is the length of its longest path, and the maximum number
of nodes on one level is called the width of P . In addition, P is called oblivious if at each
level only one variable is queried. We also say that P is weakly oblivious if at each level
where only one node branches to two different nodes (i.e. the remaining nodes at this level
have outgoing double edges), all nodes are labeled with the same variable.

For a 1-branching program P of width w define a w × w transition matrix Tk on level
k ≥ 1 such that t

(k)
ij ∈ {0, 1

2
, 1} is the half of the number of edges leading from node v

(k−1)
j

1In fact, this is a technical assumption used in our sufficiency proof only for resolving one rather specific
case2 which, as we believe, could be removed.

3

(1 ≤ j ≤ w) on level k − 1 of P to node v
(k)
i (1 ≤ i ≤ w) on level k. For example, t

(k)
ij = 1

implies there is a double edge from v
(k−1)
j to v

(k)
i . Clearly,

∑w
i=1 t

(k)
ij = 1 since this sum

equals the half of the out-degree of inner node v
(k−1)
j , and 2 · ∑w

j=1 t
(k)
ij is the in-degree

of node v
(k)
i . Denote by a column vector p(k) = (p

(k)
1 , . . . , p

(k)
w)T the distribution of inputs

among w nodes on level k of P , that is, p
(k)
i is the probability that a random input is tested

at node v
(k)
i , which equals the ratio of the number of inputs from M(v

(k)
i) ⊆ {0, 1}n that are

tested at v
(k)
i to all 2n possible inputs. It follows

⋃w
i=1 M(v

(k)
i) = {0, 1}n and

∑w
i=1 p

(k)
i = 1

for every level k ≥ 0. Given the distribution p(k−1) on level k − 1, the distribution on the
subsequent level k can be computed using transition matrix Tk as

p(k) = Tk · p(k−1) . (1)

It is because the ratio of inputs coming to node v
(k)
i from previous-level nodes equals

p
(k)
i =

∑w
j=1 t

(k)
ij p

(k−1)
j since each of the two edges outgoing from node v

(k−1)
j distributes

exactly the half of the inputs tested at v
(k−1)
j .

We say that a 1-branching program P of width w is normalized if P has the minimum
depth among the programs computing the same function (e.g. P does not contain the
identity transition Tk) and P satisfies

1 > p
(k)
1 ≥ p

(k)
2 ≥ · · · ≥ p(k)

w > 0 (2)

for every k ≥ log w (hereafter, log denotes the binary logarithm). Obviously, condition (2)
can always be met mainly by possible splitting and permuting the nodes at each level of P :

Lemma 1 ([10]) Any width-w 1-branching program can be normalized.

In the sequel, we confine ourselves to the 1-branching programs of width w = 3. Any such
normalized program P satisfies p

(k)
1 + p

(k)
2 + p

(k)
3 = 1 and 1 > p

(k)
1 ≥ p

(k)
2 ≥ p

(k)
3 > 0, which

implies

p
(k)
1 >

1

3
, p

(k)
2 <

1

2
, p

(k)
3 <

1

3
(3)

for every level 2 ≤ k ≤ d where d ≤ n is the depth of P .

3 A Necessary Condition

Let P be a class of branching programs and ε > 0 be a real constant. A set of input
strings H ⊆ {0, 1}∗ is called an ε-hitting set for class P if for sufficiently large n, for every
branching program P ∈ P with n input variables

|P−1(1)|
2n

≥ ε implies (∃ a ∈ H ∩ {0, 1}n) P (a) = 1 . (4)

4

Furthermore, we say that a set A ⊆ {0, 1}∗ is ε-rich if for sufficiently large n, for any index
set I ⊆ {1, . . . , n}, and for any partition {Q1, . . . , Qq, R1, . . . , Rr} of I where q ≥ 0 and
r ≥ 0 the following implication holds: If

(
1−

q∏
j=1

(
1− 1

2|Qj |

))
×

r∏
j=1

(
1− 1

2|Rj |

)
≥ ε , (5)

then for any c ∈ {0, 1}n there exists a ∈ A ∩ {0, 1}n such that

(∃ j ∈ {1, . . . , q}) (∀ i ∈ Qj) ai = ci (6)

and (∀ j ∈ {1, . . . , r}) (∃ i ∈ Rj) ai 6= ci . (7)

Particularly for q = 0 inequality (5) reads

r∏
j=1

(
1− 1

2|Rj |

)
≥ ε (8)

and conjunction (6) and (7) reduces to the second conjunct (7), while for r = 0 inequality
(5) reads

1−
q∏

j=1

(
1− 1

2|Qj |

)
≥ ε (9)

and conjunction (6) and (7) reduces to the first conjunct (6).

Theorem 1 Every ε-hitting set for the class of read-once branching programs of width 3
is ε-rich.

Proof: We proceed by transposition. Assume a set H ⊆ {0, 1}∗ is not ε-rich which means
that for infinitely many n there is an index set I ⊆ {1, . . . , n}, a partition {Q1, . . . , Qq, R1,
. . . , Rr} of I satisfying (5), and a string c ∈ {0, 1}n such that every a ∈ H ∩ {0, 1}n meets

(∀ j ∈ {1, . . . , q}) (∃ i ∈ Qj) ai 6= ci (10)

or (∃ j ∈ {1, . . . , r}) (∀i ∈ Rj) ai = ci . (11)

We will use this partition and c for constructing a (non-normalized oblivious) width-3
1-branching program P ∈ P such that

|P−1(1)|
2n

≥ ε and (∀ a ∈ H ∩ {0, 1}n) P (a) = 0 , (12)

which negates that H is an ε-hitting set for P according to (4).
We assume q ≥ 1, r ≥ 1, and |Qq| > 1, while the proof for q = 0 or r = 0 or |Qq| = 1

is similar. As depicted in Figure 1, branching program P is composed of q + r consecutive
blocks corresponding to the partition classes Q1, . . . , Qq, R1, . . . , Rr which determine the
indices of variables that are tested within these blocks. The block associated with Qj

5

Figure 1: The Necessary Condition.

6

for j ∈ {1, . . . , q} starts on level kj =
∑j−1

`=1 |Q`| of P (e.g. k1 = 0) with a transition

satisfying t
(kj+1)
11 = t

(kj+1)
21 = 1

2
, followed by a sequence of transitions that meet t

(k)
11 = 1

and t
(k)
12 = t

(k)
22 = 1

2
for every k = kj + 2, . . . , kj + |Qj|, except for the boundary level

kq + |Qq| = kq+1, which is defined below. In addition, there is a parallel double-edge path

leading from the node v
(k2+1)
3 on level k2 + 1 up to node v

(kq+1−1)
3 , and thus t

(k)
33 = 1 for

every k = k2 + 2, k2 + 3, . . . , kq+1 − 1. This path is wired up by q− 1 double edges coming

from nodes v
(kj)
2 , that is, t

(kj+1)
32 = 1 for every j = 2, . . . , q. Finally, a special boundary

transition is defined on level kq+1 as t
(kq+1)
31 = t

(kq+1)
13 = 1 and t

(kq+1)
12 = t

(kq+1)
32 = 1

2
. Note

that there are only two nodes v
(kq+1)
1 , v

(kq+1)
3 on the boundary level kq+1. Furthermore,

P continues analogously with blocks corresponding to Rj for j = 1, . . . , r, each starting
on level kq+j = kq+1 +

∑j−1
`=1 |R`| (e.g. kq+r+1 = d is the depth of P) with the transition

satisfying t
(kq+j+1)
11 = t

(kq+j+1)
21 = 1

2
, followed by t

(k)
11 = 1 and t

(k)
12 = t

(k)
22 = 1

2
for every

k = kq+j + 2, . . . , kq+j + |Rj|, including the parallel double-edge path, that is, t
(k)
33 = 1 for

every k = kq+1+1, . . . , d and t
(kq+j+1)
32 = 1 for every j = 2, . . . , r. The branching program P

then queries the value of each variable xi such that i ∈ Qj for some j ∈ {1, . . . , q} or i ∈ Rj

for some j ∈ {1, . . . , r} only on one level k ∈ {kj, . . . , kj+1−1} or k ∈ {kq+j, . . . , kq+j+1−1},
respectively (i.e. the nodes on level k are labeled with xi), while the single edge leading to

v
(k+1)
2 (or to v

(kq+1)
1 for k = kq+1 − 1) on the subsequent level k + 1 (indicated by a bold

line in Figure 1) gets label ci. Finally, the sink v
(d)
1 gets label 1, whereas the sinks v

(d)
2 , v

(d)
3

are labeled with the output 0, which completes the construction of P .
Clearly, P is an (oblivious) read-once branching program of width 3. The probability

that an input reaches the node v
(kq+1)
3 on the boundary level kq+1 can simply be computed

as

p
(kq+1)
3 =

q∏
j=1

(
1− 1

2|Qj |

)
, (13)

while the probability of the complementary event that an input reaches v
(kq+1)
1 equals

p
(kq+1)
1 = 1 − p

(kq+1)
3 . Therefore, the probability that P outputs 1 can be expressed and

lower bounded by (5):

|P−1(1)|
2n

= p
(d)
1 =

(
1−

q∏
j=1

(
1− 1

2|Qj |

))
×

r∏
j=1

(
1− 1

2|Rj |

)
≥ ε . (14)

Furthermore, we split H∩{0, 1}n = A1∪A2 into two parts so that every a ∈ A1 satisfies the
first term (10) of the underlying disjunction, whereas every a ∈ A2 = H \A1 meets the sec-
ond term (11). Thus, for any input a ∈ A1 and for every j ∈ {1, . . . , q} the block of P cor-
responding to Qj contains a level k ∈ {kj, . . . , kj+1−1} where variable xi is tested such that

ai 6= ci. This ensures that the computational path for a ∈ A1 reaches v
(kq+1)
3 and further

continues through v
(kq+1+1)
3 , . . . , v

(d)
3 , which gives P (a) = 0 for every a ∈ A1. Similarly, for

any input a ∈ A2 there exists a block of P corresponding to Rj for some j ∈ {1, . . . , r} such

7

that the computational path for a traverses nodes v
(kq+j)
1 , v

(kq+j+1)
2 , v

(kq+j+2)
2 , . . . , v

(kq+j+|Rj |)
2 .

