
A Completeness Theorem for Pseudo-Linear Functions with

Applications to UC Security

Charanjit S. Jutla

IBM T. J. Watson Research Center

Yorktown Heights, NY 10598

csjutla@us.ibm.com

Arnab Roy

IBM T. J. Watson Research Center

Yorktown Heights, NY 10598

arnabroy@us.ibm.com

Abstract

We consider multivariate pseudo-linear functions over finite fields of characteristic two. A
pseudo-linear polynomial is a sum of guarded linear-terms, where a guarded linear-term is a
product of one or more linear-guards and a single linear term, and each linear-guard is again a
linear term but raised to the power q-1, where q is the field size. Pseudo-linear functions over
GF(2m) are given by pseudo-linear polynomials defined over GF(2).

Let f1, f2, ..., fk be k pseudo-linear functions in n variables, and let f be another pseudo-
linear function in the n variables. We show that if f is a function of the given k functions, then it
must be a pseudo-linear function of the given k functions. This generalizes the straightforward
claim for just linear functions. We also prove a more general theorem where the k functions can
in addition take further arguments, and prove that if f can be represented as an iterated com-
position of these k functions, then it can be represented as a probabilistic pseudo-linear iterated
composition of these functions. Proceeding further, we generalize the theorem to randomized
pseudo-linear functions. Additionally, we allow f itself to be a randomized function, i.e. we
give a procedure for deciding if f is a probabilistic sub-exponential in m time iterated function
of the given k randomized functions, and the decision procedure runs in computational time
independent of m.

These theorems have implications for automatic proving of universally-composable security
theorems for ideal and real functionalities composed of if-then-else programs with (uniform)
random number generation and data objects from additive group of GF(2m). The theorems
imply that, within this language framework, there is a decision procedure to find out if a
real functionality realizes an ideal functionality, and this procedure is in computational time
independent of m (which is essentially the security parameter).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 92 (2010)

1 Introduction

Before we define pseudo-linear functions, we mention that pseudo-linear functions originate as
functions computed by if-then-else or branching programs involving data objects from the additive
group of fields of characteristic two. The conditionals are built from equality constraints of linear
expressions, and closed under negation and conjunction.

So, consider a finite field Fq, where q = 2m. Then m-bit (bit-wise) exclusive-OR just corresponds
to addition in this field. Further, an equality constraint of the form l1(~x) = l2(~x) can then be
written as

1 + (l1(~x) + l2(~x))q−1

which evaluates to 1 if l1(~x) = l2(~x), and evaluates to zero otherwise. Similarly, l1(~x) = 0 and
l2(~x) = 0 can be written as

(1 + l1(~x)q−1) · (1 + l2(~x)q−1)

As a final example, an expression “if (l1(~x) = 0 and l2(~x) = 0) then l3(~x) else l4(~x)” can be written
as

(1 + l1(~x)q−1) · (1 + l2(~x)q−1) · (l3(~x) + l4(~x)) + l4(~x)

A pseudo-linear multivariate polynomial defined over sub-field F2 is then a polynomial which
is a sum of guarded linear-terms [Dij75]; a guarded linear-term is a polynomial which is the product
of a linear (over F2) polynomial and zero or more linear-guards; a linear-guard is a linear (over
F2) polynomial raised to the power q-1. Since, in this paper we will only be dealing with pseudo-
linear polynomials defined over F2, from now on we will implicitly assume that. A pseudo-linear
polynomial in n variables and defined over F2, however does yield a function from (Fq)

n to Fq,
which we call a pseudo-linear function. Thus, even though the polynomial is defined over F2,
the underlying field will be Fq, and hence the algebra of the polynomials is modulo (xq

i = xi) (for
i ranging from 1 to n). In formal terms, the objects in consideration are in F2[x1, ..., xn]/(xq

1 +
x1, ..., x

q
n + xn). They are also further restricted by the fact that all expressions in the guards are

linear instead of affine, but we will later see how to introduce constant additive terms from Fq

(Appendix B).

We observe that pseudo-linear polynomials are closed under pseudo-linear transformations, i.e.
given a pseudo-linear polynomial, raising it to the power q-1, and multiplying it by another pseudo-
linear polynomial yields just another pseudo-linear polynomial. This follows (by induction) from
the observation that

(f1(~x)q−1l1(~x) + f2(~x))q−1 = f1(~x)q−1(l1(~x) + f2(~x))q−1 + (1 + f1(~x)q−1) · f2(~x)q−1

where f1 and f2 are arbitrary pseudo-linear functions. The observation itself follows by considering
the two cases where f1(~x) is zero or not.

More importantly, the if-then-else programs mentioned above compute exactly the pseudo-linear
functions. A more detailed description of such programs and how they relate to pseudo-linear
functions can be found in Section 6.

Above, we saw how a multivariate polynomial p(~x) yields a function from F
n
q to Fq. More

generally, if we are given n polynomials f1(~z) to fn(~z) (where ~z are k formal variables), then
p(f1(~z), ..., fn(~z)) yields a function from F

k
q to Fq, which we say is a pseudo-linear function of

f1, ..., fn.

1

While for linear multivariate functions a completeness theorem which states that if a linear
function f of n variables is a function of k other linear functions (in the same n variables), then
f must be a linear function of the k linear functions, is well known and rather easy to prove, a
similar completeness result for pseudo-linear functions is novel and not so easy to prove.

Thus, one of the main result of this paper is a theorem which states that if a pseudo-linear
multivariate function f of n variables is a function of k pseudo-linear functions f1, f1, ..., fk (in the
same n variables), then f must be a pseudo-linear function of f1, f2, ..., fk. Note that it is given
that f itself is a pseudo-linear function in the original n variables.

The primitives in this algebraic structure are motivated by cryptography, in particular the
representation of security properties and cryptographic protocols in the the Universally Composable
(UC) framework [Can01]. The core technique involved in the UC framework is to prove equivalence
of the system in consideration - the real protocol - and an ideal functionality which naturally
captures the security requirements. The proof is by demonstrating a simulator which has access
to the ideal functionality and is able to produce results indistinguishable from an execution of the
target function.

To model the fact that a simulator can iteratively compose various calls to the different func-
tions in the ideal functionality, we prove a more general theorem involving arbitrary iterations of
k functions f1(~z, ~y), f2(~z, ~y), ..., fk(~z, ~y), where ~y are arguments which the simulator can supply.
We then prove that if some f is a pseudo-linear function of ~z, and can be computed by a sub-
exponential (in m) length iterated composition of the given k functions, then it can be computed
by a probabilistic iterated pseudo-linear composition of the given k functions, i.e. f1, f2, ..., fk.

Proceeding further, we include random number generation as an additional primitive and extend
the decision procedure to find if a probabilistic poly time simulator exists for the given set of
randomized ideal functionalities and randomized target function.

For cryptographic applications, this means that an algorithmic search for a simulator in proving
that a protocol in this language realizes an ideal functionality (also in this language) is independent
of the security parameter, as the security parameter is usually related to the field size. Since the
program sizes in cryptographic protocols are usually small, this can lead to efficient theorem proving.
There are additional issues involved, e.g. the real protocol may be given in a hybrid model [Can01],
and the adversary may make iterative calls to the hybrid functionalities1. We discuss how our
work is motivated by the UC framework and give an example in Appendix I. Although, there have
been many pieces of work in formal methods for cryptographic protocols [AR00, CH06, MW04,
DDMR07], this to the best of our knowledge is a novel approach to theorem proving of security
protocols.

There is a technical restriction of a sub-exponential length iterated composition which is required
to rule out deterministic brute force searches, which a computationally bounded simulator is not
allowed anyway. Finally, we remark that our completeness results require sufficiently large fields
(as a function of the number of variables in f), but given that most UC proofs only seek proofs of
simulatability which do not depend on the security parameters, our completeness theorem covers
all such UC proofs.

The difficulty in proving the completeness theorem stems from the fact that pseudo-linear
polynomials can have individual degrees (i.e. of individual variables) exceeding q-1, and hence

1We do not deal with computational assumptions in this paper, and we expect that the hybrid functionalities
themselves embody such assumptions (see e.g. [CG10])

2

it may be subject to reduction modulo xq = x. Similar problems occur in local testing of low
degree polynomials [JPRZ04, KR04], and we would like to point out that pseudo-linear functions
are intimately related to Generalized Reed-Muller Codes [KLP68]. Thus, for example it is not
immediately clear what constitutes a basis for pseudo-linear polynomials. We first show a basis for
pseudo-linear polynomials, and then show a necessary and sufficient condition involving the basis
for a pseudo-linear function of ~x to be a pseudo-linear function of other pseudo-linear functions of
~x. A detailed example illustrating these issues and the proof idea can be found in Appendix H.1.
We would also like to mention that the class of pseudo-linear functions do not form an ideal in
Fq[~x], and hence the vast field of Gröbner basis is not applicable.

We remark that our theorem does not yet address stateful functions. Many important func-
tionalities, e.g Random Oracle, Public Key Encryption etc. require stateful functionalities [Can01].
Moreover, these functionalities require arbitrarily large tables of state, although the entries in the
table are of fixed size (i.e. depend only on m). This is important to note, as we show that with ar-
bitrarily large sized entries in tables, the question of simulatability is undecidable (see Appendix J).
However, we expect our positive results to extend to stateful functionalities, and also to function-
alities with tables with limited capabilities, e.g. fixed sized entries. We also expect our results to
extend to other groups and cryptographic constructs with appropriate axiomatization.

The rest of the paper is organized as follows. Section 2 describes and proves a basis for pseudo-
linear functions. Section 3 proves an interpolation theorem for pseudo-linear function. Section 4
proves the Completeness theorem for pseudo-linear functions. Section 5 defines iterated compo-
sition of pseudo-linear functions and proves the Completeness theorem for iterated pseudo-linear
functions. Section 6 relates the results in this paper to proof automation in the UC model.

2 A Basis for Pseudo-Linear Functions

In this section we fix a field Fq of size q = 2m.

Let L stand for all linear expressions (including zero) in n variables, say x1, x2, ..., xn (the
unordered collection will be referred to as X). We define the set of elementary pseudo-linear
(epselin) polynomials to be all polynomials of the form

∏

l∈J

(1 + l(~x)q−1) ·
∏

l∈L\J
l(~x)q−1 · p(~x)

where p(~x) is in L, and J is any subset of L such that it is closed under addition, i.e. J is a subspace
of L. We also include the zero polynomial amongst the elementary pseudo-linear polynomials. Note
that if L\J included a linearly-dependent term of J , then the above polynomial reduces to zero in
Fq.

Generalizing (and specializing) the earlier definition of a guard, we will refer to expressions of
the form

∏

l∈J

(1 + l(~x)q−1) ·
∏

l∈L\J
l(~x)q−1

as guards.

For the next definition, we will require that the n variables be ordered by their indices. Thus
x1 is considered to be of lesser index then x2, and so on. This also induces a lexicographic ordering

3

on all equal-sized subsets of the n variables X.

An elementary pseudo-linear polynomial with the above notation will be called a reduced
elementary pseudo-linear (repselin) polynomial if it satisfies the following:

1. Let r be the rank of J (r ≤ min(n, |J |)).

2. Let R be the lexicographically greatest set of r variables occuring in J which can be expressed
in terms of smaller indexed variables (or just zero) when J is set to zero. This for example,
can be accomplished by considering a row-echelon normal form of J .

3. None of the variables in R occur in p(~x).

To justify this definition, we note that if an elementary pseudo-linear polynomial is not reduced,
then it is equivalent to a reduced one.

One implication of the above definition is that if p(~x) is non-zero then it itself cannot be in J .
Recall, J is closed under addition, by definition of epselin-polynomials. Let r be the rank of J .
Let J̄ be the r sized subset of J which forms a basis of J , and which define the variables R by the
row-echelon normal form of J . Thus, all l(~x) in J must have at least one variable from R. Thus,
p(~x) cannot be in J .

Finally, we define a repselin-polynomial to be a basic pseudo-linear polynomial if the linear
term p(~x) is just a variable from X. Note that since the basic polynomial is repselin, from item
(3) above it follows that this variable is not from R.

Next we argue that any pseudo-linear polynomial can be expressed as a (xor-) sum of basic
pseudo-linear polynomials. For this, we just need to show that any pseudo-linear polynomial of the
form

∏

l∈L\J
l(~x)q−1 · p(~x)

where J is a subset of L, can be expressed as sum of epselin-polynomials. This follows easily by
induction on the size of J , and by noting that pseudo-linear polynomials with guards

∏

l∈L\J
l(~x)q−1 ·

∏

l∈J

(1 + l(~x)q−1)

such that L\J includes a linearly dependent expression of J are identically zero.

We will now show that the basic pseudo-linear polynomials actually form a basis for pseudo-
linear polynomials. Before that we need some more notation.

Let Q(X) be the set of all basic pseudo-linear polynomials in variables X. Further, let G(X)
be the set of all guards amongst these polynomials Q(X). Let |G(X)| = t. The guards can then be
named w.l.o.g. g1, g2, ...,gt. Recall, for each guard gi, there is associated a subset of variables X,
namely R, that do not occur in any linear terms p(~x). We refer to all linear combinations of X\R
as Pi(X), including the linear term zero. Let |P i(X)| = si + 1. (Note, (si + 1) is two to the power
size of the subset of variables associated with gi.) The linear terms in P i(X) can be named pj

i (~x),
j ranging from 0 to si (not to be confused with exponent). W.l.o.g., zero will always be p0

i (~x).

Thus, any pseudo-linear function φ(~x) can be represented as a sum (over F2) of polynomials
from Q(X), i.e.,

φ(~x) =
∑

i∈T

gi(~x) · pj(φ,i)
i (~x)

4

where T is a subset of [1..t], and each p
j(φ,i)
i (~x) ∈ P i(X). In fact, we do not even need to take a

subset T of [1..t]; all zero terms just imply that j(φ, i) = 0, by our notation above that p0
i (~x) is

always taken to be zero. Thus the above representation of φ(~x) is totally defined by the map j(φ, ·).
While we state and prove the following theorem only for large fields, as only for such fields are

the basic pseudo-linear polynomials a basis, a slightly more complicated characterization can be
given for smaller fields.

Lemma 1 (Basis) For Fields of size q > 2n, the basic pseudo-linear polynomials in n variables
form a basis for pseudo-linear polynomials in n variables.

