
Nearly Tight Bounds for Testing Function Isomorphism

Sourav Chakraborty∗ David Garćıa-Soriano∗ Arie Matsliah∗

Abstract

In this paper we study the problem of testing structural equivalence (isomorphism) between
a pair of Boolean functions f, g : {0, 1}n → {0, 1}. Our main focus is on the most studied case,
where one of the functions is given (explicitly), and the other function can be queried.

We prove that for every k ≤ n, the query complexity of testing isomorphism to k-juntas is
Ω(k) and O(k log k). In particular, the (worst-case) query complexity of testing isomorphism to
a given function f : {0, 1}n → {0, 1} is Θ̃(n).

Prior to our work, only lower bounds of Ω(log k) queries were known, proved by Fischer et
al. [FKR+04], Blais and O’Donnell [BO10], and recently by Alon and Blais [AB10]. Our proof
can also be extended to give polynomial query-complexity lower bounds for the problems of
testing whether a function has a circuit of size ≤ s, and testing whether the Fourier degree of a
function is ≤ d. This answers questions posed by Diakonikolas et al. [DLM+07].

The nearly tight O(k log k) upper bound improves the Õ(k4) upper bound from [FKR+04]
(and the similar bound that follows from [DLM+07]). One implication of our techniques is a
query-efficient procedure that given oracle access to any k-junta g : {0, 1} → {0, 1} can draw
uniformly-random samples (x, a) ∈ {0, 1}k × {0, 1} labelled by the core of g, each sample being
correct with high probability. Generating such samples is one of the main ingredients of the
testers from [DLM+07]; while the procedure therein makes roughly k queries to g for obtaining
each sample, our procedure requires only one query to g.

We also study the query complexity of testing isomorphism to k-juntas with one-sided error.
We prove that for any 1 < k < n − 1, the query complexity is Ω(log

(
n
k

)
), which is almost

optimal. This lower bound is obtained by proving that the query complexity of testing, with
one-sided error, whether a function is a k-parity is Θ(log

(
n
k

)
).

Finally, we consider the problem of testing isomorphism between two unknown functions
that can be queried. We prove that the (worst-case) query complexity in this setting is Ω(

√
2n)

and O(
√

2nn log n).

∗CWI, Amsterdam. Email: {sourav.chakraborty, david, ariem}@cwi.nl

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 93 (2010)

Contents

1 Introduction 4

2 Our results 5
2.1 Lower bounds . 5
2.2 Upper bounds . 5
2.3 Testing isomorphism with one-sided error . 6
2.4 Testing isomorphism between two unknown functions 6
2.5 Summary . 7

3 Preliminaries and tools from earlier works 7
3.1 Generalities . 7
3.2 Permutations . 8
3.3 Property testing . 8
3.4 Useful Lemma . 8

4 Brief overview of the proofs 9
4.1 Overview of the lower bounds . 9
4.2 Overview of the upper bounds . 9
4.3 Overview of the lower bound for testing (k-parities) with one-sided error 10
4.4 Overview of the remaining parts . 10

5 Lower bound for testing isomorphism to k-juntas 11
5.1 Central lemmas . 13
5.2 Proof of Theorem 5.5 . 15

5.2.1 Proof of item 1 of Theorem 5.5 . 15
5.2.2 Proof of item 2 of Theorem 5.5 . 16

5.3 Proof of Theorem 5.3 . 16

6 Lower bounds for testing size-s Boolean circuits 17

7 Upper bound of O(k log k) for testing isomorphism to k-juntas 18
7.1 Testing isomorphism tolerantly with noise . 18
7.2 Useful definitions and lemmas . 20
7.3 From junta-testers to noisy-samplers . 22
7.4 The final algorithm . 25
7.5 Query-efficient procedure for drawing random samples from the core 27

8 Testing isomorphism with one-sided error 28
8.1 Lower bound for testing isomorphism to k-parities with one-sided error 28

8.1.1 Lower bound of Ω(log n) for 2 ≤ k ≤ dn/2e 28

2

8.1.2 Lower bound of Ω(log
(
n
k

)
) for 5 ≤ k ≤ αn . 29

8.1.3 Lower bound of Ω(k) for αn ≤ k ≤ dn/2e . 30

A Notation 33
A.1 Generalities . 33
A.2 Boolean functions . 33
A.3 Property testing . 33

B Proof of Lemma 3.1 34

C Testing in the unknown-unknown setting 34
C.1 Proof of Proposition C.1 Part 1: Upper Bound . 34
C.2 Proof of Proposition C.1 Part 2: Lower Bound . 35

D Distinguishing two random functions with Õ(
√
n) queries 36

E Upper bound for testing isomorphism to k-juntas with one-sided error 39

3

1 Introduction

In this paper we address the following general question in the area of property testing:

Question 1.1 What is the query complexity of testing whether a black-box function g : {0, 1}n →
{0, 1} is isomorphic1 to a given function f ∈ C, for various classes C of Boolean functions?

This question is particularly interesting because testing many function properties, like those of
being a dictatorship, a k-monomial, a k-parity and more, are equivalent to testing isomorphism to
some function f . More general properties can often be reduced to testing isomorphism to several
functions (as a simple example, notice that testing whether g depends on a single variable can be
done by first testing if g is isomorphic to f(x) ≡ x1, then testing if g is isomorphic to f(x) ≡ 1−x1,
and accepting if one of the tests accepts).

On a wider perspective, answering Question 1.1, as also suggested by [FKR+04] and [BO10], is
an important step towards the meta-goal of characterizing testable properties of Boolean functions.

There are several classes of functions for which testing isomorphism is trivial. For instance, if f
is symmetric (invariant under permutations of variables), then testing f -isomorphism is equivalent
to testing identity. More interesting functions are also known to have testers with constant query
complexity. Specifically, the fact that isomorphism to dictatorship functions and k-monomials (for
any k ≤ n) can be tested with O(1) queries follows from the work of Parnas et al. [PRS02].

Fischer et al. [FKR+04] were the first to explicitly formulate the question of testing function
isomorphism. They proved that isomorphism to any k-junta (function that depends on at most
k variables) can be tested with roughly k4 queries, whereas there are k-juntas for which testing
isomorphism requires Ω(log k) queries (they actually prove more than that – a lower bound of Ω(

√
k)

for non-adaptive testers). Motivated by problems in machine learning, the focus on k-juntas seems
very natural in this context, especially due to the importance of dealing with functions on extremely
large domains that depend only on few variables.

Combining the ideas from the testing algorithms of [FKR+04] with learning algorithms, Di-
akonikolas et al. [DLM+07] developed a general framework, called “Testing by Implicit Learning”
for testing classes of functions that are well approximated by O(1)-juntas. Their results can be
used to obtain isomorphism-testers for k-juntas as well, with query complexity roughly k4 – similar
to the one in [FKR+04]. We elaborate more on [DLM+07] and how it relates to our work in the
following section.

Quite recently, Blais and O’Donnell [BO10] proved query-complexity lower bounds on testing
f -isomorphism for a wide class of functions. Specifically, [BO10] proved that testing isomorphism
to any proper k-junta (that is far from any k − 1 junta) requires Ω(log k) non-adaptive queries,
which implies a general lower bound of Ω(log log k). They also proved that testing isomorphism to
a k-junta that is a majority (on k variables) requires Ω(k1/12) queries non-adaptively, and therefore
Ω(log n) queries in general.

Several related results, partially overlapping this work, were recently (and independently) ob-
tained by Alon and Blais [AB10]. [AB10] proved that testing isomorphism to a known function

1Two functions are isomorphic if they are the same after some permutation of the variables.

4

requires Ω(n) non-adaptive queries. With k = n, our lower bound is asymptotically the same, and
it works against adaptive testers as well. On the other hand, the lower bound in [AB10] is stronger
in the sense that it applies to most functions f : {0, 1}n → {0, 1}. Alon and Blais also prove bounds
similar to ours for the setting where both functions are unknown (see Appendix C).

2 Our results

2.1 Lower bounds

Our first result (Theorem 5.3) is a lower bound of Ω(k), for any 1 ≤ k ≤ n, on the query complexity
of testing (adaptively, with two-sided error) isomorphism to certain k-juntas. Prior to our work,
only lower bounds of Ω(log k) queries were known [FKR+04, BO10].

In fact, our proof yields a stronger result. To state it, let Fn
2
±
√
n denote the set of all “truncated”

functions g : {0, 1}n → {0, 1} that satisfy g(x) = 0 for all x, |x| /∈ n
2 ±
√
n; we prove the existence

of k-juntas f : {0, 1}n → {0, 1}, for all k ≤ n, such that it is impossible to distinguish a random
permutation of f from a random g ∈ Fn

2
±
√
n with o(k) queries. As a corollary we obtain (see

Corollary 5.4) an Ω(d) adaptive lower bound for testing if the Fourier degree of a Boolean function
is at most d, improving on the non-adaptive bound of Ω(log d) from [DLM+07]. (These bounds
apply to testing the degree of Boolean f over any field. Better bounds are known for the case of
finite fields; c.f. [AKK+03, JPRZ04, KR04]).

Furthermore, we prove that such an f can be quite restricted – it can be represented by a
product of a threshold function and a polynomial of degree logarithmic in k; alternatively, it can be
in NC/poly. The latter property allows us to obtain lower bounds of sΩ(1) queries for the problem
of testing whether a function has a circuit of size s (see Theorem 6.1). This resolves one of the
open problems from [DLM+07].

We remark that the fact that this indistinguishability result only holds for truncated random
functions is essential – as Proposition D.1 in the Appendix says, random permutations of any k-
junta f can be distinguished from completely random functions with Õ(

√
k) queries and arbitrarily

high constant success probability (also note that if the success probability is required to be only
3/4, a trivial such tester exists that makes only two queries).

2.2 Upper bounds

Our second result (Theorem 7.1) is a nearly matching upper bound of O(k log k) queries for testing
isomorphism to any k-junta. Prior to this work, the only upper bounds known were roughly k4

[FKR+04] (which also follows from [DLM+07]). One consequence of our techniques, which is of
independent interest, is the following (see Proposition 7.15 for a formal statement):

Let ε > 0 and suppose we are given oracle access to a k-junta g : {0, 1}n → {0, 1}. Then, after
a preprocessing step that makes O(k log k) queries to g, we can draw uniformly random samples
(x, a) ∈ {0, 1}k × {0, 1} labelled by core(g) : {0, 1}k → {0, 1} – the “core” of g, such that for each

5

sample (x, a), core(g)(x) = a with probability at least 1 − ε. Furthermore, obtaining each sample
requires making only one query to g.

Generating such samples is one of the main ingredients in the general framework of [DLM+07];
while the procedure therein makes k · poly(1/ε) queries to g for obtaining each sample (while
executing k independence tests of Fischer et al [FKR+04]), our procedure requires only one query
to g.