For j < r this path continues through v
(kq+j+1+1)
3 , . . . , v

(d)
3 , whereas for j = r it terminates

at v
(d)
2 , which gives P (a) = 0 in both cases. Hence, P satisfies (12), which completes the

proof. 2

4 A Sufficient Condition

In the following theorem, we formulate the sufficiency of the richness condition introduced
in Section 3. For an input a ∈ {0, 1}n and an integer constant c ≥ 0, denote by Ωc(a) =
{a′ ∈ {0, 1}n |h(a, a′) ≤ c} the set of so-called h-neighbors of a, where h(a, a′) is the
Hamming distance between a and a′ (i.e. the number bits in which a and a′ differ). We
also define Ωc(A) =

⋃
a∈A Ωc(a) for a given set A ⊆ {0, 1}∗.

Theorem 2 Denote δ =
√

12
13

. If A is (δ11 − δ12)ε12-rich for ε > δ then H = Ω3(A) is an

ε-hitting set for the class of weakly oblivious read-once branching programs of width 3.

Proof: After using Lemma 1, suppose a normalized weakly oblivious read-once branching
program P of width 3 with sufficiently many input variables n meets

|P−1(1)|
2n

≥ ε > δ >
11

12
. (15)

We will prove that there exists a ∈ H such that P (a) = 1. On the contrary, we assume
that P (a) = 0 for every a ∈ H. The main idea of the proof lies in using this assumption
first for constraining the structure of branching program P so that the richness of A can
eventually be employed to disprove this assumption.

4.1 The Plan of Proof

We start the underlying analysis of the structure of P from its last level d containing the
sinks and we go backwards block after block to lower levels. In particular, we inspect the
structure of a block whose last level m (m = d at the beginning) satisfies the following
four so-called m-conditions:

1. t
(m)
11 = t

(m)
21 = 1

2
,

2. t
(m)
32 > 0,

3. p
(m)
3 < 1

12
,

4. there is a(m) ∈ A such that if we put a(m) at node v
(m)
1 or v

(m)
2 , then its onward

computational path arrives to the sink labeled with 1.

8

Using the knowledge of the block structure (Sections 4 and 5), we define the partition classes
R,Q1, . . . , Qq associated with this block and corresponding bits from input c ∈ {0, 1}n

(Section 5). These are then used in the richness condition (6) and (7) either to find a ∈ H
such that P (a) = 1 (Section 8) if the complete partition (generated by all blocks) satisfies
(5), or to ensure that the m′-conditions are also met for the first level m′ of the block
(Sections 6 and Section 7 particularly for m′-condition 4). In the latter case, the block
analysis including the definition of associated partition classes is applied recursively for m
replaced with m′ etc. (Section 7).

4.2 The Initial Case of m = d

We will first observe that the four m−conditions can be met for m = d. Clearly, both
edges outgoing from v

(d−1)
1 lead to the sink(s) labeled with 1 since p

(d−1)
1 > 1

3
due to (3)

and |P−1(0)|/2n < 1
12

according to (15). Hence, we will assume without loss of generality

that t
(d)
11 = t

(d)
21 = 1

2
(m-condition 1) while the remaining edges that originally led to the

sinks labeled with 1 or 0 are possibly redirected to v
(d)
1 or v

(d)
3 , respectively, so that the

normalization condition p
(d)
1 ≥ p

(d)
2 > 1

6
> 1

12
> p

(d)
3 (m-condition 3) is preserved by (15).

Thus, sinks v
(d)
1 and v

(d)
2 are labeled with 1 (m-condition 4) whereas sink v

(d)
3 gets label 0.

Finally, we show that t
(d)
32 > 0 (m-condition 2). On the contrary, suppose t

(d)
32 = 0, which

implies t
(d)
33 > 0 and H ⊆ P−1(0) ⊆ M(v

(d−1)
3) due to t

(d)
31 = 0. In the case of t

(d)
13 + t

(d)
23 > 0,

the computational path for an h-neighbor a′ ∈ Ω1(a) of a ∈ A ⊆ H ⊆ M(v
(d−1)
3) that

differs from a in the ith bit that is tested at node v
(d−1)
3 (i.e. v

(d−1)
3 is labeled with xi),

would reach the sink labeled with 1, and hence P (a′) = 1 which contradicts the assumption

H ⊆ P−1(0). For t
(d)
33 = 1, on the other hand, we could shorten P by removing the last

level d while preserving its function and condition (15), which is in contradiction with the
normalization of P . This completes the proof that m-conditions 1–4 can be assumed for
m = d without loss of generality.

4.3 A Technical Lemma

The following lemma represents a technical tool which will be used for the analysis of the
block from level µ through m where 2 ≤ µ < m denotes the least level of P such that
t
(`)
11 = 1 for every ` = µ + 1, . . . , m− 1. For this purpose, define a switching path starting

from v ∈ {v(k)
2 , v

(k)
3 } at level µ ≤ k < m to be a computational path of length at most 3

edges leading from v to v
(`)
1 for some k < ` ≤ min(k + 3,m) or to v

(m)
2 for m ≤ k + 3.

Lemma 2

(i) 3 < µ < m− 1.

(ii) There are no two simultaneous switching paths starting from v
(k)
2 and from v

(k)
3 , re-

spectively, at any level µ ≤ k < m.

9

(iii) If t
(k+1)
12 > 0 for some µ ≤ k < m, then t

(`)
11 = t

(`)
33 = 1, t

(`)
12 = t

(`)
22 = 1

2
for every

` = µ + 1, . . . , k, and t
(k+1)
12 = 1

2
(see Figure 2).

(iv) If t
(k+1)
13 > 0 for some µ < k < m, then one of the following four cases appears:

1. t
(k)
11 = t

(k)
23 = 1 and t

(k)
12 = t

(k)
32 = 1

2
,

2. t
(k)
11 = t

(k)
23 = 1 and t

(k)
22 = t

(k)
32 = 1

2
,

3. t
(k)
11 = t

(k)
22 = 1 and t

(k)
13 = t

(k)
33 = 1

2
,

4. t
(k)
11 = t

(k)
22 = 1 and t

(k)
23 = t

(k)
33 = 1

2
.

In addition, if t
(k)
23 = 1 (case 1 or 2), then t

(`)
11 = t

(`)
33 = 1 and t

(`)
12 = t

(`)
22 = 1

2
for every

` = µ + 1, . . . , k − 1 (see Figure 2).

Proof:

(i) For µ ≤ 3 there would be an h-neighbor a′ ∈ Ω3(a) of input a(m) ∈ A from m-

condition 4, whose computational path starting from the source v
(0)
1 reaches v

(µ)
1 .

Hence, P (a′) = 1 for a′ ∈ H follows from M(v
(µ)
1) ⊆ M(v

(m)
1) ∪ M(v

(m)
2) and m-

condition 4, which is a contradiction, and thus µ > 3.

In addition, t
(m−1)
11 = 1 because t

(m−1)
21 + t

(m−1)
31 > 0 implies p

(m−1)
2 > 1

6
and by

m-condition 2 we get p
(m)
3 > 1

12
, which contradicts m-condition 3.

(ii) Suppose there are two simultaneous switching paths starting from v
(k)
2 and from v

(k)
3 ,

respectively, at some level µ ≤ k < m, and let a(m) ∈ A be the input satisfying m-
condition 4. Clearly, a(m) 6∈ M(v

(k)
1) ⊆ M(v

(m)
1)∪M(v

(m)
2) since otherwise P (a(m)) =

1 for a(m) ∈ H. Thus, assume a(m) ∈ M(v) for v ∈ {v(k)
2 , v

(k)
3 }. Then there is

an h-neighbor a′ ∈ Ω3(a
(m)) ∩ M(v) of a(m) whose computational path follows the

switching path starting from v. Hence, a′ ∈ M(v
(m)
1) ∪M(v

(m)
2) implying P (a′) = 1

for a′ ∈ H due to P is read-once. This completes the proof of (ii).

As depicted in Figure 2, denote by v ∈ {v(k)
2 , v

(k)
3 } a node at level µ < k < m with the

edge outgoing to v
(k+1)
1 , and let u be a node on level k − 1 from which an edge leads to v,

while v′ ∈ {v(k)
2 , v

(k)
3 }\{v} and u′ ∈ {v(k−1)

2 , v
(k−1)
3 }\{u} denote the other nodes. It follows

from (ii) there is no edge from u′ to v nor to v
(k)
1 , which would establish two simultaneous

switching paths starting from v
(k−1)
2 and from v

(k−1)
3 , respectively. Hence, there must be

a double edge from u′ to v′. Since P is normalized, u′ = v
(k−1)
2 and v′ = v

(k)
3 cannot

happen simultaneously. Moreover, the second edge from u may lead either to v
(k)
1 or to v′

if v′ 6= v
(k)
3 . Now, the possible cases can be summarized:

10

Figure 2: Lemma 2.iii and iv.

(iii) For t
(k+1)
12 > 0 we know v = v

(k)
2 and v′ = v

(k)
3 , which implies t

(k)
11 = t

(k)
33 = 1 and

t
(k)
12 = t

(k)
22 = 1

2
. The proposition follows when this argument is applied recursively for

k replaced with k − 1 etc. In addition, we will prove that t
(k+1)
12 < 1 for µ ≤ k < m.

Clearly, t
(m)
12 < 1 from m-condition 2, and hence assume k < m− 1. On the contrary,

suppose t
(k+1)
12 = 1, which implies t

(k+1)
23 = t

(k+1)
33 = 1

2
. For k > µ one could shorten

P by identifying level k with µ without changing its function. For k = µ > 3, on
the other hand, there are at least two edges leading to v

(µ)
3 because otherwise if only

one edge leads to v
(µ)
3 from u ∈ {v(µ−1)

1 , v
(µ−1)
2 , v

(µ−1)
3 }, then either a(m) 6∈ M(u),

which means a(m) ∈ M(v
(µ)
1) ∪M(v

(µ)
2) = M(v

(µ+1)
1) ⊆ M(v

(m)
1) ∪M(v

(m)
2) implying

P (a(m)) = 1 according to m-condition 4, or a(m) ∈ M(u) providing an h-neighbor
a′ ∈ Ω1(a

(m))∩M(u) ⊆ H of a(m) that differs from a(m) in the variable that is tested

at u so that a′ ∈ M(v
(µ)
1) ∪M(v

(µ)
2) implying P (a′) = 1. Hence, we could split v

(µ)
3

into two nodes and merge v
(µ)
1 and v

(µ)
2 while preserving the function of P .

