
An Encoding Invariant Version of Polynomial

Time Computable Distributions

Nikolay Vereshchagin∗

State University, Leninskie gory 1,
Moscow 119991, Russia,

Email:ver@mccme.ru
WWW home page: http://lpcs.math.msu.su/˜ver

May 14, 2010

Abstract

When we represent a decision problem, like CIRCUIT-SAT, as a

language over the binary alphabet, we usually do not specify how

to encode instances by binary strings. This relies on the empirical

observation that the truth of a statement of the form “CIRCUIT-SAT

belongs to a complexity class C” does not depend on the encoding,

provided both the encoding and the class C are “natural”. In this

sense most of the Complexity theory is “encoding invariant”.

The notion of a polynomial time computable distribution from

Average Case Complexity is one of the exceptions from this rule. It

might happen that a distribution over some objects, like circuits, is

polynomial time computable in one encoding and is not polynomial

time computable in the other encoding. In this paper we suggest an

encoding invariant generalization of a notion of a polynomial time

computable distribution. The completeness proofs of known distribu-

tional problems, like Bounded Halting, are simpler for the new class

than for polynomial time computable distributions.

This paper has no new technical contributions. All the statements

are proved using the known techniques.

∗The work was in part supported by a RFBR grant 09-01-00709

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 91 (2010)

1 Polynomial time samplable and computable

distributions

Let us specify first what we mean by “encoding invariant” notions in Com-
plexity theory. Fix a set X of “objects” (like boolean circuits). An encoding
of X is an injective mapping g from X to the binary strings. To every deci-
sion problem L with instances from X and every encoding g of X we assign
the language

Lg = {g(x) | x is a YES-instance of L}.

We say that decision problem L in encoding g belongs to a complexity class
C if Lg ∈ C.

It turns out that different “natural” encodings of boolean circuits are
equivalent in the following sense. We call g1 and g2 poly-time equivalent
if both functions g1(g

−1
2 (x)) and g2(g

−1
1 (x)) are computable in polynomial

time. Note that these functions map strings to strings and thus the notion
of polynomial time computability is meaningful in this context.

If encodings g1 and g2 are poly-time equivalent then Lg1
= h(Lg2

) for
a polynomial time computable and invertible partial function (namely for
h(x) = g1(g

−1
2 (x))). Let us call a class C of languages over a binary alphabet

encoding invariant if for every L ∈ C and every polynomial time computable
and invertible partial function h we have h(L) ∈ C. Natural complexity
classes above P, like NP or BPP, are encoding invariant.

We do we care about encoding invariance? The point is that natural
encodings of the same natural set of objects X are poly-time equivalent (like
in the case of boolean circuits). Thus we can freely say that a decision
problem L is in an encoding invariant class C meaning that Lg ∈ C without
specifying the encoding g used. For encoding non-invariant class, like the
class of languages having AC0 circuits of depth 5 (say), we should carefully
specify the encoding used, which is not convenient. For example, the question
of whether the problem “Boolean circuit evaluation” can be solved by AC0

circuits of depth 5 is meaningless.
Now we are going to introduce the main notions from Average Case Com-

plexity. We will follow the paper [1] of Bogdanov and Trevisan. The main
goal of the theory is to show that certain NP problems are “hard on average”.
More specifically, we want to provide evidence that for certain NP problems
L there is a “simple” probability distribution D on their instances such that
every efficient algorithm errs with non-negligible probability on a randomly

2

chosen instance. To this end we define reductions between pairs (problem,
distribution) and show that the pair in question is complete in a large class
of such pairs.

Definition 1 ([2, 1]). A distribution over {0, 1}∗ is a function D from {0, 1}∗

to the non-negative reals such that
∑

x D(x) = 1. An ensemble of distribu-
tions D is a sequence

D0, D1, . . . , Dn, . . .

of probability distributions over {0, 1}∗. (The parameter n is called the
security parameter.) We say that ensemble D is polynomial time samplable
if there is a randomized algorithm A that with an input n outputs a string
in {0, 1}∗ and:

• there is a polynomial p such that, on input n, A runs in time at most
p(n) regardless of its internal coin tosses;

• for every n and every x ∈ {0, 1}∗, Pr[A(n) = x] = Dn(x).