2.3 Testing isomorphism with one-sided error

Our third result (Theorem 8.1) concerns testing function isomorphism with one-sided error. The
fact that the one-sided error case is strictly harder than the two-sided error case was proved by
[FKR+04]. They actually proved that isomorphism against 2-juntas cannot be tested with one-sided
error using a number of queries independent of n (their lower bound is Ω(log log n), which follows
from an Ω(log n) lower bound on non-adaptive testers). In this paper we prove nearly tight lower
bounds for the problem. Specifically, we prove that the query complexity of testing isomorphism
to k-juntas, for any 2 ≤ k ≤ n, is between Ω(k log(n/k)) and O(k log n). (As we mentioned in
the introduction, for k = 1 it can be done with O(1) queries [PRS02].) The lower bound actually
follows by the following result: the query complexity of testing (with one-sided error) whether a
function is k-parity (i.e, an XOR of exactly k indices of its input), for any 2 ≤ k ≤ n − 2, is
Θ(log

(
n
k

)
) = Θ(k log(n

min{k,n−k})). This seems an interesting result on its own, given the fact that
the well-known BLR test can test, with one-sided error, if a function is k-parity for some k using
O(1) queries.

2.4 Testing isomorphism between two unknown functions

Finally, we consider the related problem of testing isomorphism of two black-box functions (i.e.,
both f and g need to be queried). We show that the worst-case query complexity in this setting is
between Ω(

√
2n) and O(

√
n2n). As mentioned in the introduction, similar results for this setting

were independently obtained by Alon and Blais [AB10].

6

2.5 Summary

In the following table we summarize our main results, and compare them to prior work.

prior work * n.a. this work

testing isomorphism to
k-juntas

Ω(log k) [FKR+04, BO10]
Õ(k4) [FKR+04, DLM+07]

Ω(
√
k) [FKR+04]

Ω(k1/12) [BO10]
Ω(k)

O(k log k)

testing isomorphism to
k-juntas with 1-sided
error

Ω(log log n) [FKR+04] Ω(log n) [FKR+04]
Ω(k log (n/k))
O(k log n)

testing the property of
being a k-parity with
1-sided error

Θ(k log(n/k))

testing if a function
can be computed by a
circuit of size s

Ω̃(log s) [DLM+07]
Õ(s6) [DLM+07]

sΩ(1)

testing if a function has
Fourier degree ≤ d

Ω(log d) [DLM+07]
2O(d) [DLM+07]

Ω(
√
d) [DLM+07] Ω(d)

testing isomorphism of
two unknown functions

Ω(
√

2n)
O(
√
n2n)

In the second column (* n.a.) we mention the cases in which the general lower bounds were
obtained via lower bounds for non-adaptive testers (in prior work). All our lower bounds apply
to adaptive testers, and except for the O(k log k) upper bound for k-juntas, all upper bounds are
obtained via non-adaptive one-sided error testers.

We also comment that nearly all our results extend to functions with general product domains
and general ranges, following the lines of [DLM+07] and [Bla09]. We defer this generalization to
the full version of this paper.

3 Preliminaries and tools from earlier works

Most of our notation is quite standard; refer to Appendix A for clarification and for precise defini-
tions of terms such as k-parity, k-junta, influence, relevant variable and property tester. Here we
define specific notation and terminology used throughout the paper:

3.1 Generalities

If f, g : T → {0, 1} are Boolean functions on some domain T , dist(f, g) , Prz∈T [f(z) 6= g(z)]. 2

2Throughout this paper, e ∈ S under the probability symbol means that an element e is chosen uniformly at

random from a (multi)set S.

7

For W ⊆ [n], we let {0, 1}n
W

denote the subset of {0, 1}n containing strings with Hamming
weight in W , namely, {0, 1}n

W
= {x ∈ {0, 1}n : |x| ∈W}. Additionally, let

{0, 1}nn
2
±h , {x ∈ {0, 1}

n :
n

2
− h ≤ |x| ≤ n

2
+ h}.

For V ⊆ [n], x ∈ {0, 1}V and w ∈ {0, 1}[n]\V we define xtw as the n-bit string y where yi = x(i)
if i ∈ V and yi = w(i) for i 6∈ V .

For a set S and k ∈ N,
(
S
k

)
is the collection of all k-sized subsets of S and

(
S
≤k
)

is the collection
of all subsets of size at most k; a similar notation is used for binomial coefficients

(
m
≤k
)
.

Given x ∈ {0, 1}n, A ⊆ [n] and y ∈ {0, 1}|A|, we denote by x
A←y an input obtained by taking

x and substituting its values in A with y (according to the natural ordering of [n]); we also define
x⊕y , x

A←(y⊕(x�
A

))
.

3.2 Permutations

The group Sn = Sym([n]) of all permutations of [n] acts naturally on n-bit strings: permutation
π ∈ Sn sends x = x1 . . . xn ∈ {0, 1}n to π(x) , xπ(1) . . . xπ(n). Let Gn ⊆ Sym({0, 1}n) be the image
of this action; |Gn| = n!. Given f : {0, 1}n

W
→ {0, 1} and π ∈ Gn, we denote by fπ the function

fπ(x) ≡ f(π(x)).

3.3 Property testing

For a collection (property) P of functions T → {0, 1}, dist(f,P) = ming∈P dist(f, g). For ε ∈ R+,
f is ε-far from P if dist(f,P) ≥ ε, otherwise it is ε-close to P.

In this notation, g is isomorphic to f , denoted by g∼=f , if and only if there is π ∈ Gn such
that g = fπ. The distance up to permutations of variables, denoted by distiso(f, g) is defined as
minπ∈Gn dist(fπ, g). Testing f -isomorphism is equivalent to testing the property Isomf , {fπ : π ∈
Gn} in the usual property testing terminology.

Notice that the problem of testing graph isomorphism in the dense graph model, as studied in
[Fis05, FM08], is a special case of testing function isomorphism over the domain {0, 1}n2 . Similarly,
if we restrict f and g to be functions from {0, 1}nk to {0, 1} then the problem is identical to testing
k-uniform hypergraph isomorphism, as studied in [BC10].

3.4 Useful Lemma

Let P be a property (a subset) of the set {0, 1}T of all functions from T to {0, 1}. Define R , {f ∈
{0, 1}T | dist(f,P) ≥ ε}; any tester for property P should, with high probability, accept inputs
from P and reject inputs from R.

We use the following lemma in various lower bound proofs for two-sided adaptive testing. It
is proven implicitly in [FNS04], and a detailed proof appears in [Fis01]. Here we strengthen it
somewhat, but still, the same proof works in our case too (see proof in Appendix B).

8

Lemma 3.1 Let P,R be as in the preceding discussion, and let DY and DN be distributions over
P and R, respectively. If q is such that for all Q ∈

(
T
q

)
and a : Q→ {0, 1} we have

2
3

Pr
f∈DY

[f�
Q

= a] < Pr
f∈DN

[f�
Q

= a],

then any tester for P must make more than q queries.

4 Brief overview of the proofs

4.1 Overview of the lower bounds

The proof of Theorem 5.3 is done in two steps. First, we prove the existence of functions f :
{0, 1}nn

2±
√
n
→ {0, 1} that are indistinguishable from random functions with fewer than roughly n

queries. By this we mean that it is impossible to determine, with probability at least 2/3, whether g
is a random permutation of f or a completely random function (on the domain {0, 1}nn

2±
√
n
), unless

Ω(n) queries are made to g. For the proof of this part we borrow ideas from the work of Babai
and Chakraborty [BC10], who proved query-complexity lower bounds for testing isomorphism of
uniform hypergraphs. However, in order to be applicable to our problem, we have to extend the
method of [BC10] in several ways. One of the main differences is that the permutation group Gn
in our case is not transitive, which makes it harder to prove that a random permutation “shuffles”
the values of a function uniformly. Another difference is that for the proof of Theorem 6.1 we need
a hard-to-test f that has a circuit of polynomial size, rather than just a random f . To address the
second issue we relax the notion of uniformity from [BC10] to poly(n)-wise independence, and then
apply standard partial derandomization techniques.

In the second step of the proof we show the Ω(k) lower bound for k-juntas by “padding” the
hard-to-test functions from the previous step. The main argument in this part of the proof is
showing that for any f, g : {0, 1}k → {0, 1} and their extensions (paddings) f ′, g′ : {0, 1}n → {0, 1},
distiso(f ′, g′) = Ω(distiso(f, g)). (Notice that strict equality does not hold, e.g. for symmetric
functions f, g satisfying f(x) ≡ 1− g(x).)

4.2 Overview of the upper bounds

The main ingredient in the proof of Theorem 7.1 is the nearly-optimal junta tester of Blais [Bla09].
Our algorithm begins by calling the junta tester, which may either reject (meaning that g is not
a k-junta), or otherwise provide a set of k′ ≤ k blocks (subsets of indices) such that if g is close
to some k′-junta h′, then with high probability, h′ has at most one relevant variable in each of the
k′ blocks. Using these k′ blocks we define an extension h of h′ (if k′ < k), and a noisy sampler S
that provides random samples (x, a) ∈ {0, 1}k × {0, 1}, such that Pr[h(x) 6= a] is sufficiently small.
Finally, we use the (possibly correlated) noisy samples of S to test if h is ε/10-close to the core
function of f or 9ε/10-far from it.

We note that our approach resembles the high-level idea in the powerful “Testing by Implicit
Learning” paradigm of Diakonikolas et al. [DLM+07]. Furthermore, an upper bound of roughly k4

9

queries to our problem follows easily from the general algorithm of [DLM+07]. (It seems that using
the recent results of [Bla09], the algorithm of [DLM+07] can give an upper bound of roughly k3.)

Apart from addressing a less general problem, there are several additional reasons why our
algorithm attains a tighter upper bound of k log k. First, in our case the known function is a
proper junta, and not just approximated by one. Second, while simulating random samples from
the core of the unknown function g, we allow a small, possibly correlated, fraction of the samples
to be incorrectly labelled. This enables us to generate a random sample with just one query to g,
sparing us the need to perform the Independence-Tests of [FKR+04]. Then we perform the final
test (the parallel of Occam’s razor from [DLM+07]) with a tester that is tolerant (i.e. it accepts
even if the distance to the defined property is small) and resistant against (possibly correlated)
noise.

4.3 Overview of the lower bound for testing (k-parities) with one-sided error

We start with the simple observation that testing isomorphism to k-parities is equivalent to testing
isomorphism to (n−k)-parities. Since testing 0-parities (constant zero functions) takes O(1) queries,
and testing 1-parities (dictatorship functions) takes O(1) queries as well (by Parnas et al. [PRS02]),
we are left with the range 2 ≤ k ≤ n/2.

We split this range into three parts: small (constant) k, medium k and large k. For small k’s
a lower bound of Ω(log n) is quite straightforward. For the other two ranges, we use the Frankl–
Wilson and Frankl–Rödl theorems, to obtain lower bounds of Ω(k log(n/k)) and Ω(k), respectively.
The reason for this case distinction is to comply with the conditions of the combinatorial theorems.

