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Abstract

We express some criticism about the definition of an algorithmic
sufficient statistic and, in particular, of an algorithmic minimal suffi-
cient statistic. We propose another definition, which has better prop-
erties.

1 Introduction

Let x be a binary string. A finite set A containing x is called an (algorithmic)
sufficient statistic for x if the sum of Kolmogorov complexity of A and the
log-cardinality of A is close to Kolmogorov complexity C(x) of x:

C(A) + log2 |A| ≈ C(x). (1)

Let A∗ denote a minimal length description of A and i the index of x
in the list of all elements of A, arranged lexicographically. The equality (1)
means that the two part description (A∗, i) of x is as concise as the minimal
length code of x.

It turns out that A is a sufficient statistic for x iff C(A|x) ≈ 0 and
C(x|A) ≈ log |A|. The former equality means that the information in A∗ is a
part of information in x. The latter equality means that x is a typical member
of A: x has no regularities that allow to describe x given A in a shorter way
than just by specifying its log |A|-bit index in A. Thus A∗ contains all useful
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information present in x and i contains only an accidental information (a
noise).

Sufficient statistics may also contain a noise. For example, it happens for
x being a random string1 and A = {x}. Is it true that for all x there is a
sufficient statistic that contains no noise? To answer this question we can
try to use the notion of a minimal sufficient statistics defined in [4]. In this
paper we argue that this notion is not well defined for some x (although for
some x the notion is well defined). Moreover, and even for those x for which
the notion of a minimal sufficient statistic is well defined not every minimal
sufficient statistic qualifies for “denoised version of x”. We propose another
definition of a (minimal) sufficient statistic that has better properties.

2 Kolmogorov complexity

We denote by {0, 1}∗ the set of all strings over the binary alphabet {0, 1},
and by l(x) the length of a string x. See the textbook [6] for the definitions
of Kolmogorov complexity C(x) of a binary string x and conditional Kol-
mogorov complexity C(x|y) of a binary string x given another string y, and
their properties.

For this paper, the following understanding suffice: C(x|y) is the minimal
length of a program that maps y to x:

C(x|y) = min{l(p) | p ∈ {0, 1}∗, D(p, y) = x}
where D(p, y) denotes the result of the program p for input y (thus D is the
interpreter of the programming language). Programs are assumed to be writ-
ten as binary strings. The programming language (also called a description
mode) is chosen in such a way that for any other programming language D′

there is the constant c such that for the resulting complexity C ′(x|y) it holds
C(x|y) 6 C ′(x|y) + c for all x, y.

By definition C(x) = C(x|empty string). Kolmogorov complexity of a
finite set of strings is defined as follows. We fix any computable bijection
A 7→ [A] between finite sets of binary strings and binary strings and let
C(A) = C([A]). It is not hard to see that if we switch to another computable
bijection A 7→ [A] the value of C(A) changes at most by an additive con-
stant. The expressions C(x|A), C(A|x) are understood as C(x|[A]), C([A]|x),
respectively.

1A string x is called random if C(x) is close to the length of x.
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Throughout the paper we will use the notation log i for dlog2 ie.
We will use in the sequel without reference the following properties of

Kolmogorov complexity:

• The number of strings of Kolmogorov complexity less than k is less
than 2k.

• C(x) 6 l(x) + c, C(x|y) 6 C(x) + c, for some c and all x, y;

• For every computable function f mapping strings to strings there is c
such that C(f(x)|x) 6 c and C(f(x)) 6 C(x) + c for all x;

• (Conditional version of the previous inequality.) For every computable
function f mapping pairs of strings to strings there is c such that
C(f(x, y)|y) 6 C(x|y) + c for all x, y;

• (Symmetry of information). Fix a computable bijection between pairs
of binary strings and binary strings and let 〈x, y〉 denote the string
corresponding to the pair x, y. Then C(〈x, y〉) ≈ C(x) + C(y|x). Un-
fortunately, this equality holds only up to a “logarithmic error term”.
Specifically, we have

C(〈x, y〉) 6 C(x) + C(y|x) + 2 log min{C(x), C(y|x)} + c

for some c and all x, y, and conversely

C(x) + C(y|x) 6 C(〈x, y〉) + 4 log(C(x) + C(y|x)) + c.

• (Conditional version of symmetry of information). For all x, y, z,

C(〈x, y〉|z) = C(x|z) + C(y|〈x, z〉).

Here one inequality is true up to a 2 log min{C(x|z), C(y|〈x, z〉)} + c
error term and the other one up to a 4 log(C(x|z) + C(y|〈x, z〉)) + c
error term.

Logarithmic error terms. Many useful inequalities in Kolmogorov
complexity theory are hardly readable because of ubiquitous logarithmic
terms. To make complexity inequalities more transparent we have used in
the last property and will use in the sequel expressions like “the inequality
C(x|z) 6 C(x|y) + C(y|z) holds up to a O(log C(x|y)) error term”, which
actually means that C(x|z) 6 C(x|y) + C(y|z) + c log C(x|y) + c for some c
and all x, y, z.
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3 Algorithmic sufficient statistics

Let x be a given string of length n. The goal of algorithmic statistics is
to “explain” x. As possible explanations we consider finite sets containing
x. We call any finite A 3 x a model for x or a statistic for x. Every
model A corresponds the statistical hypothesis “x was obtained by selecting a
random element of A”. In which case is such hypothesis plausible? As argued
in [5, 4, 7], it is plausible if C(x|A) ≈ log |A| and C(A|x) ≈ 0 (we prefer to
avoid rigorous definitions up to a certain point; approximate equalities should
be thought as equalities up to an additive O(log n) error term).