We will call such an algorithm A a sampler for D.
A distributional problem is a pair (L,D) where L is a language over the

binary alphabet and D is an ensemble of distributions. We say that a distri-
butional problem (L,D) is in (NP, PSamp) if L ∈ NP and D is polynomial
time samplable.

Note that, in the defintion of polynomial time samplability, we do not
require that the support of distribution Dn consist of strings of length exactly
n. From the definition it follows only that it consists of strings of length at
most p(n).

The following straightforward lemma states that PSamp is an encoding
invariant class. Assume that we are given computable injective mappings
(encodings) g1, g2 from a set X of objects to the binary strings. Assume
that D is a probability distribution over binary strings that represents a dis-
tribution over X in encoding g1. Then D(g1(g

−1
2 (x))) represents the same

distribution in encoding g2. Obviously h(x) = g1(g
−1
2 (x)) is a partial polyno-

mial time computable and invertible injective function (i.e., both h(x), h−1(x)
are computable in time polynomial in the length of x) and the support of D
is included in the range of h.

Lemma 1. Assume that D is polynomial time samplable and h : {0, 1}∗ →
{0, 1}∗ is a partial polynomial time computable and invertible injective func-
tion and for all n the support of Dn is included in the range of h. Then the

3

ensemble Dh where

Dh
n(x) =

{
Dn(h(x)) if h(x) is defined,

0 otherwise

is polynomial time samplable.

The goal of Average Case Complexity is to show that certain distribu-
tional problems are (NP, PSamp) complete under reductions of certain kinds
which preserve “simplicity on average”. We will not define here the type of
reductions used in the definition of completeness, and refer to [2, 4, 1] for the
definition. We will define simplified reductions (Definition 3.1 from [1]) that
come back to [5]. These simplified reductions will suffice for the goal of this
paper.

Definition 2. We say that ensemble D is dominated by an ensemble D′ if
there is a polynomial p(n) such that for all n, x,

Dn(x) ≤ p(n)D′
n(x).

We say that (L,D) reduces to (L′,D′) if there is a function f(x, n) that for
every n and every x in the support of Dn can be computed in time polynomial
in n and

• (Correctness) x ∈ L if and only if f(x, n) ∈ L′;

• (Domination) There is a polynomial q(n) such that the distribution

D′′
n(y) =

∑

x:f(x,n)=y

Dn(x)

is dominated by D′
q(n)(y).

In particular (L,D) always reduces to (L,D′) provided D′ dominates D.

The following argument justifies this defintion. Assume that there is an
algorithm A that on input x and parameter n solves decision problem L′

with a negligible error probability εn for x randomly chosen with respect
to D′

n. Then the algorithm A(f(x, n), q(n)) solves decision problem L with
(negligible) error probability p(n)εq(n) with respect to distribution Dn.

4

Remark 1. If the function f is injective (for every fixed n) then the domina-
tion condition is easier to understand. In this case D′′

n(f(x, n)) = Dn(x) and
the domination condition boils down to requiring that

Dn(x) ≤ p(n)D′
q(n)(f(x, n))

for some polynomials p, q.

Now we are going to define polynomial time computable ensembles of
distributions. We will follow the exposition of [1]. Let ¹ denote the lexico-
graphic ordering between bit strings. If D is a distribution over {0, 1}∗ we
define

fD(x) = D({y | y ¹ x}) =
∑

y¹x

D(y).

The function fD is called cumulative probability for distribution D.