In all three cases we follow the same argument: suppose that we want to prove a lower bound
of q = q(n, k). We define a function g that is either a k′-parity (for a suitably chosen k′ < k) 3 or
a constant, and depends only on n and k. This function has the property that for all x1, . . . , xq ∈
{0, 1}n there exists a k-parity f satisfying f(xi) = g(xi) for all i ∈ [q]. This forces any one-sided
error tester making ≤ q queries to accept g, even though it is 1/2-far from any k-parity.

4.4 Overview of the remaining parts

The upper bound for testing with one-sided error (Proposition E.1), as well as the upper bound in
the setting where both functions are unknown (Proposition C.1:Part 1 in the Appendix), is fairly
straightforward. The testers start by random sampling, and then perform exhaustive search over
all possible permutations, and check if one of them defines an isomorphism that is consistent with
the samples. Their analysis is essentially the same as that of Occam’s razor.

The lower bound in the setting where both functions are unknown (Proposition C.1:Part 2) is
proved by defining two distributions on pairs of functions, the first supported on isomorphic pairs
and the second on pairs that are far from being isomorphic. Then Yao’s principle is applied via
Lemma 3.1, which gives bounds on adaptive testers.

3Note that not every choice of k′ works, even if k and k′ are very close to each other. For example, if k′ = k + 1,

it is easy to tell PARk from PARk′ by simply querying the all-ones vector.

10

To prove that any function f : {0, 1}n → {0, 1} is distinguishable from a completely random
function (without the truncation) with Õ(

√
n) queries (Proposition D.1) we borrow the ideas from

[FM08], using which we reduce our problem to testing closeness of distributions, and then we apply
the distribution tester of Batu et al. [BFF+01].

5 Lower bound for testing isomorphism to k-juntas

Definition 5.1 Let Fn
2
±d
√
ne denote the set of all functions g : {0, 1}n → {0, 1} that satisfy g(x) =

0 for all x, |x| 6= n
2±d
√
ne; a random truncated function is a random function drawn from Fn

2
±d
√
ne.

Observation 5.2 For any function f : {0, 1}n → {0, 1} if g : {0, 1}n → {0, 1} is a random
truncated function then with high probability over the choice of g, distiso(f, g) ≥ ε (for certain
constant ε > 0).

Observe that to prove lower bounds for testing isomorphism to f , it suffices to show the stronger
claim that there is a function g satisfying distiso(f, g) ≥ ε and such that there is no algorithm
that can distinguish, with high probability, between a random permutation of f and a random
permutation of g. That is, given oracle access to a function h that is promised to be a random
permutation of f or g (each with probability one half), no algorithm can determine which is the
case. From Observation 5.2 we know that for any function f and a random truncated function g,
with high probability, distiso(f, g) ≥ ε. So all we have to prove is the other part:

Theorem 5.3 For any k there is a k-junta f : {0, 1}n → {0, 1} such that for most truncated
functions g : {0, 1}n → {0, 1}, any algorithm with oracle access to a function h will need at least
k − 5 log k queries in order to distinguish whether h is a random permutation of f or a random
permutation of g. Moreover, f can have either of the following properties:

• f can be written as a product of two threshold functions and a polynomial of degree O(log k)

• f can be computed by circuits of size poly(k) and depth O(log k).

Since any k junta can be written as a polynomial of degree4 at most k, whereas almost all
truncated functions are far from all polynomials of degree b , n − Θ(1), Theorem 5.3 implies the
following:

Corollary 5.4 The query complexity of testing whether a function f : {0, 1}n → {0, 1} has degree
at most d is Ω(d), for any d ≤ n− ω(1).

The proof of Theorem 5.3 is given in Section 5.3; it has two main parts.
In the first part we prove that there are “nice” Boolean functions f on k-bit strings, such that

a random permutation of f is hard to distinguish from a random (truncated) function. This is
4The term “degree” here can refer to the degree of f : {0, 1}n → {0, 1} when viewed as a polynomial p ∈

F[x1, . . . , xn] with coefficients in some field F. (In particular, when F = Q we get the Fourier degree).

11

proved in Corollary 5.6 to Theorem 5.5. Theorem 5.5 itself is an intermediate result, that says
the following: If we restrict our functions to be defined only on the O(

√
k) middle layers of the

hypercube {0, 1}k, then there are “nice” functions that are hard to distinguish from a random
function. Corollary 5.6 follows easily from Theorem 5.5: we extend these functions to the whole
cube, by assigning zeroes outside the middle layers; then the corollary follows by observing that
the number of inputs in the middle layers constitutes a constant fraction of all inputs, and that
the zeroes outside the middle layers cannot help in the testing process. As we mentioned in the
introduction, this step is essential (see Appendix D for a formal proof).

The second part of the proof of Theorem 5.3 uses a “preservation of distance under padding”
argument (Lemma 5.14), which essentially allows us to embed a function on k variables into one
on n variables, so that the hardness of testing remains roughly the same.

Theorem 5.5 For any n there is a function f : {0, 1}nn
2
±d
√
ne → {0, 1} such that for most functions

g : {0, 1}nn
2
±d
√
ne → {0, 1}, any algorithm with oracle access to a function h will need at least

n − 5 log n queries in order to distinguish whether h is a random permutation of f or a random
permutation of g. Moreover, f can have either of the following properties:

• f can be evaluated by a degree 4 log n polynomial over F2,

• f can be computed by an NC/poly circuit.

To obtain Theorem 5.3 from Theorem 5.5 we use two different types of extensions. The first one
extends functions defined on the truncated hypercube to functions on the whole hypercube. This
gives us Corollary 5.6. The second extension takes us from Corollary 5.6 to Theorem 5.5. There
we extend the dimension of a function by padding it, as described in Lemma 5.14.

Corollary 5.6 For any k, there is a function f : {0, 1}k → {0, 1} such that for most truncated
functions g : {0, 1}k → {0, 1}, any algorithm with oracle access to a function h will need at least
k − 5 log k queries in order to distinguish whether h is a random permutation of f or a random
permutation of g. Moreover, f can have either of the following properties:

• f can be written as a product of two threshold functions and a polynomial of degree O(log k),

• f can be computed by a NC/poly-circuit.

Proof. For a function h : {0, 1}kk
2
±d
√
ke → {0, 1}, call ext(h) : {0, 1}k → {0, 1} the extension

of h to {0, 1}k that is zero outside {0, 1}kk
2
±d
√
ke. Let K , |{0, 1}kk

2
±d
√
ke| = Θ(2k) and let ε =

distiso(f, g)K/2k and assume there is an (q, ε)-tester of isomorphism to ext(f). We can turn it into
an (q,distiso(f, g))-tester of isomorphism to f in the obvious way: given access to h : {0, 1}kk

2
±d
√
ke →

{0, 1}, test for isomorphism of ext(h) to ext(f). This works because h = f implies ext(h) = ext(f),
and distiso(h, f) ≥ ε2k/K implies distiso(ext(h), ext(f)) ≥ ε.

By Theorem 5.5, we have a f : {0, 1}kk
2
±d
√
ke → {0, 1} that can either be represented by a

degree O(log k) polynomial or by a NC/poly-circuit. All we need to show is that ext(f) has the

12

required property; for this we need to compose f with threshold functions. More specifically, let
A,B : {0, 1}k → {0, 1} be given by A(x) = 1 iff |x| ≥ k/2−d

√
ke and B(x) = 1 iff |x| ≤ k/2+d

√
ke.

It is well known that A,B ∈ NC1, so the function f ′(x) = f(x)∧A(x)∧B(x) has the desired prop-
erties.

5.1 Central lemmas

As in [BC10], we show that there are functions f : {0, 1}nn
2
±d
√
ne → {0, 1} that “look random” when

restricted to small subsets of inputs, making Lemma 3.1 applicable.
In the following, the notation a = (1± b)c will be understood to mean (1− b)c ≤ a ≤ (1 + b)c.

Definition 5.7 Let T be a finite domain and r ∈ N, δ ∈ R+. We say that a multiset F of
functions from T to {0, 1} is r-uniform (with regard to a group G of permutations of T) if

• F is closed under the action of G: for all π ∈ G and f ∈ F , fπ ∈ F .

• F is r-independent: for all Q ∈
(
T
r

)
and a : Q→ {0, 1}, Prf∈F [f�

Q
= a] = 2−r.

In this section we will always take G = Gn to be the “permutation of variables” subgroup of
Sym({0, 1}n) defined in the preliminaries. As an example, the family of all Boolean functions on
T is |T |-uniform with regard to G.

Definition 5.8 Let δ ∈ R+, q ∈ N. We say that a Boolean function f : T → {0, 1} is (q, δ)-regular
if for all Q ∈

(
T
q

)
and a : Q→ {0, 1}

Pr
τ∈G

[f τ �
Q

= a] = (1± δ)2−q,

That is, the probability in question is close to the probability that a random Boolean function on
Q coincides with a. The idea is that two functions that are both regular will be hard to tell from
each other.

Lemma 5.9 Let δ > 0 be a constant, N ,
(

n
n/2−d

√
ne
)

and F be an r-uniform family of Boolean
functions on {0, 1}nn

2
±d
√
ne.

If q = logN − 5dlog ne and r = n4, then a random function from F is (q, δ)-regular with
probability 1− o(1).

Proof. Fix Q ∈
(
T
q

)
(where, T denotes {0, 1}nn

2
±d
√
ne) and a : Q → {0, 1}. For any g :

{0, 1}nn
2
±d
√
ne → {0, 1} and τ ∈ G, define the indicator variable X(g, τ) = I[gτ �

Q
= a]. Define

A(f) , Prτ∈G[X(f, τ) = 1]; we aim to compute the probability, over random f , that A(f) deviates
from p = 1/2q by more than δp. Notice that Ef [A(f)] = Eτ Ef X(f, τ) = Eτ p = p, where we made
use of uniformity of F and the fact that r ≥ q.

13

Consider any pair σ1, σ2 ∈ G such that σ1(Q) ∩ σ2(Q) = ∅. Since 2q ≤ r, a random function
from F assigns values independently on each element of σ1(Q) ∪ σ2(Q), so the random variables
X(f, σ1) and X(f, σ2) are independent conditioned on the choice of σ1, σ2.

More generally, for any s permutations σ1, . . . , σs of G under which the images of Q are pairwise
disjoint, and for any π ∈ G, the variables X(f, π ◦ σ1), . . . , X(f, π ◦ σs) are n3-wise independent,
since r ≥ n3q. They are also uniform because the distributions of f and fπ◦σi are the same for f
drawn from F . We will need a large set of permutations with this property:

Lemma 5.10 There exist s , dN/q2e permutations σ1, . . . , σs ∈ G such that σ1Q, . . . , σsQ are
disjoint.

Proof. First note that for any x, y ∈ {0, 1}nn
2
±d
√
ne,

Pr
π∈G

[πx = y] =

{
0, |x| 6= |y|

1

(n|x|)
, |x| = |y|

}
≤ 1
N
.