As shown in [4, 7], C(x|A) ≈ log |A| and C(A|x) ≈ 0 if and only if C(A)+
log |A| ≈ C(x). Indeed, assume that A contains x and both C(A), log |A| are
at most n (we do not need more complex or larger models to explain x).
Then, given A the string x can be specified by its log |A|-bit index in A.
Omitting terms of order O(log(C(A) + log |A|)) = O(log n), we obtain

C(x) 6 C(x) + C(A|x) = C(A) + C(x|A) 6 C(A) + log |A|.

The equality here follows from the symmetry of information [6]. Assume
now that C(x|A) ≈ log |A| and C(A|x) ≈ 0. Then all inequalities here
become equalities and hence A is a sufficient statistic. Conversely, if C(x) ≈
C(A)+log |A| then the left hand side and the right hand side of the displayed
inequality coincide. Thus C(x|A) ≈ log |A| and C(A|x) ≈ 0.

The inequality
C(x) 6 C(A) + log |A| (2)

(which is true up to a O(log min{C(A), log |A|}) term) has the following
meaning. Consider the two part code (A∗, i) of x, consisting of the minimal
program A∗ for x and log |A|-bit index of x in the list of all elements of A
arranged lexicographically. The equality means that its total length C(A) +
log |A| cannot exceed C(x). If C(A) + log |A| is close to C(x), we call A a
sufficient statistic for x. To make this notion rigorous we have specify what
means “close”. In [4] this is specified as follows: fix a natural constant ε and
call A a sufficient statistic for x if

(C(A) + log |A|) − C(x) 6 ε. (3)

More precisely, [4] uses prefix complexity K in place of plain complexity C
and require that the absolute value of the left hand side be at most ε. (For
prefix complexity the inequality (2) holds up to a constant error term.) If we
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choose ε large enough then sufficient statistics exists, witnessed by A = {x}.
(The paper [1] suggests to set ε = 0 and to use C(x|n) and C(A|n) in place
of K(x) and K(A) in the definition of a sufficient statistic. Such sufficient
statistics might not exist.)

To avoid the discussion on how small should be ε let us call A 3 x an
ε-sufficient statistic for x if (3) holds. The smaller ε is the more sufficient A
is. In this paper we will be interested in values of ε of order Ω(log n).

4 Algorithmic minimal sufficient statistics

Naturally, we are interested in squeezing as much noise from the given string
x as possible. What does it mean? Every sufficient statistic A identifies
log |A| bits of noise in x. Thus a sufficient statistic with maximal log |A|
(and hence minimal C(A)) identifies the maximal possible amount of noise
in x. So we arrive at the notion of a minimal sufficient statistic: a sufficient
statistic with minimal C(A) is called a minimal sufficient statistic (MSS).

Is this notion well defined? Recall that actually we have only the notion
of a ε-sufficient statistic (where ε is either a parameter, or a constant). That
is, we have actually defined the notion of a minimal ε-sufficient statistic. Is
this a sound notion? We argue that for some strings x it is not (for every
ε). There are strings x for which it is impossible to identify MSS in an
intuitively appealing way, since the complexity of the minimal ε-sufficient
statistic decreases much, as ε increases a little.

Theorem 1. Let k 7→ α be a computable mapping from the naturals to the
naturals such that α 6 k. For every natural k there is a string x of length
2k and complexity k + O(log k) with

gx(j) =

{

k − jk

k+α
+ O(log k), if j 6 k + α,

O(log k) if k + α 6 j.

The structure function of x is shown in Fig. 1.

Choose the mapping k 7→ α so that both k/α and α are large (for example,
let α =

√
k). For very small j the graph of gx is close to the sufficiency line

and for j = k + α it is already at a large distance α from it. As j increments
by one, the value gx(j)+ j −C(x) increases by at most k/(k +α)+O(log n),
which is negligible. Therefore, it is not clear where the graph of gx leaves
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log|A|k+alphak

k

C(A)

Figure 1: The structure function of a string for which MSS is not well defined

the sufficiency line. The complexity of the minimal ε-sufficient statistic is
k− (ε+O(log n))(k/α) and decreases fast as a function of ε provided ε/ log n
is large enough.

Theorem 1 is a direct corollary from a result of [9], which will be presented
now. Let x be a binary string. Denote by Sx the structure set of x:

Sx = {(i, j) | ∃A 3 x, C(A) 6 i, log |A| 6 j}.

This set can be identified by either of two its “border line” functions hx, gx :
N → N ∪ {∞}:

hx(i) = min{log |A| | A 3 x, C(A) 6 i}, gx(j) = min{C(A) | A 3 x, log |A| 6 j}.

The functions hx, gx are called the Kolmogorov structure functions of x. The
structure function hx may take the infinite value for small i due to lack of
models of small complexity. In contrast, the function gx takes only finite
values for all x.