Definition 3 (Levin [5], Bogdanov–Trevisan [1]). We say that ensemble D is
polynomial time computable if there is an algorithm that given an integer n
and a string x ∈ {0, 1}∗, runs in time polynomial in n and computes fDn

(x).
Let (NP, PComp) stand for the class of distributional problems (L,D) where
L ∈ NP and D is polynomial time computable.

Neither Levin, nor Bogdanov and Trevisan specify the meaning of poly-
nomial time computability of a real valued function. To interpret Defintion 3
in a right way, we note that [1] claims that polynomial time computability
implies polynomial time samplability. Notice that if D is a polynomial time
samplable ensemble then Dn(x) is always a dyadic rational. Therefore we
will assume that, in the Definition 3, fDn

(x) is always a dyadic rational and
the algorithm computing fDn

(x) outputs the numerator and denominator of
fDn

(x) in binary notation. With this interpretation, every polynomial time
computable ensemble is indeed polynomial time samplable, see Theorem 2
below.

This interpretation of Definition 3 has an obvious minor point: we re-
strict possible values of fDn

(x) to dyadic rationals. Therefore it is natural to
consider the following relaxation of Definition 3.

Definition 4. An ensemble D is called weakly polynomial time computable if
there is an algorithm that given integers n,m and a string x ∈ {0, 1}∗, runs in
time polynomial in n+m and computes a rational number within a distance
at most 2−m from fDn

(x).

5

In this definition we allow Dn(x) to be any non-negative real. It is not
hard to see that every weakly polynomial time computable ensemble is dom-
inated by a polynomial time computable ensemble (see Theorem 1 below)
and thus both definitions are basically the same. In both definitions, the
length of all strings in the support of Dn is bounded by a polynomial in n
(otherwise it is not clear how a polynomial time algorithm can read x’s).

Theorem 1 ([5]). Every weakly polynomial time computable ensemble is
dominated by a polynomial time computable ensemble.

This theorem was essentially proven in [5] (although not explicitly stated
there). For the sake of completeness we present the proof in the Appendix.

It is not clear whether Definitions 3 and 4 are encoding invariant1. Indeed,
assume that an ensemble of distributions D is polynomial time computable
and h is a polynomial time computable and invertible partial function. There
is no guarantee that Dh is polynomial time computable: the function h(x)
might not preserve lexicographical order.

The common scheme to prove (NP, PSamp) completeness is as follows.
Assume that we want to show that (L,D) is (NP, PSamp) complete. First
we show that (L,D) is (NP, PComp) complete with respect to reductions of
Definition 2. Second, we use the result of [4, 2] stating that every distri-
butional problem in (NP, PSamp) reduces to some distributional problem in
(NP, PComp) (using reductions that are weaker than those of Definition 2).

The goal of this paper is to simplify this scheme. Namely, in place
of the class (NP, PComp) we suggest to use a wider class, which we call
(NP, PISamp). Ensembles of distributions from PISamp will be called “poly-
nomial time invertibly samplable”. The class PISamp is encoding invariant
and proving (NP, PISamp) completeness is easier than proving (NP, PComp)
completeness.

2 Polynomial time invertibly samplable dis-

tributions

Let A be a polynomial time probabilistic algorithm, as in the definition of
a samplable distribution. Think of the source of randomness for A as a

1And they are not provided one-way permutations exist, see Remark 1.

6

real number in the segment [0, 1) with respect to the uniform distribution.
More precisely, if a computation of A(n) returns x where r = r1 . . . rl is the
sequence of outcomes of coin tosses made in that computation, we will think
that A(n) maps all reals in the half-interval [0.r, 0.r+2−l) to x. In this way A
defines a mapping from the set N× [0, 1) to {0, 1}∗ and we denote by A(n, α)
the result of A for input n and randomness α ∈ [0, 1). Let

A−1(n, x) = {α ∈ [0, 1) | A(n, α) = x}.

In general, A−1(n, x) is a union of a finite number of segments and each of
them has the form [k/2l, (k + 1)/2l).