Proof:

We have already shown above that any pseudo-linear polynomial can be represented as a sum
of basic pseudo-linear polynomials, in fact defined by the map j(φ, ·) above. So, here we focus on
showing that any pseudo-linear function φ(~x) has a unique such representation.

So, for the sake of contradiction, suppose the everywhere zero function 0 has a non-zero rep-
resentation, and let that be represented by the map j(0, i). Now consider any ī where j(0, ī) 6= 0,

and lets call p
j(0,i)
i (~x) by just p(x) (6= 0). In other words, this representation of 0 has the term

gī · p(~x)

Let,

gī =
∏

l∈L\J
l(~x)q−1 ·

∏

l∈J

(1 + l(~x)q−1)

for some subspace J ⊆ L. Let the rank of J be r. Let R be the lexicographically greatest set of r
variables occuring in J which can be expressed in terms of smaller indexed variables when J is set
to zero. Recall, by definition, none of the variables in R occur in p(~x).

Claim: With the set of equations J set to zero, we can solve for all linear expressions in L\J to be
non-zero, and hence also set p(~x) to non-zero.

This would first of all imply that all guards other than gi(~x) evaluate to zero: if the guard ga(~x)
is given by subset Ja ⊆ L (Ja 6= J), then if J\Ja is non-empty, we get that L\Ja has an l(~x) from
J which makes l(x)q−1 zero, and if Ja\J is non-empty, we get that Ja has an l(~x) from L\J which
makes (1 + l(~x)q−1) zero.

Further, the guard gī(~x) will be non-zero, and hence gī(~x)p(~x) would be non-zero, and conse-
quently the given representation j(0, i) leads to a non-zero function, a contradiction, which would
prove the lemma.

Now, to prove the above claim, recall that J is closed under addition, and p(~x) is in L\J . Let
r be the rank of J . Consider a basis J̄ of a complementary subspace of J . If our underlying field
is of size at least 2n−r, we can set J to zero, and each li(~x) of J̄ (i ∈ [1..n − r]) to ei, where the
ei (i ∈ [1..n − r]) are linearly independent over F2. Thus, all linear expressions in L\J evaluate to
non-zero values, as any l in L\J is a non-trivial linear combination of J̄ plus an l′ from J . �

Note on small fields. In smaller fields some of the basic pseudo-linear polynomials, which are
non-trivial functions in large fields, turn out to be identically zero. Thus the basis is smaller, but
more complicated to characterize.

5

Lemma 2 (Homomorphism) For any pseudo-linear functions φ1(~x) and φ2(~x), and for all i ∈
[1..t],

p
j(φ1+φ2,i)
i = p

j(φ1,i)
i + p

j(φ2,i)
i

Proof: Follows from the fact that the basic pseudo-linear polynomials form a basis for pseudo-linear
polynomials. �

3 Interpolation Property for Pseudo-Linear Functions

Before we prove the main theorem, we need a few more definitions and related lemmas.

Let f1, f2, ..., fk be k pseudo-linear functions in n variables X, over a field Fq (q = 2m). Collec-
tively, we will refer to these polynomials as F .

For any pseudo-linear polynomial f(~x) in X, let its representation in terms of the basis be given
by j(f, ·). Since each of the polynomials from F , i.e. f1(~x), f2(~x),, fk(~x) is pseudo-linear, it be
represented by j(fs, ·) (s ∈ [1..k]). Further, each linear combination of F is represented similarly.

We say that two guards ga(~x) and gb(~x) are F -equivalent if for every linear combination φ of
functions from F , it is the case that j(φ, a) = 0 iff j(φ, b) = 0. In this case, we write a ∼=F b, which
is an equivalence relation.

Lemma 3 If a and b are F -equivalent then if for some subset S ⊆ [1..k], the linear combination
∑

s∈S p
j(fs,a)
a is identically zero , then so is

∑

s∈S p
j(fs,b)
b .

The lemma follows by Lemma (2). Thus, if k′ is the rank of p
j(fs,a)
a (s ∈ [1..k]), then it is also the

rank of p
j(fs,b)
b . In fact, we can take the exact same k′ indices from (s ∈ [1..k]), w.l.o.g. [1..k′], to

represent the basis for the k linear expressions, for both a and b.

Let L(F) denote the set of all linear combinations of functions in F .

For any function f(~x), and any set F of pseudo-linear functions in X, we say that f(~x) has the
F -interpolatable property if it satisfies the following two conditions:

(i) ∀i ∈ [1..t] : ∃φ⋆ ∈ L(F) : j(f, i) = j(φ⋆, i) , and

(ii) For every a, b ∈ [1..t] such that a and b are F -equivalent, w.l.o.g. by Lemma (3), let the first

k′ functions out of (k functions) p
j(fs,a)
a (out of p

j(fs,b)
b), represent their basis (resp. for b).

Then, if the φ⋆ in (i) is given by
∑

ca
sp

j(fs,a)
a and

∑

cb
sp

j(fs,b)
b , respectively for a and b, then

for all s ∈ [1..k′], ca
s = cb

s.

Lemma 4 If f is a pseudo-linear function in X, and f satisfies the F -interpolatable property, for
some set F of pseudo-linear polynomials in X, then f is a pseudo-linear function of F .

Proof: Indeed, consider T̂ = [1..t] / ∼=F , where t is the number of guards, i.e. |G(X)|. We pick the
smallest elements from [1..t] to represent each equivalence class in T̂ . Define a function h(~x) to be
the following:

h(~x) =
∑

u∈T̂

∏

φ∈L(F):j(φ,u)6=0

φ(~x)q−1 ·
∏

φ∈L(F):j(φ,u)=0

(1 + φ(~x)q−1) · φu(~x) (1)

6

where for each u, φu is some function φ⋆ satisfying the F -interpolatable property (i) above.

Now by definition, h(~x) is pseudo-linear in F . We now show that h=f , i.e. for all ~x ∈ (Fq)
n,

h(~x) = f(~x). Fix any ~x∗ in (Fq)
n. Let J ⊆ L, such that all linear functions in J evaluate to zero at

~x∗, and all linear functions in L\J evaluate to non-zero quantities at ~x∗. Clearly, J is closed under
addition, and hence J corresponds to a guard gi. In other words, gi(~x

∗) = 1, and for all other

i′ ∈ [1..t]: gi′(~x
∗) = 0. Thus, f(~x∗) = p

j(f,i)
i (~x∗), and similarly, for all φ ∈ L(F), φ(~x∗) = p

j(φ,i)
i (~x∗).

By definition of i (i.e. gi corresponding to J above, and hence p
j(φ,i)
i ∈ L\J), it follows that φ(~x∗)

is zero iff j(φ, i) = 0.

Now, in equation (1), we show that the only u for which the “guards” evaluate to be non-zero
(i.e. one), is the one corresponding to the equivalence class of i in T̂ (say, ui). In fact, for i (and
its F -equivalent ui) the “guards” indeed evaluate to 1. For all other i′, if the “guards” evaluate to
one, then by definition of F -equivalence, those i′ are F -equivalent to i.

Thus, h(~x∗) = φui
(~x∗), and since φui

is pseudo-linear in X,

φui
(~x∗) = p

j(φui
,i)

i (~x∗) =
∑

s

cui
s p

j(fs,i)
i (~x∗) =

∑

s

ci
sp

j(fs,i)
i (~x∗) = p

j(φi,i)
i (~x∗).

Thus, h(~x∗) = p
j(f,i)
i (~x∗), which is same as f(~x∗). �

4 The Completeness Theorem for Pseudo-Linear Functions

While the main completeness theorem below is stated and proven for only large finite fields, it holds
for all finite fields of characteristic two.

Theorem 5 Let f1, f2, ..., fk be k pseudo-linear functions in n variables X, over a field Fq (q =
2m), such that q > 2n. Collectively, we will refer to these polynomials as F . Let f be another
pseudo-linear function in X. Then, if f is a function of F , then f is a pseudo-linear function of
F .

Proof: We show that if f is not a pseudo-linear function of F , which by Lemma (4) means that it
does not satisfy at least one of F -interpolatable properties (i) or (ii), then f is not a function of F .

Since f(~x) is a pseudo-linear polynomial in X, let its representation in terms of the basis be
given by j(f, ·). Since each of the polynomials from F , i.e. f1(~x), f2(~x),...., fk(~x) is pseudo-linear, it
can also be represented by j(fs, ·) (s ∈ [1..k]). Further, each linear combination of F is represented
similarly.

So, first consider the case where f does not satisfy (i). In other words, for some i ∈ [1..t], for

no linear combination φ of F (including zero) is j(f, i) equal to j(φ, i). Thus, by Lemma (2), p
j(f,i)
i

is linearly independent of all p
j(fs,i)
i (s ∈ [1..k]). Let J ⊆ L correspond to the guard gi. Thus,

p
j(f,i)
i and all p

j(fs,i)
i (for s ∈ [1..k]) are linearly independent of J . Let r be the rank of J , and

k′ ≤ k be the rank of p
j(fs,i)
i collectively. Since p

j(f,i)
i is linearly independent of all p

j(fs,i)
i , we have

that r + k′ + 1 ≤ n. Now, the subspace corresponding to J set to zero has dimension n − r, and
hence has qn−r points. However, we are interested in points where all expressions in L\J evaluate
to non-zero values, which would guarantee that gi = 1, and all other guards are zero. Recall the

7

subspace P i(X) generated by all variables not in the set R corresponding to guard gi. Now, L\J
is a union of cosets of (n − r) dimensional space Pi(X) shifted by subspace J . Consider a basis

B for P i(X), comprising of p
j(f,i)
i , a k′-ranked basis of p

j(fs,i)
i , and n − r − 1 − k′ other linearly

independent expressions B′.
Assume the field Fq is of size at least 2n+1, and hence has n + 1 linearly independent (over F2)

elements ei. Thus, for every injective map setting B to these ei, there is a distinct solution to J
being zero, and all of L\J evaluating to non-zero values. Thus, there are at least

(n+1
n−r

)

(n−r)! such
points in (Fq)

n.

So, we fix p
j(fs,i)
i to es (s ∈ [1..k′]; assume w.l.o.g. that the first k′ formed the basis), and

similarly fix the B′ expressions to ek′+1 to en−r−1. This still leaves at least (n + 1 − (n − r − 1))

choices for p
j(f,i)
i . Thus, we have the situation that there are two points in (Fq)

n where f evaluates
to different values, whereas F has the same value, and hence f cannot be a function of F .

Now, consider the case where f does satisfy condition (i), but condition (ii) is violated. In other

words, for each i ∈ [1..t], p
j(f,i)
i is same as some p

j(φ⋆,i)
i , but there exist a and b in [1..t] which are

F -equivalent, but the φ⋆’s linear representation coefficients cs differ for a and b. Again, we will
demonstrate two points where F evaluate to the same value, but f evaluates to different values.

Again, let’s assume that the underlying field is large enough to have at least k′ linearly inde-
pendent (over F2) elements, say ei.

Now we have two sets, Ja corresponding to guard ga, and Jb, corresponding to guard gb. How-

ever, there is an easy solution for setting Ja to zero, and setting p
j(fs,a)
a (s ∈ [1..k′]) to es. Similarly,

there is a solution for setting Jb to zero and setting p
j(fs,a)
a (s ∈ [1..k′]) to es. Thus, in both cases

all fs (s ∈ [1..k]) evaluate to the same value, but f being a different linear combination in the two
cases, evaluates to different values. �

5 Iterated Composition of Pseudo-Linear Functions

In this section, we consider pseudo-linear functions which can take arguments, modeling oracles
which are pseudo-linear functions of secret values and arguments. Thus, for instance it may be re-
quired to find if there exists a simulator which given access to functionalities which are pseudo-linear
functions of secret parameters X and arguments supplied by simulator/adversary, can compute a
given a pseudo-linear function.

This generalizes the problem from the previous sections, where the simulator could not pass
any arguments to the given functions. For simplicity, we will deal here with functions which only
take a single argument, and thus all the functions can be written as fi(~x, y), each pseudo-linear in
~x and y.

So, given a collection of k pseudo-linear functions F (X, y), we now define an iterated compo-
sition of F . Let Fq be the underlying field as before. An iterated composition σ of F is a length
t sequence of pairs (t an arbitrary number), the first component of the s-th (s ∈ [1..t]) pair of σ
being a function φs from F , and the second component an arbitrary function γs of s− 1 arguments
(over Fq).

Given an iterated composition σ of F , one can associate a function fσ of X with it as follows

8

by induction. For σ of length one, fσ is just φ1(~x, γ1()), recalling that φ1 ∈ F . For σ of length t,

fσ(~x) = φt(~x, γt(f
σ|1(~x), fσ|2(~x), ..., fσ|t−1(~x)))

where σ|j is the prefix of σ of length j.

Since, functions in n variables over Fq are just polynomials in n variables, there is a finite bound
on t, after which no iterated composition of F can produce a new function of the n variables.
The collection of all functions that can be obtained by iterated composition of F will be referred
to as terms(F). If we restrict γs to be pseudo-linear functions of their s − 1 arguments, we
will refer to the iterated composition as pseudo-linear iterated composition of F , and the
corresponding collection of functions associated with such sequences as pseudo-linear iterated terms
or pl-terms(F). Note that in this case γ1 is just zero.

Note that an arbitrary program can only compute a function of the terms, whereas an arbitrary
pseudo-linear program can only compute a pseudo-linear function of the pseudo-linear terms. We
would like to show that if a function f of terms(F) is a pseudo-linear function of X, then it is a
pseudo-linear function of pl-terms(F). However, as we demonstrate in Appendix H.2, this is not true
in general, and a slight extension is required to the pl-terms, so as to enable probabilistic functions.
An iterated composition will be called an extended pseudo-linear iterated composition of F
if γs is either a pseudo-linear function or a constant function c(~x) evaluating to an element c in Fq.
For each such c, the corresponding collection of functions associated with such sequences will be
called extended-pl-terms(F, c).

We will also need to refine the definition of terms(F), by restricting to terms obtained within
some T iterated compositions, for some positive integer T . Thus, termsT (F) will stand for the
collection of functions obtained by iterated compositions of F of length less than T . In particular we
will be interested in T which is bounded by polynomials in log q and/or n, the number of variables
in X.