As pointed by Kolmogorov [5], the structure set Sx of every string x of
length n and Kolmogorov complexity k has the following three properties
(we state the properties in terms of the function gx):

1. gx(0) = k + O(1) (there is the unique model, A = {x}, for x of log-
cardinality 0 and C({x}) = C(x) + O(1)).

2. gx(n) = O(log n) (witnessed by A = {0, 1}n).

6



3. gx in non-increasing and the “derivative” of gx is bounded by 1 in
absolute value: gx(j + l) > gx(j) − l − O(log min{l, gx(j)}) for every
j, l ∈ N.

For the proof of the last property see [7, 9]. Properties (1) and (3) imply
that i+ j > k−O(log j) for every (i, j) ∈ Sx. Sufficient statistics correspond
to those (i, j) ∈ Sx with i + j ≈ k. The line i + j = k is therefore called the
sufficiency line.

A result of [9, Remark IV.4] states that for every function g that satisfies
(1)–(3) there is a string x of length n and complexity close to k such that gx

is close to g. 2 More specifically, the following holds:

Theorem 2 ([9]). Let g be any non-increasing function g : {0, . . . , n} → N

such that g(0) = k, g(n) = 0 and such that g(j + l) > gx(j) − l for every
j, l ∈ N with j + l 6 n. Then there is a string x of length n and complexity
k ± ε such that |gx(j) − g(j)| 6 ε for all j 6 n. Here ε = O(log n + C(g)),
where C(g) stands for the Kolmogorov complexity of the graph of g:

C(g) = C({〈j, g(j)〉 | 0 6 j 6 n}).

Proof of Theorem 1. Let n = 2k and

g(j) =

{

k − jk

k+α
, if j 6 k + α,

0 if k + α 6 j 6 n.

Then n, k, g satisfy all conditions of Theorem 2. Hence there is a string x of
length n and complexity k + O(log n) with gx(j) = g(j) + O(log n) (notice
that C(g) = O(log n)).

Thus there are strings for which it is hard to identify the complexity of
MSS. There is also another minor point regarding minimal sufficient statis-
tics. Namely, there are strings x for which the complexity of minimal suf-
ficient statistic is well defined but not all MSS qualify as denoised versions
of x. Namely, some of them have a weird structure function. What kind of
structure set we expect of a denoised string? To answer this question con-
sider the following model example. Let y be a string, m a natural number
and z a string of length l(z) = m that is random relative to y. The latter

2Actually, [9] provides the description of possible shapes of Sx in terms of the Kol-
mogorov structure function hx. We use here gx instead of hx, as in terms of gx the
description is easier-to-understand.
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means that C(z|y) > m − β for a small β. Consider the string x = 〈y, z〉.
Intuitively, z is a noise in x and thus y is obtained from x by removing m
bits of noise. What is the relation between the structure set of x and that of
y?

Theorem 3. Assume that y is an arbitrary string and z is a string of length
m with C(z|y) > m − β and let x = 〈y, z〉. Then

gx(j) =

{

C(x) − j, if j 6 m,
gy(j − m), if j > m.

(4)

The equalities here hold up to O(log C(y) + log m + log j + β) term.

C(y)

log|A|

C(A) C(A)

m

C(y)+m

C(y)

log|A|

Figure 2: Structure functions of y and x

Proof. In the proof we will ignore terms of order O(log C(y)+ log m+log j +
β).

The equality gx(j) = C(x) − j (for j 6 m) is easy. Indeed, we have
gx(m) 6 C(y) = C(x) − C(z|y) = C(x) − m witnessed by A = {〈y, z′〉 |
l(z′) = m}. On the other hand, gx(0) = C(x) (by Property 1 of gx). Thus
gx(j) should have maximal possible rate of decrease on the segment [0,m] to
drop from C(x) to C(x) − m.

The inequality gx(j) 6 gy(j − m) is easy as well. Indeed, let a model A
for y witness gy(j −m) so that |A| 6 2j−m and C(A) = gy(j −m). Consider
the model

A′ = A × {0, 1}m = {〈y′, z′〉 | y′ ∈ A, |z′| = m}

of cardinality at most 2j. Its complexity is at most that of |A| (plus O(log m)),
which proves gx(j) 6 gy(j − m).

The non-trivial part of the theorem is the inverse inequality gx(j) >

gy(j − m). Let A be a model for x with |A| 6 2j and C(A) = gx(j) where
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j > m. We need to show that there is a model of y of cardinality at most 2j−m

and of the same (or lower) complexity. We will prove it in a non-constructive
way using a result from [9].

Consider the projection of A: {y′ | 〈y′, z′〉 ∈ A}. Unfortunately, this set
may be as large as A itself. Reduce it as follows. Consider the yth section
of A: Ay = {z′ | 〈y, z′〉 ∈ A}. Define i as the natural number such that
2i 6 |Ay| < 2i+1. Let A′ be the set of those y′ whose y′th section has at least
2i elements. Then by counting arguments we have |A′| 6 2j−i.

Assume first that i > m. Then |A′| 6 2j−m and C(A′) 6 C(A)+O(log i).
Note that i 6 j and thus gy(j − m) 6 gx(j) + O(log j).