Definition 5. We call A, as above, polynomial time invertible, if for all n
and all x in the support of Dn, the set A−1(n, x) is one subsegment of [0, 1)
which can be computed from n, x in time polynomial in n. (Segments are
represented by numerators and denominators of their end-points, written in
binary notation.) We say that a polynomial time samplable ensemble D is
polynomial time invertibly samplable if there is a polynomial time invertible
sampler for D.

Remark 2. If D is polynomial time invertibly samplable then Dn(x) is a
dyadic rational that can be computed from x in time polynomial in n. How-
ever this does not imply that the cumulative function of Dn is polynomial
time computable.

It is easy to see that the class of polynomial time invertibly samplable
distribution is encoding invariant (in the sense of Lemma 1). The next theo-
rem shows that PComp ⊆ PISamp and thus PISamp is an encoding invariant
generalization of PComp.

Theorem 2 ([5]). Every polynomial time computable ensemble of distribu-
tions is polynomial time invertibly samplable.

This theorem was essentially proven in [5] (although not explicitly stated
there). Actually the main idea of the proof comes back to Fano and Shannon
(the so called Shannon-Fano codes). For the sake of completeness we present
the proof in the Appendix.

Now we will explain why proving (NP, PISamp) completeness is easier
than proving (NP, PComp) completeness. Assume that we have to show that
an arbitrary problem (L′,D′) ∈ (NP, PComp) reduces to a fixed (NP, PComp)
complete problem (L,D). An analysis of the proof reveals that we use the

7

assumption about polynomial time computability of D′ to construct an in-
vertible sampler for D′. Thus to prove that (L,D) is (NP, PISamp) complete
is easier than to prove that it is (NP, PComp) complete: we can skip this
step. On the other hand, for all known (NP, PComp) complete problem
(L,D) it is immediate that D is in PISamp. Thus the proof of (NP, PISamp)
completeness of (L,D) has one step less than that of its (NP, PComp) com-
pleteness. An example of (NP, PISamp) completeness proof is presented in
Section 3.

The next theorem shows that under certain plausible assumptions PComp
6= PISamp 6= PSamp.

Theorem 3. (a) If one-way functions exist, then there is a polynomial time
samplable ensemble that is not dominated by any polynomial time invertibly
samplable ensemble. (b) Assume that for some polynomial p there is a one-
way function fn : {0, 1}n → {0, 1}p(n) such that every string y ∈ {0, 1}p(n)

has at most poly(n) pre-images under fn. Then there is a polynomial time
invertibly samplable ensemble that is not dominated by any polynomial time
computable ensemble.

Item (a) implies that there is a polynomial time samplable ensemble that
is not dominated by any polynomial time computable ensemble (provided
one-way functions exist). The latter fact was proved in [2] using the tech-
niques of (an earlier version of) [3]. Our proof will use just the result of [3]
(the existence of Pseudorandom Generators).

Proof. (a) In [3], it is shown that if one-way functions exist, then there is a
Pseudorandom Generator Gn : {0, 1}n → {0, 1}2n. Consider Gn as a sampler
and let Dn denote the sampled distribution:

Dn(x) = Pr[Gn(s) = x],

where s denotes a randomly chosen string of length n. Assume, by way of
contradiction, that D is dominated by a polynomial time invertibly samplable
ensemble D′ so that

Dn(x) ≤ p(n)D′
n(x) (1)

for some polynomial p(n). Using D′
n we will construct a polynomial time

test that distinguishes the random variable Gn(s) from the random variable
which is uniformly distributed among all strings of length 2n, which is a
contradiction.

8

As such test consider the set

Xn = {x : |x| = 2n, D′
n(x) ≥ 2−n/p(n)}.

As D′ is invertible samplable, the set Xn is polynomial time decidable. In-
deed, D′

n(x) is a dyadic rational that can be computed from x and n in time
polynomial in n. We claim that Gn(s) is in Xn for all s, whereas a random
string of length 2n falls in Xn with negligible probability p(n)2−n.