Theorem 6 (Main) Let f1, f2, ..., fk be k pseudo-linear functions in n variables X and an addi-
tional variable y, over a field Fq such that q > 22n. Collectively, we will refer to these polynomials
as F (X, y). Let T be a positive integer less than 2n(<

√
q). Let f be another pseudo-linear function

in X. Then, if f is a function of termsT (F (X, y)), then f can be defined as a pseudo-linear prob-
abilistic function of extended-pl-terms(F (X, y), Seed), where the probability is over Seed chosen
uniformly from Fq, and for each ~x the probability of this definition of f being correct is at least
1− 1/

√
q.

In Appendices C, D, E, and F we extend these results to cover randomized pseudo-linear
functions and consider randomized probabilistic simulators. These results lead us to apply our
theorems to the Universally Composable framework as we will describe in the next section.

6 Proof automation in the Universally Composable model

The Universally Composable (UC) framework is a formal system for proving security of computa-
tional systems such as cryptographic protocols. The framework describes two probabilistic games:
The real world that captures the protocol flows and the capabilities of an attacker, and the ideal
world that captures what we think of as a secure system. The notion of security asserts that these

9

two worlds are essentially equivalent. A summary of this framework and cryptographic motivation
for this paper with an example is given in Appendix I.

Formally, a proof of security in the UC model boils down to the following: as input, we are
given two sets of algorithms:

1. Ideal Functionality: Set of algorithms F = {F1, F2, · · · }

2. Real Protocol: Set of algorithms P = {P1, P2, · · · }.

We say that P realizes F if it is possible to construct an algorithm S, called a simulator, that
invokes the functions in F , such that the following holds:
For any PPT algorithm A, there exists a PPT algorithm S, such that for any PPT algorithm Z,
the execution of A with calls to P is indistinguishable from the execution of S with calls to F .

We describe a language L$,⊕,if in Table 1 for which we are able to develop a decision procedure
to decide realizability of a given ideal functionality by a given real protocol.

(expressions) AE ::= x1 | x2 | · · · variables

XE ::= AE | AE ⊕XE bitwise xor expression

BE ::= true | (XE == XE) | BE ∧BE | ¬BE boolean expression

(assignments) a ::= x← $ assign new random number

x := XE assign xor expression

(program) π ::= a; single action

πa; sequence of actions

if BE then π else π conditional

Table 1: Programs in the Language L$,⊕,if.

Definition 7 (L$,⊕,if) An Ideal Functionality F and a real protocol P are described in the language
L$,⊕,if if

• F is a set of programs {f1(~x, ~y), f2(~x, ~y), · · · }.

• P is a single program {f(~x)}.

such that f1(~x, ~y), f2(~x, ~y), · · · and f(~x) are all described as L$,⊕,if programs, as defined in Table 1.

The semantics of this language is that ~x is a set of inputs passed by the environment at
the outset of execution and ~y is a set of parameters that the simulator is allowed to pass to
the functionalities. All the parameters and random numbers are represented as lg q-bit strings,
corresponding to elements in Fq. The programs in F can be called in any order and an arbitrary
number of times, whereas P is called only once. While fairly constrained, we provide a cryptographic
example and motivation for this language in Appendix I.

Theorem 8 (Completeness of L$,⊕,if) There is a decision procedure, which given an Ideal Func-
tionality F and a Real Protocol P described in the language L$,⊕,if, decides if P realizes F in the
Universally Composable model.

10

References

[AR00] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the com-
putational soundness of formal encryption). In IFIP International Conference on The-
oretical Computer Science (IFIP TCS2000), Sendai, Japan, August 2000.

[BM93] Steven M. Bellovin and Michael Merritt. Augmented encrypted key exchange: A
password-based protocol secure against dictionary attacks and password file compro-
mise. In ACM Conference on Computer and Communications Security, pages 244–250,
1993.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange
secure against dictionary attacks. In Bart Preneel, editor, EUROCRYPT, volume 1807
of Lecture Notes in Computer Science, pages 139–155. Springer, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145, 2001.

[CG10] Ran Canetti and Sebastian Gajek. Universally composable symbolic analysis of diffie-
hellman based key exchange. Cryptology ePrint Archive, Report 2010/303, 2010.
http://eprint.iacr.org/.

[CH06] R. Canetti and J. Herzog. Universally composable symbolic analysis of cryptographic
protocols (the case of encryption-based mutual authentication and key-exchange). In
TCC, 2006. Extended version at http://eprint.iacr.org/2004/334.

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKen-
zie. Universally composable password-based key exchange. In Ronald Cramer, editor,
EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 404–421.
Springer, 2005.

[DDMR07] Anupam Datta, Ante Derek, John C. Mitchell, and Arnab Roy. Protocol composition
logic (pcl). Electr. Notes Theor. Comput. Sci., 172:311–358, 2007.

[Dij75] Edsger Dijkstra. Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM, 18:453–457, Winter 1975.

[JPRZ04] C. Jutla, A. Patthak, A. Rudra, and D. Zuckerman. Testing low-degree polynomials
over prime fields. In FOCS, 2004.

[KLP68] T. Kasami, S. Lin, and W. W. Peterson. New Generalization of the Reed-Muller Codes
Part I: Primitive Codes. IEEE Transactions on Information Theory, IT-14(2):189–199,
March 1968.

[KR04] T. Kaufman and D. Ron. Testing polynomials over general fields. In FOCS, 2004.

[MW04] D. Micciancio and B. Warinschi. Completeness theorems for the abadi-rogaway logic
of encrypted expressions. Journal of Computer Security, 12(1):99–129, 2004.

11

A Iterated Composition - Proof

Similar to Section 3, we first state an interpolatable property which is a sufficient condition for a
pseudo-linear function of X to be a pseudo-linear function of pl-terms(F).

Recall the functions in F now have an additional argument y. As before, L(G), for any set of
functions G will denote the set of all linear combinations (over F2) of functions from G. Below
we define the class Ii(F) of pseudo-linear functions in X, for i an arbitrary natural number. In
fact, since the inductive definition will sometimes use functions in both X and y, we will just
define this class as pseudo-linear functions in X and y, though for different y, they would evaluate
to the same value. In other words, for an arbitrary guard ga(~x), which corresponds to a subset
J ⊆ L(X) (J is closed under addition), there are many super-guards when viewed as a function
of X and y, namely with subsets J ′ ⊆ L(X, y) (J ′ closed under addition) such that J ⊆ J ′ and
(L(X)\J) ⊆ (L(X, y)\J ′). Thus, for all these super-guards, a pseudo-linear function φ(X) will
have the same j(φ, ·) value (see Section 2).

However, and more importantly, with y set to some linear expression l(~x) ∈ Pa(X) (including
zero), exactly one of these (super-)guards has the property that J ′y|l(~x) = J (Note the subscript

y|l(~x) means l(~x) is substituted for every occurrence of y in J ′). This particular J ′ is given by

J ′ = L(J, {y + l(~x)})

In this case we say that this super-guard of ga is consistent with y + l(~x) = 0. The super-guard
corresponding to J ′ = J will be called the degenerate super-guard of ga(~x).

Now we define the pseudo-linear function which is the composition of fs and h, i.e. fs ◦h, where
fs is a pseudo-linear function in X and y, and h is a pseudo-linear function in X, by defining its
components in the basis for pseudo-linear functions. For any guard gi(~x) (of functions in X), let
gI(~x, y) be the unique (super-) guard, mentioned in the previous paragraph, which is consistent

with y set to p
j(h,i)
i (note the map j here is for guards corresponding to X, and in general it will

be clear from context whether we are referring to map j for guards corresponding to X or X, y).
Then, define

p
j(fs◦h,I)
I (~x, y) = p

j(fs,I)
I (~x, p

j(h,i)
i (~x, y))

Further, for all I ′ which are super-guards of i, we set p
j(fs◦h,I′)
I′ to be the same value (as fs◦h is only

a function of X). Note that since each p is just a linear function, this implies that each component
of fs ◦ h is a linear function of X (and hence X, y). In particular, (fs ◦ h)(~x) = fs(~x, h(~x)).

Define Compose(F (X, y),H(X)), where F (X, y) are a set of pseudo-linear functions in X, y
and H(X) is a set of pseudo-linear functions in X, to be the set of all functions fs ◦ h, where
fs ∈ F (X, y) and h ∈ H(X).

For each pseudo-linear function fs of X and y, we also need to define a pseudo-linear function
(in X) called degenerate(fs), which for each guard ga(~x), defines the corresponding p function
using its degenerate super-guard. Thus,

p
j(degenerate(fs),a)
a (~x) = p

j(fs,I)
I (~x, 0),

where I is the degenerate super-guard of ga.

12

Now, we are ready to define the iterated pseudo-linear functions. Define

I0(F) = L(Compose(F,degenerate(F)))

Ii+1(F) = L(I i(F) ∪ Compose(F,I i(F))), for i ≥ 0.

Since, these functions are just polynomials over finite fields (in fact defined over F2), the above
iteration reaches a fix-point at an i bounded by a function only of n. We will denote the fix-point
by just I(F).

Now, we generalize the definitions of F -equivalence and F -interpolatable from Section 3. Two
guards ga(~x) and gb(~x) are said to be F ∗-equivalent if for every φ(~x) in I(F), it is the case that
j(φ, a) = 0 iff j(φ, b) = 0.

The definition of F ∗-interpolatable property is same as the F -interpolatable property except
that L(F) is replaced by I(F).

Instead of the closure I(F), it will also be useful to define the following set of functions

C =
⋃

i

Compose(F,I i(F)) ∪ Compose(F,degenerate(F)),

and it is easy to see that I(F) is just the linear closure of C.

Lemma 9 If f is a pseudo-linear function of n variables X over a field Fq, and f satisfies the
F ∗-interpolatable property, for some set F of pseudo-linear polynomials in X, y, then f can be
defined as a pseudo-linear probabilistic function of extended-pl-terms(F (X, y),Seed), where the
probability is over Seed chosen uniformly from Fq, and for each ~x the probability of this definition
of f being correct is at least 1− 2n/q.

Proof: The proof is similar to the proof of Lemma 4, but there is a small difference due to the
probabilistic nature of this lemma.

Consider T̂ = [1..t] / ∼=F , where t is the number of guards, i.e. |G(X)|. We pick the smallest
element from [1..t] to represent each equivalence class in T̂ . Define a function h(~x) to be the
following:

h(~x) =
∑

u∈T̂

∏

φ∈L(F):j(φ,u)6=0

φ(~x)q−1 ·
∏

φ∈L(F):j(φ,u)=0

(1 + φ(~x)q−1) · φu(~x) (2)

where for each u, φu is some function φ⋆ ∈ C satisfying the F ∗-interpolatable property (i).

Now by definition, h(~x) is pseudo-linear in C. Now, the proof that h=f , i.e. for all ~x ∈ (Fq)
n,

h(~x) = f(~x), is identical to the proof in Lemma 4. However, h is pseudo-linear only on C, whereas
we need to show a function pseudo-linear in extended-pl-terms(F (X, y),Seed).

Observe that for any fs, exactly one of the following cases hold, for all y linearly independent
of ~x:

Case 1: fs(~x, y) = degenerate(fs)(~x)

Case 2: fs(~x, y) = degenerate(fs)(~x) + y

13

Now define a function ĥ(~x, c) to be same as h, except every occurrence of degenerate(fs)(~x) is
replaced by either of the following:

{

fs(~x, c) in Case 1

fs(~x, c) + c in Case 2

(recall, fs is a function of X and y, whereas degenerate(fs) is a function of only X). Then, it is
easy to see that ĥ(~x, c) is in extended-pl-terms(F, c). We next show that for every ~x, with c
chosen uniformly from Fq, probability that ĥ(~x, c) = h(~x) is at least 1− 2n/q. For each ~x, one and
only one guard gs is satisfied. the probability that for this guard, c = l(~x), for some l(~x) ∈ Ps(X)
is at most 1/q. Hence, by union bound, over all possible l(~x), the probability that c equals any l(~x)
is at most 2n/q, as |X| = n. These are the only cases in which degenerate(fs)(~x) may differ from
fs(~x, c) or fs(~x, c) + c, as the case may be. �

We now restate Theorem 6 below and prove it.

Theorem 10 (Main) Let f1, f2, ..., fk be k pseudo-linear functions in n variables X and an addi-
tional variable y, over a field Fq such that q > 22n. Collectively, we will refer to these polynomials
as F (X, y). Let T be a positive integer less than 2n(<

√
q). Let f be another pseudo-linear function

in X. Then, if f is a function of termsT (F (X, y)), then f can be defined as a pseudo-linear prob-
abilistic function of extended-pl-terms(F (X, y), Seed), where the probability is over Seed chosen
uniformly from Fq, and for each ~x the probability of this definition of f being correct is at least
1− 1/

√
q.

Proof:

For the sake of leading to a contradiction, suppose that f is not a pseudo-linear probabilistic
function of extended-pl-terms(F (X, y), Seed). Then by Lemma 9, f does not satisfy the F ∗-
interpolatable property. Hence, as in Theorem 5, we have two cases. Before we go into the analysis
of the two cases, we recall a few relevant definitions, and state some useful properties.

Recall from Section 2, that Q(X) is the set of all basic pseudo-linear polynomials in variables
X, and, G(X) is the set of all guards amongst these polynomials Q(X). Further, |G(X)| = t.
Also, recall for each guard gs its corresponding set R from its repselin representation, and the
corresponding subspace Ps(X).

Also, recall the super-guards gI(~x, y) corresponding to guards gi(~x). Thus, if J corresponded to
gi, then some J ′ such that J ⊆ J ′ ⊆ L(X, y), corresponds to super-guard gI . Further, (L(X)\J) ⊆
(L(X, y)\J ′). Hence, if some y + l(~x) is in J ′, we can w.l.o.g take as the corresponding R′ (of gI) to
be R ∪ {y}. Thus, in such cases pI(~x, y) are just linear expressions in X\R. If on the other hand,
for no l(~x) it is the case that y + l(~x) is in J ′, then R′ = R, and pI(~x, y) will be a linear expression
in (X\R) ∪ {y}.

Now we are ready to analyze the two cases.

Case 1: First, consider the case where f does not satisfy property (1) of F ∗-interpolatable.

Then, it is the case that there exists an s ∈ [1..t], such that for every linear polynomial φ in

I(F), j(f, s) 6= j(φ, s). Thus, by Lemma 2, p
j(f,s)
s is linearly independent of all p

j(φ,s)
s , with φ ∈ C.