Assume now that i < m. To be sure that all the following inequalities
hold up to a O(log C(y) + log m + log j + β) error term let us upper bound
C(x), C(A), C(A′), log |A|, log |A′|. We have:

• C(x) 6 C(y) + O(C(z|y)) 6 C(y) + O(m),

• C(A) 6 C(x) + O(1) 6 C(y) + O(m),

• C(A′) 6 C(A) + O(log i) 6 C(A) + O(log j),

• log |A′| 6 log |A| 6 j,

Thus in the sequel we may neglect terms of order log(C(x)+C(A)+C(A′)+
log |A| + log |A′|).

First we will improve A′ using a result of [9]:

Lemma 4 (Lemma A.4 in [9]). For every A′ 3 y there is A′′ 3 y with
C(A′′) 6 C(A′) − C(A′|y) + O(log(C(A′) + log |A′|)) and log |A′′| = log |A′|.

By this lemma we get the inequality

gy(j − i) 6 C(A′′) 6 C(A′) − C(A′|y).

We claim that
C(A′) − C(A′|y) 6 C(A) − C(A|y). (5)

Indeed, C(A′|A) is negligible hence C(y|A′) > C(y|A). This implies that

C(y) − C(y|A′) 6 C(y) − C(y|A).

By the symmetry of information this inequality is equivalent to (5). Thus
we have

gy(j − i) 6 C(A) − C(A|y).
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By the Property 3 (page 7) of the structure set this inequality implies that

gy(j − m) 6 C(A) − C(A|y) + (m − i).

We need to prove that the right hand side of this inequality is at most C(A),
that is, i > m−C(A|y). To lower bound i, we will relate it to the conditional
complexity of z given y and A. Indeed, we have C(z|A, y) 6 i, as z can be
identified by its ordinal number in yth section of A. On the other hand,

C(z|A, y) > C(z|y) − C(A|y) > m − β − C(A|y).

This theorem answers our question: if y is obtained from x by removing
m bits of noise then we expect that gy, gx satisfy Theorem 3.

Let us define the structure set of a finite set A of strings as that of [A]. It
is not hard to see that if we switch to another computable bijection A 7→ [A]
the value of g[A](j) changes at most by an additive constant. Thus SA and
gA are well defined for finite sets A.

Is it true that for every x the structure function gA of every ε-sufficient
statistic A for x satisfies (4) (where we let y = A and m = log |A|) with an
error term O(ε + log n)? The answer is twofold: the first equality in (4) is
true (with precision O(ε + log n)) for all x and all ε-sufficient statistics A for
x and the second equality in (4) is false for some x,A.

The first equality in (4) (for y = A and m = log |A|) is proved as follows:
gx(0) = C(x) + O(1) (by Property 1 of gx) and gx(log |A|) 6 C(A) = C(x)−
log |A|+O(ε). Thus gx must decrease with maximal speed to fall down from
C(x) to about C(x) − log |A| on the segment [0, log |A|] (Property 3). Thus
gx(j) = C(x) − j + O(ε + log n) for all j ∈ [0, log |A|].

Now we will show that there is a string x as in Theorem 3 and a O(log n)-
sufficient statistic B for x that does not satisfy the equality gB(j) ≈ gx(j +
log |B|).
Theorem 5. For every k there is a string y of length 2k and Kolmogorov
complexity C(y) = k such that

gy(j) =

{

k if j 6 k,
2k − j if k 6 j 6 2k

and hence for any z of length k and conditional complexity C(z|y) = k the
structure function of the sting x = yz (concatenation of y and z) satisfies

gx(j) =







2k − j if j 6 k,
k if k 6 j 6 2k,
3k − j if 2k 6 j 6 3k.

10



(See Fig. 3.) Moreover, for every such z the string x = yz has a model
B ⊂ {0, 1}3k of complexity C(B) = k and log-cardinality log |B| = k such
that gB(j) = k for all j ∈ [k, 2k). All equalities here hold up to O(log k)
additive error term.

log|A|

k 2k

k

C(A)

log|A|

k 2k

k

C(A)

2k

3k

Figure 3: Structure functions of y and x

The structure function of x = yz clearly leaves the sufficiency line at
the point j = k. Thus k is intuitively the complexity of minimal sufficient
statistic. The function gB(j) is far from gx(j + k) on the segment [k, 2k).

Proof. We first construct y. Call a string y of length 2k simple if it has a
model T with |T | 6 2k, C(T ) < k. Otherwise call y complex. The total
number of simple strings is strictly less than 22k. Indeed, there are less than
2k sets of complexity less than k. Therefore the total number of elements in
all T with |T | 6 2k, C(T ) < k is less than 2k×2k. Let y be the lexicographical
first complex string of length 2k. Let

B = {yz′ | z′ ∈ {0, 1}k} ∪ {x′ ∈ {0, 1}3k | C(x′) < k}.

We claim that C(y) 6 k + O(1). Indeed, y can be found given k and the
set of all simple strings. The set of simple strings can be found given the set
of all halting programs of length less than k, which in turn can be identified
by the k-bit number Nk of halting programs of length less than k (we run all
programs of length less than k until Nk of them halt). The same argument
shows that C(B) 6 k + O(1).