The first claim follows from (1). Indeed, as Gn is a sampler for Dn,
for every s ∈ {0, 1}∗ we have Dn(Gn(s)) ≥ 2−n and hence D′

n(Gn(s)) ≥
2−n/p(n).

The second claim means that |Xn| ≤ 2np(n). This fact follows from
definition of Xn. Indeed, otherwise the cumulative probability of Xn w.r.t.
D′

n would be larger than 1:

D′
n(Xn) =

∑

x∈Xn

D′
n(x) ≥ |Xn|2

−n/p(n) > 1.

(b) Let fn be the function from the assumption in item (b). We claim
that the ensemble

Dn(z) =

{
1/2n, if z = fn(x)x, |x| = n,

0, otherwise

satisfies the conclusion of item (b).
D is polynomial time invertibly samplable: The following algorithm A

is an invertible sampler for Dn: choose a string x of length n at random,
return fn(x)x and halt. As fn is polynomial time computable, A is indeed a
polynomial time algorithm. Let us show that A is invertible in polynomial
time. The following algorithm finds A−1(z, n): represent z in the form yx
where |x| = n (if |z| < n then halt); apply fn to x; if y 6= fn(x) then halt
and otherwise output [0.x, 0.x + 2−n) and halt.

D is not dominated by any polynomial time computable ensemble. Let
us first prove a simpler statement: D is not polynomial time computable.
By way of contradiction assume that this is not the case. How do we use
this assumption? Under this assumption, we can find in polynomial time
Dn({zw | w ∈ {0, 1}p(n)+n−|z|}) for any given z of length at most p(n) +
n. Indeed, it is equal to fDn

(z11 . . . 1) − fDn
(z′11 . . . 1) for the predecessor

z′ of z w.r.t. lexicographical ordering. Here it is important that in the
lexicographical ordering the first bits are the most significant ones.

9

We will show that given any y in the range of fn we can find by binary
search in polynomial time its lexicographical first pre-image. To this end we
use the following simple fact: a string y has a pre-image with prefix z iff

Dn({yzw | w ∈ {0, 1}n−|z|}) ≥ 2−n. (2)

Recall that for any y, z we can decide in polynomial time whether (2) holds.
Thus given any y of length p(n) we can first find whether it has a pre-image
at all, which happens iff (2) holds for the empty z. If this is the case we can
find whether y has a pre-image starting with 0, which happens iff (2) holds
for z = 0, and so on.

Now we will prove that D is not dominated by any polynomial time
computable ensemble. By way a contradiction, assume that D′ is polynomial
time computable ensemble with

D′
n(z) ≥ Dn(z)/q(n)

for a polynomial q. We will construct a polynomial time algorithm that
inverts fn(x) for at least half of all x’s of length n, which is a contradiction
with non-invertibility of fn.

Let us try first the same algorithm as before, but this time using D′
n

instead of Dn. If y has a pre-image with prefix z then

D′
n({yzw | w ∈ {0, 1}n−|z|}) ≥ Dn({yzw | w ∈ {0, 1}n−|z|})/q(n) ≥ 1/2nq(n),

but, unfortunately, not the other way around. Indeed, it may happen that

D′
n({yzw | w ∈ {0, 1}n−|z|}) ≥ 1/2nq(n) (3)

but y has no pre-image with prefix z.
How to fix this? Note that if we find the list of all x’s with D′

n(yx) ≥
1/2nq(n) then we are done, as all pre-images of y are in that list and we thus
can find one of them by probing all x’s from the list. The problem is that
the list can be super-polynomially big, and thus there is no hope to find it in
polynomial time. The solution is as follows: we mentally divide all y’s into
“good” and “bad” ones. For good y’s the set of x’s with D′

n(yx) ≥ 1/2nq(n)
will have at most polynomial number of elements, and we will be able to find
all of them by binary search, as before. For bad y’s, we know nothing about
the cardinality of this set. However, fn(x) will be bad for at most half of x
of length n, and recall that we tolerate the probability 1/2 of failure.