Let J ⊆ L correspond to the guard gs. Thus, p
j(f,s)
s , as well as all p

j(φ,s)
s (φ ∈ C) are linearly

independent of J (see the paragraph after definition of repselin polynomials). Let r be the rank

14

of J , and k′ be the rank of p
j(φ,s)
s collectively. Thus, r + k′ + 1 ≤ n. Consider a basis B of Ps(X)

consisting of p
j(f,s)
s , a basis B′′ of p

j(φ,s)
s , and another linearly independent set B′ of expressions in

X\R (of rank n− r − k′ − 1).

Our aim is to demonstrate two different settings of X to values in Fq, such that f(~x) has different
values, while all of the termsT (F (X, y)) have the same value at the two settings. Now, fix a particu-
lar length T iterated composition σ of F . We will now show that each of γt(f

σ|1(~x), fσ|2(~x), ..., fσ|t−1(~x)),

t ∈ [1..T], as well as fσ|t(~x) is a function of only B′′, and is independent of p
j(f,s)
s , and also inde-

pendent of B′ defined above. Thus in choosing the two different settings for X, we can first set the

basis B′′ to some value, which will fix the γ(...) values, and then we can set the B′ and p
j(f,s)
s to

two different values, while assuring that all consistency requirements are met.

For the base case, γ1() is clearly not a function of p
j(f,s)
s , or B′. Now, for the induction step,

consider fσ|t−1(~x). which is given by

φt−1(~x, γt−1(f
σ|1(~x), fσ|2(~x), ..., fσ|t−1(~x))).

where φt−1 is in F . Now, by induction the γt−1(...) expression is not a function of p
j(f,s)
s or B′.

Now, it is possible that γt−1(...) is equal to some p
j(φ∗,s)
s (~x) (φ∗ ∈ C), in which case φt−1(~x, γt−1(...))

would just equal p
j(φt−1,I)
I (~x, y), for I corresponding to the unique super-guard gI(~x, y) which is

consistent with y + p
j(φ∗,s)
s (~x) = 0. But, p

j(φt−1,I)
I is either p

j(φ∗∗,s)
s (~x) (φ∗∗ ∈ C) or such an ex-

pression plus y, by definition of C and definition of p
j(fs◦h,I)
I (~x, y). In either case, it is a function of

only p
j(φ,s)
s (~x) (φ ∈ C) by induction.

If γt−1(...) is not equal to any p
j(φ∗,s)
s (~x) (φ∗ ∈ C), we will show that we can choose ~x so as to

assure that γt−1(...) is not equal to any linear expression in B′ (and p
j(f,s)
s) either, as t < T < 2n <

√
q. In this case φt−1(~x, γt−1(...)) returns p

j(φt−1,I)
I (~x, y), where I corresponds to the degenerate

super-guard of gs given by J ′ = J . However, such p
j(φt−1,I)
I (~x, y) is again either p

j(φ∗∗,s)
s (~x) (φ∗∗ ∈ C)

or such an expression plus y, since C includes Compose(F , degenerate(F)).

Now, we demonstrate the two different settings of X to values in Fq. We first choose k′ linearly
independent (over F2) values in Fq and set the basis B′′ to these values, so that all expressions

p
j(φ,s)
s (φ ∈ C) are non-zero. As explained above, the values γt(...) are then fixed, and let this set

of values along with zero be collectively called Γ. Next, we inductively assign values to the basis
B′(of size n − r − k′ − 1) as follows. Let this basis be given by l1(~x), ..., ln−r−k′−1(~x). For l1(~x),
we pick any value in Fq which is not equal to any value in L(B′′) + Γ, where the sum of two sets
is defined naturally. For, the induction step, we choose for li(~x) a value in Fq which is not equal to
any value in L(B′′ ∪ {l1(~x), ..., li−1(~x)}) + Γ.

Since pj
s(f, s)(~x) is linearly independent of B′′ (as well as B′), we choose a value for it which is

not equal to any value in L(B′′∪{l1(~x), ..., ln−r−k′−1(~x)}) + Γ. Further we have at least two choices
for it, given that Fq ≥ 2+2n−1−r× (T +1). This also proves our claim that Γ is never equal to any

linear expression in B′ ∪ {pj(f,s)
s }. Further no linear combination of B′ and B′′ will be zero. Then,

we can choose the R variables corresponding to the guard gs, which by definition of R are given in
terms of the variables already chosen, so that the guard gs is true in both cases.

Case 2: Now consider the case where condition (i) holds, but condition (ii) of the F ∗-interpolatable

property fails to hold for f . In other words, for each i ∈ [1..t], p
j(f,i)
i is same as some p

j(φ∗,j)
i ((for

15

φ∗ ∈ C), but there exist a and b in [1..t] which are F ∗-equivalent, but the φ∗’s linear representation
coefficients cs differ for a and b. Again, we will demonstrate two points where termsT (F (X, y))
evaluate to the same value, but f evaluates to different values.

We have two sets, Ja corresponding to guard ga, and Jb, corresponding to guard gb. Let k′ ≤ n

be the rank of p
j(φ,a)
a (φ ∈ C). Let ra be the rank of Ja, and rb be the rank of Jb. thus, ra + k′ ≤ n,

and rb +k′ ≤ n. Let the R sets corresponding to guards ga and gb be called Ra and Rb respectively.
Let B′a be a basis for X\Ra excluding L(B′′), and similarly B′b be a basis for X\Rb excluding L(B′′).
We set the basis B′′ of p

j(φ,a)
a to linearly independent over GF2 values e1 to ek′ . We set the basis

of p
j(φ,b)
b also to the same values, recalling that the two bases, one for a and the other for b, can be

chosen to have the same indices. Thus, all functions in C will have the same value when guards ga

or gb are true. As in case 1, it follows that we can assure that by choosing B′a and B′b appropriately,
each of γt(f

σ|1(~x), fσ|2(~x), ..., fσ|t−1(~x)), t ∈ [1..T], as well as fσ|t(~x) is only a function of B′′, and
hence have the same values when guards ga or gb are true. However, since f has different linear
combinations of B′′ at these two guards, it evaluates to different values. Further values for variables
in Ra and Rb can be chosen so that guards ga and gb are indeed true. �

B Allowing a Few Constants

Let E be a set of linearly independent (over F2) elements of a field Fq. Now, we redefine pseudo-
linear polynomials where each linear term is as before defined over F2, but can in addition have
an addend from E. The same rule also applies to all the linear terms in the guards. Then, we can
prove the following theorem.

Theorem 11 Let f1, f2, ..., fk be k pseudo-linear functions in n variables X, over a field Fq (q =
2m), such that q > 2n+|E|. Collectively, we will refer to these polynomials as F . Let f be another
pseudo-linear function in X. Then, if f is a function of F , then f is a pseudo-linear function of
F .

Proof is similar to that of Theorem 5, in that we treat E as formal independent variables, and
then in the proof of Theorem 5, we set these formal variables to E where we set the k′ basis elements

of p
j(fs,i)
i to es.

A similar version holds for the iterated composition Theorem 6.

16

C Randomized Pseudo-Linear Functions

In this section we consider randomized pseudo-linear functions, or distributions over pseudo-linear
families of pseudo-linear functions. A pseudo-linear family of pseudo-linear functions is given by
a pseudo-linear function f ′ in variables ~x and ~r, where the variables ~r parametrize the family.
Given such a f ′, a randomized pseudo-linear function f (in ~x) is given by choosing ~r uniformly and
randomly.

The simulation question then becomes whether one can generate the target function distribution
by sampling the input function distributions.

When we regard the ~r as formal variables, we can apply Lemma 1 to deduce that f ′ is expressible
in terms of the basic pseudo-linear polynomials in (~x,~r). In particular,

f ′(~x,~r) =
∑

i∈Tn+m

gi(~x,~r) · pj(f ′,i)
i (~x,~r)

Consider a guard gi in just the space of the input variables ~x, with associated set J , i.e.
gi =

∏

l∈L\J l(~x)q−1 ·∏l∈J(1 + l(~x)q−1). Consider the set of super-guards Ii which extend J to

L ∪ L(~r) and each super-guard I ∈ Ii corresponds to a different subspace Jr ⊆ L(~r) added to the
subspace J (and then taking closure). Thus, we get a set of guards gI (I ∈ Ii) corresponding to
each guard gi.

From now on, when clear from context, we will refer to the randomized function as f(~x,~r), to
signify the random variables over which the distribution is defined.

We now show that given any randomized pseudo-linear function f(~x,~r), there is a randomized
pseudo-linear function in just one random variable r̂, such that it is statisitically indistinguishable
from f . The new randomized pseudo-linear function f̂ in just one random variable r̂ and the same
input variable set ~x, is defined in the following way:

• The function f̂ will only have non-zero p for guards involving only ~x, i.e. p for guards involving
r̂ will be zero.

• For each guard gi (with associated J), consider its extension super-guard I0 ∈ Ii corresponding

to Jr = {0}, In this case, JI0 is just J . Suppose p
j(f,I0)
I0

(~x,~r) = l1(~x) + l2(~r). If l2 is not

identically 0, then set p
j(f̂ ,i)
i (~x) = r̂, otherwise set p

j(f̂ ,i)
i (~x) = l1(~x).

Lemma 12 Let log q > 2(ρ+ m), where ρ is the number of random variables and m is the number
of input variables in f . The distribution f(~x) is statistically indistinguishable from f̂(~x) with
advantage < 1/

√
q.

Proof: Since there are at most 2ρ+m different linear expressions in ~x and ~r, by union bound, with
probability at least 1− 2ρ+m/q > 1− 1/

√
q, all linear expressions l1(~x) + l2(~r) are non-zero, when

l2 is not identically 0. In the rest of this proof, we therefore restrict ourselves to only on this
overwhelming case.

Now consider any guard gi in just ~x. For any super-guard index I ∈ Ii − I0, at least one
component (1 + l(~x,~r)q−1) in the super-guard will evaluate to 0, where l(~x,~r) ∈ J . Hence the
guards corresponding to (Ii − I0) all evaluate to 0.

17

For the index I0, no component of JI0 is identically zero since it is composed of ~x only. The
components (l1(~x)+l2(~r))

q−1, where l2 is not identically zero, evaluate to 1, since these are non-zero
by the earlier restriction. Hence they can be dropped off, and we are just left with the guard gi over

just the ~x’s. Now, suppose p
j(f,I0)
I0

(~x,~r) = l1(~x) + l2(~r). If l2 is identically zero, then p
j(f ′,I0)
I0

(~x,~r)

is just a function of ~x. If l2 is not identically 0, then p
j(f ′,I0)
I0

(~x,~r) is just a uniformly distributed

random number. We can set p
j(f̂ ,i)
i (~x) = r̂. These random numbers r̂ do not have to be different

for every guard gi, since for any fixed ~x, exactly one of the guards is going to be equal to 1 and the
rest of them will be 0. �

We will refer to the functions of the form of f̂ as Simplified Randomized Pseudo-Linear functions
(SRPL). These are functions which can be expressed with guards from ~x only and just one random
variable. Lemma 12 indicates that we can just focus on SRPL functions since any randomized
pseudo-linear function is statistically close to an SRPL function.

Lemma 13 (Homomorphism) For any SRPL functions φ1(~x) and φ2(~x), and for all i ∈ [1..t],

p
j(φ1+φ2,i)
i = p

j(φ1,i)
i + p

j(φ2,i)
i

with the rule that r̂ + · is re-written as r̂.

Proof: Follows from the fact that for a fixed ~x, exactly one of the guards evaluates to 1 and the
rest evaluate to 0. Also, adding a uniformly distributed random number to any quantity yields a
uniformly distributed random number.

�

D Interpolation Property for SRPL Functions

Let f1, f2, ..., fk be k SRPL functions in n variables X, over a field Fq (q = 2m). Collectively, we
will refer to these polynomials as F .

For any SRPL function f(~x) in X, let its representation in terms of the basis be given by j(f, ·).
Note that there is also one special index j for the random variable r as well. Let this index be
denoted by j(f, ·) = $ uniformly.

Since each of the polynomials from F , i.e. f1(~x), f2(~x),, fk(~x) is SRPL, let it be represented
by j(fs, ·) (s ∈ [1..k]). Further, each linear combination of F is represented similarly, with the rule
that r + · is replaced by r in the sum (see lemma 13).

We say that two guards ga(~x) and gb(~x) are F -equivalent if for every linear combination φ of
functions from F , it is the case that j(φ, a) = 0 iff j(φ, b) = 0 and j(φ, a) = $ iff j(φ, b) = $. In
this case, we write a ∼=F b, which is an equivalence relation.

Lemma 14 If a and b are F -equivalent then if for some subset S ⊆ [1..k], the linear combination
∑

s∈S p
j(fs,a)
a is identically zero, then so is

∑

s∈S p
j(fs,b)
b ; also if for some subset S ⊆ [1..k], the

linear combination
∑

s∈S p
j(fs,a)
a is random, then so is

∑

s∈S p
j(fs,b)
b .

18

The Lemma follows by Lemma (13). Thus, if k′ is the rank of p
j(fs,a)
a (s ∈ [1..k]), then it is also

the rank of p
j(fs,b)
b . In fact, we can take the exact same k′ indices from (s ∈ [1..k]), w.l.o.g. [1..k′],

to represent the basis for the k linear expressions, for both a and b.

Let L(F) denote the set of all linear combinations of functions in F .

For any function f(~x), and any set F of pseudo-linear functions in X, we say that f(~x) has the
F -interpolatable property if it satisfies the following two conditions:

(i) ∀i ∈ [1..t] : j(f, i) = $ ∨ (∃φ⋆ ∈ L(F) : j(f, i) = j(φ⋆, i)) , and

(ii) For every a, b ∈ [1..t] such that a and b are F -equivalent,

either j(f, a) = j(f, b) = $, in which case we set j(φ⋆, i) = $;

or, the following holds: w.l.o.g. by Lemma (14), let the first k′ functions out of (k functions)

p
j(fs,a)
a (out of p

j(fs,b)
b), represent their basis (resp. for b). Then, if the φ⋆ in (i) is given by

∑

ca
sp

j(fs,a)
a and

∑

cb
sp

j(fs,b)
b , respectively for a and b, then for all s ∈ [1..k′], ca

s = cb
s.

Lemma 15 Let X ∈ (Fq)
n. If f is an SRPL function in X, and f satisfies the F -interpolatable

property, for some set F of SRPL functions in X, then there exists a probabilistic poly-time (in lg q)
algorithm SF , such that the distribution f(X) is statistically indistinguishable from the distribution
SF (X).