It remains to find gy and gB. By construction, gy(k) > k and gy(0) =
C(y) 6 k. Thus gy(j) ≡ k on the segment [0, k]. As gy(2k) = 0 (witnessed by
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{0, 1}2k), gy(j) should have maximal possible rate of decrease on the segment
[0, k] to drop from k to 0.

It remains to show that gB(j) ≡ k on the segment [k, 2k). The inequality
gB(j) 6 k is witnessed by {[B]}. On the other hand, assume that M is
a family of at most 22k−1 finite sets and [B] ∈ M . We have to show that
C(M) > k − O(log k). To this end let M ′ = {[B′] ∈ M | |B′| < 2k+1}. As
|B| < 2k+1, the family M ′ is a model of [B] as well. Its complexity is at
most C(M) + O(log k). Given k and M ′ we can find a string u length 3k
and complexity at least k: pick the lexicographical first string outside the
union of all sets B′ with [B′] ∈ M ′. There is such a string, as the total
number of elements in all such B′ is less than 22k−12k+1 = 23k. As that union
contains all strings of length 3k and complexity less than k we have C(u) > k.
Therefore, k 6 C(u) 6 C(M) + O(log k). Thus gB(2k − 1) > k − O(log k)
hence gB(j) > k − O(log k) for all j < 2k.

5 Desired properties of sufficient statistics and

a new definition

Recall the probabilistic notion of sufficient statistic [3]. In the probabilistic
setting, we are given a parameter set Θ and for each θ ∈ Θ we are given a
probability distribution over a set X (for simplicity we assume that both X, Θ
are finite or countable). For every probability distribution over Θ we thus
obtain a probability distribution over Θ×X. A function f : X → Y (where
Y is any set) is called a sufficient statistic, if for every probability distribution
over Θ, the random variables x and θ are independent conditional to f(x).
That is, for all a ∈ X, c ∈ Θ,

Prob[θ = c|x = a] = Prob[θ = c|f(x) = f(a)].

Saying differently, x → f(x) → θ is a Markov chain (for every probability
distribution over Θ).

In the definition of a sufficient statistics it only matters in which equiva-
lence classes it partitions X (x′ is equivalent to x′′ if f(x′) = f(x′′)). We say
that a sufficient statistic f is less than a sufficient statistic g if the partition
defined by g is a sub-partition of that defined by f . It turns out that there
is always a sufficient statistic f that is less than any other sufficient statis-
tic. Such sufficient statistics are called minimal. Any two minimal sufficient
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statistics partition the set X into the same equivalence classes thus basically
there is only one minimal sufficient statistic. Is it possible to define a no-
tion of an algorithmic sufficient statistic that has similar properties? More
specifically, we wish it have the following properties.

(1) If A is an (algorithmic) sufficient statistic for x and log |A| = m then
the structure functions of y = A and x satisfy Theorem 3. In particular,
structure functions of every MSS A,B for x coincide.

(2) Assume that A is a MSS and B is a sufficient statistic for x. Then
C(A|B) ≈ 0.

As the example of Theorem 5 demonstrates, the property (1) does not
hold for the usual definition of sufficient statistics. Indeed, consider the model
A  {y} × {0, 1}k for the string x form that theorem. Both A and B are
minimal sufficient statistics. The model A, as finite object, is identical to y
and hence the structure function of A coincides with that of y. However gB

is quite different from gA.
It is unknown whether the property (2) holds or not. We propose here

a new definition of an algorithmic sufficient statistic that satisfies both (1)
and (2). The main idea of the new definition is the following. As observed
in [8], to have the same structure sets strings x, y should be equivalent in
the following strong sense: there should be short total programs p, q with
D(p, x) = y and D(q, y) = x (where D is the programming language in the
definition of conditional Kolmogorov complexity). A program p is called total
if D(p, z) converges for all z.

Let CTD(x|y) stand for the minimal length of p such that p is total and
D(p, y) = x. For the sequel we need that the programming language D have
the following property. For any other programming language D′ there is a
constant c such that CTD(x|y) 6 CTD′(x|y) + c for all x, y. (The existence
of such a D is straightforward.) Fixing such D we get the defintion of the
total Kolmogorov complexity CT(x|y). If both CT(x|y),CT(y|x) are small
then we will say that x, y are strongly equivalent.

Lemma 6. For all x, y and all natural j we have

|gx(j) − gy(j)| 6 2 max{CT(x|y),CT(y|x)} + O(1).

(If x, y are strongly equivalent then their structure functions are close to each
other.)

Proof. We will prove the inequality gx(j) 6 gy(j) + 2CT(x|y) + O(1). The
other inequality is proved in a similar way. Let p witness CT(x|y) and let A
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witness gy(j). The set B = {D(p, y′) | y′ ∈ A} contains x and has at most
|A| 6 2j elements. Its complexity is at most C(A) + 2l(p) + O(1).