(iv) For t
(k+1)
13 > 0 we know v = v

(k)
3 and v′ = v

(k)
2 and the four cases listed in the

proposition are obtained when the choice of u ∈ {v(k−1)
2 , v

(k−1)
3 } is combined with

whether the second edge from u leads to v
(k)
1 or to v′. In addition, the remaining

part for case 1 and 2 follows from (iii) when k + 1 is replaced with k. In particular,

we know t
(k)
12 > 0 in case 1, while there is a switching path from v

(k−1)
2 to v

(k+1)
1 via

v
(k)
3 (substituting for t

(k)
12 > 0) in case 2 when a similar analysis applies to v = v

(k−1)
2

excluding two switching paths starting from v
(k−2)
2 and v

(k−2)
3 , respectively. 2

11

5 Definition of Partition Classes

5.1 The Block Structure from µ to ν (Definition of R)

In the following corollary, we summarize the block structure from level µ through level ν
by using Lemma 2, where µ ≤ ν ≤ m is the greatest level such that t

(`)
12 + t

(`)
13 > 0 for every

` = µ + 1, . . . , ν. In addition, let level γ be the greatest level such that µ ≤ γ ≤ ν and
t
(γ)
12 > 0 (for γ > µ).

Corollary 1

1. t
(`)
11 = t

(`)
33 = 1 and t

(`)
12 = t

(`)
22 = 1

2
for ` = µ + 1, . . . , γ − 1 (Lemma 2.iii),

2. t
(γ)
11 = t

(γ)
23 = 1 and t

(γ)
32 = 1

2
if µ < γ < ν (case 1 of Lemma 2.iv),

3. t
(`)
11 = t

(`)
22 = 1 and t

(`)
33 = 1

2
for ` = γ + 1, . . . , ν − 1 (case 3 of Lemma 2.iv),

4. if ν > µ, then t
(ν)
12 < 1 (Lemma 2.iii) and t

(ν)
13 < 1 for ν < m (similarly),

5. t
(`)
12 = 0 for ` = ν + 1, . . . , m (Lemma 2.iii).

Figure 3: The block structure from level µ through ν < m according to Corollary 1.

Corollary 1 will be used for the definition of partition class R associated with the underlying
block, which is illustrated in Figure 3 for ν < m. Nevertheless, we will first exclude a
special pathological case from this definition that occurs when ν = m and t

(m)
33 = 0, that is,

t
(m)
13 + t

(m)
23 = 1 which implies t

(m)
32 = 1 according to Lemma 2.ii. In this case, no partition

class is associated with the underlying block which is called an empty block. Moreover,

12

class R is neither defined for ν = µ when only partition classes Q1, . . . , Qq are associated
with the block (see Paragraph 5.2 and Lemma 3 in particular).

For a non-empty block and ν > µ, we define the partition class R to be a set of indices of
the variables that are tested on the single-edge computational path v

(µ)
2 , v

(µ+1)
2 , . . . , v

(γ−1)
2 ,

v
(γ)
3 , v

(γ+1)
3 , . . . , v

(ν−1)
3 (or v

(µ)
3 , v

(µ+1)
3 , . . . , v

(ν−1)
3 if γ = µ or v

(µ)
2 , v

(µ+1)
2 , . . . , v

(ν−1)
2 if γ = ν).

For the future use of condition (6) and (7) we also define relevant bits of string c ∈ {0, 1}n.
Thus, let ci be the corresponding labels of the edges creating this computational path
(indicated by a bold line in Figure 3) including the edge outgoing from the last node v

(ν−1)
3

(or v
(ν−1)
2 if γ = ν) that leads to v

(ν)
2 or to v

(ν)
3 .

5.2 The Block Structure from ω to m (Definition of Q1, . . . , Qq)

Furthermore, we define level ω to be the greatest level such that max(ν − 1, µ) ≤ ω ≤ m

and the double-edge path from Corollary 1 (see Figure 3) leading from v
(µ)
2 to v

(ν−1)
2 (for

γ = µ < ν) or from v
(µ)
3 to v

(ν−1)
2 (for µ < γ < ν) or from v

(µ)
3 to v

(ν−1)
3 (for γ = ν > µ),

or starting from v
(µ)
2 or from v

(µ)
3 if ν = µ, further continues up to level ω containing only

nodes v` ∈ {v(`)
2 , v

(`)
3 } for every ` = µ, . . . , ω. For the special case of ω = m (including the

empty block) when this double-edge path reaches level m, we set q = 0 which means no
partition classes Q1, . . . , Qq are associated with the underlying block. We will observe in
the following lemma that ν > µ in this case, which ensures that at least class R is defined
in Paragraph 5.1 for the non-empty block when ω = m.

Lemma 3 If ν = µ, then ω < m.

Proof: On the contrary, suppose ν = µ and ω = m. Thus, t
(µ+1)
12 = t

(µ+1)
13 = 0 by

the definition of ν. Since P is normalized, we know t
(µ+1)
22 > 0 and either t

(µ+1)
22 = 1 or

t
(µ+1)
23 = 1 due to ω = m > µ, which implies t

(`)
22 = 1 for ` = µ + 2, . . . ,m− 1. In addition,

t
(m)
12 = 0 according to Corollary 1.5, and t

(m)
22 = 0 since t

(m)
22 = 1

2
would require t

(m)
13 > 0

by the normalization of P , which contradicts Lemma 2.ii, and hence, t
(m)
32 = 1. This gives

a contradiction 1
12

> p
(m)
3 ≥ p

(µ+1)
2 ≥ p

(µ)
2 /2 > 1

12
according to m-condition 3 and the

definition of µ. 2

Thus, we will further assume ω < m throughout this Section 5. This implies t
(m)
12 = 0

since otherwise t
(m)
12 = t

(m)
32 = 1

2
(m-condition 2) forces t

(m)
33 = 1 by Lemma 2.ii which would

prolong the double-edge path from v
(µ)
3 up to v

(m)
3 according to Lemma 2.iii. We will show

that one can assume t
(m)
13 > 0 without loss of generality. Suppose that t

(m)
13 = 0, which

implies t
(m)
22 = t

(m)
23 = 0 due to P is normalized, and hence t

(m)
32 = t

(m)
33 = 1. Moreover, we

know t
(m−1)
11 = 1 from Lemma 2.i and t

(m)
11 = t

(m)
21 = 1

2
by m-condition 1. If t

(m−1)
12 = t

(m−1)
13 =

0, then v
(m−1)
2 and v

(m−1)
3 can be merged and replaced by v

(m)
3 , while v

(m−1)
1 replaces v

(m−2)
1 ,

which shortens P without changing its function. Hence, either t
(m−1)
12 > 0 or t

(m−1)
13 > 0

by Lemma 2.ii. In fact, t
(m−1)
12 > 0 contradicts ω < m according to Lemma 2.iii since

t
(m−1)
23 + t

(m−1)
33 = t

(m)
32 = t

(m)
33 = 1 can, without loss of generality, prolong the double-edge

13

path from v
(µ)
3 through v

(m−2)
3 up to v

(m)
3 . For t

(m−1)
13 > 0, on the other hand, v

(m−1)
2 and

v
(m−1)
3 can be merged while v

(m−1)
1 is split into two its copies, which produces t

(m−1)
11 =

t
(m−1)
21 = 1

2
, t

(m−1)
32 = 1, and t

(m)
11 = t

(m)
21 = t

(m)
12 = t

(m)
22 = 1

2
, t

(m)
33 = 1. After this modification,

level m−1 satisfies the four m-conditions 1–4 (see Paragraph 4.1) and thus, it can serve as
a new level m while the original level m > d (for m = d program P could be shortened by
removing its last level) is included in the upper-level neighboring block, which is consistent

with its structure (see Paragraph 6.2 and Figure 5 in particular). Thus, we assume t
(m)
13 > 0

without loss of generality, which implies t
(m)
32 = 1 by Lemma 2.ii. Then Lemma 2.iv can

be employed for k = m− 1 where only case 3 and 4 may occur due to ω < m is assumed,
which even implies ω < m− 1. In case 3, t

(m−1)
13 > 0 and Lemma 2.iv can again be applied

recursively to k = m− 2 etc.

Figure 4: The definition of Q1, . . . , Qq.

14

In general, starting with level σ1 = m that meets t
(σj)
13 > 0 for j = 1, we proceed to

lower levels and inspect recursively the structure of subblocks indexed as j from level λj

through σj where ω ≤ λj < σj − 1 is the least level such that the transitions from case 3

or 4 of Lemma 2.iv, i.e. t
(`)
11 = t

(`)
22 = 1 and t

(`)
33 = 1

2
, occur for all levels ` = λj +1, . . . , σj−1,

as depicted in Figure 4. Note that λj > µ because λj = µ ensures t
(µ+1)
22 = 1 implying

ω > µ = λj by the definition of ω, which contradicts ω ≤ λj. In addition, we will observe

that case 4 from Lemma 2.iv occurs at level λj + 1, that is t
(λj+1)
23 = 1

2
. On the contrary,

suppose that t
(λj+1)
13 = 1

2
(case 3). For λj > ω, this means case 1 or 2 occurs at level

λj < µ by the definition of λj, which would be in contradiction to ω ≤ λj according to

Lemma 2.iv. For λj = ω, on the other hand, t
(ω+1)
13 = 1

2
contradicts the definition of ω by

Lemma 2.iv. This completes the argument for t
(λj+1)
23 = 1

2
.