This holds because the orbit of x under G is the set of all
(
n
|x|
)

strings of the same weight.
Let Σ ⊆ G be a maximal set of permutations satisfying the hypothesis of the lemma; write

s , |Σ| and V =
⋃
σ∈Σ σQ. Then |V | = qs and maximality means that every πQ has non-empty

intersection with V . Therefore 1 = Prπ∈G[∃x ∈ Q, y ∈ V | πx = y] ≤ q2s
N , where we used the the

union bound over x and y. Thus s ≥ N
q2

.

For any π ∈ G, A(f) = A(fπ) = Eτ∈GX(f, τ ◦ π). In particular, drawing π from σ1, . . . , σs at
random, A(f) also equals the average value

A(f) = E
i∈[s]

E
τ∈G

X(f, τ ◦ σi) = E
τ∈G

E
i∈[s]

X(f, τ ◦ σi) = E
τ
Y (f, τ),

where Y (f, τ) = EiX(f, τ ◦σi). We need to show that for typical f , Eτ Y (f, τ) is close to p; clearly
it suffices to prove that δ , maxτ |Y (f, τ)− p| is small for such f .

When τ is fixed, Y (f, τ) is the average of s k-wise independent random variables (with k , n3),
each satisfying Ef X(f, τ ◦ σi) = p. We will need the following version of Chernoff bounds:

Lemma 5.11 (Chernoff bounds for k-wise independence [SSS95]) Let X be the sum of s
k-wise independent random variables in the interval [0, 1], and let p = 1

s E[X]. For any 0 ≤ δ ≤ 1,

Pr[|X − p| ≥ δp] ≤ e−Ω(min(k,δ2ps)).

Since ps ≥ n3 and k = n3, using Lemma 5.11 we obtain

∀τ Pr
f

[|Y (f, τ)− p| > pδ] = 2−Ω(n3),

hence Prf [|A(f)− p| > pδ] ≤ Prf [∃τ ∈ G | |Y (f, τ)− p| > pδ] ≤ |G|2−Ω(n3).

14

To conclude, we apply the union bound again, this time over all possible choices of Q and
a ∈ {0, 1}Q, yielding

Pr
f

[∃ Q, a such that |A(f)− p| > p/5] ≤
(

2n

q

)
2qn!2−Ω(n3) = o(1).

5.2 Proof of Theorem 5.5

We first prove the existence of a function f : {0, 1}nn
2
±d
√
ne → {0, 1} satisfying all conditions except

the last two items on the simplicity of f .
Let q , n−5 log n. Take two random functions f, g : {0, 1}nn

2
±d
√
ne → {0, 1}, with f drawn from

a n4-uniform family and g uniformly random. With high probability, distiso(f, g) = Θ(1) is easily
seen to hold, and also by Lemma 5.9 both functions are (q, 1/5)-regular.

Consider the following two distributions:

• DY : pick π ∈ G uniformly at random, and return fπ.

• DN : pick π ∈ G uniformly at random, and return gπ.

By definition, any y ∈ DY has the desired property, whereas any n ∈ Dn is distiso(f, g)-far from
it. Let h be in the support of DY or DN . Then h is also r-regular, implying that for any Q ∈

(
T
q

)
(where, T , {0, 1}nn

2
±d
√
ne) and a : Q→ {0, 1},

4
5 · 2q

≤ Pr
π

[hπ�
Q

= a] ≤ 6
5 · 2q

,

so (2/3)Pry∈DY [y�
Q

= a] < Prn∈DN [n�
Q

= a] and an appeal to Lemma 3.1 establishes the main
claim. Next we prove the two items in Theorem 5.5.

5.2.1 Proof of item 1 of Theorem 5.5

We need the following lemma, which gives us a n4-uniform family of functions to draw f from, and
this together with the argument above proves item 1.

Lemma 5.12 Let Fd be the set of all polynomials p : Fn2 → F2 of degree at most d. Then Fd is
(2d+1 − 1)-uniform.

Proof. [of Lemma 5.12] Fd is obviously closed under permutations of variables. With regard
to independence, is enough to prove the following claim: for any set S ⊆ Fn2 of size |S| < 2d+1,
and any function f : S → F2, there is a polynomial q ∈ Fd such that q�

S
= f ; this fact has also

been noted and generalized in the works of [KS05] and [BEHL09]. Indeed, if the claim holds then
Prp∈Fd [p�S = f] = Prp∈Fd [(p ⊕ q)�

S
= 0] = Prp′∈Fd [p

′�
S

= 0], since the distributions of p and
p′ , p⊕ q are uniform over Fd. Therefore this probability is the same for every f .

15

We prove now this fact by induction on |S|+n; it is trivial for |S| = n = 0. Suppose that, after
removing the first bit of each element of S, we still get |S| distinct vectors; then we can apply the
induction hypothesis with S and n − 1. Otherwise, there are disjoint subsets A,B,C ⊆ {0, 1}n−1

such that S = {0, 1} ×A ∪ {0} ×B ∪ {1} × C, and A 6= ∅.
We can find, by induction, a polynomial p0A,0B,1C of degree ≤ d on n−1 variables that computes

f on {0}×A∪{0}×B ∪{1}×C. As |S| = 2|A|+ |B|+ |C|, either |A|+ |B| or |A|+ |C| is at most
|S|
2 < 2d; assume the latter. Thus any function g : A ∪C → F can be evaluated by a polynomial of

degree ≤ d− 1; consider g(y) = 0 if y ∈ C and g(y) = f(1, y)− p0A,0B,1C(1, y) if y ∈ A. Then the
polynomial p(x, y) = p0A,0B,1C(y) + xpAC(y) does the job.

5.2.2 Proof of item 2 of Theorem 5.5

We show that there are (q, 1/5)-regular functions f that can be computed by small circuits. For
this we need the following theorem:

Theorem 5.13 ([AS92]) It is possible to construct B bits that are r-wise independent using
O(r logB) random bits.

Moreover, the construction can be carried out in NC; that is, there is a bounded fan-in circuit
of depth O(log(r logB)) that, given as input i ∈ [B] and m random bits, computes the i-th variable.

Putting B , |{0, 1}nn
2
±d
√
ne|, r = n4, we see that the family of functions f : {0, 1}nn

2
±d
√
ne →

{0, 1} given by Theorem 5.13 is n4-independent. Furthermore, each f is computable with a bounded
fan-in circuit of depth O(log(r logB)) = O(log n), and hence the circuit itself has size polynomial
in n. Taking the closure of this family under G (considered as a multiset) we obtain a n4-uniform
family. By Lemma 5.9, there is a way to fix the poly(n) random bits so that the resulting function
is (n−O(log n), 1/5)-regular.

5.3 Proof of Theorem 5.3

Let k = k(n) ≤ n. Assume that there is a tester A that can test isomorphism against any
f : {0, 1}n → {0, 1} that is a k-junta with o(k) queries. By Corollary 5.6, there is a function
f ′ : {0, 1}k → {0, 1} that can be be computed by a NC/poly-circuit or is representable by a
product of a threshold function and a polynomial of degree O(log k), and such that given a random
truncated function g′ : {0, 1}k → {0, 1}, any adaptive ε-tester with oracle access to g′ will require
k −O(log k) queries to distinguish a random permutation of f ′ from a random permutation of g′.

Let f : {0, 1}n → {0, 1} be the extension of f ′, where f(x) = f ′(x�
[k]

) for all x ∈ {0, 1}n. From

Lemma 5.14 if follows that if g is the extension of a random truncated function g′ : {0, 1}k →
{0, 1} then it is impossible for any algorithm to distinguish, using fewer than q queries, a random
permutation of f from a random permutation of g.

Lemma 5.14 Let k, n ∈ N, k ≤ n, and let f ′, g′ : {0, 1}k → {0, 1} be a pair of functions. Define
f = ext(f ′) to be the extension of f ′, where f : {0, 1}n → {0, 1} is given by f(x) = f ′(x�

[k]
) for all

x ∈ {0, 1}n. Likewise, define g = ext(g′). Then the following holds:

16

• If distiso(f ′, g′) ≥ ε, for some ε ∈ R+ then distiso(f, g) ≥ ε/4.

• If is impossible for any algorithm, using only q queries, to distinguish a random permutation
of f ′ from a random permutation of g′ then it is impossible for any algorithm to distinguish
using fewer than q-queries a random permutation of f from a random permutation of g.

Proof. Assume that distiso(f, g) < ε/4, that is, dist(f, gπ) < ε/4 for some π ∈ G. We prove
that this implies distiso(f ′, g′) < ε.

Let A = π([k]) \ [k]. Let I(A) , Infgπ(A) denote the influence of gπ in A. First, observe that
I(A) ≤ 2 · dist(f, gπ) < ε/2, due to the fact that f does not depend on the indices in A at all. This
is easy to check; see also Lemma 7.9.

Let σ : A↔
(

[k] \ π([k])
)

be an arbitrary bijection. Consider the permutation π′ defined as

π′(i) =


π(i) , i ∈ [k] and π(i) ∈ [k]
σ(π(i)) , i ∈ [k] and π(i) ∈ A
σ(i) , i ∈ [k] \A

 .

Informally, π′ is obtained from π by “bringing back” to [k] all those i ∈ [k] that were mapped to
A. From I(A) < ε/2 we get dist(gπ, gπ

′
) < ε/2, and by the triangle inequality, dist(f, gπ

′
) < ε.

But since π′ maps all relevant indices in [k] to [k], it defines a valid permutation of [k], therefore,
dist(f ′, g′π

′
) = dist(f, gπ

′
) < ε.

It is clear that if f ′∼=g′ then f∼=g. Let there be an algorithm A that can distinguish a random
permutation of f from a random permutation of g using fewer than q queries. Based on A, we
can construct an algorithm to distinguish whether h′ : {0, 1}k → {0, 1} is a random permutation of
f ′ or a random permutation of g′ in the following manner: pick a uniformly random permutation
σ ∈ Sym([n]), and apply A to ext(h)σ (clearly, any query to h can be simulated by one query to
ext(h)σ, and the distribution of ext(h)σ is a random permutation of either f or g). Hence no such
A exists.

6 Lower bounds for testing size-s Boolean circuits

Theorem 6.1 There is a constant c > 0 such that for all s ≤ nc testing size-s Boolean circuits
requires Ω(s1/c) queries.

Proof. By Corollary 5.6, for all r there is a function f ′ : {0, 1}r → {0, 1} such that f ′ can be
computed by circuits of size rc (for some constant c depending on the depth of the circuit computing
f ′ that is guaranteed by Corollary 5.6) and if g′ : {0, 1}r → {0, 1} is a truncated random function
then any algorithm that makes o(r) queries cannot distinguish a random permutation of f ′ from
a random permutation of ext(g′). Now with high probability the random truncated function g′

will be far from all functions computed by circuits of size 2Θ(n) � rc. Hence we have functions
f ′, g′ : {0, 1}r → {0, 1} such that f ′ can be computed by circuits of size rc and g′ is far from all

17

functions computed by circuits of size 2Θ(n) � rc, yet any algorithm that makes o(r) queries cannot
distinguish a random permutation of f ′ from a random permutation of g′.