We call A a strongly sufficient statistic for x if CT(A|x) ≈ 0 and C(A) +
log |A| ≈ C(x) (recall that the latter inequality implies only that C(A|x) ≈
0). More specifically, call a model A for x an α-strong statistic for x if
CT(A|x) 6 α. Strongly sufficient statistics for x are those statistics that are
α-strong and ε-sufficient for small α, ε. It turns out that strongly sufficient
statistics satisfy properties (1) and (2). That is, (1) if A is a strongly sufficient
statistic for x and log |A| = m then the structure functions of y = A and x
satisfy the equalities of Theorem 3 and (2) C(A|B) ≈ 0 for every strongly
sufficient statistic B and every minimal sufficient statistic A for x (A may
be not strong). The exact statements are given in the following Theorems 7
and 9.

Theorem 7 (on the structure function of a strong sufficient statis-
tic). Assume that A is an ε-strong ε-sufficient statistic for x. Then for all
natural j we have gA(j) = gx(j + log |A|) + O(ε + log(C(A) + log |A| + j))

Proof. Let z stand for the index of x with respect to the lexicographical order
on A. We claim that both CT(〈A, z〉|x) and CT(x|〈A, z〉) are of order O(ε).
Indeed, there is a total program of constant length that maps 〈A, z〉 to x.
On the other hand, given x we can find A by applying a total ε-bit program
and then find z.

By Lemma 6 g〈A,z〉(j) = gx(j)+O(ε). As A is ε-sufficient for x, conditions
of Theorem 3 are fulfilled for y = A, m = log |A| and β = O(ε + log C(A) +
log m). Thus gA(j) = g〈A,z〉(j + m) = gx(j + m). The error term here is
O(ε + log C(A) + log m + log j).

To state the second property of strongly sufficient statistics we need to
clarify the notion of a minimal sufficient statistic. Technically, it is convenient
to separate minimality from sufficiency. Namely, let γ, δ be natural numbers.
Call A 3 x a δ, γ-minimal statistic for x if

gx(log |A| + γ + δ) > C(A) − δ. (6)

The meaning of this definition is as follows: it states that it is impossible to
decrease the complexity of A by δ bits at the expense of increasing the log-
cardinality of A by the same amount plus a little bit more (γ). The notion
of a minimal statistic has the following useful property that states that it is
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impossible to decrease the complexity of a minimal γ, δ-statistic by δ at the
expense of increasing the sum C(A) + log |A| by at most γ − O(log C(A)).
This property is not straightforward: indeed, we might decrease C(A) by
much more than δ and simultaneously increase log |A| by the same amount.
However, in this case we can exchange the decrease of C(A) for the decrease
of log |A| (Property 3 of the structure set).

Lemma 8. For some constant c and all γ, δ if A is a δ, γ-minimal statistic
for x then x has no model T of complexity at most C(A) − δ with

C(T ) + log |T | 6 C(A) + log |A| + (γ − c log C(A)).

Proof. Assume that there is such T . Then gx(log |T |) 6 C(A) − δ. The
inequality (6) implies that log |A| + γ + δ < log |T | (recall that gx is non-
increasing). Therefore we can use Property 3 and conclude that for some
constant c′ we have

gx(log |A| + γ + δ) 6 gx(log |T |) + log |T | − (log |A| + γ + δ) + c′ log C(A).

Let c = c′. Then the right hand side here is at most

C(T ) + log |T | − (log |A| + γ + δ) + c′ log C(A)

6 C(A) + log |A| + γ − c log C(A) − (log |A| + γ + δ) + c′ log C(A) = C(A) − δ,

a contradiction.

We are able to present the theorem stating that the strong statistics
satisfy the second desired property.

Theorem 9 (Chelnokov [2]). There is a constant c such that for all natural
n and ε, δ 6 n and all strings x of length of n the following is true. If A
is a δ, c(ε + log n)-minimal ε-sufficient statistic for x and B is an ε-strong
ε-sufficient statistic for x with |B| 6 |A|, then C(A|B) 6 c(ε + δ + log n).

In the proof of this theorem we will need a result of [9] stating that all
δ, γ-minimal models of the same complexity are algorithmically equivalent
(even if they are models for non-related strings), Theorem 10 below and its
straightforward Corollary 11. Let d(u, v) stand for max{C(u|v), C(v|u)} (a
sort of algorithmic distance between u and v).
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Theorem 10 (Theorem V.4(iii) from [9]). Let N i stand for the number
of strings of complexity at most i. 3 For all A 3 x and i, either d(N i, A) 6

C(A) − i, or there is T 3 x such that log |T | + C(T ) 6 log |A| + C(A) and
C(T ) 6 i − d(N i, A), where all inequalities hold up to O(log(C(A) + |A|))
additive term.

Corollary 11. There is a constant c such that for every string x and for
every i and δ the following holds. If A is a δ, c log(C(A) + log |A|)-minimal
model for x then d(N i, A) 6 |C(A) − i| + δ + c log(C(A) + log |A|).