Proof: Indeed, consider T̂ = [1..t] / ∼=F , where t is the number of guards, i.e. |G(X)|. We pick
the smallest elements from [1..t] to represent each equivalence class in T̂ . Define a random variable
h(~x) to be the following:

h(~x)
R← SF (~x) (3)

where for each u, φu is some function φ⋆ satisfying the F -interpolatable property above and algo-
rithm SF as follows:

Algorithm SF (~x)

for all u ∈ [1 . . . t]/ ∼=F

guardfound := true

for all φ ∈ L(F)

γ0
R← φ(~x); γ1

R← φ(~x)

if γ0 6= γ1 then israndom := true else israndom := false

if





j(φ, u) = $ and israndom := true
or j(φ, u) = 0 and γ0 = 0 and israndom := false
or j(φ, u) 6= 0 and γ0 6= 0 and israndom := false





then continue for loop

else guardfound := false; exit for loop

if guardfound = true then result
R← φu(~x); exit for loop

else continue for loop

return result

19

We now show that h ≈ f , i.e. for all ~x ∈ (Fq)
n, h(~x) ≈ f(~x). Fix any ~x∗ in (Fq)

n. Let J ⊆ L,
such that all linear functions in J evaluate to zero at ~x∗, and all linear functions in L\J evaluate to
non-zero quantities at ~x∗. Clearly, J is closed under addition, and hence J corresponds to a guard

gi. In other words, gi(~x
∗) = 1, and for all other i′ ∈ [1..t]: gi′(~x

∗) = 0. Thus, f(~x∗) = p
j(f,i)
i (~x∗),

and similarly, for all φ ∈ L(F), φ(~x∗) = p
j(φ,i)
i (~x∗). By definition of i (i.e. gi corresponding to J

above, and hence p
j(φ,i)
i ∈ L\J), it follows that φ(~x∗) is zero iff j(φ, i) = 0, and φ(~x∗) is random iff

j(φ, i) = $.

Now, in the algorithm SF , we show that the only u for which the “guards” evaluate to be
non-zero (i.e. one), is the one corresponding to the equivalence class of i in T̂ (say, ui). In fact,
for i (and its F -equivalent ui) the “guards” indeed evaluate to 1: the reasoning is same as in the
proof of Lemma 4 for the non-random values; in the random case, when we call φ(~x) twice, the
responses should be different with probability 1 − 1/q, hence γ0 6= γ1 would evaluate to true - in
any non-random case, γ0 6= γ1 would evaluate to false with probability one. For all other i′, if the
“guards” evaluate to one, then by definition of F -equivalence, those i′ are F -equivalent to i.

Thus, h(~x∗) ≈ φui
(~x∗), and since φui

is pseudo-linear in X,

φui
(~x∗) = p

j(φui
,i)

i (~x∗) ≈
∑

s

cui
s p

j(fs,i)
i (~x∗) =

∑

s

ci
sp

j(fs,i)
i (~x∗) = p

j(f,i)
i (~x∗).

Thus, h(~x∗) ≈ p
j(f,i)
i (~x∗), which is same as f(~x∗). �

E The Completeness Theorem for SRPL Functions

Theorem 16 Let f1, f2, ..., fk be k SRPL functions in n variables X, over a field Fq (q = 2m), such
that q > 2n. Collectively, we will refer to these polynomials as F . Let f be another SRPL function
in X. Then if there exists a probabilistic poly-time (in lg q) algorithm SF , such that the distribution
f(X) is statistically indistinguishable from the distribution SF (X), then f is F -interpolatable.

Proof: We show that if f does not satisfy at least one of F -interpolatable properties (i) or (ii), then
f is not efficiently simulatable using F . Then from this theorem and Lemma 15, it will follow that
deciding whether an efficient simulator exists is equivalent to checking F -interpolatability, which
can be done in computational time independent of lg q.

Since f(~x) is a pseudo-linear polynomial in X, let its representation in terms of the basis be
given by j(f, ·). Since each of the polynomials from F , i.e. f1(~x), f2(~x),...., fk(~x) is pseudo-linear, it
can also be represented by j(fs, ·) (s ∈ [1..k]). Further, each linear combination of F is represented
similarly.

So, first consider the case where f does not satisfy (i). In other words, for some i ∈ [1..t],
j(f, i) is neither $, nor for any linear combination φ of F (including zero) is j(f, i) equal to j(φ, i).

Thus, by Lemma (2), p
j(f,i)
i is linearly independent of all the non-random p

j(fs,i)
i (w.l.o.g let’s say

s ∈ [1..k̂]). Let J ⊆ L correspond to the guard gi. Thus, p
j(f,i)
i and all p

j(fs,i)
i (for s ∈ [1..k̂]) are

linearly independent of J . Let r be the rank of J , and k′ ≤ k̂ be the rank of p
j(fs,i)
i collectively.

Since p
j(f,i)
i is linearly independent of all p

j(fs,i)
i , we have that r + k′ + 1 ≤ n. Now, the subspace

corresponding to J set to zero has dimension n − r, and hence has qn−r points. However, we are

20

interested in points where all expressions in L\J evaluate to non-zero values, which would guarantee
that gi = 1, and all other guards are zero. Recall the subspace Pi(X) generated by all variables
not in the set R corresponding to guard gi. Now, L\J is a union of cosets of (n − r) dimensional

space P i(X) shifted by subspace J . Consider a basis B for P i(X), comprising of p
j(f,i)
i , a k′-ranked

basis of p
j(fs,i)
i , and n− r − 1− k′ other linearly independent expressions B′.

Assume the field Fq is of size at least 2n+1, and hence has n + 1 linearly independent (over F2)
elements ei. Thus, for every injective map setting B to these ei, there is a distinct solution to J
being zero, and all of L\J evaluating to non-zero values. Thus, there are at least

(n+1
n−r

)

(n−r)! such
points in (Fq)

n.

So, we fix p
j(fs,i)
i to es (s ∈ [1..k′]; assume w.l.o.g. that the first k′ formed the basis), and

similarly fix the B′ expressions to ek′+1 to en−r−1. This still leaves at least (n + 1 − (n − r − 1))

choices for p
j(f,i)
i . Thus, we have the situation that there are two points in (Fq)

n where f evaluates
to different values, whereas F has the same value. When we extend this argument to distributions,
we observe that the k̂ functions which are non-random have a constant distribution (their value
is fixed given just ~x) and also f is a constant distribution. The functions in F other than these
k̂ functions are uniform distribution. Therefore, collectively the counter-example generated above
are also easily detectably different distributions, and hence f cannot be a function of F .

Now, consider the case where f does satisfy condition (i), but condition (ii) is violated. In other

words, for each i ∈ [1..t], p
j(f,i)
i is same as some p

j(φ⋆,i)
i , but there exist a and b in [1..t] which are

F -equivalent, but one of the following two cases arise:

Case 1: j(f, a) 6= $ and j(f, b) 6= $, but φ⋆’s linear representation coefficients cs differ for a
and b.

Again, we will demonstrate two points where F evaluate to the same value, but f evaluates to
different values.

Again, let’s assume that the underlying field is large enough to have at least k′ linearly inde-
pendent (over F2) elements, say ei.

Now we have two sets, Ja corresponding to guard ga, and Jb, corresponding to guard gb. How-

ever, there is an easy solution for setting Ja to zero, and setting p
j(fs,a)
a (s ∈ [1..k′]) to es. Similarly,

there is a solution for setting Jb to zero and setting p
j(fs,a)
a (s ∈ [1..k′]) to es. Thus, in both cases

all fs (s ∈ [1..k]) evaluate to the same value, but f being a different linear combination in the two
cases, evaluates to different values.

Case 2: j(f, a) = $ 6= j(f, b).

In this case, we construct a counter-example in exactly the same manner as in Case 1. For
guard ga, we observe that f will follow a uniformly random distribution, whereas with guard gb,
f has a constant distribution. On the other hand the inputs have statistically indistinguishable
distributions with the given counter-examples. Hence, f cannot be a function of F .

�

21

F Completeness Theorem for Randomized Simulators and Iter-

ated Composition of SRPL Functions

In this section, we consider SRPL functions which can take arguments, modeling oracles which are
SRPL functions of secret values and arguments. Thus, for instance it may be required to find if
there exists a randomized simulator which given access to functionalities which are SRPL functions
of secret parameters X and arguments supplied by simulator/adversary, can compute a given SRPL
function.

This generalizes the problem from the previous sections, where the simulator could not pass
any arguments to the given functions. For simplicity, we will deal here with functions which only
take a single argument, and thus all the functions can be written as fi(~x, y), each SRPL in ~x and
y.

So, given a collection of k SRPL functions F (X, y), we now define an iterated composition of
F . Let Fq be the underlying field as before. An iterated composition σ of F is a length t sequence of
pairs (t an arbitrary number), the first component of the s-th (s ∈ [1..t]) pair of σ being a function
φs from F , and the second component an arbitrary randomized function γs of s−1 arguments (over
Fq).

Given an iterated composition σ of F , one can associate a function fσ of X with it as follows
by induction. For σ of length one, fσ is just φ1(~x, γ1()), recalling that φ1 ∈ F . For σ of length t,

fσ(~x) = φt(~x, γt(f
σ|1(~x), fσ|2(~x), ..., fσ|t−1(~x)))

where σ|j is the prefix of σ of length j.

Since, SRPL functions in n variables over Fq are just polynomials in n variables, there is a finite
bound on t, after which no iterated composition of F can produce a new SRPL function of the n
variables. The collection of all functions that can be obtained by iterated composition of F will be
referred to as terms(F). If we restrict γs to be SRPL functions of their s − 1 arguments, we will
refer to the iterated composition as SRPL iterated composition of F , and the corresponding
collection of functions associated with such sequences as SRPL iterated terms or srpl-terms(F).
Note that in this case γ1 is just zero.

Note that an arbitrary randomized program can only compute a randomized function of the
terms, whereas an arbitrary SRPL program can only compute an SRPL function of the SRPL
terms. An iterated composition will be called an extended SRPL iterated composition of F
if γs is either an SRPL function or a constant function c(~x) evaluating to an element c in Fq. For
each such c, the corresponding collection of functions associated with such sequences will be called
extended-srpl-terms(F, c).

We will also need to refine the definition of terms(F), by restricting to terms obtained within
some T iterated compositions, for some positive integer T . Thus, termsT (F) will stand for the
collection of functions obtained by iterated compositions of F of length less than T . In particular we
will be interested in T which is bounded by polynomials in log q and/or n, the number of variables
in X.

Similar to Appendix D, we first state an interpolatable property which is a sufficient condition
for an SRPL function of X to be an SRPL function of srpl-terms(F).

Recall the functions in F now have an additional argument y. As before, L(G), for any set of
functions G will denote the set of all linear combinations (over F2) of functions from G. Below we

22

define the class Ii(F) of SRPL functions in X, for i an arbitrary natural number. In fact, since the
inductive definition will sometimes use functions in both X and y, we will just define this class as
SRPL functions in X and y, though for different y, they would evaluate to the same value. In other
words, for an arbitrary guard ga(~x), which corresponds to a subset J ⊆ L(X) (J is closed under
addition), there are many super-guards when viewed as a function of X and y, namely with subsets
J ′ ⊆ L(X, y) (J ′ closed under addition) such that J ⊆ J ′ and (L(X)\J) ⊆ (L(X, y)\J ′). Thus, for
all these super-guards, a SRPL function φ(X) will have the same j(φ, ·) value (see Section 2).

However, and more importantly, with y set to some linear expression l(~x) ∈ Pa(X) (including
zero), exactly one of these (super-)guards has the property that J ′y|l(~x) = J (Note the subscript

y|l(~x) means l(~x) is substituted for every occurrence of y in J ′). This particular J ′ is given by

J ′ = L(J, {y + l(~x)})

In this case we say that this super-guard of gs is consistent with y + l(~x) = 0. The super-guard
corresponding to J ′ = J will be called the degenerate super-guard of ga(~x).

Now we define the SRPL function which is the composition of fs and h, i.e. fs ◦h, where fs is a
SRPL function in X and y, and h is a SRPL function in X, by defining its components in the basis
for SRPL functions. For any guard gi(~x) (of functions in X), let gI(~x, y) be the unique (super-)

guard, mentioned in the previous paragraph, which is consistent with y set to p
j(h,i)
i (note the map

j here is for guards corresponding to X, and in general it will be clear from context whether we
are referring to map j for guards corresponding to X or X, y). Then, define

p
j(fs◦h,I)
I (~x, y) = p

j(fs,I)
I (~x, p

j(h,i)
i (~x, y))

Further, for all I ′ which are super-guards of i, we set p
j(fs◦h,I′)
I′ to be the same value (as fs◦h is only

a function of X). Note that since each p is just a linear function, this implies that each component
of fs ◦ h is a linear function of X (and hence X, y). In particular, (fs ◦ h)(~x) = fs(~x, h(~x)).

Define Compose(F (X, y),H(X)), where F (X, y) are a set of SRPL functions in X, y and
H(X) is a set of SRPL functions in X, to be the set of all functions fs ◦h, where fs ∈ F (X, y) and
h ∈ H(X).

For each SRPL function fs of X and y, we also need to define a SRPL function (in X called
degenerate(fs), which for each guard ga(~x), defines the corresponding p function using its degen-
erate super-guard. Thus,

p
j(degenerate(fs),a)
a (~x) = p

j(fs,I)
I (~x, 0),

where I is the degenerate super-guard of ga.

Now, we are ready to define the iterated SRPL functions. Define

I0(F) = L(Compose(F,degenerate(F)))

Ii+1(F) = L(I i(F) ∪ Compose(F,I i(F))), for i ≥ 0.

Since, these functions are just polynomials over finite fields (in fact defined over F2), the above
iteration reaches a fix-point at an i bounded by a function only of n. We will denote the fix-point
by just I(F).

23

Now, we generalize the definitions of F -equivalence and F -interpolatable from Section 3. Two
guards ga(~x) and gb(~x) are said to be F ∗-equivalent if for every φ(~x) in I(F), it is the case that
j(φ, a) = 0 iff j(φ, b) = 0 and j(φ, a) = $ iff j(φ, b) = $.

The definition of F ∗-interpolatable property is same as the F -interpolatable property except
that L(F) is replaced by I(F).