We can choose r = Θ(s1/c). Now define f : {0, 1}n → {0, 1} to be the extension of f ′, where
f(x) = f ′(x�

[k]
) for all x ∈ {0, 1}n. From Lemma 5.14 we obtain that given g : {0, 1}n → {0, 1}

which is the extension of a random truncated function g′ any algorithm that makes o(r) queries
cannot distinguish a random permutation of f from a random permutation of g.

Since the extension does not change the size of the Boolean circuit that computes the correspond-
ing functions, the query complexity of testing a function of size-s Boolean circuits is Ω(r) = Ω(s1/c).

7 Upper bound of O(k log k) for testing isomorphism to k-juntas

Theorem 7.1 Isomorphism to any k-junta can be tested with O(k log k
ε2

) queries.

High-level overview of the proof. The first ingredient in our proof is a tolerant, noise-
resistant and bias-resistant isomorphism tester RobustIsoTest (Algorithm 1 below). Informally,
RobustIsoTest allows us to test isomorphism between a known function f and an unknown g, even
if instead of an oracle access to g we are given a sampler that produces pairs (x, a), where

• there is some h that is close to g, and Pr[h(x) = a] is large;

• the distribution of the x’s from the sampled pairs is close to uniform.

The basic idea that allows us to use RobustIsoTest for testing isomorphism to k-juntas is the
following: if we could simulate a noisy almost-uniform sampler to the core of h, where h : {0, 1}n →
{0, 1} is the presumed k-junta that is close to g : {0, 1}n → {0, 1}, then we could test whether g
is isomorphic to f . What we show is, roughly speaking, that for the aforementioned simulation
it suffices to detect k disjoint subsets J1, . . . , Jk ⊆ [n] such that each subset contains at most one
relevant variable of the presumed k-junta h : {0, 1}n → {0, 1}.

To obtain such sets we use the second ingredient, which is the optimal junta tester of Blais
[Bla09]. This tester, in addition to testing whether g is a k-junta, can provide (in case g is close
to some k-junta h) a set of ≤ k blocks (sets of indices), such that each block contains exactly one
of the relevant variables of h. The trouble is that the k-junta h may not be the closest one to g.
In fact, even if g is a k-junta itself, h may be some other function that is only close to g. Taking
these considerations into account constitutes the bulk of the proof.

7.1 Testing isomorphism tolerantly with noise

In the following we use the term black-box algorithm for algorithms that take no input.

Definition 7.2 Let g : {0, 1}k → {0, 1} be a function, and let η, µ ∈ [0, 1). An (η, µ)-noisy sampler
for g is a black-box probabilistic algorithm g̃ that on each execution outputs (x, a) ∈ {0, 1}k ×{0, 1}
such that

18

• x ∈ {0, 1}k is distributed according to some distribution D on {0, 1}k, such that the total
variation distance between D and the uniform distribution is at most µ; namely, for all A ⊆
{0, 1}k,

∣∣∣Prx∼D[x ∈ A]− |A|/2k
∣∣∣ ≤ µ;

• Pr[a = g(x)] ≥ 1− η,

where the probability is taken over the randomness of g̃, which also determines x.

We stress that the two items are not necessarily independent; e.g., it may be that for some
α ∈ {0, 1}k, Pr[a = g(x) | x = α] = 0.

The following is essentially a strengthening of Occam’s razor that is both tolerant, noise-resistant
and bias-resistant:

Proposition 7.3 There is an algorithm RobustIsoTest that, given ε ∈ R+, k ∈ N, a function
f : {0, 1}k → {0, 1} and a (η, µ)-noisy sampler g̃ for some g : {0, 1}k → {0, 1}, where η ≤ ε/100
and µ ≤ ε/10, satisfies the following:

• if distiso(f, g) < ε/10, it accepts with probability at least 9/10;

• if distiso(f, g) > 9ε/10, it rejects with probability at least 9/10;

• it draws O(k log k
ε2

) samples from g̃.

Proof. Consider the tester described in Algorithm 1. It is clear that RobustIsoTest uses O(k log k
ε2

)

Algorithm 1 (RobustIsoTest – tests if f∼=g, tolerantly with noise)

let q ← c log(k!)
ε2

, where c is a constant chosen later
obtain q independent samples (x1, a1), . . . , (xq, aq) from g̃

accept if and only if there exists a permutation π of [k] such that
∣∣∣{i ∈ [q] : fπ(xi) 6= ai

}∣∣∣ < εq/2.

queries.
Fix a permutation π. Let δπ = dist(fπ, g) and let ∆π ⊆ {0, 1}k, |∆π| = δπ2k, be the set of

inputs on which fπ and g disagree. Since the x’s are independent random variables, distributed
according to some distribution D that is µ-close to uniform, we have

ζπ , Pr
x∼D

[x ∈ ∆π] = δπ ± µ.

Using Chernoff bounds (additive form) we have

Pr
[∣∣∣|{i ∈ [q] : fπ(xi) 6= g(xi)}| − ζπq

∣∣∣ > εq/10
]

= 2−Ω(ε2q),

which is less than 1
20(k!) for sufficiently large constant c. Therefore, with probability at least 19/20,

|{i ∈ [q] : fπ(xi) 6= g(xi)}| = ζπq ± εq/10 = δπq ± (µq + εq/10)

19

holds for all permutations π. To relate this to the fraction of samples (x, a) for which fπ(x) 6= a,
we use Markov’s inequality:

Pr
[
|{i ∈ [q] : ai 6= g(xi)}| ≥ εq/5

]
≤ Pr

[
|{i ∈ [q] : ai 6= g(xi)}| ≥ 20ηq

]
≤ 1/20.

Therefore, with probability at least 9/10,

|{i ∈ [q] : fπ(xi) 6= ai}| = δπq ± (µq + 3εq/10) = δπq ± 2εq/5

for all π.
The result follows, since if distiso(f, g) < ε/10 then there exists π such that δπq+ 2εq/5 < εq/2;

and if distiso(f, g) > 9ε/10 then for all π, δπq − 2εq/5 > εq/2.

7.2 Useful definitions and lemmas

Definition 7.4 Given a k-junta f : {0, 1}n → {0, 1} we define corek(f) : {0, 1}k → {0, 1} to be
the restriction of f to its relevant variables (where the variables are placed according to the natural
order). In case f has less than k relevant variables, corek(f) is extended to a {0, 1}k → {0, 1}
function by adding dummy variables.

Throughout this section, a random partition I = I1, . . . , I` of [n] into ` sets is constructed
by starting with ` empty sets, and then putting each coordinate i ∈ [n] into one of the ` sets
picked uniformly at random. Unless explicitly mentioned otherwise, I will always denote a random
partition I = I1, . . . , I` of [n] into ` subsets, where ` is even; and J = J1, . . . , Jk will denote an
(ordered) k-subset of I (meaning that there are a1, . . . , ak such that Ji = Iai for all i ∈ [k]).

Definition 7.5 (Operators replicate and extract) We call y ∈ {0, 1}n I-regular if the restriction
of y on every set of I is constant; that is, if for all i ∈ [`] and j, j′ ∈ Ii, yj = yj′.

• Given z ∈ {0, 1}`, define replicateI(z) to be the I-regular string y ∈ {0, 1}n obtained by setting
yj ← zi for all i ∈ ` and j ∈ Ii.

• Given an I-regular y ∈ {0, 1}n and an ordered subset J = (J1, . . . , Jk) of I define extractI,J (y)
to be the string x ∈ {0, 1}k where for every i ∈ [k]: xi = yj if Ji 6= ∅ and j ∈ Ji; and xi is a
uniformly random bit if Ji = ∅.

Definition 7.6 (Distributions DI and DJ) For any I and J ⊆ I as above, we define a pair of
distributions:

• The distribution DI on {0, 1}n: A random y ∼ DI is obtained by

1. picking z ∈ {0, 1}` uniformly at random among all
(
`
`/2

)
strings of weight `/2;

2. setting y ← replicateI(z).

20

• The distribution DJ on {0, 1}|J |: A random x ∼ DJ is obtained by

1. picking y ∈ {0, 1}n at random, according to DI ;

2. setting x← extractI,J (y).

Lemma 7.7 (Properties of DI and DJ)

1. For all α ∈ {0, 1}n, Pr
I,y∼DI

[y = α] = 1/2n;

2. For every I and J ⊆ I, the infinity distance between DJ and the uniform distribution on
{0, 1}|J | is bounded by 2−k4|J |2/`, and therefore the total variation distance between the two
is at most 4|J |2/`.

Proof.

1. Each choice of z ∈ {0, 1}`, |z| = `/2, in Definition 7.6 splits I into two equally-sized sets:
I0 and I1; and the bits corresponding to indices in Ib (where b ∈ {0, 1}) are set to b in the
construction of y. For each index i ∈ [n], the block it is assigned to is chosen independently
at random from I, and therefore falls within I0 (or I1) with probability 1/2, independently
of other j ∈ [n]. (This actually shows that the first item of the lemma still holds if z is an
arbitrarily fixed string of weight `/2, rather than a randomly chosen one).

2. Let k = |J |. Assume ` > 4k2; otherwise the claim is trivial. We may also assume the case
were all sets Ji in J are non-empty; having empty sets can only decrease the distance to
uniform. Let w ∈ {0, 1}k. The choice of y ∼ DI , in the process of obtaining x ∼ DJ , is
independent of J ; thus, for every i ∈ [k] we have

Pr
x∼DJ

[xi = wi | xj = wj ∀j < i] ≤ `/2
`− k

<
1
2

+
k

`
,

and
Pr

x∼DJ
[xi = wi | xj = wj ∀j < i] ≥ `/2− k

`− k
>

1
2
− k

`
.

Using the inequalities 1−my ≤ (1− y)m for all y < 1,m ∈ N and (1 + y)m ≤ emy ≤ 1 + 2my
for all m ≥ 0, 0 ≤ my ≤ 1/2, we conclude

Pr
x∼DJ

[x = w] =
(

1
2
± k

`

)k
=

1
2k

(
1± 4k2

`

)
.

whereas a truly uniform distribution U should satisfy Prx∼U [x = w] = 1/2k. Hence the total
variation distance between U and DJ is at most 4k2/`.

21

Definition 7.8 (Black-box algorithm sampler) Given I,J as above and oracle access to g :
{0, 1}n → {0, 1}, we define a probabilistic black-box algorithm samplerI,J (g), that on each execution
produces a pair (x, a) ∈ {0, 1}|J |×{0, 1} as follows: it picks a random y ∼ DI and outputs the pair
(extractI,J (y), g(y)).

Note that just one query is made to g in every execution of samplerI,J (g). Notice also that
the x in the pairs (x, a) ∈ {0, 1}|J | × {0, 1} produced by samplerI,J (g) is distributed according to
distribution DJ defined above.

7.3 From junta-testers to noisy-samplers

Throughout this section Junk will denote the class of k-juntas (on n variables), and for A ⊆ [n],
JunA will denote the class of juntas with all relevant variables in A. In addition, given a function
g : {0, 1}n → {0, 1}, we denote by g∗ : {0, 1}n → {0, 1} the k-junta that is closest to g (if there are
several k-juntas that are equally close, break ties using some arbitrarily fixed scheme). Clearly, if
g is itself a k-junta then g∗ = g.