10

Specifically, call y good if

D′
n({yx : |x| = n}) ≤ s(n)/2n−1 (4)

where s(n) stands for a polynomial upper bound for the number of pre-images
under fn.

We have to prove that there is a polynomial time algorithm that finds a
pre-image of every given good y in the range of fn and that fn(x) is bad for
at most half of x of length n.

Assume that y is good, i.e., Equation (4) holds. There are at most
2q(n)s(n) strings x with D′

n(yx) ≥ 1/2nq(n), as otherwise the sum of their
probabilities would exceed s(n)/2n−1. Moreover, there are at most 2q(n)s(n)
pairwise incomparable strings z such that (3) holds (we call z′ and z′′ incom-
parable if neither is a prefix of the other). Therefore we can find by binary
search in polynomial time all maximal z’s satisfying (3) (we call z maximal,
if no its proper extension satisfies (3)). If a pre-image of y exists, the it is
certainly among those z’s.

Assume that fn(x) is bad. That is, x happens to be a pre-image of a bad
y. The number of bad y’s is at most 2n−1/s(n). Indeed, otherwise the sum
of D′

n({yx : |x| = n}) over all bad y’s would exceed 1. Every bad y has by
assumption at most s(n) pre-images. Hence the number of x such that fn(x)
is bad is at most 2n−1.

Remark 3. Under the same hypothesis and by the same arguments, as in item
(b), we can show that the class PComp is not encoding invariant. Indeed,
using the notations from the proof, let h be cyclic shift by n bits on strings
of length n+ p(n): h(xy) = yx. Obviously, h is polynomial time computable
and invertible. The distribution Dh is then defined by the equation

Dh
n(z) =

{
1/2n, if z = xfn(x), |x| = n,

0, otherwise.

It is not hard to see that Dh is polynomial time computable.

3 Completeness proof

Let (NP, PISamp) denote the class of all distributional problem (L,D) such
that L ∈ NP and D is polynomial time invertibly samplable. We will prove

11

that the “Bounded halting” distributional problem is (NP, PISamp) com-
plete.

Definition 6. (Bounded halting distributional problem). Let

BH = {(M,x, 1t) | M is a program of a non-deterministic

Turing machine that accepts x in at most t steps}

We assume here that programs of Turing machines are encoded by binary
strings in such a way that a universal Turing machine can simulate M with
overhead poly(|M |): each step of machine M is simulated in poly(|M |) steps.
We also assume that triples of strings are encoded by strings so that both
encoding and decoding functions are polynomial time computable.

Define the probability distribution Un on triples of binary strings as fol-
lows:

Un(M,x, 1t) =

{
2−2l−|x|−|M |, if |x| < 2l, |M | < 2l, t = n,

0 otherwise
(5)

where l = dlog2 ne.

Lemma 2. Ensemble U is polynomial time invertibly samplable.

Proof. The sampler A(n) computes l = dlog2 ne, tosses the coin 2l times and
interprets the outcome as two integers a, b in the range 0, . . . , 2l − 1. Then
it tosses a coin a times to obtain M , then b times to obtain x and finally
returns the triple M,x, 1n. It is straightforward that A is polynomial time
invertible.

Theorem 4 ([5]). The distributional problem (BH,U) is (NP,PISamp) com-
plete. That is, every distributional problem (L,D) ∈ (NP,PISamp) reduces
to (BH,U) in the sense of Definition 2.

The proof of this theorem is not novice: basically, it is a part of the proof
from [5] of (NP, PComp) completeness of (BH,U). More specifically, to prove
Theorem 4 we just skip in the latter proof its first step, which is basically
proving that the given ensemble of distributions is in PISamp.

We start the proof with a lemma. We will call segments of the form
[0.r0, 0.r1) standard segments. The length of this segment is 2−|r|. The
string r will be called the name of [0.r0, 0.r1).