Furthermore, let level κj be the least level such that λj + 1 < κj ≤ σj and t
(κj)
13 > 0,

which exists since at least t
(σj)
13 > 0. Now we can define the corresponding partition

class Qj to be a set of indices of the variables that are tested on the computational path

v
(λj)
3 , v

(λj+1)
3 , . . . , v

(κj−2)
3 , and let ci be the corresponding labels of the edges creating this

path including the edge outgoing from the last node v
(κj−2)
3 to v

(κj−1)
3 (indicated by a bold

line in Figure 4), which correctly extends the definition of c ∈ {0, 1}n associated with R
(Paragraph 5.1) and Qk for 1 ≤ k < j since Qj∩R = ∅ and Qj∩Qk = ∅ due to P is weakly
oblivious2 and read-once, respectively. Finally, define next level σj+1 to be the greatest

level such that ω + 1 < σj+1 ≤ λj and t
(σj+1)
13 > 0, and continue in the recursive definition

of λj+1, κj+1, Qj+1 with j replaced by j + 1 etc. if such σj+1 exists, otherwise set q = j
and the definition of partition classes Q1, . . . , Qq associated with the underlying block is
complete.

5.3 An Upper Bound on p
(m)
1 + p

(m)
2 in Terms of p

(ω+1)
1

In this paragraph, we will upper bound p
(m)
1 + p

(m)
2 in terms of p

(ω+1)
1 which will later be

used for verifying the condition (5). For any 1 ≤ j ≤ q, we know that t
(`)
11 = t

(`)
22 = 1 and

t
(`)
23 = t

(`)
33 = 1

2
for every ` = λj + 1, . . . , κj − 1 (see Figure 4), which gives

p
(κj−1)
2 + p

(κj−1)
3 = p

(λj)
2 + p

(λj)
3 , (16)

p
(κj−1)
3 =

p
(λj)
3

2|Qj | ≤ p
(λj)
2 + p

(λj)
3

2|Qj | . (17)

It follows from the definition of σj+1 > ω + 1 and equation (16) that

p
(σj+1)
2 + p

(σj+1)
3 = p

(λj)
2 + p

(λj)
3 = p

(κj−1)
2 + p

(κj−1)
3 (18)

2 The assumption that P is weakly oblivious is actually used here only for verifying Qq ∩R = ∅ when
λq = ω + 1, while for λq > ω + 1, the fact that P is read-once suffices.

15

for 1 ≤ j < q, and

p
(ω+1)
2 + p

(ω+1)
3 = p

(λq)
2 + p

(λq)
3 = p

(κq−1)
2 + p

(κq−1)
3 (19)

since t
(`)
12 = 0 for every ` = ω + 2, . . . , m by Corollary 1.5 where ν + 1 ≤ ω + 2 from

the definition of ω. In particular, note that equation (19) is valid for the special case

of λq = ω (recall λq ≥ ω from the definition of λj) because t
(λq+1)
11 = t

(λq+1)
22 = 1 and

t
(λq+1)
23 = t

(λq+1)
33 = 1

2
(case 4 of Lemma 2.iv). Moreover, we know t

(`)
22 = 1 for every

` = κj, . . . , σj − 1 and t
(σj)
12 = 0, which implies

p
(σj)
2 + p

(σj)
3 ≥ p

(κj−1)
2 + p

(κj−1)
3 − p

(κj−1)
3 ≥ p

(κj−1)
2 + p

(κj−1)
3 − p

(λj)
2 + p

(λj)
3

2|Qj |

=
(
p

(σj+1)
2 + p

(σj+1)
3

) (
1− 1

2|Qj |

)
(20)

for 1 < j < q according to (17) and (18), while formula (20) reads

p
(m)
3 = p

(σ1)
3 ≥

(
p

(σ2)
2 + p

(σ2)
3

) (
1− 1

2|Q1|

)
(21)

for j = 1 < q due to t
(m)
32 = 1, whereas (20) is rewritten as

p
(σq)
2 + p

(σq)
3 ≥

(
p

(ω+1)
2 + p

(ω+1)
3

) (
1− 1

2|Qq |

)
(22)

for j = q > 1 according to (19). Thus starting with (21), inequality (20) is applied
recursively for j = 2, . . . , q − 1, and, in the end, formula (22) is employed, leading to

p
(m)
3 ≥

(
p

(ω+1)
2 + p

(ω+1)
3

) q∏
j=1

(
1− 1

2|Qj |

)
(23)

which is also obviously valid for the special case of q = 1. This can be rewritten as

p
(m)
1 + p

(m)
2 ≤ 1−

(
1− p

(ω+1)
1

) q∏
j=1

(
1− 1

2|Qj |

)
(24)

which represents the desired upper bound on p
(m)
1 + p

(m)
2 in terms of p

(ω+1)
1 .

6 The Conditional Block Structure below µ

6.1 Assumptions and Level µ + 1

Throughout this Section 6, we will assume

p
(µ)
3 <

1

12
, (25)

q∏
j=1

(
1− 1

2|Qj |

)
>

4

5
(26)

16

where the product in (26) equals 1 for q = 0. Based on these assumption, we will further
analyze the block structure below level µ in order to satisfy the m′-conditions 1–4 (see
Paragraph 4.1) also for the first block level m′ so that the underlying analysis can be
applied recursively when inequalities (25) and (26) hold (Section 7). For this purpose, we
still analyze level µ + 1 in the following lemma which implies ν > µ and thus guarantees
that partition class R is defined for the underlying block if not empty.

Lemma 4 t
(µ+1)
12 = 1

2
.

Proof: Assumption (26) together with m-condition 3 ensures

p
(ω+1)
2 + p

(ω+1)
3 <

5

48
(27)

for ω < m (implying ω < m−1) according to (23). It follows from (25) that t
(µ)
31 = 0 which

implies t
(µ)
21 > 0 by the definition of µ. In addition, p

(µ−1)
3 < 1

6
due to p

(µ)
3 ≥ p

(µ−1)
3 /2, which

gives p
(µ−1)
1 + p

(µ−1)
2 > 5

6
. Hence,

p
(µ)
2 ≥ p

(µ−1)
1

2
≥ p

(µ−1)
1 + p

(µ−1)
2

4
>

5

24
. (28)

Consider first the case of ω = µ (µ < m according to Lemma 2.i). If t
(µ+1)
12 = 0, then

p
(ω+1)
2 + p

(ω+1)
3 ≥ p

(µ)
2 > 5

24
according to (28), which contradicts (27). Hence, t

(µ+1)
12 > 0

which implies t
(µ+1)
12 = 1

2
by Lemma 2.iii for k = µ.

For ω > µ, on the other hand, we know by the definition of ω that there is a double-edge
path starting from v

(µ)
2 or v

(µ)
3 and traversing v ∈ {v(µ+1)

2 , v
(µ+1)
3 } which ends at level ω.

Suppose first that v = v
(µ+1)
2 which means either t

(µ+1)
22 = 1 or t

(µ+1)
23 = 1. In the latter case,

we have t
(µ+1)
32 = 1

2
which implies t

(µ+1)
22 = 1

2
since t

(µ+1)
12 = 1

2
would give a contradiction

1
12

> p
(µ)
3 = p

(µ+1)
2 ≥ p

(µ+1)
3 = p

(µ)
2 /2 > 5

48
according to (25) and (28). Thus t

(µ+1)
22 > 0 in

both cases. For ω < m, we have t
(`)
22 = 1 for ` = µ + 2, . . . , ω, and t

(ω+1)
12 = 0 according to

Lemma 2.iii, and hence, p
(ω+1)
2 + p

(ω+1)
3 ≥ p

(µ)
2 /2 > 5

48
according to (28), which contradicts

(27). An analogous contradiction 1
12

> p
(m)
3 ≥ p

(µ)
2 /2 > 5

48
is obtained for ω = m. It follows

that v = v
(µ+1)
3 which implies t

(µ+1)
33 = 1 and t

(µ+1)
12 = t

(µ+1)
22 = 1

2
by the normalization of P .

This completes the proof that t
(µ+1)
12 = 1

2
. 2

6.2 The Block Structure from m′ to µ (m′-Conditions 1–3)

We define the first level m′ of the underlying block to be the greatest level such that

2 ≤ m′ ≤ µ and t
(m′)
32 > 0 (m′-condition 2), which exists since at least t

(2)
32 > 0. In the

following lemma, we will analyze the initial block structure from the level m′ through µ,
which is illustrated in Figure 5 (where the dashed line shows that there is no edge from

v
(k−1)
1 or from v

(k−1)
2 to v

(k)
3 for any m′ < k ≤ µ).

17

Figure 5: The block structure from m′ to µ.

Lemma 5 t
(k)
31 = t

(k)
32 = 0 and t

(k)
33 = 1 for k = m′ + 1, . . . , µ.

Proof: On the contrary, let m′ < k ≤ µ be the greatest level such that t
(k)
33 < 1, that

is t
(`)
33 = 1 for ` = k + 1, . . . , µ. Obviously, t

(k)
33 > 0 because t

(`)
32 = 0 for every ` =

m′ + 1, . . . , k, . . . , µ by the definition of m′, and t
(`)
31 = 0 for every ` = k, . . . , µ since

otherwise p
(µ)
3 ≥ p

(`)
3 > 1

6
, which contradicts (25). Hence, t

(k)
33 = 1

2
and the edge from

v
(k−1)
3 to v

(k)
3 is the only edge that leads to v

(k)
3 due to t

(k)
31 = t

(k)
32 = 0, while the other

edge from v
(k−1)
3 goes either to v

(k)
1 or to v

(k)
2 . Thus, either a(m) ∈ M(v

(k)
1) ∪M(v

(k)
2) for

a(m) satisfying m-condition 4 (Paragraph 4.1), or an h-neighbor a′ ∈ Ω1(a
(m))∩M(v

(k−1)
3)

of a(m) exists that differs from a(m) in the variable that is tested at v
(k−1)
3 so that also

a′ ∈ M(v
(k)
1) ∪M(v

(k)
2). Since M(v

(k)
1) ∪M(v

(k)
2) = M(v

(µ)
1) ∪M(v

(µ)
2) and t

(µ+1)
12 = 1

2
by

Lemma 4, there is an h-neighbor a′′ ∈ Ω2(a
(m))∩M(v

(µ+1)
1) ⊆ H of a(m) such that P (a′′) = 1

by m-condition 4 since M(v
(µ+1)
1) ⊆ M(v

(m)
1) ∪ M(v

(m)
2), which is a contradiction. Thus

t
(k)
33 = 1 for k = m′ + 1, . . . , µ. 2

Lemma 5 together with assumption (25) gives

p
(m′)
1 + p

(m′)
2 = p

(µ)
1 + p

(µ)
2 , (29)

p
(m′)
3 = p

(µ)
3 <

1

12
(30)

which verifies m′-condition 3 for the first block level m′. Note that inequality (30) ensures

m′ ≥ 4 due to p
(3)
3 ≥ 1/23. Finally, the following lemma shows m′-condition 1.