Instead of the closure I(F), it will also be useful to define the following set of functions

C =
⋃

i

Compose(F,I i(F)) ∪ Compose(F,degenerate(F)),

and it is easy to see that I(F) is just the linear closure of C.

Lemma 17 If f is an SRPL function of n variables X over a field Fq, and f satisfies the F ∗-
interpolatable property, for some set F of SRPL polynomials in X, y, then there exists a probabilistic
poly-time (in lg q) algorithm SF , such that the distribution f(X) is statistically indistinguishable
from the distribution SF (X), with error at most 2n/q.

Proof: The proof is similar to the proof of Lemma 4, but there is a small difference due to the
probabilistic nature of this lemma.

Consider T̂ = [1..t] / ∼=F , where t is the number of guards, i.e. |G(X)|. We pick the smallest
element from [1..t] to represent each equivalence class in T̂ . Define a function h(~x) to be the
following:

h(~x)
R← SF (~x) (4)

where SF is as defined below. For each u, φu is some function φ⋆ ∈ I(F) satisfying the F ∗-
interpolatable property (i).

Algorithm SF (~x)

for all u ∈ [1 . . . t]/ ∼=F

guardfound := true

for all φ ∈ I(F)

γ0
R← φ(~x); γ1

R← φ(~x)

if γ0 6= γ1 then israndom := true else israndom := false

if





j(φ, u) = $ and israndom := true
or j(φ, u) = 0 and γ0 = 0 and israndom := false
or j(φ, u) 6= 0 and γ0 6= 0 and israndom := false





then continue for loop

else guardfound := false; exit for loop

if guardfound = true then result
R← φu(~x); exit for loop

else continue for loop

return result

24

Now, the proof that h=f , i.e. for all ~x ∈ (Fq)
n, h(~x) = f(~x), is identical to the proof in

Lemma 4.

For the efficiency argument, we now show a simulator with calls to extended-pl-terms(F (X, y),Seed).
Observe that for any fs, exactly one of the following cases hold, for all y linearly independent of ~x:

Case 1: fs(~x, y) = degenerate(fs)(~x)

Case 2: fs(~x, y) = degenerate(fs)(~x) + y

Now define a function ĥ(~x, c) to be same as h, except every occurrence of degenerate(fs)(~x) is
replaced by either of the following:

{

fs(~x, c) in Case 1

fs(~x, c) + c in Case 2

(recall, fs is a function of X and y, whereas degenerate(fs) is a function of only X). Then, it is
easy to see that ĥ(~x, c) is in extended-pl-terms(F, c). We next show that for every ~x, with c
chosen uniformly from Fq, probability that ĥ(~x, c) = h(~x) is at least 1− 2n/q. For each ~x, one and
only one guard gs is satisfied. the probability that for this guard, c = l(~x), for some l(~x) ∈ Ps(X)
is at most 1/q. Hence, by union bound, over all possible l(~x), the probability that c equals any l(~x)
is at most 2n/q, as |X| = n. These are the only cases in which degenerate(fs)(~x) may differ from
fs(~x, c) or fs(~x, c) + c, as the case may be. �

Theorem 18 (Main) Let f1, f2, ..., fk be k SRPL functions in n variables X and an additional
variable y, over a field Fq such that q > 24n. Collectively, we will refer to these polynomials as
F (X, y). Let T be a positive integer less than 2n(< q1/4). Let f be another SRPL function in
X. Then if there exists a probabilistic poly-time (in lg q) algorithm StermsT (F (X,y)), such that the
distribution f(X) is statistically indistinguishable from the distribution StermsT (F (X,y))(X), then f
is F ∗-interpolatable.

Proof: We show that if f does not satisfy at least one of F ∗-interpolatable properties (i) or (ii),
then f is not efficiently simulatable using F . Then from this theorem and Lemma 17, it will follow
that deciding whether an efficient simulator exists is equivalent to checking F ∗-interpolatability,
which can be done in computational time independent of lg q.

As in Theorem 5, we have two cases. In both cases we will show the non-existence of a prob-
abilistic poly-time simulator (i.e. with for each ~x, the probability of the definition being correct
must be more than, say a very liberal, q1/4). Before we go into the analysis of the two cases, we
recall a few relevant definitions, and state some useful properties.

Recall from Section 2, that Q(X) is the set of all basic SRPL polynomials in variables X, and,
G(X) is the set of all guards amongst these polynomials Q(X). Further, |G(X)| = t. Also, recall
for each guard gs its corresponding set R from its repselin representation, and the corresponding
subspace Ps(X).

Also, recall the super-guards gI(~x, y) corresponding to guards gi(~x). Thus, if J corresponded to
gi, then some J ′ such that J ⊆ J ′ ⊆ L(X, y), corresponds to super-guard gI . Further, (L(X)\J) ⊆
(L(X, y)\J ′). Hence, if some y + l(~x) is in J ′, we can w.l.o.g take as the corresponding R′ (of gI) to
be R ∪ {y}. Thus, in such cases pI(~x, y) are just linear expressions in X\R. If on the other hand,

25

for no l(~x) it is the case that y + l(~x) is in J ′, then R′ = R, and pI(~x, y) will be a linear expression
in (X\R) ∪ {y}.

Now we are ready to analyze the two cases.

Case 1: First, consider the case where f does not satisfy property (1) of F ∗-interpolatable.

Then, it is the case that there exists an s ∈ [1..t], such that for every linear polynomial φ in

I(F), j(f, s) 6= j(φ, s), and further it is the case that j(f, s) is not $. Thus, by Lemma 2, p
j(f,s)
s is

linearly independent of all non-random p
j(φ,s)
s , with φ ∈ C.

Let J ⊆ L correspond to the guard gs. Thus, p
j(f,s)
s , as well as all p

j(φ,s)
s (φ ∈ C) are linearly

independent of J (see the paragraph after definition of repselin polynomials). Let r be the rank

of J , and k′ be the rank of p
j(φ,s)
s collectively. Thus, r + k′ + 1 ≤ n. Consider a basis B of Ps(X)

consisting of p
j(f,s)
s , a basis B′′ of p

j(φ,s)
s , and another linearly independent set B′ of expressions in

X\R (of rank n− r − k′ − 1).

Note that since j(f, s) is not random, it is a deterministic function of ~x. Also, each term
in termsT (F (X, y)) is an SRPL function, and hence is either a deterministic function of ~x, or a
random variable r. Thus, our aim is to demonstrate two different settings of X to values in Fq, such
that f(~x) has different values, while all of termsT (F (X, y)) have the same value (or distribution
r) at the two settings. Now, fix a particular length T iterated composition σ of F . We will now
show that each of γt(f

σ|1(~x), fσ|2(~x), ..., fσ|t−1(~x)), t ∈ [1..T], as well as fσ|t(~x) is a function of only

B′′, and is independent of p
j(f,s)
s , and also independent of B′ defined above. Thus in choosing the

two different settings for X, we can first set the basis B′′ to some value, which will fix the γ(...)

distribution, and then we can set the B′ and p
j(f,s)
s to two different values, while assuring that all

consistency requirements are met.

For the base case, γ1() is clearly not a function of p
j(f,s)
s , or B′. Now, for the induction step,

consider fσ|t−1(~x). which is given by

φt−1(~x, γt−1(f
σ|1(~x), fσ|2(~x), ..., fσ|t−1(~x))).

where φt−1 is in F . Now, by induction the γt−1(...) expression is not a function of p
j(f,s)
s or B′.

Now, it is possible that γt−1(...) is equal to some p
j(φ∗,s)
s (~x) (φ∗ ∈ C), in which case φt−1(~x, γt−1(...))

would just equal p
j(φt−1,I)
I (~x, y), for I corresponding to the unique super-guard gI(~x, y) which is

consistent with y + p
j(φ∗,s)
s (~x) = 0. But, p

j(φt−1,I)
I is either p

j(φ∗∗,s)
s (~x) (φ∗∗ ∈ C) or such an ex-

pression plus y, by definition of C and definition of p
j(fs◦h,I)
I (~x, y). In either case, it is a function of

only p
j(φ,s)
s (~x) (φ ∈ C) by induction.

If γt−1(...) is not equal to any p
j(φ∗,s)
s (~x) (φ∗ ∈ C), we will claim that we can choose ~x so as to

assure that γt−1(...) is not equal to any linear expression in B′ (and p
j(f,s)
s) either, with probability

> 1/q1/4 (the probability is over simulator’s randomness and the randomness returned in the terms).

In this case φt−1(~x, γt−1(...)) returns p
j(φt−1,I)
I (~x, y), where I corresponds to the degenerate super-

guard of gs given by J ′ = J . However, such p
j(φt−1,I)
I (~x, y) is again either p

j(φ∗∗,s)
s (~x) (φ∗∗ ∈ C) or

such an expression plus y, since C includes Compose(F , degenerate(F)).

Now, we demonstrate the two different settings of X to values in Fq. We first choose k′ linearly
independent (over F2) values in Fq and set the basis B′′ to these values, so that all expressions

p
j(φ,s)
s (φ ∈ C) are non-zero.

26

Then, assuming the above claim holds, over T steps, the probability of some γt being a linear
expression in B′ is at most T/q1/2. So, with probability 1 − T/q1/2, each γt is not equal to some
linear expression in B′, and hence the terms returned (i.e. φt) will be independent of B′. Now, we

show how to set B′ and p
j(f,s)
s , so that the above claim holds. Let Γ be the set of values c (in the

field) such that in some step (t in T), the probability of γt−1 being c is more than 1/q1/2. (More
formally, the proof should be done by maintaining an induction hypothesis about the claim, and
building the set Γ inductively.) Note that |Γ| < q1/2 × (T + 1).

Next, we inductively assign values to the basis B′(of size n− r − k′ − 1) as follows, so that the
above claim holds. Let this basis be denoted by l1(~x), ..., ln−r−k′−1(~x). For l1(~x), we pick any
value in Fq which is not equal to any value in L(B′′) + Γ, where the sum of two sets is defined
naturally. For, the induction step, we choose for lι(~x) a value in Fq which is not equal to any value
in L(B′′ ∪ {l1(~x), ..., lι−1(~x)}) + Γ.

Since p
j(f,s)
s (~x) is linearly independent of B′′ (as well as B′), we choose a value for it which is not

equal to any value in L(B′′∪{l1(~x), ..., ln−r−k′−1(~x)}) + Γ. Further we have at least two choices for

it, given that q ≥ 2 + 2n−1−r × |Γ|. Thus, no linear expression in B′ or p
j(f,s)
s is ever in Γ. Thus, f

takes different values on these two settings os ~x, whereas with probability 1− T/q1/2 ≥ 1− 1/q1/4,
all of termsT (F (X, y)) take the same value.

Case 2: Now consider the case where condition (i) holds, but condition (ii) of the F ∗-interpolatable
property fails to hold for f . This case is handled as in Theorem 16 but adapted with the analysis
of Case 1 here. �

27

G Proof of Completeness of L
$,⊕,if

We prove Theorem 8 in this section by starting off with the following lemma.

Lemma 19 All the variables in an L$,⊕,if program f(~z) are randomized pseudo-linear in ~z.

Proof: The proof is by structural induction on the grammar of expressions in L$,⊕,if. Since there
are no loops in the language, we can assume wlog that no variable is assigned twice. In the base
cases, the guards are derived according to the following rules ([P] denotes the field polynomial
corresponding to expression P) :

[x] = x, for atom x

[XE1 ⊕XE2] = [XE1] + [XE2]

[true] = 1

[XE1 == XE2] = [XE1 + XE2]
q−1

[BE1 ∧BE2] = [BE1][BE2]

[¬BE] = 1 + [BE]

The conditional actions have an effect which can be viewed as follows for every relevant variable:
if BE then x := XE1 else x := XE2. Then we will have [x] = [BE][XE1]+ [¬BE][XE2], since
([BE], [¬BE]) ∈ {(0, 1), (1, 0)}.

It is easy to see that expressions constructed as above are pseudo-linear in the atoms. For the
inductive case, xor-ing two pseudo-linear expressions again is a pseudo-linear expression. The only
non-trivial case is the construction of conditional expressions from pseudo-linear expressions. We
have to prove the following: Any pseudo-linear polynomial raised to the power q − 1 is a sum of
guard expressions. Given this the induction is straightforward.

To prove this recall that PLs can be expressed as sum of epselin terms
∏

l∈L/J l(~x)q−1 ·
∏

l∈J(1+

l(~x)q−1) · p(~x). Observe that the product of any two distinct epselin guards
∏

l∈L/J1
l(~x)q−1 ·

∏

l∈J1
(1 + l(~x)q−1) and

∏

l∈L/J2
l(~x)q−1 ·

∏

l∈J2
(1 + l(~x)q−1) is 0.

Therefore, we can write down any pseudo-linear polynomial (in ~x) as:

GE = (EPS1 + EPS2 + · · ·) = (G1.L1 + G2.L2 + · · ·),

where the EPSi’s are epselin terms, the Gi’s are guards and the Li’s are the corresponding
linear expressions (after gathering all the linear terms with the same Gi together). Now, for any
substitution of the atoms ~x, at most one of the Gi’s is equal to 1 and the rest of the Gi’s are 0.
This lets us write:

(G1.L1 + G2.L2 + · · ·)q−1 =























0 if all the Gi(~x)’s are 0

L1(~x)q−1 if G1(~x) = 1

L2(~x)q−1 if G2(~x) = 1

· · ·

28

Hence this is exactly equal to the polynomial (G1.L
q−1
1 + G2.L

q−1
2 + · · ·) which is a sum of guard

expressions in the atoms. �

We now proceed to the main proof.

Proof:[Theorem 8] By Lemma 19, all the functions in P and F compute randomized pseudo-linear
functions in the inputs. By Lemma 12, with negligible error, we can assume that these are given
as SRPL functions.

Now, by Theorem 18, if f is simulatable using termsT (F (X, y)), with T < q1/4, then f is F ∗-
interpolatable. F ∗-interpolatability can be decided by computing I(F), which can be computed
in time independent of lg q. Further, by Lemma 17, if f is F ∗-interpolatable, then there exists a
probabilistic polynomial time (in lg q) simulator.