Lemma 7.9 [FKR+04] For any f : {0, 1}n → {0, 1} and A ⊆ [n]

dist(f, JunA) ≤ Inff ([n] \A) ≤ 2 · dist(f, JunA).

We will also use the fact (see [FKR+04, Bla09] for a proof) that influence is monotone and
subadditive; namely, for all f : {0, 1}n → {0, 1} and A,B ⊆ [n],

Inff (A) ≤ Inff (A ∪B) ≤ Inff (A) + Inff (B).

For the following definition and lemma we recall the distributions DI and DJ from Definition
7.6.

Definition 7.10 Given δ > 0, function g : {0, 1}n → {0, 1}, partition I = I1, . . . , I` of [n] and
a k-subset J of I, we call the pair (I,J) δ-good (with respect to g) if there exists a k-junta
h : {0, 1}n → {0, 1} such that the following conditions are satisfied.

1. Conditions on h:

(a) Every relevant variable of h is also a relevant variable of g∗ (recall that g∗ denotes the
k-junta closest to g);

(b) dist(g∗, h) < δ.

2. Conditions on I:

(a) For all j ∈ [`], Ij contains at most one variable of corek(g∗); 5

5Note that this with 1a implies that every block Ij contains at most one relevant variable of h, since the variables

of corek(g∗) contain all relevant variables of g∗.

22

(b) Pry∼DI [g(y) 6= g∗(y)] ≤ 10 · dist(g, g∗);

3. Conditions on J :

(a) The set
⋃
Ij∈J Ij contains all relevant variables of h;

Lemma 7.11 Let δ, g, I be as in the preceding definition. If the pair (I,J) is δ-good, then for
some permutation π : [k]→ [k],

Pr
y∼DI

[g(y) 6= corek(g∗)π(extractI,J (y))] < 2δ + 8k2/`+ 10 · dist(g, g∗).

Proof. By item 2b in Definition 7.10, it suffices to prove that

Pr
y∼DI

[g∗(y) 6= corek(g∗)π(extractI,J (y))] < 2δ + 8k2/`

for some π.
Let h be the k-junta that witnesses the fact that the pair (I,J) is δ-good. Let V ⊆ [n] be the

set of k variables of corek(g∗). (Recall that V may actually be a superset of the relevant variables
of g∗.) Let J ′ , {Ij ∈ I : Ij ∩ V 6= ∅} be an ordered subset respecting the order of J , and let π
be the permutation that maps the i-th relevant variable of g∗ (in the standard order) to the index
π(i) of the element of J ′ in which it is contained. We assume without loss of generality that π is
the identity map.

It follows from Definition 7.10 that |J ′| = |V | = k, since each block in I contains at most one
variable of corek(g∗). For any I-uniform y ∈ {0, 1}n, let x , extractI,J (y) and x′ , extractI,J ′(y)
denote the k-bit strings corresponding to J and J ′. By definitions, we have the equalities

(1) g∗(y) = corek(g∗)(x′),
(2) corek(h)(x) = corek(h)(x′).

The first equality is by Definition 7.5, and the second one follows from items 1a and 3a in Definition
7.10. From item 1b we also have

(3) Prr∈{0,1}k [corek(g∗)(r) 6= corek(h)(r)] < δ,
where r is picked uniformly at random. However, by the second item of Lemma 7.7, the distribution
DJ is 4k2/` close to uniform 6; combining this with (3) we also get

(4) Pry∼DI [corek(g
∗)(x) 6= corek(h)(x)] < δ + 4k2/`.

Likewise, we have
(5) Pry∼DI [corek(g

∗)(x′) 6= corek(h)(x′)] < δ + 4k2/`,
thus, using (2, 4, 5) and the union bound we get

(6) Pry∼DI [corek(g
∗)(x′) 6= corek(g∗)(x)] < 2δ + 8k2/`.

Combining (1) and (6) we conclude that

Pr
y∼DI

[g∗(y) 6= corek(g∗)(x)] < 2δ + 8k2/`,

and the claim follows.
6Recall that DJ is a distribution on {0, 1}k, where a random x ∼ DJ is obtained by picking a random y ∼ DI

and setting x← extractI,J (y).

23

Corollary 7.12 If the pair (I,J) is δ-good (with respect to g), then samplerI,J (g) is (η, µ)-noisy
sampler for a permutation of corek(g∗), with η ≤ 2δ + 8k2/`+ 10 · dist(g, g∗) and µ ≤ 4k2/`.

Proof. Recall that samplerI,J (g) is a probabilistic black-box algorithm, that on each execution
produces a pair (x, a) ∈ {0, 1}k × {0, 1} as follows: it picks a random y ∼ DI and outputs the pair
(x, a) , (extractI,J (y), g(y)).

To be an (η, µ)-noisy sampler for corek(g∗)π, samplerI,J (g) has to satisfy the following:

• the distribution of x ∈ {0, 1}k in its pairs should be µ close to uniform (in total variation
distance);

• Pr(x,a)←samplerI,J (g)

[
a = corek(g∗)π(x)

]
≥ 1− η.

The first item follows from the second item of Lemma 7.7. The second item follows from Lemma
7.11.

Now we set up a version of the junta tester from [Bla09] that is needed for our algorithm. A
careful examination of the proof in [Bla09] yields the following:

Theorem 7.13 (Corollary to [Bla09]) The property Junk can be tested with one-sided error us-
ing O(k log k + k/ε) queries.

Moreover, the tester T[Bla09] can take a (random) partition I = I1, . . . , I` of [n] as input, where
` = `[Bla09](k, ε) = Θ(k9/ε5) is even, and output (in case of acceptance) a k-subset J of I such
that for any g the following conditions hold (the probabilities below are taken over the randomness
of the tester and the construction of I):

• if g is a k-junta, T[Bla09] always accepts;

• if g is ε/2400-far from Junk, then T[Bla09] rejects with probability at least 9/10;

• for any g, with probability at least 4/5 either T[Bla09] rejects, or it outputs J such that the
pair (I,J) is ε/600-good (as per Definition 7.10). (In particular, if g is a k-junta then with
probability at least 4/5, T[Bla09] outputs a set J such that (I,J) is ε/600-good.)

Proof. In view of the results stated in [Bla09], only the last item needs justification. 7

We start with a brief description of how T[Bla09] works. Given the partition I, T[Bla09] starts
with an empty set S = ∅, and iteratively finds indices j ∈ [`] \ S such that for some pair of inputs
y, y′ ∈ {0, 1}n, y�

[n]\Ij
= y′�

[n]\Ij
but g(y) 6= g(y′). In other words, it finds j such that Ij contains

at least one influential variable (let us call such a block Ij relevant). Then j is joined to S, and
the algorithm proceeds to the next iteration. T[Bla09] stops at some stage, and rejects if and only
if |S| > k. The Main Lemma in [Bla09] asserts that if g is not rejected (i.e. if T[Bla09] terminates
with |S| ≤ k), then

7The somewhat different constants can be easily achieved by increasing (by a constant factor) the number of

iterations and partition sizes of the algorithm.

24

(∗) with probability at least 19/20 the set S satisfies Infg
(

[n] \ (
⋃
j∈S

Ij)
)
≤ ε/4800.

We will use this S to construct the subset J ⊆ I as follows:

• for every j ∈ S, we put the block Ij into J ;

• if |S| < k then we extend J by putting in it k−|S| additional “dummy” blocks from I (some
of them possibly empty), obtaining a set J of size exactly k.

Now we go back to proving the third item of Theorem 7.13. Recall that g∗ denotes the closest
k-junta to g. Let R ∈

([n]
≤k
)

denote the set of the relevant variables of g∗, and let V ∈
([n]
k

)
, V ⊇ R,

denote the set of the variables of corek(g∗). Assume that dist(g, Junk) ≤ ε/2400, 8 and T[Bla09] did
not reject. In this case,

• by (∗), with probability at least 19/20 the set J satisfies

Infg

(
[n] \ (

⋃
Ij∈J

Ij)
)
≤ Infg

(
[n] \ (

⋃
j∈S

Ij)
)
≤ ε/4800;

• since `� k2, with probability larger than 19/20 all elements of V fall into different blocks of
the partition I;

• by Lemma 7.7, PrI,y∼DI
[
g(y) = g∗(y)

]
= dist(g, g∗); hence by Markov’s inequality, with

probability at least 9/10 the partition I satisfies Pry∼DI [g(y) 6= g∗(y)] ≤ 10 · dist(g, g∗).

So with probability at least 4/5, all three of these events occur. Now we show that conditioned on
them, the pair (I,J) is ε/600-good.

Let U = R ∩ (
⋃
Ij∈J Ij). Informally, U is the subset of the relevant variables of g∗ that were

successfully “discovered” by T[Bla09]. Since dist(g, g∗) ≤ ε/2400, we have Infg([n] \ V) ≤ ε/1200
(by Lemma 7.9). By the subadditivity and monotonicity of influence we get

Infg([n] \ U) ≤ Infg([n] \ V) + Infg(V \ U) ≤ Infg([n] \ V) + Infg

(
[n] \ (

⋃
Ij∈J

Ij)
)
≤ ε/960,

where the second inequality follows from V \ U ⊆ [n] \ (
⋃
Ij∈J Ij). This means, by Lemma

7.9, that there is a k-junta h in JunU satisfying dist(g, h) ≤ ε/960, and by triangle inequality,
dist(g∗, h) ≤ ε/2400 + ε/960 < ε/600. Based on this h, we can verify that the pair (I,J) is ε/600-
good by going over the conditions in Definition 7.10.

7.4 The final algorithm

Consider the tester described in Algorithm 2. The proof of Theorem 7.1 follows from the next
lemma:

8For other g’s the third item follows from the second item.

25

Algorithm 2 (tests isomorphism to a k-junta f)
1: let ` = `[Bla09](k, ε) = Θ(k9/ε5)
2: randomly partition [n] into I = (I1, . . . , I`)
3: test g for being a k-junta, using T[Bla09] with I = I1, . . . , I` (see Theorem 7.13)
4: if T[Bla09] rejects then
5: reject
6: end if
7: let J ⊆ I be the set output by T[Bla09]

8: construct samplerI,J (g) (see Section 7.2)
9: accept if and only if RobustIsoTest(corek(f), samplerI,J (g)) accepts (see Section 7.1)

Lemma 7.14 Algorithm 2 satisfies the following conditions:

• if g∼=f then it accepts with probability at least 2/3;

• if distiso(f, g) ≥ ε then it rejects with probability at least 2/3;

• its query complexity is O(k log k/ε2).