Lemma 6 t
(m′)
11 = t

(m′)
21 = 1

2
(m′-condition 1).

Proof: Obviously, t
(m′)
31 = 0 since otherwise p

(m′)
3 > 1

6
, which contradicts (30). Simi-

larly, t
(m′)
21 = 1 together with m′-condition 2 would imply p

(m′)
3 ≥ p

(m′−1)
2 /2 ≥ (p

(m′−1)
2 +

18

p
(m′−1)
3)/4 ≥ p

(m′)
1 /4 > 1

12
violating (30). Finally, suppose that t

(m′)
11 = 1 which im-

plies t
(m′)
32 = 1

2
and t

(m′)
33 < 1 due to P is normalized. Hence, t

(m′)
12 + t

(m′)
22 > 0 and

t
(m′)
13 + t

(m′)
23 > 0. Thus either a(m) ∈ M(v

(m′−1)
1) ⊆ M(v

(m′)
1) or an h-neighbor a′ ∈

Ω1(a
(m)) ∩ (M(v

(m′−1)
2) ∪ M(v

(m′−1)
3)) of a(m) exists such that a′ ∈ M(v

(m′)
1) ∪ M(v

(m′)
2).

Since M(v
(m′)
1) ∪ M(v

(m′)
2) = M(v

(µ)
1) ∪ M(v

(µ)
2) and t

(µ+1)
12 = 1

2
by Lemma 4, there is

an h-neighbor a′′ ∈ Ω2(a
(m)) ∩ M(v

(µ+1)
1) ⊆ H of a(m) such that P (a′′) = 1 which is a

contradiction. The last possibility t
(m′)
11 = t

(m′)
21 = 1

2
follows. 2

6.3 An Upper Bound on p
(ω+1)
1 in Terms of p

(m′)
1 + p

(m′)
2

In Paragraph 5.3, we have upper bounded p
(m)
1 + p

(m)
2 at the last block level in terms of

p
(ω+1)
1 provided that ω < m. In this paragraph, we will extend this estimate by upper

bounding p
(ω+1)
1 (or p

(m)
1 + p

(m)
2 for ω = m) in terms of p

(m′)
1 + p

(m′)
2 from the first block

level. Putting these two bounds together, we will obtain a recursive formula for an upper

bound on p
(m)
1 + p

(m)
2 in terms of p

(m′)
1 + p

(m′)
2 which will be used in Section 7 for verifying

condition (5).

We first resolve the case of the empty block when ν = m = ω, t
(m)
33 = 0, t

(m)
13 +

t
(m)
23 = 1, and t

(m)
32 = 1. It follows from Corollary 1 and Lemma 5 (see Figures 3 and 5,

respectively) that M(v
(m′)
1)∪M(v

(m′)
2) = M(v

(m)
1)∪M(v

(m)
2) which ensures m′-condition 4

(m′-conditions 1–3 have already been checked in Paragraph 6.2) and p
(m′)
1 + p

(m′)
2 = p

(m)
1 +

p
(m)
2 . Hence, the empty block can be skipped in our analysis by replacing m′ with m, and

we will further consider only the non-empty blocks.
It follows from the definition of partition class R (see Figure 3) and Lemma 4 that

p
(ν)
1 = p

(µ)
1 + p

(µ)
2

(
1− 1

2|R|

)
for ν < m . (31)

For ν = m, we know t
(m)
33 > 0 because we assume a non-empty block, and hence, either

t
(m)
12 = t

(m)
32 = 1

2
and t

(m)
33 = 1, or t

(m)
13 = t

(m)
33 = 1

2
and t

(m)
32 = 1 by the definition of ν,

Lemma 2.ii, and m-conditions 1 and 2, which also ensures ω = m in both cases. Thus,

p
(m)
1 + p

(m)
2 = p

(µ)
1 + p

(µ)
2

(
1− 1

2|R|

)
for ν = m = ω (32)

For ν = m− 1 we know t
(m)
12 = t

(m)
13 = 0 leading to t

(m)
32 = t

(m)
33 = 1, for which ω = m can be

assumed without loss of generality.
Further assume ν < m− 1, while the resulting formula for ν < m will also be verified

for the case of ν = m−1 (when ω = m) below in (34). We know by the definition of ν that

t
(ν+1)
12 = t

(ν+1)
13 = 0, which excludes t

(ν+1)
32 = 1 and t

(ν+1)
33 = 1 since P is normalized. First

consider the case of ω > ν excluding ω = ν−1 ≥ µ and ω = ν for now (cf. the definition of
ω). Then the double-edge path from the definition of ω passes through a double edge from

19

Figure 6: The block structure from ν < ω to ω + 1 (or to m if ω = m).

v ∈ {v(ν)
2 , v

(ν)
3 } to v

(ν+1)
2 , while the two edges from the other node v′ ∈ {v(ν)

2 , v
(ν)
3 } \ {v}

lead to v
(ν+1)
2 and to v

(ν+1)
3 , respectively, as depicted in Figure 6. For ` = ν + 2, . . . , ω,

we have either t
(`)
22 = 1 implying t

(`)
33 = 1

2
if ` < m, or t

(`)
32 = 1 if ` = m. Moreover,

t
(ω+1)
12 = 0 for ω < m by Corollary 1.5. Hence, p

(ν+1)
3 = p

(µ)
2 /2|R|+1 (cf. Figure 3 and

Lemma 4) upper bounds the fraction of all the inputs whose computational path traverses

nodes v′, v(ν+1)
3 , v

(ν+2)
3 , . . . , v

(`)
3 , v

(`+1)
1 for some ν + 1 ≤ ` ≤ min(ω,m− 1). It follows that

p
(ω+1)
1 ≤ p

(ν)
1 +

p
(µ)
2

2|R|+1
for ω < m (33)

which is even valid for any max(ν − 1, µ) ≤ ω < m since obviously p
(ω+1)
1 = p

(ν)
1 for

ω = ν − 1 ≥ µ as well as for ω = ν < m, while

p
(m)
1 + p

(m)
2 ≤ p

(ν)
1 +

p
(µ)
2

2|R|+1
for ω = m (34)

which also holds for ν = m− 1 because p
(m)
1 + p

(m)
2 = p

(ν)
1 in this case.

In addition, we observe that

p
(µ)
1 + p

(µ)
2 ≤ 4p

(µ)
2 . (35)

For µ > m′, we have p
(µ)
1 +p

(µ)
2 = p

(µ−1)
1 +p

(µ−1)
2 ≤ 2p

(µ−1)
1 ≤ 4p

(µ)
2 according to Lemma 5 and

by t
(µ)
21 > 0 which follows from the definition of µ. For µ = m′, on the other hand, we know

4p
(µ)
2 = 4p

(m′)
2 ≥ 2p

(m′−1)
1 = 2(1 − (p

(m′−1)
2 + p

(m′−1)
3)) ≥ 2(1 − 2p

(m′−1)
2) ≥ 2(1 − 4p

(m′)
3) >

1 > p
(µ)
1 + p

(µ)
2 according to m′-conditions 1–3. This completes the proof of (35).

For ν < m, equation (31) is plugged into (33) if ω < m or into (34) if ω = m, while
equation (32) is considered for ν = m (implying ω = m). Then equations (35) and (29)

20

are employed, which results in

p
(ω+1)
1 ≤ p

(µ)
1 + p

(µ)
2

(
1− 1

2|R|

)
+

p
(µ)
2

2|R|+1
= p

(µ)
1 + p

(µ)
2

(
1− 1

2|R|+1

)

≤
(
p

(m′)
1 + p

(m′)
2

) (
1− 1

2|R|+3

)
for ω < m , (36)

p
(m)
1 + p

(m)
2 ≤

(
p

(m′)
1 + p

(m′)
2

) (
1− 1

2|R|+3

)
for ω = m. (37)

Formula (36) can further be plugged into (24) giving

p
(m)
1 + p

(m)
2 ≤ 1−

(
1−

(
p

(m′)
1 + p

(m′)
2

) (
1− 1

2|R|+3

)) q∏
j=1

(
1− 1

2|Qj |

)
(38)

which is even valid for ω = m (i.e. q = 0) since equation (38) coincides with (37) in this
case.

7 The Recursion

In the previous Sections 4–6, we have analyzed the structure of the block of P from level
m′ through m. We will now employ this block analysis recursively so that m = mr is
replaced by m′ = mr+1. For this purpose, we introduce additional index b = 1, . . . , r to
the underlying objects in order to differentiate among respective blocks. For example, the
partition classes R,Q1, . . . , Qq, defined in Section 5, corresponding to the bth block are
denoted as Rb, Qb1, . . . , Qbqb

, respectively.