�

29

H Example

H.1 Pseudo-linear functions

We will consider some simple examples to get a flavor of the problem. Suppose we are given two
input functions f1 and f2 defined as follows:

f1(x1, x2) = x1 + x2

f2(x1, x2) =

{

0 if x1 = 0 or x2 = 0
x1 + x2 otherwise

}

= xq−1
2 x1 + xq−1

1 x2

We ask if it is possible to extract just x1 given f1(x1, x2) and f2(x1, x2). That is, can we express
f(x1, x2) = x1, in terms of f1 and f2 alone? To do so, we construct the following truth table:

x1 x2 x1 + x2 f1 f2 f

Row 1 0 0 0 0 0 0

Row 2 x1 0 x1 0 x1 x1

Row 3 0 x2 x2 0 x2 0

Row 4 x1 x1 0 0 0 x1

Row 5 x1 x2 x1 + x2 x1 + x2 x1 + x2 x1

In the table above we list all linear combinations of the atoms, in this case just x1, x2 and
x1 + x2. Each row corresponds to different combinations of cases where each linear combination
can be zero or non-zero. Any non-zero entry under a column means that the particular linear
combination is non-zero. Simplifications are performed when some of the linear expressions are
zero - e.g. Row 4, where we write x1 under the column x2 since x1 + x2 = 0 ⇒ x2 = x1. It turns
out that any pseudo-linear expression projects to a linear expression in any particular row - thus
each such function can be given by a column of linear expressions, e.g. f1, f2 and f above. In this
particular table for f1, f2 and f we can come up with several evidences that f is not a function
of f1, f2. Consider Row 4: both f1 and f2 are 0, whereas f is x1. Therefore, in accordance with
the structure of the row, if we vary x1, keeping it non-zero and x2 = x1, we get two pairs (x′, x′)
and (x′′, x′′) with x′ 6= x′′ such that f1(x

′, x′) = f1(x
′′, x′′) = 0 and f2(x

′, x′) = f2(x
′′, x′′) = 0,

but f(x′, x′) = x′ 6= x′′ = f(x′′, x′′). Hence f cannot be a function of f1, f2. We can construct a
counterexample using Row 5 as well: vary x1 keeping x1+x2 constant and keeping x1, x2, x1+x2 all
non-zero - e.g. in GF(23) : (x′1, x

′
2) = (001, 010) and (x′′1, x

′′
2) = (101, 110). The common evidence

in both rows is that f is not a linear combination of f1, f2.

However, this is not the only type of evidence. Consider the following f ′(x1, x2):

f ′(x1, x2) =

{

x1 if x2 = 0
0 otherwise

}

= (1 + xq−1
2)x1

30

Now the table looks like:

x1 x2 x1 + x2 f1 f2 f ′

Row 1 0 0 0 0 0 0

Row 2 x1 0 x1 0 x1 x1

Row 3 0 x2 x2 0 x2 0

Row 4 x1 x1 0 0 0 0

Row 5 x1 x2 x1 + x2 x1 + x2 x1 + x2 0

Now in each row, f ′ is a linear combination of f1, f2 (including the 0-combination). How-
ever, there is a problem with Rows 2 and 3. The problem surfaces when we try to write f ′ as a
combination of f1, f2:

x1 x2 x1 + x2 f1 f2 f ′

Row 1 0 0 0 0 0 0

Row 2 x1 0 x1 0 f2 (= x1) f2 (= x1)

Row 3 0 x2 x2 0 f2 (= x2) 0

Row 4 x1 x1 0 0 0 0

Row 5 x1 x2 x1 + x2 f1 (= x1 + x2) f1 (= x1 + x2) 0

The following pairs can be seen to be counter-examples in GF(22): (x′1, x
′
2) = (01, 00), (x′′1 , x′′2) =

(00, 01). For these pairs we have: f1(x
′
1, x
′
2) = 00 = f1(x

′′
1 , x
′′
2), f2(x

′
1, x
′
2) = 01 = f2(x

′′
1 , x
′′
2), but

f ′(x′1, x
′
2) = 01 6= 00 = f ′(x′′1 , x

′′
2). This counter-example has been generated by looking at Rows 2

and 3: one of the technical challenges we solve is to systematically come up with counter-examples
when arbitrary number of atoms and functions are involved.

Finally, consider the function f ′′:

f ′′(x1, x2) =







x1 if x2 = 0
x2 if x1 = 0 and x2 6= 0
0 otherwise







= (1 + xq−1
2)x1 + (1 + xq−1

1)x2

Now the table looks like:

x1 x2 x1 + x2 f1 f2 f ′′

Row 1 0 0 0 0 0 0

Row 2 x1 0 x1 0 x1 x1

Row 3 0 x2 x2 0 x2 x2

Row 4 x1 x1 0 0 0 0

Row 5 x1 x2 x1 + x2 x1 + x2 x1 + x2 0

31

Writing f ′′ as a combination of f1, f2:

x1 x2 x1 + x2 f1 f2 f ′′

Row 1 0 0 0 0 0 0

Row 2 x1 0 x1 0 f2 (= x1) f2 (= x1)

Row 3 0 x2 x2 0 f2 (= x2) f2 (= x2)

Row 4 x1 x1 0 0 0 0

Row 5 x1 x2 x1 + x2 f1 (= x1 + x2) f1 (= x1 + x2) 0

When we “collapse” the table to just the functions we have:

f1 f2 f1 + f2 f ′′

Row 1 0 0 0 0

Row 2 0 f2 f2 f2

Row 3 f1 f1 0 0

Now we claim that f ′′ is a function of f1 and f2 alone. In fact this can be verified easily:

f ′′ = f1 + f2

In this particular case we observe that f ′′ is pseudo-linear in f1, f2. We actually prove the
general result that if the target function is a function of the input functions, then it is a pseudo-
linear function of the input functions.

H.2 Iterated pseudo-linear functions

Consider the input function f1(x1, y) and the target function f(x1) defined as follows:

f1(x1, y) =

{

x1 if y = x1

0 otherwise

}

= (1 + (x1 + y)q−1)x1

f(x1) = x1

It is easy to see that the iterated compositions of f1(x1, y) is just the single function 0, which
outputs 0 on any input. However, it is possible to compute f(x1) by calling f1(x1, y) as the following
algorithm demonstrates:

32

Algorithm Simulate ff1()

repeat for all non-zero elements y in Fq

t← f1(x1, y)

if (t
?
= y)

return t

y ← next y

end repeat block

return 0

In this example, we observe that the complexity of the algorithm is O(q).

Now consider the following input and target functions:

f ′1(x1, y) =

{

0 if y = 0 or y = x1

x1 otherwise

}

= yq−1(x1 + y)q−1x1

f ′(x1) = x1

Here also the iterated compositions of f ′1(x1, y) is just the single function 0. Also, it is possible to
compute f(x1) (with high probability) by calling f ′1(x1, y) as the following algorithm demonstrates:

Algorithm Simulate f′
f ′
1()

choose y randomly from Fq

t← f1(x1, y)

return t

In this example, we observe that the complexity of the algorithm is O(1), but it works with
probability 1 − O(1/q): the probability of y being different from 0 and x1. For this particular
example, it is also possible to come up with an efficient deterministic algorithm - but systematically
coming up with efficient deterministic algorithms in all cases where it’s possible, seems to be a hard
problem. We do show how to systematically come up with randomized efficient algorithms in all
the cases where it is possible to do so.

33

I A Cryptographic Application

We start by describing the Universally Composable (UC) framework in more detail. The UC
framwork is a formal system for proving security of computational systems such as cryptographic
protocols. The framework describes two probabilistic games: The real world that captures the
protocol flows and the capabilities of an adversary, and the ideal world where dummy parties and
the adversary interact with a trusted third party that characterizes the security requirements. The
notion of security asserts that these two worlds are essentially equivalent. We now describe the
real-world and the ideal world in more detail.

The real-world model. The players in the real-world model are all the entities of interest in
the system (e.g., the nodes in a network, the processes in a software system, etc.), as well as
the adversary A and the environment Z. All these players are modeled as efficient, probabilistic,
message-driven programs (formally, they are all interactive Turing machines).

The actions in this game should capture all the interfaces that the various participants can
utilize in an actual deployment of this component in the real world. In particular, the capabilities
of A should capture all the interfaces that a real-life attacker can utilize in an attack on the system.
(For example, A can typically see and modify network traffic.) The environment Z is responsible
for providing all the inputs to the players and getting all the outputs back from them. Also, Z
is in general allowed to communicate with the adversary A. (This captures potential interactions
where higher-level protocols may leak things to the adversary, etc.)

The ideal-world model. Security in the UC framework is specified via an “ideal functionality”
(usually denoted F), which is another interactive Turing Machine. The ideal-world model has
the same environment as the real-world model, but we pretend that there is a completely trusted
party (the functionality F) that performs all the tasks that are required of the protocol. In the
ideal world, participants just give their inputs to the functionality F , which produces the correct
outputs (based on the specification) and hands them back to the participants. F may interact with
an adversary, but only to the extent that the intended security allows. (E.g., it can “leak” to the
adversary things that should be publicly available, such as public keys.)

UC-Security. A protocol π securely realizes an ideal functionality F if for every probabilistic
polynomial time (PPTM) adversary A in the real world, there exists a PPTM adversary A′ in the
ideal world, such that no environment Z can distinguish between interacting with A and π in the
real world and interacting with A′ and F in the ideal world.

I.1 UC Functionality for password-based key exchange

Password-based key exchange is an important security problem which has been studied extensively
in cryptographic research [BM93], and which brings out the power of the UC framework particularly
well. Canetti et al [CHK+05] proposed an Ideal Functionality for password-based key exchange
which is formally described in Figure 1.

Consider two parties Pi and Pj that wish to come up with a common cryptographically strong
key based on the fact that they share the same password. The idea is to capture the fact that modulo

34

the adversary outright guessing the password exactly during an active session between the parties,
it has no control (or information) on the key being generated. It is allowed to interrupt sessions by
tampering with the messages being exchanged, but doing so only results in the parties ending up
with different uniformly randomly distributed keys. If, however, the session is not interrupted, the
parties end up with the same key which is distributed uniformly and randomly and is not controlled
by the adversary.

Functionality FpwKE

The functionality FpwKE is parameterized by a security parameter k. It interacts with an adversary S and a set of
parties via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj , pw, role) from party Pi:

Send (NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first NewSession query, or if this is the second
NewSession query and there is a record (Pj , Pi, pw′), then record (Pi, Pj , pw) and mark this record fresh.

Upon receiving a query (TestPwd, sid, Pi, pw′) from the adversary S:

If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw = pw′, mark the record compromised

and reply to S with “correct guess”. If pw 6= pw′, mark the record interrupted and reply with “wrong guess”.

Upon receiving a query (NewKey, sid, Pi, sk) from S, where |sk| = k:
If there is a record of the form (Pi, Pj , pw), and this is the first NewKey query for Pi, then:

• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk) to player Pi.

• If this record is fresh, and there is a record (Pj , Pi, pw′) with pw′ = pw, and a key sk′ was sent to Pj ,
and (Pj , Pi, pw) was fresh at the time, then output (sid, sk′) to Pi.

• In any other case, pick a new random key sk′ of length k and send (sid, sk′) to Pi.

Either way, mark the record (Pi, Pj , pw) as completed.

Figure 1: The password-based key-exchange functionality FpwKE

Our motivation in constructing the language L$,⊕,if in this paper is driven by cryptographic
definitions and protocols in the UC model. The functionality FpwKE can be modeled in an extension
of L$,⊕,if as described in Figure 2. To simplify exposition we have not dealt with corruption and
session ids in this description, however it is possible to describe those without further extension.

The extensions to L$,⊕,if necessary to cover this description are: (i) variables which are persistent
across function calls, and (ii) the functionality outputing to the environment. We do not consider
these extensions in this paper, but to bring out the power of L$,⊕,if itself, we we describe an abstract
version of this functionality in L$,⊕,if in Figure 3. This version is different from FpwKE, but captures
some of its key combinatorial aspects. The main limitation of this description is that most of the
information comes from the environment instead of the adversary.

The function fint1 capture the scenario where the messages from party 1 to 2 were modified;
likewise for fint2. The function ftest captures the fact that the adversary guesses the password
correctly. The function fkey models the derivation of keys by both parties - but instead of outputting
the keys to the environment, the difference (⊕ for us) between the keys is returned.

The important aspects which are captured is that when the messages are tampered with, the
difference in keys is uniformly random; when the password is guessed correctly by the adversary,
the difference can be set to a value controlled by the adversary; when nothing is tampered with,
the difference is zero.

Now we describe a protocol Π
spwKE

− , in Figure 4 , which is a candidate to realize F
spwKE

− .

35

Functionality FpwKE−

fnewsession(pw) :

persistent variables r, sk1, sk2

r ← $; sk1 ← $; sk2 ← $

ftestpwd1(pw; w, k, ignore) :

if (ignore 6= 0) then

if (pw == w) then

sk1 := k

result := “correct guess”

else

sk1 ← $

result := “wrong guess”

else

sk1 := r

result := “ignored”

return result

ftestpwd2(pw; w, k, ignore) :

if (ignore 6= 0) then

if (pw == w) then

sk2 := k

result := “correct guess”

else

sk2 ← $

result := “wrong guess”

else

sk2 := r

result := “ignored”

return result

fnewkey1(pw) :

output sk1

fnewkey2(pw) :

output sk2

Figure 2: The password-based key-exchange functionality F
pwKE

−

36

Simplified Functionality FspwKE−

Let ~x = (pw, guess, c1, c
′

1
, c2, c

′

2
, kdiff)

fint1(~x) :

return c1 ⊕ c′
1

fint2(~x) :

return c2 ⊕ c′
2

ftest(~x) :

return pw ⊕ guess

fkey(~x; compromised, ignore) :

if (ignore 6= 0) then

if (compromised 6= 0) then

skdiff := kdiff

else

skdiff← $

else

skdiff := 0

return skdiff

Figure 3: Simplified password-based key-exchange functionality F
spwKE

−

This is loosely based on protocols in the Ideal Cipher model [BPR00]. The idea is that when the
password is guessed correctly, the difference can be set to a given value kdiff. Otherwise, there are
two cases. When the messages in both directions are not tampered with, specifically c1 == c′1 and
c2 == c′2, both parties end up with the key r1 ⊕ r2 and hence the difference is 0. If either message
is tampered with, the difference in keys ends up being uniformly random.

We prove that Π
spwKE

− realizes F
spwKE

− by demonstrating the following simulator. The con-
stant c is any non-zero member of the underlying field.