12

Lemma 3. Let D be a polynomial time invertibly samplable ensemble and
A an polynomial time invertible sampler for D. Given n and any x in the
support of Dn we can compute in time polynomial in n a standard segment
I(x, n) of length at least Dn(x)/4 with I(x, n) ⊆ A−1(n, x).

Proof. Let I(x, n) be a largest standard segment inside A−1(n, x). By as-
sumption we can find A−1(n, x) and hence I(x, n) in polynomial time from
x, n.2 It remains to show that its length is at most 4 times less than Dn(x).
Indeed, otherwise the segment A−1(n, x) contains three consecutive standard
segments. Then a pair of them (the first and the second ones or the sec-
ond and the third ones) can be united into a larger standard segment inside
A−1(n, x).

Proof of Theorem 4. Assume that (L,D) is the given distributional problem
to reduce to (BH,U). Why not to do it in the standard way? Namely, fix
a non-deterministic machine M accepting L in polynomial time q(n) and
consider the reduction

f(x, n) = (M,x, 1q(n)). (6)

This reduction certainly satisfies the correctness requirement. However it
might violate the domination condition. As f is injective, the domination
requirement is met iff

Dn(x) ≤ p(n)Uq(n)(M,x, 1q(n))

for some polynomial p. Up to a polynomial factor, Uq(n)(M,x, 1q(n)) equals
2−|x|, which might be much smaller than Dn(x). Thus to ensure the domina-
tion condition we need to replace x in the right hand side of (6) by its repre-
sentation x̂ in at most − log2 Dn(x)+O(log n) bits so that 2−|x̂| ≥ Dn(x)/p(n)
for a polynomial p. This is can be done using Lemma 3. Indeed, fix an invert-
ible sampler A for D and let I(x, n) be the mapping existing by Lemma 3.
Let rx,n stand for the name of I(x, n). The string rx,n together with n form
a desired succinct representation of x (we need n, as the algorithm A cannot
find x from rx,n alone). The number n should be represented by its “self-
delimiting” description n̂ in O(log n) bits . Indeed, we need to parse n̂rn,x

into n̂ and rn,x. For instance, we can set n̂ to be the binary notation of

2To find the largest standard segment inside a given segment, we can use binary search.

13

n with all bits doubled and appended by 01 (e.g., 5̂ = 11001101) so that
|n̂| ≤ 2 log2 n + 2.

So the reduction f is defined by

f(x, n) = (N, n̂rx,n, 1q(n)) (7)

where N is a non-deterministic (not necessarily polynomial time) Turing
machine working as follows:

(1) on input z, reject if z is not of the form n̂r for any natural n,
(2) otherwise (when z = n̂r) interpret r as the name of a standard
segment I ⊆ [0, 1),
(3) run A(n) using any real in I as randomness needed for A(n);
let x be the output of A(n),
(4) run M(x) where M is the fixed non-deterministic polynomial
time machine accepting L.

The running time of N for input n̂rx,n is the sum of the running time of
A(n), which is polynomial in n, and the running time of M(x), which is also
polynomial in n, as so is the length of x. Thus N works in time q(n) for
all inputs n̂rx,n, where q is a polynomial. This polynomial should be used
in (7). Then for every x in the support of Dn machine N accepts n̂rx,n iff
M accepts x. Therefore the reduction (7) satisfies the Correctness property.
The domination condition holds by the choice of rx,n.

4 Conclusion

We have observed that the notion of a polynomial time computable ensemble
of distributions is probably not encoding invariant. We have suggested a
relaxation of PComp, called PISamp, so that PISamp is encoding invariant.
We have provided an evidence that PISamp might be strictly larger than
PComp. The notion of (NP, PISamp) completeness may be used instead of
that of (NP, PComp) completeness in proofs of (NP,PSamp) completeness,
which makes those proofs a little easier.

5 Acknowledgements

The author is grateful to Alexander Shen for bringing his attention to the
fact that PComp might be not encoding invariant. The author is grateful to

14

Dmitry Itsykson for a number of helpful suggestions.