7.1 Inductive Assumptions

In particular, we will proceed by induction on r, starting with r = 0 and m0 = d. In the
induction step for r+1, we assume that the four mr-conditions from Paragraph 4.1 are met
for the last block level m = mr, and let the assumption (25) be satisfied for the previous
blocks, that is,

p
(µb)
3 <

1

12
(39)

for every b = 1, . . . , r. In addition, assume

%r > δ ε , (40)

1− Πr < (1− δ) ε (41)

where

%k =
k∏

b=1

αb , αb =

(
1− 1

2|Rb|+3

)
, (42)

21

Πk =
k∏

b=1

πb , πb =

qb∏
j=1

(
1− 1

2|Qbj |

)
(43)

for k = 1, . . . , r, %0 = Π0 = 1, and πb = 1 for qb = 0. It follows from (43) and (41) that

πb ≥ Πr > 1− (1− δ) ε ≥ δ >
4

5
(44)

which verifies assumption (26) for every b = 1, . . . , r. Hence, we can employ recursive
inequality (38) from Section 6 which is rewritten as

pb−1 ≤ 1− (1− pbαb)πb = 1− πb + pbαbπb (45)

for b = 1, . . . , r where notation pb = p
(mb)
1 + p

(mb)
2 is introduced. Starting with

p0 = p
(d)
1 + p

(d)
2 ≥ ε (46)

which follows from (15), recurrence (45) can be solved as

ε ≤
r∑

k=1

(1−πk)
k−1∏

b=1

αbπb +pr

r∏

b=1

αbπb <

r∑

k=1

(1−πk)Πk−1 +pr%rΠr = 1−Πr +pr%rΠr . (47)

7.2 Recursive Step

Throughout this paragraph, we will consider the case when

1− Πr+1 < (1− δ) ε (48)

(cf. assumption (41)), while the case complementary to (48), which concludes the induction,
will be resolved below in Section 8. We will prove under assumption (48) that inductive
assumptions (39)–(41) are met for r replaced with r + 1 together with the four mr+1-
conditions for the first block level mr+1 so that we can further proceed in the recursion.

By analogy to (44), inequality (48) implies

πr+1 > δ >
4

5
. (49)

For ωr+1 < mr, we know

pr ≤ 1−
(
p

(ωr+1+1)
2 + p

(ωr+1+1)
3

)
πr+1 (50)

according to (24), and

p
(ωr+1+1)
2 + p

(ωr+1+1)
3 ≥ p

(µr+1)
3 (51)

by the definition of ωr+1 and Lemma 2.iii–iv (for k = ωr+1), which altogether gives

ε < 1− Πr +
(
1− p

(µr+1)
3 πr+1

)
%rΠr (52)

22

according to (47). Hence,

δ ε <
(
1− p

(µr+1)
3 πr+1

)
%rΠr < 1− p

(µr+1)
3 πr+1 (53)

follows from (41), which gives

p
(µr+1)
3 πr+1 < 1− δ2 (54)

by the assumption of ε > δ, implying

p
(µr+1)
3 <

1− δ2

δ
<

1

12
for ωr+1 < mr (55)

due to (49). Inequality (55) is even valid for ωr+1 = mr since

p
(µr+1)
3 ≤ p

(mr)
3 <

1

12
for ωr+1 = mr (56)

according to mr-condition 3. Therefore, assumptions (25) and (26) of the analysis in
Section 6 are also met for the (r +1)st block according to (55)–(56) and (49), respectively,
which justifies recurrence inequality (45) for b = r + 1 leading to the solution

ε < 1− Πr+1 + pr+1%r+1Πr+1 (57)

by analogy to (47) where r is replaced with r + 1. By combining (57) with (48), we obtain

%r+1 > pr+1%r+1Πr+1 > δ ε . (58)

Thus, inductive assumptions (39)–(41) are valid for r replaced by r + 1 according to (55)–
(56), (58), and (48), respectively.

In order to proceed in the next induction step, we still need to verify the four mr+1-
conditions from Paragraph 4.1 for mr+1. In Paragraph 6.2, mr+1-conditions 1–3 have been
shown, and thus, it suffices to validate mr+1-condition 4. For this purpose, we exploit the
fact that A is (δ11 − δ12)ε12-rich after we show corresponding condition (8) for partition
{R1, . . . , Rr+1} of I =

⋃r+1
b=1 Rb. In particular,

(δ11 − δ12)ε12 < (δ ε)11 <

r+1∏

b=1

(
1− 1

2|Rb|

)
(59)

follows from (58) since for any 1 ≤ b ≤ r + 1,
(

1− 1

2|Rb|+3

)11

< 1− 1

2|Rb| (60)

for |Rb| ≥ 1 because f(x) = ln(1− 1
x
)/ ln(1− 1

8x
) is a decreasing function for x = 2|Rb| ≥ 2,

and f(2) < 11. This provides required a(mr+1) ∈ A such that for every b = 1, . . . , r + 1

there exists i ∈ Rb that meets a
(mr+1)
i 6= ci according to (7). Obviously, the computational

path for this a(mr+1) ends up in sink v
(d)
1 or v

(d)
2 labeled with 1 when we put a(mr+1) at node

v
(mr+1)
1 or v

(mr+1)
2 by the definition of Rb, ci and by the structure of branching program P

(see Figure 3), which proves mr+1-condition 4. Thus, the inductive assumptions are met
for r + 1 and we can proceed recursively for r replaced with r + 1 etc. until condition (48)
is broken.

23

8 The End of Recursion

In this section, we will consider the case of

1− Πr+1 ≥ (1− δ) ε (61)

complementary to (48), which concludes the recursion from Section 7 as follows. We
will again employ the fact that A is (δ11 − δ12)ε12-rich. First condition (5) for partition
{Q11, . . . , Q1q1 , Q21, . . . , Q2q2 , . . . , Qr+1,1, . . . , Qr+1,qr+1 , R1, . . . , Rr} of I =

⋃r+1
b=1

⋃qb

j=1 Qbj ∪⋃r
b=1 Rb is verified as

(
1−

r+1∏

b=1

qb∏
j=1

(
1− 1

2|Qbj |

))
r∏

b=1

(
1− 1

2|Rb|

)
> (1− Πr+1)%

11
r

> (1− δ)ε (δ ε)11 = (δ11 − δ12)ε12 (62)

according to (60), (61), and (40). This provides a∗ ∈ A such that there exists block
1 ≤ b∗ ≤ r + 1 and 1 ≤ j∗ ≤ qb∗ satisfying a∗i = ci for every i ∈ Qb∗j∗ , and simultaneously,
for every b = 1, . . . , r there exists i ∈ Rb that meets a∗i 6= ci according to (6) and (7).

Lemma 7 Denote λ = λb∗j∗. There are two generalized ‘switching’ paths (cf. Lemma 2.ii)

starting from v
(k)
2 and from v

(k)
3 , respectively, at some level 3 < max(λ − 2, µb∗) ≤ k < λ,

which may also lead to v
(λ)
3 in addition to v

(λ−1)
1 or v

(λ)
1 .

Proof: For the notation simplicity, we will omit the block index b∗ in this proof. We
know ω < m due to q > 0, and λ > µ from Paragraph 5.2. Consider first the case when
t
(λ)
12 = t

(λ)
13 = 0. Obviously, t

(λ)
22 < 1 follows from the definition of λ for λ > ω and from the

definition of ω for λ = ω, which gives t
(λ)
22 = t

(λ)
32 = 1

2
and t

(λ)
23 > 0 by the normalization of

P . For t
(λ)
33 = 1

2
, we obtain two switching paths v

(λ−1)
2 , v

(λ)
3 and v

(λ−1)
3 , v

(λ)
3 . Thus assume

t
(λ)
33 = 0 which ensures t

(λ)
23 = 1 and λ > µ + 1 since λ = µ + 1 would give ω > λ.

Consider first the case when t
(λ−1)
12 = t

(λ−1)
13 = 0, which implies t

(λ−1)
22 > 0 and t

(λ−1)
23 > 0 by

t
(λ−1)
11 = 1 and the normalization of P , providing two switching paths v

(λ−2)
2 , v

(λ−1)
2 , v

(λ)
3 and

v
(λ−2)
3 , v

(λ−1)
2 , v

(λ)
3 . Two switching paths v

(λ−2)
2 , v

(λ−1)
1 and v

(λ−2)
3 , v

(λ−1)
1 are also guaranteed

when t
(λ−1)
12 > 0 and t

(λ−1)
13 > 0 appear simultaneously. For t

(λ−1)
12 = 0 and t

(λ−1)
13 > 0, we

have t
(λ−1)
22 > 0 by the normalization of P , which together with t

(λ)
32 = 1

2
produces two

switching paths v
(λ−2)
2 , v

(λ−1)
2 , v

(λ)
3 and v

(λ−2)
3 , v

(λ−1)
1 . For t

(λ−1)
12 > 0 and t

(λ−1)
13 = 0, the

case of t
(λ−1)
23 > 0 ensures two switching paths v

(λ−2)
2 , v

(λ−1)
1 and v

(λ−2)
3 , v

(λ−1)
2 , v

(λ)
3 , while

for t
(λ−1)
23 = 0 we obtain t

(λ−1)
12 = t

(λ−1)
22 = 1

2
and t

(λ−1)
33 = 1, which implies λ = ν + 1 and

ω > λ by Lemma 2.iii contradicting the definition of λ ≥ ω ≥ ν − 1. This completes the
argument for t

(λ)
12 = t

(λ)
13 = 0.

The case of t
(λ)
13 > 0 and t

(λ)
12 > 0 produces two switching paths v

(λ−1)
2 , v

(λ)
1 and

v
(λ−1)
3 , v

(λ)
1 . Further consider the case when t

(λ)
13 > 0 and t

(λ)
12 = 0. Obviously, t

(λ)
22 < 1

24

follows from the definition of λ for λ > ω and from the definition of ω for λ = ω. Hence,
t
(λ)
32 > 0 which provides two switching paths v

(λ−1)
2 , v

(λ)
3 and v

(λ−1)
3 , v

(λ)
1 . Finally, consider

the case when t
(λ)
12 > 0 and t

(λ)
13 = 0, for which t

(λ)
33 > 0 generates two switching v

(λ−1)
2 , v

(λ)
1

and v
(λ−1)
3 , v

(λ)
3 , while for t

(λ)
33 = 0 we obtain t

(λ)
32 = 1

2
and t

(λ)
23 = 1, which implies λ = ν and

ω > λ by Lemma 2.iii contradicting the definition of λ ≥ ω ≥ ν − 1. 2

By a similar argument to Lemma 2.ii, Lemma 7 gives an h-neighbor a′ ∈ Ω2(a
∗) ⊆ H

of input a∗ ∈ A such that a′ ∈ M(v
(λ)
1) ∪ M(v

(λ)
3). Thus, either a′′ = a′ ∈ M(v

(λ)
1) ⊆

M(v
(mb∗−1)
1) ∪ M(v

(mb∗−1)
2), or a′ ∈ M(v

(λ)
3) which implies a′ ∈ M(v

(κb∗j∗−1)
3) since a′i =

a∗i = ci for every i ∈ Qb∗j∗ according to (6) (see Figure 4), and an h-neighbor a′′ ∈ Ω3(a
∗)

of a∗ exists such that a′′ ∈ M(v
(κb∗j∗)
1) ⊆ M(v

(mb∗−1)
1) ∪ M(v

(mb∗−1)
2). Hence, P (a′′) = 1

because for every b = 1, . . . , b∗ − 1 ≤ r there exists i ∈ Rb that meets a′i = a∗i 6= ci by
condition (7) (see Figure 3). This completes the proof of Theorem 2. 2