37

Protocol ΠspwKE−

Let ~x = (pw, guess, c1, c
′

1
, c2, c

′

2
, kdiff)

fspwke(~x) :

r1 ← $

r2 ← $

if (c1 == c′
1
) then

r′
1

:= r1

else

r′
1
← $

if (c2 == c′
2
) then

r′
2

:= r2

else

r′
2
← $

sk1 := r′
1
⊕ r2

sk2 := r1 ⊕ r′
2

if (guess == pwd) then

skdiff := kdiff

else

skdiff := sk1 ⊕ sk2

return skdiff

Figure 4: The password-based key-exchange proctocol Π
spwKE

−

Algorithm S

comp1 := fint1(~x)

comp2 := fint2(~x)

testpwd := ftest(~x)

if (testpwd 6= 0) then

if (comp1 == 0 ∧ comp2 == 0) then

kd := fkey(~x, c, 0)

else

kd := fkey(~x, 0, c)

else

kd := fkey(~x, c, c)

return kd

38

It is readily seen that the Simulator S is in fact an SRPL probabilistic function of extended-
pl-terms(F

spwKE
− , c), thus demonstrating Theorem 18.

39

J An Undecidable System

In this section we describe one language Ltab for which we are able to prove that no algorithmic pro-
cedure exists to decide equivalence. In particular, this arises when unbounded table lookup/storage
operations are allowed (not even random access, but just storing and detecting whether some string
is there in the table), even when there are no arithmetic operations, loops in subroutines or random
number generation. Formally, we have the following theorem:

Theorem 20 (An Undecidable System) Let Ltab be a language with input / outputs to the
environment, send / receives to the adversary, conditional with equality checking of strings and
table storage/lookup. We are given a real protocol P and a ideal functionality F with all subroutines
described in Ltab. We show that it is impossible to algorithmically decide whether P realizes F .

We describe the language Ltab formally in Table 2. Note that there is no arithmetic, logical
operation or nonce generation in the language. On the other hand, strings can be of arbitrary
length.

J.1 Analysis

Theorem 21 The language Simtab = {(P,F) | P realizes F , both P and F are described in Ltab}
is undecidable .

Proof: We reduce the problem {M |M is a Turing Machine which accepts the empty string ǫ} to
Simtab. Specifically, given the state transition representation of M , we construct a (P,F) instance
whose membership in Simtab is equivalent to deciding whether M reaches an accepting state on
input the empty string.

Construction of P.

The real protocol P has just the following subroutine P1: [receive x; output “success”;]

Construction of F.

The functionality F models construction of “cells” corresponding to individual cells in the
configuration of a Turing Machine computation. F consists of several small subroutines which
perform operations like populating the table with the initial cells, copying non transiting cells to
the next configuration, performing state transition at the TM header, detecting acceptance state
and declaring success. We give formal descriptions of the subroutines in Appendix K. The informal
description is as follows:

• Finit: This is the subroutine which is called in the beginning. It stores some elements in the
table corresponding to the empty string ǫ.

• Fρ: For each transition rule ρ, there is a corresponding subroutine which has the effect of
producing the next configuration according to this transition rule.

40

(atomic terms) u ::= x atomic term variable

s string

(terms) t ::= y term variable

u atomic term

t.t pair of terms (bounded)

(table) τ ::= tab table

(actions) a ::= send t send a term t

receive y receive term into variable y

output t output t to the environment

y := t assign t to y

store(t, τ) store t in τ

(booleans) b ::= t = t equality check

lookup(t, τ) true iff t is in τ

(program) π ::= a; single action

πa; sequence of actions

if (b) then {π} conditional

(real protocol) P ::= π one program

(ideal functionality) F ::= {π, π, · · · , π} set of programs

Table 2: Ltab: Language definition for the undecidable system

41

• Fbegin: Subroutine that constructs the beginning of the current configuration.

• Fω: Subroutine that constructs the end of the current configuration.

• Fpersist: Subroutine that carries over bits from previous configuration to the current one, if
unaffected by state transistion.

• Faccept: Subroutine that transitions to an accepting state.

• Fsuccess: Subroutine that declares success upon completing an accepting configuration.

Simulation for an M that accepts ǫ.

The construction is such that there is a way to simulate transition from one configuration to
the next. We show that if the Turing Machine accepts the empty string then there is a way for the
simulator to simulate the actions of this Turing Machine faithfully, leading to successful calling of
the subroutine Fsuccess - we give an explicit procedure below:

⊲ First Finit is called to store the empty string into the table.

⊲ Let CurrentConfiguration← EmptyConfiguration

⊲ Repeat the following:

– Call Fbegin to construct the first cell of NextConfiguration

– If current cell is in the neighborhood of the state cell, call Fρ with the corresponding
transition rule ρ. This subroutine also pushes the “end” cell, if the state cell goes past
it. Record AcceptanceStateReached if new state is an accepting state.

– Otherwise call Fpersist to just copy the bit from the corresponding cell in CurrentConfiguration
to NextConfiguration.

– If AcceptanceStateReached is true and “end” cell is reached, let set CallSuccess to true.

– Otherwise, let CurrentConfiguration← NextConfiguration

⊲ Until CallSuccess is true.

⊲ Call Fsuccess and halt.

Impossibility of simulation for an M that does not accept ǫ.

We show that it is impossible to register a configuration in the table, which does not follow from
an already registered configuration. Thus if there is an accepting configuration in the table, then
there must be a sequence of configurations in the table, beginning with the empty configuration
and ending with accepting configuration, such that each configuration leads to the next by a single
transition.

Every storage cell has the following structure:

Current Conf Id. Current Cell Id. Cell Element. Next Cell Id. Next Conf Id

42

Before any cell is stored in the table, the previous cell also has to be provided by the simulator.
It is checked whether the immediate predecessor is already there or not: the corresponding Id’s
have to match up correctly - think of this as a 2-dimensional linked list, in which each configuration
is a linked list and where Next Cell Id points to the next cell in the current configuration linked
list and Next Conf Id points to the next configuration linked list. Each time a new configuration
is being built, a new Next Conf Id has to be provided by the simulator. The functionality checks
that it is new by first checking for presence and then storing it in the table as a type “confid”
data. Similarly for new cells that go past the current tape length, there is checking and storing of
a type “cellid” data. This combination of checks ensures the integrity of the 2-D linked list - in
particular, there are no rogue pointers to elements in number of different configurations. Ensuring
that the simulator provides the previous cell also “bootstraps” the cell records consistently - one
cannot enter a new element if the previous element is not already there. Importantly, this ensures
the following Lemma:

Lemma 22 For a given Current Conf Id linked list, it is only possible to call a unique Fρ.

This is because the simulator has to “bootstrap” up to the correct state cell following the point-
ers and only a unique transition works for a given state and cell after the state cell. Consequently,
the following assertion holds:

Lemma 23 If there is an “end” cell registered for a given Current Conf Id, the linked list of cells
with this confid is the successor of some configuration in the table.

This implies our original claim that if there is an accepting configuration in the table, then
there must be a sequence of configurations in the table, beginning with the empty configuration
and ending with accepting configuration, such that each configuration leads to the next by a single
transition. This is a contradiction since no such sequence exists for the given M . Hence no simulator
exists.

�

43

K Formal description of Ideal Functionality for the undecidable

language

Init.

Finit : [

receive trigger;

store “conf0”.“cell0”.“begin”.“cell1”.“conf1”, τ ;

store “conf0”.“cell1”.“qstart”.“cell2”.“conf1”, τ ;

store “conf0”.“cell2”.“ ”.“cell3”.“conf1”, τ ;

store “conf0”.“cell3”.“end”.“cell4”.“conf1”, τ ;

store “cellid”.“cell0”, τ ;

store “cellid”.“cell1”, τ ;

store “cellid”.“cell2”, τ ;

store “cellid”.“cell3”, τ ;

store “confid”.“conf0”, τ ;

store “confid”.“conf1”, τ ;

]

44

Transition Rule. For a transition rule ρ : (q, 0)→ (r, 1, R), we have the subroutine:

Fρ : [

receive cell1, cell2, cell3, cell4, cell5;

receive cell′1, cell
′
2, cell

′
3, cell

′
4, cell

′
5;

parse cell1 as σ.β1. b1. β2.σ
′;

parse cell2 as σ.β2. b2. β3.σ
′;

parse cell3 as σ.β3. “q”. β4.σ
′;

parse cell4 as σ.β4. “zero”. β5.σ
′;

parse cell5 as σ.β5. b4. β6.σ
′;

parse cell′1 as σ′.β1. b1. β2.σ
′′;

parse cell′2 as σ′.β2. b2. β3.σ
′′;

parse cell′3 as σ′.β3. “one”. β4.σ
′′;

parse cell′4 as σ′.β4. “r”. β5.σ
′′;

parse cell′5 as σ′.β5. b4. β6.σ
′′;

if (none of cell1, cell2, cell3, cell4, cell5 is in τ)

then output “failure”;

if (cell′1 is not in τ)

then output “failure”;

store cell′2, cell
′
3, cell

′
4, cell

′
5 in τ ;

]

45

For a transition rule ρ : (q, 0)→ (r, 1, L), we have the subroutine:

Fρ : [

receive cell1, cell2, cell3, cell4, cell5;

receive cell′1, cell
′
2, cell

′
3, cell

′
4, cell

′
5;

parse cell1 as σ.β1. b1. β2.σ
′;

parse cell2 as σ.β2. b2. β3.σ
′;

parse cell3 as σ.β3. “q”. β4.σ
′;

parse cell4 as σ.β4. “zero”. β5.σ
′;

parse cell5 as σ.β5. b4. β6.σ
′;

parse cell′1 as σ′.β1. b1. β2.σ
′′;

parse cell′2 as σ′.β2. “r”. β3.σ
′′;

parse cell′3 as σ′.β3. b2. β4.σ
′′;

parse cell′4 as σ′.β4. “one”. β5.σ
′′;

parse cell′5 as σ′.β5. b4. β6.σ
′′;

if (none of cell1, cell2, cell3, cell4, cell5 is in τ)

then output “failure”;

if (cell′1 is not in τ)

then output “failure”;

store cell′2, cell
′
3, cell

′
4, cell

′
5 in τ ;

]

46

Boundary Regions.

Fbegin : [

receive cell1, cell2;

receive cell′1, cell
′
2;

parse cell1 as σ.β1. “begin”. β2.σ
′;

parse cell2 as σ.β2. b. β3.σ
′;

parse cell′1 as σ′.β1. “begin”. β2.σ
′′;

parse cell′2 as σ′.β2. b. β3.σ
′′;

if (none of cell1, cell2 is in τ)

then output “failure”;

if (“confid”.σ′′ is in τ)

then output “failure”;

store cell′1, cell
′
2 in τ ;

store “confid”.σ′′ in τ ;

]

47

For a transition rule of the form ω : (q,)→ (r, 0, R) at the end of the tape:

Fω : [

receive cell1, cell2, cell3, cell4, cell5;

receive cell′1, cell
′
2, cell

′
3, cell

′
4, cell

′
5, cell

′
6;

parse cell1 as σ.β1. b1. β2.σ
′;

parse cell2 as σ.β2. b2. β3.σ
′;

parse cell3 as σ.β3. “q”. β4.σ
′;

parse cell4 as σ.β4. “ ”. β5.σ
′;

parse cell5 as σ.β5. “end”. β6.σ
′;

parse cell′1 as σ′.β1. b1. β2.σ
′′;

parse cell′2 as σ′.β2. b2. β3.σ
′′;

parse cell′3 as σ′.β3. “zero”. β4.σ
′′;

parse cell′4 as σ′.β4. “r”. β5.σ
′′;

parse cell′5 as σ′.β5. “ ”. β6.σ
′′;

parse cell′6 as σ′.β6. “end”. β7.σ
′′;

if (none of cell1, cell2, cell3, cell4, cell5 is in τ)

then output “failure”;

if (cell′1 is not in τ)

then output “failure”;

if (“cellid”.β7 is in τ)

then output “failure”;

store cell′2, cell
′
3, cell

′
4, cell

′
5, cell

′
6 in τ ;

]

48

Persistence of other bits.

Fpersist : [

receive cell1, cell2;

receive cell′1, cell
′
2;

parse cell1 as σ.β1. b1. β2.σ
′;

parse cell2 as σ.β2. b2. β3.σ
′;

parse cell′1 as σ′.β1. b1. β2.σ
′′;

parse cell′2 as σ′.β2. b2. β3.σ
′′;

if (none of cell1, cell2 is in τ)

then output “failure”;

if (cell′1 is not in τ)

then output “failure”;

store cell′1 in τ ;

]

49

Detecting Machine Acceptance. For a transition rule ρ : (q, 0) → (qaccept, 1, R), we have the
subroutine:

Fρ : [

receive cell1, cell2, cell3, cell4, cell5;

receive cell′1, cell
′
2, cell

′
3, cell

′
4, cell

′
5;

parse cell1 as σ.β1. b1. β2.σ
′;

parse cell2 as σ.β2. b2. β3.σ
′;

parse cell3 as σ.β3. “q”. β4.σ
′;

parse cell4 as σ.β4. “zero”. β5.σ
′;

parse cell5 as σ.β5. b4. β6.σ
′;

parse cell′1 as σ′.β1. b1. β2.σ
′′;

parse cell′2 as σ′.β2. b2. β3.σ
′′;

parse cell′3 as σ′.β3. “one”. β4.σ
′′;

parse cell′4 as σ′.β4. “qaccept”. β5.σ
′′;

parse cell′5 as σ′.β5. b4. β6.σ
′′;

if (none of cell1, cell2, cell3, cell4, cell5 is in τ)

then output “failure”;

if (cell′1 is not in τ)

then output “failure”;

store cell′2, cell
′
3, cell

′
4, cell

′
5 in τ ;

store “AcceptanceStateReached.′′.σ′ in τ ;

]

Similarly for a transition rule ρ : (q, 0)→ (r, 1, L).

50

Subroutine to check consistency at the end:

Fsuccess : [

receive cell1, cell2;

receive cell′1, cell
′
2;

parse cell1 as σ.β1. “ ”. β2.σ
′;

parse cell2 as σ.β2. “end”. β3.σ
′;

parse cell′1 as σ′.β1. “ ”. β2.σ
′′;

parse cell′2 as σ′.β2. “end”. β3.σ
′′;

if (none of cell1, cell2 is in τ)

then output “failure”;

if (cell′1 is not in τ)

then output “failure”;

if (“AcceptanceStateReached”.σ′ is in τ)

then output “success”;

]

51

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