Proof of item 1. Assume g∼=f , and hence corek(g)∼=corek(f). Since g is a k-junta, Algorithm 2
does not reject on line 5, because T[Bla09] has one-sided error. So in this case, by Theorem 7.13,
with probability at least 4/5 the pair (I,J) is ε/600-good. If so, by Corollary 7.12, samplerI,J (g)
is a (η, µ)-noisy sampler for a function isomorphic to corek(g∗) = corek(g), where η ≤ 2ε/600 +
8k2/`+ 10 · 0 < ε/100 and µ ≤ 4k2/` < ε/10, and hence RobustIsoTest accepts with probability at
least 9/10. Thus the overall acceptance probability is at least 2/3.

Proof of item 2. If distiso(f, g) ≥ ε then one of the following must hold:

• either g is ε/2400-far from Junk,

• or dist(g, Junk) = dist(g, g∗) ≤ ε/2400 and distiso(corek(f), corek(g∗)) ≥ ε− ε/2400 > 9ε/10.

If the first case holds, then T[Bla09] rejects with probability greater than 2/3 and we are done. So
assume that the second case holds.

By the third item of Theorem 7.13, with probability at least 4/5, T[Bla09] either rejects g, or the
pair (I,J) is ε/600 good. If T[Bla09] rejects then we are done. Otherwise, if an ε/600-good pair is
obtained, then by Corollary 7.12, samplerI,J (g) is a (η, µ)-noisy sampler for a function isomorphic
to corek(g∗), where η ≤ 2ε/600 + 8k2/` + 10 · ε/2400 < ε/100 and µ ≤ 4k2/` < ε/10, and hence
RobustIsoTest rejects with probability at least 9/10. Thus the overall rejection probability is at
least 2/3.

Proof of item 3. As for the query complexity, it is the sum of O(k log k+ k/ε) queries made by
T[Bla09], and additional O(k log k/ε2) queries made by RobustIsoTest.

This completes the proof of Theorem 7.1.

26

7.5 Query-efficient procedure for drawing random samples from the core

We conclude this section by observing that the tools developed above can be used for drawing
random samples from the core of a k-junta g, so that generating each sample requires only one
query to g.

Proposition 7.15 Let γ > 0 be an arbitrary constant. There is a randomized algorithm A, that
given oracle access to any k-junta g : {0, 1}n → {0, 1} does the following:

Operation: Algorithm A has two parts: preprocessor AP and sampler AS. AP is executed only
once; it makes O(k log k) queries to g, and produces a state α ∈ {0, 1}poly(n). The sampler
AS can then be called on demand, with the state α as an argument; in each call, AS makes
only one query to g and outputs a pair (x, a) ∈ {0, 1}k × {0, 1}.

Performance: With probability at least 4/5, the state α produced by AP is such that for some
permutation π : [k]→ [k],

Pr
(x,a)←AS(α)

[core(g)π(x) = α] ≥ 1− γ.

Furthermore, the x’s generated by the sampler AS are independent random variables, dis-
tributed uniformly on {0, 1}k.

Proof. The preprocessor AP starts by constructing a random partition I and calling the junta
tester T[Bla09] with ε , γ. Then AP encodes in the state α the partition I and the subset J ⊆ I
output by T[Bla09] (see Theorem 7.13).

The sampler, given α = (I,J), obtains a pair (x, a) ∈ {0, 1}k×{0, 1} by executing samplerI,J (g)
(once). Then, with probability px (defined bellow), AP outputs (x, a); and with probability 1− px
it draws a uniformly random z ∈ {0, 1}k and outputs (z, 0).

By Theorem 7.13 (third item), since g is a k-junta, with probability at least 4/5, the pair I,J is
ε/600-good. So, by Corollary 7.12, samplerI,J (g) is a (η, µ)-noisy sampler for a function isomorphic
to corek(g∗) = corek(g), where η ≤ 2ε/600+8k2/`+10·0 < ε/100 and µ ≤ 4k2/` < ε/100. Moreover,
the distribution of x in the pairs produced by samplerI,J (g) is 2−kµ < ε2−k/100 close to uniform
in L∞ norm. Since we need this distribution to be uniform, we use rejection sampling, with the
only difference being that since µ ≤ ε/100 � 1, we can stop after one execution of samplerI,J (g)
at the cost of a small increase in the error probability.

Concretely, after drawing sample (x, a) from samplerI,J (g), we accept it with probability

px ,
Prx1∼U [x1 = x]

(1 + µ) Prx2∼DJ [x2 = x]
;

and with probability 1 − px we reject the sample (and output a uniformly random pair (z, 0)
instead). It is easy to verify that the overall acceptance probability is Ex∼DJ px = 1/(1 + µ) and
thus, conditioned on acceptance, the distribution of x is uniform. In the case of rejection (which
occurs with probability µ/(1 + µ)) it is uniform by definition; hence the overall distribution of x is
uniform too, and Pr[a 6= g(x)] ≤ ε/100 + µ/(1 + µ) < ε/50 < γ.

27

8 Testing isomorphism with one-sided error

Note that if f ∈ PARk, then testing isomorphic to f is the same as testing membership in PARk.
The main theorem in this section is the following:

Theorem 8.1 Let ε ∈ (0, 1
2] be fixed. The following holds for all n ∈ N:

• For any k ∈ [2, n−2], the query complexity of testing PARk with one-sided error is Θ(log
(
n
k

)
).

Furthermore, the upper bound is obtainable with a non-adaptive tester, while the lower bound
applies to the certificate size for proving membership in PARk.

• For any k ∈ {0, 1, n−1, n}, the query complexity of testing PARk with one-sided error is Θ(1).

We start with the following observation, which is immediate from the fact that p is a k-parity
if and only if p(x)⊕ x1 ⊕ . . .⊕ xn is an (n− k) parity:

Observation 8.2 Let ε ∈ (0, 1
2], n ∈ N and k ∈ [0, n]. Any ε-tester for PARk can be converted into

an ε-tester for PARn−k, while preserving the same query complexity, type of error, and adaptivity.

It is also easy to verify that the second item of Theorem 8.1 holds for k = 0. For k = 1, the
bound follows from [PRS02], who show that one-sided-error testing of functions for being a 1-parity
(monotone dictatorship) can be done with O(1) queries. So we only have to prove the first item of
Theorem 8.1 for k ∈ [2, dn/2e].

In Section 8.1 we prove the lower bound for the first item of Theorem 8.1. The upper bound
for the first item of Theorem 8.1 follows immediately from Proposition E.1 proved in Appendix E.

8.1 Lower bound for testing isomorphism to k-parities with one-sided error

To prove the lower bound, we make a distinction between three cases. First we prove a lower bound
of Ω(log n) for any k ∈ [2, bn/2c]. Then a lower bound of Ω(log

(
n
k

)
) is shown for k ∈ [5, αn], where

αn , bn/212c. Finally we prove a lower bound of Ω(k) queries that works for k ∈ [αn, bn/2c].
Combining the three bounds will complete the proof.

In all three cases we follow the argument sketched in Section 4.3.

8.1.1 Lower bound of Ω(log n) for 2 ≤ k ≤ dn/2e

Let q = logdn/2e + 2, and let x1, . . . , xq ∈ {0, 1}n be the set of queries. For any k ∈ [2, dn/2e] we
let g be the (k − 2)-parity g(x) = xn−k+3 ⊕ · · · ⊕ xn (in case k = 2, g is simply the constant zero
function). Then we find j, j′ ∈ [n − k + 2], j 6= j′ such that xij = xij′ for all i ∈ [q]; such j and
j′ must exist since 2q < n − k + 2. Let f be the k-parity corresponding to {j, j′} ∪ [n − k + 3, n].
Then f(xi) = g(xi) for all i ∈ [q], so the tester must accept g, even though it is 1/2-far from any
k-parity.

This simple idea can only yield lower bounds of Ω(log n). We need to generalize it in order to
obtain lower bounds that grow with k.

28

8.1.2 Lower bound of Ω(log
(
n
k

)
) for 5 ≤ k ≤ αn

For this case we use the following version of the Frankl-Wilson Theorem:

Theorem 8.3 ([FW81]; see also Frankl-Wilson Theorem in [FR87]) Let m ∈ N and let
` ∈ [m] be even, such that `/2 is prime power. If F ⊆

([m]
`

)
is such that for all F, F ′ ∈ F ,

|F ∩ F ′| 6= `/2, then |F| ≤
(
m
`/2

)(3`/2−1
`

)
/
(3`/2−1

`/2

)
.

Let q = b 1
20 log

(
n
k

)
c. Given k ∈ [5, bn/2c], let k′ ≥ 1 be the smallest integer such that (k−k′)/2 is

a power of a prime; note that k′ < k/2 as k ≥ 5. We let g be the k′-parity g(x) = xn−k′+1⊕· · ·⊕xn.
With a slight abuse of notation, let g also denote the n-bit string with ones exactly in the last k′

indices. It suffices to show that for any x1, . . . , xq ∈ {0, 1}n there exists y ∈ {0, 1}n such that

• |y| = k − k′,

• y ∩ g = ∅ and

• < y, xi >,
⊕n

j=1(yj · xij) = 0 for all i ∈ [q].

Indeed, if such a y exists, then the k-parity corresponding to g∪y is consistent with g on x1, . . . , xq.
Let Y = {y ∈ {0, 1}n : |y| = k−k′ and y∩g = ∅}. Partition Y into disjoint subsets {Yα}α∈{0,1}q ,

such that y ∈ Yα if and only if < y, xi >= αi for all i ∈ [q]. Clearly, one of the sets Yα must be of
size at least

(
n−k′
k−k′

)
/2q. We interpret the elements of this Yα as ` subsets of [m], where ` , k − k′

and m , n − k′, and show that there must be y1, y2 ∈ Yα such that |y1 ∩ y2| = `/2 = (k − k′)/2.
Once the existence of such a pair is established, the claim will follow by taking y to be the bitwise
XOR of y1 and y2. Indeed, it is clear that |y| = k − k′ and y ∩ g = ∅, and it is also easy to verify
that < y, xi >= 0 for all i ∈ [q].

Let c , n/k; it is easy to verify that c ≤ m/` ≤ 2c. In the following we use the bounds
b(log a− log b) ≤ log

(
a
b

)
≤ b(log a− log b+ 2). We have

log |Yα| ≥ log
((n−k′

k−k′
)

2q
)

= log
(
m

`

)
− 1

20
log
(
n

k

)
≥

≥ `(logm− log `)− 1
20
k(log n− log k + 2) ≥ `(log c− 1)− 1

10
`(log c+ 2) = `(

9
10

log c− 6
5

).

On the other hand,

log
((m

`/2

)(3`/2−1
`

)(3`/2−1
`/2

))
≤ `

2
(logm− log `+ 3) + 3`/2 ≤ `(1

2
log c+

7
2

).

Since c ≥ 212, these inequalities together with Theorem 8.3 imply that there must be y1, y2 ∈ Yα
such that |y1 ∩ y2| = `/2, as required.

29

8.1.3 Lower bound of Ω(k) for αn ≤ k ≤ dn/2e

The reasoning in this case is very similar, but since for large k the previous method does not work,
we have to change few things. One of them is switching to the related theorem of Frankl and Rödl,
using which we can prove a lower bound of Ω(k) (instead Ω(log

(
n
k

)
)), but for the current range of

k they are asymptotically the same.