9 The Richness of Almost k-wise Independent Sets

In order to achieve an explicit polynomial time construction of a hitting set for read-once
branching programs of width 3 we will combine Theorem 2 with the result due to Alon et
al. [1] who provided simple efficient constructions of almost k-wise independent sets. In
particular, for β > 0 and k = O(log n) it is possible to construct a (k, β)-wise independent
set A ⊆ {0, 1}∗ in time polynomial in n

β
such that for sufficiently large n and any index

set S ⊆ {1, . . . , n} of size |S| ≤ k, the probability that a given c ∈ {0, 1}n coincides with
a string a ∈ An = A ∩ {0, 1}n on the bit locations from S is almost uniform, that is

∣∣∣∣∣

∣∣AS
n(c)

∣∣
|An| − 1

2|S|

∣∣∣∣∣ ≤ β (63)

where AS
n(c) = {a ∈ An | (∀i ∈ S) ai = ci}. We will prove that any almost k-wise

independent set is ε-rich for suitable k.

Theorem 3 Let ε > 0, C be the least odd integer greater than (2
ε
ln 1

ε
)2, and 0 < β < 1

nC+3 .
Then any (d(C + 2) log ne, β)-wise independent set is ε-rich.

Proof: Let A ⊆ {0, 1}∗ be a (d(C+2) log ne, β)-wise independent set. We will show that A
is ε-rich. Given a partition {Q1, . . . , Qq, R1, . . . , Rr} of index set I ⊆ {1, . . . , n} satisfying
condition (5) we will first properly select and modify the partition classes in order to upper
bound their cardinalities by the logarithmic function so that the assumption concerning
the almost d(C + 2) log ne-wise independence of A can be applied. Thus, observe there
must be 1 ≤ ` ≤ q such that |Q`| ≤ log n, and denote Q = Q` for this `. It is because, if
|Qj| > log n for every j = 1, . . . , q, then we would have

q∏
j=1

(
1− 1

2|Qj |

)
≥

(
1− 1

2log n

) n
log n

> 1− 1

n
· n

log n
= 1− 1

log n
(64)

25

which breaks (5) for n > 21/ε. Furthermore, we confine ourselves to at most logarithmic-size
subsets R′

j of partition classes Rj, that is

R′
j

{
= Rj if |Rj| ≤ log n
⊂ Rj so that |R′

j| = blog nc otherwise
(65)

which ensures R′
j ⊆ Rj and |R′

j| ≤ log n for every j = 1, . . . , r. For these new classes,
assumption (5) can be rewritten as

r∏
j=1

(
1− 1

2|R
′
j |

)
>

(
1− 1

2log n

) n
log n ∏

|Rj |≤log n

(
1− 1

2|Rj |

)
>

(
1− 1

log n

)
ε = ε′ (66)

where ε′ > 0 is arbitrarily close to ε for sufficiently large n.
Without loss of generality, assume log n ≥ |R′

1| ≥ |R′
2| ≥ · · · ≥ |R′

r| ≥ 1. Denote by
{s1 > s2 > · · · > sm} = {|R′

1|, . . . , |R′
r|} the set of all cardinalities 1 ≤ si ≤ log n of classes

R′
1, . . . , R

′
r, and let ri = |{j | |R′

j| = si}| be the number of classes R′
j of cardinality si for

i = 1, . . . ,m, that is, r =
∑m

i=1 ri. Moreover, we define

ti =
ri

2si
> 0 for i = 1, . . . , m . (67)

It follows from (66) that

0 < ε′ <
r∏

j=1

(
1− 1

2|R
′
j |

)
=

m∏
i=1

(
1− 1

2si

)ri

=
m∏

i=1

((
1− 1

2si

)2si
)ti

< e−
Pm

i=1 ti (68)

implying
m∑

i=1

ti < ln
1

ε′
. (69)

In addition, we will further confine ourselves to the first m′ ≥ 0 cardinalities si satisfying

si > log

(
2

ε′2
− 2

)
for i = 1, . . . , m′ (70)

whereas si ≤ log(2/ε′2 − 2) for i = m′ + 1, . . . , m. Let r′ be the corresponding maximal
index j of class R′

j such that |R′
r′| = sm′ , that is,

r′ =
m′∑
i=1

ri =
m′∑
i=1

ti2
si >

(
2

ε′2
− 2

) m′∑
i=1

ti (71)

according to (67) and (70). We include the remaining constant-size classes R′
j for j =

r′ + 1, . . . , r into Q, that is,

Q′ = Q ∪
r⋃

j=r′+1

R′
j (72)

26

whose size can be upper bounded as

|Q′| ≤ log n +
m∑

i=m′+1

ri log

(
2

ε′2
− 2

)
< 2 log n (73)

for sufficiently large n, since
m∑

i=m′+1

ri =
m∑

i=m′+1

ti2
si <

(
2

ε′2
− 2

)
ln

1

ε′
(74)

according to (67) and (69). This completes the definition of new classes Q′, R′
1, . . . , R

′
r′

which will be used for the argument below.
Now we turn to the proof of the proposition. In order to show for a given c ∈ {0, 1}n

that there is a ∈ An that meets the conjunction (6) and (7) for the underlying partition
{Q1, . . . , Qq, R1, . . . , Rr} we will prove that the probability

P =

∣∣∣AQ
n (c) \⋃r

j=1ARj
n (c)

∣∣∣
|An| (75)

of the event that a ∈ An chosen uniformly at random satisfies a ∈ AQ
n (c) and a 6∈ ARj

n (c)
for every j = 1, . . . , r, is strictly positive. This probability can be lower bounded by using
new classes Q′, R′

1, . . . , R
′
r′ as follows. First we define c′ ∈ {0, 1}n that differs from c exactly

on the constant number of bit locations from R′
r′+1, . . . , R

′
r, e.g.

c′i =

{
1− ci if i ∈ ⋃r

j=r′+1 R′
j

ci otherwise,
(76)

and observe that AQ′
n (c′) \ ⋃r′

j=1A
R′j
n (c′) ⊆ AQ

n (c) \ ⋃r
j=1ARj

n (c). Let a ∈ AQ′
n (c′) \

⋃r′
j=1A

R′j
n (c′) which means a ∈ AQ′

n (c′) ⊆ AQ
n (c′) = AQ

n (c) and a 6∈ AR′j
n (c′) = AR′j

n (c) ⊇
ARj

n (c) for every j = 1, . . . , r′ by definitions (65), (72), and the fact that S1 ⊆ S2 implies

AS2
n (c) ⊆ AS1

n (c). In addition, a ∈ AQ′
n (c′) implies a 6∈ ARj

n (c) for every j = r′ + 1, . . . , r

according to (76), and hence, a ∈ AQ
n (c) \⋃r

j=1ARj
n (c). It follows that

P ≥

∣∣∣AQ′
n (c′) \⋃r′

j=1A
R′j
n (c′)

∣∣∣
|An| =

∣∣AQ′
n (c′)

∣∣
|An| −

∣∣∣⋃r′
j=1A

R′j∪Q′
n (c′)

∣∣∣
|An| . (77)

Furthermore, we will upper bound the probability of the finite union of events appearing
in formula (77) by using Bonferroni inequality for constant number C ′ = min(C, r′) of
terms, which gives

P ≥
∣∣AQ′

n (c′)
∣∣

|An| −
C′∑

k=1

(−1)k+1
∑

1≤j1<j2<···<jk≤r′

∣∣∣⋂k
i=1A

R′ji
∪Q′

n (c′)
∣∣∣

|An| (78)

=
C′∑

k=0

(−1)k
∑

1≤j1<j2<···<jk≤r′

∣∣∣∣A
Sk

i=1 R′ji
∪Q′

n (c′)

∣∣∣∣
|An| . (79)

27

Note that C ′ is odd for C < r′ while equality holds in (78) for C ′ = r′, which is
the probabilistic inclusion-exclusion principle. For any 0 ≤ k ≤ C ′ ≤ C, we know∣∣∣⋃k

i=1 R′
ji
∪Q′

∣∣∣ ≤ d(C + 2) log ne according to (65) and (73), and hence,

∣∣∣∣A
Sk

i=1 R′ji
∪Q′

n (c′)

∣∣∣∣
|An| ≥ 1

2|Q
′|+Pk

i=1|R′ji
| − β =

1

2|Q′|

k∏
i=1

1

2|R′ji
| − β (80)

and similarly,

−

∣∣∣∣A
Sk

i=1 R′ji
∪Q′

n (c′)

∣∣∣∣
|An| ≥ − 1

2|Q′|

k∏
i=1

1

2|R′ji
| − β (81)

according to (63) sinceA is (d(C+2) log ne, β)-wise independent. We plug these inequalities
into (79), which leads to

P ≥
C′∑

k=0

(−1)k
∑

1≤j1<j2<···<jk≤r′

1

2|Q′|

k∏
i=1

1

2|R′ji
| − β

C′∑

k=0

(
r′

k

)

≥ 1

2|Q′|

(
C′∑

k=0

(−1)k
∑

1≤j1<j2<···<jk≤r′

k∏
i=1

1

2|R′ji
| − β 2|Q

′| (r′ + 1)C′
)

(82)

where

β 2|Q
′| (r′ + 1)C′ <

1

nC+3
n2 nC =

1

n
<

ε′

4 CC
(83)

for sufficiently large n > 4 CC/ε′ by using the assumption on β, inequality (73), r′ < n
(e.g., r′ = n would break (70)), and C ′ ≤ C, which implies

P ≥ 1

n2

(
C′∑

k=0

(−1)k
∑

1≤j1<j2<···<jk≤r′

k∏
i=1

1

2|R′ji
| −

ε′

4 CC

)
. (84)

By grouping the classes of the same cardinality together, the inner sum for 0 ≤ k ≤ C ′

at the right-hand side of inequality (84) can further be rewritten as

∑

1≤j1<j2<···<jk≤r′

k∏
i=1

1

2|R
′
ji
| =

∑

k1+k2+···+km′=k
0≤k1≤r1,...,0≤km′≤rm′

m′∏
i=1

(
ri

ki

) (
1

2si

)ki

(85)

where k1, . . . , km′ denote the numbers of classes of corresponding cardinalities s1, . . . , sm′

considered in a current summand, and

(
ri

ki

)(
1

2si

)ki

=
ri (ri − 1) · · · (ri − ki + 1)

ki!