Proof. Let c′ be the constant in the error term in Theorem 10 and c′′ be the
constant from Lemma 8. Set c = c′ + c′′ and let A, i be as in the corollary.
Let γ = c log(C(A)+log |A|) so that A is a δ, γ-minimal model for x. By way
of contradiction assume that d(N i, A) > |C(A) − i| + δ + γ. Then certainly
d(N i, A) > C(A)− i and thus the second option in Theorem 10 holds. That
is, there is T 3 x such that

log |T | + C(T ) 6 log |A| + C(A) + γ′
6 log |A| + C(A) + γ − c′′ log C(A)

and C(T ) 6 i − d(N i, A) + γ′ where γ′ = c′ log(C(A) + log |A|) is the error
term in Theorem 10. By our assumption the right hand side of the last
inequality is less than i− (|C(A)− i|+ δ + γ) + γ′ 6 C(A)− δ. By Lemma 8
this implies that A is not δ, γ-minimal.

This corollary reveals an interesting phenomenon: let x, y be arbitrary
strings and let A be a δ, c log(C(A) + log |A|)-minimal model for x and B
a δ, c log(C(B) + log |B|)-minimal model for y. If the complexity A is close
to that of B, then A and B are algorithmically equivalent, as they both are
equivalent to N log |A|. More specifically d(A,B) = O(|C(A) − C(B)| + δ +
log(C(A) + log |A|) + log(C(B) + log |B|)).

Proof of Theorem 9. Let n, ε, δ, x, A,B be as in the theorem (the constant
c is to be defined later). On the top level, the proof goes as follows. As
B is a sufficient statistic for x, Theorem 7 implies that gB(j) ≈ gx(j +
log |B|). Therefore the complexity of every minimal sufficient statistic for B
is approximately the same as that for A (recall that A is a minimal sufficient
statistic for x). Let D be a minimal sufficient statistic for B. As both D and

3Actually, the authors of [9] use prefix complexity in place of the plain complexity. It
is easy to verify that Theorem V.4(iii) holds for plain complexity as well.
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A are minimal sufficient statistics of the same complexity, by Corollary 11
they are algorithmically equivalent. Therefore C(A|D) ≈ 0. As D is a
sufficient statistic for B, we additionally have C(D|B) ≈ 0. This implies
C(A|B) 6 C(A|D) + C(D|B) ≈ 0.

Now we repeat these arguments formally and estimate the resulting error
terms.

Proving that gB(j) ≡ gx(j + log |B|): This equality follows from Theo-
rem 7 for B and x. How precise is this equality? In the error term of The-
orem 7 log C(B) and log m are of order O(log n) as C(B) + log |B| = O(n),
and the latter holds as B is ε-sufficient and ε 6 n. Thus the equality
gB(j) = gx(j + log |B|) hold up to an error term O(ε + log j + log n). It
implies that the log-cardinality of minimal sufficient statistics for B should
be log |B| less than of those of x, that is, about log |A| − log |B|.

Constructing D: Let D be a model of B of minimal complexity among
models of log-cardinality at most log |A| − log |B|, so that

C(D) = gB(log |A| − log |B|), log |D| 6 log |A| − log |B|.

Proving that C(D) ≈ C(A): The equality gB(j) = gx(j +log |B|) holds
for j = log |A| − log |B| and therefore

C(D) = gx(log |A|),

up to a O(ε + log n) error term (as j 6 log |A| 6 C(x) + ε = O(n)). We
claim that gx(log |A|) = C(A). Indeed, we have

C(x) 6 gx(log |A|) + log |A| 6 C(A) + log |A| 6 C(x).

Here the first inequality holds (up to an error term log C(A)), as the graph
of gx lies above sufficiency line and the last inequality is true (up to an error
term ε), since A is ε-sufficient. Thus all inequalities here are equalities up to
an error term O(ε + log n).

Proving that D is a O(ε + log n)-sufficient statistic for B: Indeed,
ignoring terms of order O(ε + log n), we have

C(D) + log |D| 6 C(A) + log |A| − log |B| = C(x) − log |B| = C(B).

Here, the first equality holds, since A is an ε-sufficient statistic for x and the
second equality holds, since B is an ε-sufficient statistic for x. As D is an
O(ε+log n)-sufficient statistic for B, C(D|B) is negligible. More specifically,
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C(D|B) is of order O(ε + log n + log(C(D) + log |D|)) = O(ε + log n) (the
last equality holds, as C(D) + log |D| = C(B) = O(n)). It remains to show
that C(A|D) ≈ 0, which is proved in two steps.

Proving that D is a minimal statistic for B: Recall that A is a
δ, γ-minimal model for x where γ = c(ε + log n). As gB(j) = gx(j + log |B|),
we have

gB(log |D|+γ+δ) > gB(log |A|−log |B|+γ+δ) = gx(log |A|+γ+δ) > C(A)−δ = C(D)−δ.

The first equality is true by Theorem 7 (with an error term O(ε + log n)),
the second inequality is true as written by δ, γ-minimality of A. The second
equality was proved above. Recalling the error term we get

gB(log |D| + γ + δ) > C(D) − δ − c′′(ε + log n)

for some constant c′′. This means that D is a δ′, γ′-minimal model for B
where δ′ = δ + c′′(ε + log n) and γ′ = γ − c′′(ε + log n).

Proving that C(A|D) ≈ 0: We need that γ′ be at least c′(log(C(D) +
log |D|)), where c′ is the constant in Corollary 11. As C(D)+log |D| = O(n),
to this end we can set c = c′ + c′′. Then by Corollary 11 we have d(N i, D) 6

δ+O(ε+log n) where i = log |A|. Recall that C(A)+log |A| = O(n) and hence
γ > c′ log(C(A)+ log |A|). By Corollary 11 we have d(N i, A) = δ +O(log n).
Thus C(A|D) 6 d(N i, D) + d(N i, A) = O(δ + ε + log n).