References

[1] Andrej Bogdanov and Luca Trevisan, Average-Case Complexity, Foun-
dations and Trends in Theoretical Computer Science 1(2), 2006: 1–106.

[2] Shai Ben-David, Benny Chor, Oded Goldreich, and Michael Luby, ”On
the Theory of Average Case Complexity”, Journal of Computer and Sys-
tem Sciences, Vol 44, No. 2, 1992, 193–219.

[3] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin and Michael Luby,
“A Pseudorandom Generator from any One-way Function”, SIAM Jour-
nal on Computing, 28 (1999) 12–24.

[4] Russell Impagliazzo, Leonid A. Levin, No Better Ways to Generate Hard
NP Instances than Picking Uniformly at Random. FOCS 1990: 812–821

[5] Leonid A. Levin, Average Case Complete Problems. SIAM J. Comput.
15(1): 285–286 (1986)

6 Appendix

6.1 Proof of Theorem 1

It suffices to prove the statement for weakly polynomial time computable
ensembles that have the following property: there is a polynomial p(n) such
the support of Dn is the set of all strings of length less than p(n) and Dn(x) ≥
2−p(n)−1 for all strings in the support of Dn. Indeed, let p(n) stand for a
polynomial such that the length of all strings in the support of Dn is strictly
less than p(n). Consider the distribution D′

n which is the arithmetic mean
of Dn and the uniform distribution over all strings of length less than p(n)
(the latter assigns probability 1/(2p(n)+1−1) to all strings of length less than
p(n)). Obviously, D′ is weakly polynomial time computable, dominates Dn

and D′
n(x) > 2−p(n)−1 for all strings in the support of D′

n. As the domination
relation is transitive, every ensemble dominating D′ also dominates D.

So assume that D is weakly polynomial time computed by an algorithm
A and Dn(x) ≥ 2−p(n)−1 for some polynomial p(n) and all x in the support

15

of Dn, which consists of all strings of length less than p(n). Let fn(x) stand
for the dyadic rational number that is produced by A for the input triple
(n, p(n) + 3, x). Let, additionally, fn(x) = 1 for the lexicographical largest
string x of length less than p(n). Finally, let D′

n(x) denote the difference of
fn(x) and fn(y) for the predecessor y of x. Then the values of D′

n(x) sum up
to 1. We claim that D′

n(x) is always non-negative and dominates Dn(x) and
thus satisfies the theorem.

By construction we have

|fDn
(z) − fn(z)| ≤ 2−p(n)−3

for all z. Applying this inequality to x and its predecessor we conclude that

|D′
n(x) − Dn(x)| ≤ 2−p(n)−2 ≤ Dn(x)/2

and hence D′
n(x) ≥ Dn(x)/2.

6.2 Proof of Theorem 2

As fDn
(x) is computable in time p(n) (for some polynomial p), the values of

fDn
(x) are always of the form k/2l where l ≤ p(n) and k ≤ 2l.
The sampler A for Dn is as follows:

Choose at random a segment I of the form
[
k/2p(n), (k + 1)/2p(n)

)

with k < 2p(n) (tossing a coin p(n) times).

Using a binary search, find x such that

I ⊆
[∑

y≺x

Dn(y),
∑

y≺x

Dn(y) + Dn(x)
)
.

Output x and halt. Here we use the fact that the cumulative
distribution is polynomial time computable. We use also that the
length of all x’s in the support of Dn is bounded by a polynomial
in n and thus binary search finishes in a polynomial number of
steps.

The algorithm A is polynomial time invertible. Indeed,

A−1(n, x) =
[∑

y≺x

Dn(y),
∑

y≺x

Dn(y) + Dn(x)
)

for every x in the support of A. The endpoints of this interval are fDn
(x) and

fDn
(y) for predecessor y of x, thus poly-time computable by the assumptions

of the theorem.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