(
ti
ri

)ki

=
tki
i

ki!

ki−1∏
j=1

(
1− j

ri

)
(86)

28

according to (67). Since ki ≤ ri and ki ≤ k ≤ C ′ ≤ C, we have

1 ≥
ki−1∏
j=1

(
1− j

ri

)
≥

(
1− min(ri, C

′)− 1

ri

)ki−1

≥ 1

C ′ ki−1
>

1

Cki
(87)

for ki > 0, which implies

m′∏
i=1

(
ri

ki

)(
1

2si

)ki

≥ 1

Ck

m′∏
i=1

tki
i

ki!
≥ 1

CC

m′∏
i=1

tki
i

ki!
(88)

according to (86). Hence,

∑

1≤j1<j2<···<jk≤r′

k∏
i=1

1

2|R
′
ji
| ≥

1

CC

∑

k1+···+km′=k
0≤k1≤r1,...,0≤km′≤rm′

m′∏
i=1

tki
i

ki!
(89)

follows from (85). We plug this inequality into (84) and obtain

P ≥ 1

CCn2

C′∑

k=0

(−1)k
∑

k1+···+km′=k
0≤k1≤r1,...,0≤km′≤rm′

m′∏
i=1

tki
i

ki!
− ε′

4

 . (90)

In order to apply the multinomial theorem, we remove the upper bounds that are set
on indices k1 ≤ r1, . . . , km′ ≤ rm′ in the inner sum of formula (90), that is,

P ≥ 1

CCn2

C′∑

k=0

(−1)k
∑

k1+···+km′=k
k1≥0,...,km′≥0

m′∏
i=1

tki
i

ki!
− T − ε′

4

 , (91)

which is corrected by introducing additional term

T =
C′∑

k=0

(−1)k
∑

k1+···+km′=k
k1≥0,...,km′≥0

(∃1≤`≤m′) k`>r`

m′∏
i=1

tki
i

ki!
. (92)

We will show that this term T can be upper bounded by ε′/4. For this purpose, we take
only the summands for even k ≥ 2 into account since the summands for odd k are not
positive while for k = 0 there is no 1 ≤ ` ≤ m′ such that 0 = k ≥ k` > r` ≥ 1, which gives

T ≤
C′∑

k=2,4,...

∑

k1+···+km′=k
k1≥0,...,km′≥0

(∃1≤`≤m′) k`>r`

1

2s`

r`

k`

tk`−1
`

(k` − 1)!

m′∏
i=1
i6=`

tki
i

ki!

<
ε′2

2 (1− ε′2)

C′∑

k=2,4,...

∑

k1+···+km′=k
k1≥0,...,km′≥0

(∃1≤`≤m′) k`>r`

tk`−1
`

(k` − 1)!

m′∏
i=1
i6=`

tki
i

ki!
(93)

29

using (67) and (70). Formula (93) is rewritten by replacing indices k` − 1 and k − 1
with k` and k, respectively, which is further upper bounded by omitting the condition
on parameters k1, . . . , km′ of the inner sum concerning the existence of special index `, as
follows:

T ≤ ε′2

2 (1− ε′2)

C′−1∑

k=1,3,...

∑

k1+···+km′=k
k1≥0,...,km′≥0

m′∏
i=1

tki
i

ki!
=

ε′2

2 (1− ε′2)

C′−1∑

k=1,3,...

(∑m′
i=1 ti

)k

k!
(94)

where the multinomial theorem is employed. Notice the sum on the right-hand side of
equation (94) represents the first few terms of Taylor series of the hyperbolic sine at point∑m′

i=1 ti, which implies

T ≤ ε′2

2 (1− ε′2)
sinh

(
m′∑
i=1

ti

)
<

ε′2

2 (1− ε′2)
·

1
ε′ − ε′

2
=

ε′

4
(95)

according to (69) since the hyperbolic sine is an increasing function.
Now, the upper bound (95) on T is plugged into (91) and the multinomial theorem

gives

P ≥ 1

CCn2

C′∑

k=0

(
−∑m′

i=1 ti

)k

k!
− ε′

2

=
1

CCn2

(
e−

Pm′
i=1 ti −RC′+1

(
−

m′∑
i=1

ti

)
− ε′

2

)
(96)

where Taylor’s theorem is employed for the exponential function at point (−∑m′
i=1 ti) pro-

ducing the Lagrange remainder

RC′+1

(
−

m′∑
i=1

ti

)
=

(
−∑m′

i=1 ti

)C′+1

(C ′ + 1)!
e−ϑ

Pm′
i=1 ti <

(∑m′
i=1 ti√
C ′

)C′+1

(97)

with parameter 0 < ϑ < 1. It follows that for C ′ = C, this remainder can be upper
bounded as

RC′+1

(
−

m′∑
i=1

ti

)
<

(
ln 1

ε′√
C

)C+1

<

(
ε′

2

)C+1

≤ ε′

4
(98)

for sufficiently large n by using (69) and the definition of C, while for C ′ = r′ < C, the
underlying upper bound

RC′+1

(
−

m′∑
i=1

ti

)
<

(∑m′
i=1 ti

2
ε′2 − 2

) r′+1
2

<
ln 1

ε′
2

ε′2 − 2
≤ ε′

4
(99)

30

can be obtained from (71) and (69). Finally, inequality (68) together with the upper bound
(98) or (99) on the Lagrange remainder is plugged into (96) which leads to

P >
ε′

4 CCn2
=

ε
(
1− 1

log n

)

4 CCn2
> 0 (100)

according to (66). Thus, we have proven that for any c ∈ {0, 1}n the probability that there
is a ∈ An satisfying the conjunction (6) and (7) for partition {Q1, . . . , Qq, R1, . . . , Rr}
is strictly positive, which means such a does exist. This completes the proof that A is
ε-rich. 2

10 Conclusion

In the present paper, we have made an important step in the effort of constructing hitting
set generators for the model of read-once branching programs of bounded width. Such
constructions have so far been known only in the case of width 2 and in very restricted
cases of bounded width (e.g. permutation or regular oblivious read-once branching pro-
grams). We have now provided an explicit polynomial-time construction of a hitting set
for (weakly oblivious) read-once branching programs of width 3 with acceptance probabil-
ity ε >

√
12/13. Although this model seems to be relatively weak, the presented proof is

far from being trivial. In particular, we have characterized the hitting sets for read-once
width-3 branching programs by an elegant richness condition which is independent of the
notion of branching programs. In addition, we have proven for a suitable constant C that
any almost (C log n)-wise independent set which can be constructed in polynomial time
due to Alon et al. [1], satisfies this richness condition, which implies our result.

From the point of view of derandomization of unrestricted models, our result still
appears to be unsatisfactory but it is the best we know so far. The issue of whether our
technique based on the richness condition can be extended to the case of width 4 or to
bounded width represents an open problem for further research. Another challenge for
improving our result is to optimize parameter ε, e.g. to achieve the result for ε ≤ 1

n
, which

would be important for practical derandomizations.

References

[1] Alon, N., Goldreich, O., H̊astad, J., and Peralta, R.: Simple constructions of almost
k-wise independent random variables. Random Structures and Algorithms 3 (3) (1992)
289–304

[2] Bogdanov, A., Dvir, Z., Verbin, E., Yehudayoff, A.: Pseudorandomness for width 2
branching programs. Electronic Colloquium on Computational Complexity, Report No.
70 (2009)

31

[3] Braverman, M., Rao, A., Raz, R., Yehudayoff, A.: Pseudorandom generators for regular
branching programs. Proceedings of the FOCS 2010 Fifty-First Annual IEEE Sympo-
sium on Foundations of Computer Science, (2010) 41–50

[4] Brody, J., Verbin, E.: The coin problem, and pseudorandomness for branching pro-
grams. Proceedings of the FOCS 2010 Fifty-First Annual IEEE Symposium on Foun-
dations of Computer Science, (2010) 30–39

[5] Goldreich, O., Wigderson, A.: Improved derandomization of BPP using a hitting set
generator. Proceedings of the RANDOM’99 Third International Workshop on Random-
ization and Approximation Techniques in Computer Science, LNCS 1671, Springer-
Verlag, Berlin (1999) 131–137

[6] Koucký, M., Nimbhorkar, P., Pudlák, P: Pseudorandom generators for group products.
Electronic Colloquium on Computational Complexity, Report No. 133 (2010)

[7] Meka, R., Zuckerman, D.: Pseudorandom generators for polynomial threshold func-
tions. Proceedings of the STOC 2010 Forty-Second ACM Symposium on Theory of
Computing, ACM, New York, NY (2010) 427–436

[8] Nisan, N.: Pseudorandom generators for space-bounded computation. Combinatorica
12 (4) (1992) 449–461

[9] Nisan, N., Wigderson, A.: Hardness vs. randomness. Journal of Computer and System
Sciences 49 (2) (1994) 149–167

[10] Š́ıma, J., Žák, S.: A polynomial time constructible hitting set for restricted 1-
branching programs of width 3. Proceedings of the SOFSEM 2007 Thirty-Third Inter-
national Conference on Current Trends in Theory and Practice of Informatics, LNCS
4362, Springer-Verlag, Berlin (2007) 522–531

[11] Wegener, I.: Branching Programs and Binary Decision Diagrams—Theory and Ap-
plications. SIAM Monographs on Discrete Mathematics and Its Applications, SIAM,
Philadelphia, PA (2000)

32

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