So strongly sufficient statistics have better properties than sufficient statis-
tics. However, many questions are still open. The first one is whether
CT(A|B) ≈ 0 for every strong MSS A for x and every strong sufficient
statistic B for x. Formally:

Question 1. Is it true that there is a constant c such that for all natural n
and ε, δ 6 n and all strings x of length of n the following is true. If A is an ε-
strong δ, c(ε+ log n)-minimal ε-sufficient statistic for x and B is an ε-strong
ε-sufficient statistic for x with |B| 6 |A|, then CT(A|B) 6 c(ε + δ + log n)?

An interesting related question is the following: is it true that there is
always a strongly sufficient statistic that is a MSS? Formally:

Question 2. Is it true that for every constant c there is a constant c′ such
that for all natural n and ε, δ 6 n and all strings x of length of n the following
is true. If there is a δ/c′, c′c(ε + log n)-minimal ε/c′-sufficient statistic A for
x then there is ε-strong δ, c(ε + log n)-minimal ε-sufficient statistic B for x?

Another interesting related question is the following.
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Question 3. Merging strongly sufficient statistics: Is it true that for some
c and all ε for all cε-strong cε-sufficient statistics A,B for x there is a ε-
strong ε-sufficient statistic D for x with log |D| > log |A|+ log |B| − log |A∩
B| − c(ε + log n)?

The next theorem answers Question 1 in the case when both A,B are min-
imal. For C in place of CT this was known: all minimal sufficient statistics
for x are algorithmically equivalent. This easily follows from Corollary 11
(see the proof of the next theorem).

Theorem 12. There is a constant c such that for all natural n and ε, δ < n
the following holds for every string x of length n. For every δ, ε + c log n-
minimal ε-sufficient models A,B for x such that A is ε-strong we have
CT(A|B) 6 c(ε + δ + log n).

Proof. Our plan is as follows. We first show that C(A) ≈ C(B) and, more-
over, d(A,B) ≈ 0. To this end we only need that A,B be minimal sufficient
statistics for x. Then we show that A has the following feature: A has many
elements x′ ∈ B such that A can be retrieved from any such x′ using the
program p witnessing CT(A|x) 6 ε. Finally, we show that there are few A′

that have this feature and there is a short program that given B and p finds
a list of all such A′. Given B, the set A can be identified by p and its index
in that list.

Let us start the formal argument. First notice that C(A) + log |A| is of
order O(n), which implies that error terms of order log(C(A)+log |A|) below
may be estimated as O(log n). The same applies to B.

Proving that C(A) and C(B) are at most δ apart: Assume that c
is large. By way of contradiction assume that C(A) < C(B) − δ, say. As B
is minimal, by Lemma 8 we have

C(A)+log |A| > C(B)+log |B|+ε+c log n−O(log n) > C(x)+ε+c log n−O(log n).

On the other hand, as A is ε-sufficient, the left hand side here is at most
C(x) + ε, which is a contradiction if c is large enough.

Proving that d(A,B) is negligible: If c is large enough, then A is
δ, c′ log(C(A) + log |A|)-minimal model for x, where c′ is the constant from
Corollary 11. The same holds for B. Applying Corollary 11 for A and B
and i = log |A| we conclude that both d(N i, A) and d(N i, B) are of order
O(δ + log n) hence d(A,B) = O(δ + log n).

The feature of A using which we find A given B: Let p be a total
program witnessing CT(A|x) 6 ε. Let us show that there are many x′ ∈ B
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with x′ ∈ D(p, x′) = A (otherwise B would be not sufficient). We will then
identify A given B in few bits by its ordinal number among all A′ that have
this property.

Let D = {x′ ∈ B | x′ ∈ D(p, x′) = A}. Obviously, D includes x and

C(D|B) 6 C(A|B) + ε = O(δ + ε)

(ignoring terms of order O(log n)). Given B and p the string x can be
identified by its index in D, therefore

C(x|B) 6 C(D|B) + log |D| 6 log |D| + O(δ + ε).

On the other hand, C(x|B) > log |B|−ε, as B is ε-sufficient. Hence log |D| >

log |B|−ε−O(δ+ε). Recall that we ignored terms of order O(log n). Actually,
we have shown that for some constant c we have log |D| > log |B|− c(ε+ δ +
log n).

Proving that the number of A′ that have this feature is small:
Consider now all A′ such that

log |{x′ ∈ B | x′ ∈ D(p, x′) = A′}| > log |B| − c(ε + δ + log n).

These A′ are pairwise disjoint (as A′ can be retrieved from any its element by
applying program p). Each of them has at least |B|/2c(ε+δ+log n) elements of
B. Thus there are at most 2c(ε+δ+log n) different such A′s. Given B and p, ε, δ
we are able to find the list of all A′s. The program that maps B to the list of
A′s is obviously total. Therefore there is a total program of O(ε + δ + log n)
bits that maps B to A and CT(A|B) = O(ε + δ + log n).
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