Theorem 8.4 ([FR87]) There is an absolute constant δ > 0 such that for any even k the following
holds: Let F be a family of subsets of [2k] such that no two sets in the family have intersection of
size k/2. Then |F| ≤ 2(1−δ)2k.

Let n be large enough with respect to α and δ. Given k ∈ [αn, dn/2e], we set q = δk. Assume
first that k is even – we mention the additional changes required for odd k below.

We set g to be the zero function, and show that for any x1, . . . , xq ∈ {0, 1}n there exists
y ∈ {0, 1}n such that

• |y| = k and

• < y, xi >= 0 for all i ∈ [q].

Let Y = {y ∈ {0, 1}n : y ⊆ [2k] ∩ [n] and |y| = k}. As in the previous case, partition Y into
disjoint subsets {Yα}α∈{0,1}q , such that y ∈ Yα if and only if < y, xi >= αi for all i ∈ [q]. One
of the sets Yα must be of size at least

(
2k−1
k

)
/2q, which is greater than 2(1−δ)2k for large enough n

(and hence k). We interpret the elements of this Yα as k-subsets of [2k] in the natural way. Thus,
by Theorem 8.4, there must be y1, y2 ∈ Yα such that |y1∩y2| = k/2. Take y to be the bitwise XOR
of y1 and y2. Clearly |y| = k, and < y, xi >= 0 for all i ∈ [q].

For an odd k, we use the 1-parity g(x) = xn instead of the zero function. We follow the same
steps to find y ⊆ [2k − 2] of size |y| = k − 1 such that < y, xi >= 0 for all i ∈ [q]. Then, the vector
y ∪ {n} corresponds to a function in PARk that is consistent with g on the q queries.

Acknowledgement We thank Ronald de Wolf for many useful discussions.

References

[AB10] Noga Alon and Eric Blais. Testing boolean function isomorphism. Personal communi-
cation, 2010.

[AKK+03] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, Dana Ron, and Dana.
Testing low-degree polynomials over gf(2). In Proceedings of RANDOM-APPROX,
pages 188–199, 2003.

[AS92] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley, New York, 1992.

30

[BC10] Laszlo Babai and Sourav Chakraborty. Property testing of equivalence under a per-
mutation group action. To appear in The ACM Transactions on Computation Theory
(ToCT), 2010.

[BEHL09] Ido Ben-Eliezer, Rani Hod, and Shachar Lovett. Random low degree polynomials are
hard to approximate. In APPROX-RANDOM, pages 366–377, 2009.

[BFF+01] Tugkan Batu, Lance Fortnow, Eldar Fischer, Ravi Kumar, Ronitt Rubinfeld, and
Patrick White. Testing random variables for independence and identity. In FOCS,
pages 442–451, 2001.

[Bla09] Eric Blais. Testing juntas nearly optimally. In STOC, pages 151–158, 2009.

[BO10] Eric Blais and Ryan O’Donnell. Lower bounds for testing function isomorphism. In
IEEE Conference on Computational Complexity (to appear), 2010.

[DLM+07] Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubinfeld,
Rocco A. Servedio, and Andrew Wan. Testing for concise representations. In FOCS,
pages 549–558, 2007.

[Fis01] Eldar Fischer. The art of uninformed decisions. Bulletin of the EATCS, 75:97, 2001.

[Fis05] Eldar Fischer. The difficulty of testing for isomorphism against a graph that is given in
advance. SIAM J. Comput., 34(5):1147–1158, 2005.

[FKR+04] Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samorodnitsky. Testing
juntas. J. Comput. Syst. Sci., 68(4):753–787, 2004.

[FM08] Eldar Fischer and Arie Matsliah. Testing graph isomorphism. SIAM J. Comput.,
38(1):207–225, 2008.

[FNS04] Eldar Fischer, Ilan Newman, and Jǐŕı Sgall. Functions that have read-twice constant
width branching programs are not necessarily testable. Random Struct. Algorithms,
24(2):175–193, 2004.

[FR87] P. Frankl and V. Rödl. Forbidden intersections. Trans. Amer. Math. Soc. 300, pages
259–286, 1987.

[FW81] P. Frankl and . M. Wilson. Intersection theorems with geometric consequences. Com-
binatorica 1, pages 357–368, 1981.

[JPRZ04] Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra, and David Zuckerman. Testing
low-degree polynomials over prime fields. Foundations of Computer Science, Annual
IEEE Symposium on, 0:423–432, 2004.

31

[KR04] Tali Kaufman and Dana Ron. Testing polynomials over general fields. In FOCS ’04:
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science,
pages 413–422, Washington, DC, USA, 2004. IEEE Computer Society.

[KS05] Peter Keevash and Benny Sudakov. Set systems with restricted cross-intersections and
the minimum rank of inclusion matrices. SIAM J. Discrete Math., 18(4):713–727, 2005.

[PRS02] Michal Parnas, Dana Ron, and Alex Samorodnitsky. Testing basic boolean formulae.
SIAM J. Discrete Math., 16(1):20–46, 2002.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-hoeffding bounds
for applications with limited independence. SIAM J. Discrete Math., 8(2):223–250,
1995.

32

A Notation

A.1 Generalities

Let n, k ∈ N, x, y ∈ {0, 1}n and f, g : {0, 1}n → {0, 1}. We use the following standard notation:

• [n] = {1, . . . , n} and [k, n] = {i ∈ [n] : k ≤ i ≤ n};

• |x| = |{i ∈ [n] : xi = 1}|;

Given a subset I ⊆ [n], x�
I

denotes the restriction of x to the indices in I. If D,R are two sets
then RD denotes the set of all functions from D to R.

A.2 Boolean functions

For a function g : {0, 1}n → {0, 1} and a set A ⊆ [n], the influence of g on A is

Infg(A) , Pr
x∈{0,1}n, y∈{0,1}|A|

[
g(x) 6= g(x

A←y)
]
.

Note that when |A| = 1, this value is half that of the most common definition of influence of one
variable; for consistency we stick to the previous definition instead in this case as well.

An index (variable) i ∈ [n] is relevant with respect to g if Infg({i}) 6= 0.
A k-junta is a function g that has at most k relevant variables; equivalently, there is S ∈

([n]
k

)
such that Infg([n] \ S) = 0.

A parity is a linear form on Fn2 . Such a linear f : {0, 1}n → {0, 1} can be identified with a
unique vector v ∈ {0, 1}n such that f(x) =

⊕
i∈[n] xivi for all x ∈ {0, 1}n. We say that f is a

k-parity if its associated vector has Hamming weight exactly k. The set of all k-parities will be
denoted PARk.

A.3 Property testing

An ε-tester for f -isomorphism is a probabilistic algorithm A that, given oracle access to g, satisfies
the following conditions: (1) if f∼=g it accepts with probability at least 2/3; (2) if distiso(f, g) ≥ ε

it rejects with probability at least 2/3. The query complexity of A is the worst-case number of
queries it makes to g before making a decision. A is non-adaptive if its choice of queries does not
depend on the outcomes of earlier queries. A has one-sided error if it always accepts in case f∼=g.
By default, in all testers (and bounds) discussed in this paper we assume adaptivity and two-sided
error, unless mentioned otherwise.

For any function f the query complexity for testing f -isomorphism is the query complexity
of the best ε-tester for f -isomorphism. If C is a set of functions, then the query complexity for
testing isomorphism to C is the maximum, taken over all f ∈ C, of the query complexity for testing
f -isomorphism.

33

B Proof of Lemma 3.1

Assume towards a contradiction that there is such a tester making ≤ q queries; clearly we can
assume it always makes exactly q queries. Define a distribution D obtained by selecting one of DY

and DN with probability 1/2, and drawing an f from it. Fix a random seed so that the tester
works for f ∈ D with probability at least 2/3; now the behaviour of the tester can be described by
a deterministic decision tree of height q. Each leave corresponds to a set Q ∈

(
T
q

)
, along with an

evaluation a : Q→ {0, 1}; the leave is reached if and only if f satisfies the evaluation. Consider the
set S corresponding to accepting leaves; f is accepted if and only if there is (Q, a) ∈ S such that
f�
Q

= a. These |S| events are disjoint, so the probability of acceptance of f is
∑

(Q,a)∈S Pr[f�
Q

= a].
Let p = Prf∈DY [f is accepted], q = Prf∈DN [f is accepted]. Now a standard averaging argument

shows that 2/3p < q, so p − q < p/3 ≤ 1/3. The overall success probability when f is taken from
D is 1/2 + (p− q)/2 < 2/3, contradicting our assumption.

C Testing in the unknown-unknown setting

An ε-tester for function isomorphism in the unknown-unknown setting is a probabilistic algorithm
A that, given oracle access to two functions f, g : {0, 1}n → {0, 1}, satisfies the the following
conditions: (1) if f∼=g it accepts with probability at least 2/3; (2) if distiso(f, g) ≥ ε it rejects with
probability at least 2/3. The query complexity of A is the worst-case number of queries it makes
to f and g before making a decision. A is non-adaptive if its choice of queries does not depend on
the outcomes of earlier queries. A has one-sided error if it always accepts in case f∼=g.

In the rest of the section we prove the following Theorem

Proposition C.1 The following holds for any fixed ε > 0.

1. There exists a non-adaptive one-sided ε-tester for function isomorphism in the unknown-
unknown setting that has query complexity O(2n/2

√
n log n).

2. Any adaptive tester for function isomorphism in the unknown-unknown setting must have
query complexity Ω(2n/2).

C.1 Proof of Proposition C.1 Part 1: Upper Bound

In this section we show that isomorphism between a pair of unknown functions can be tested with
a one-sided error non-adaptive tester that makes O(2n/2

√
n log n) queries. The tester is described

in Algorithm 3.
It is clear that Algorithm 3 is non-adaptive, has one-sided error and it makes O(2n/2

√
n log n)

queries. So we only need to prove that ε-far functions are accepted with probability at most

1/3. Since the event |Q| ≤ 10
√

2n

ε n log n occurs with probability 1 − o(1), we can condition the
rest of the argument over it. Let f and g be ε-far. That is, for all π there exist ε2n inputs
x ∈ {0, 1}n such that f(x) 6= g(π(x)). Fixed π and such an x, the probability that both x and

34

Algorithm 3 (non-adaptive one-sided error tester for the unknown-unknown setting)
Q← ∅
add every x ∈ {0, 1}n to Q with probability

√
2n logn
ε2n , independently of each other

if |Q| > 10
√

2n

ε n log n then
accept

end if
query both f and g on all points in Q

accept if and only if there exists π such that for all x ∈ Q either f(x) = g(π(x)) or π(x) /∈ Q

π(x) are in Q is at least 2n logn
ε2n , so any such π passes the acceptance condition with probability at

most (1 − 2n log n/(ε2n))ε2
n ≤ e−2n logn. The proof follows by taking the union bound over all n!

permutations.

C.2 Proof of Proposition C.1 Part 2: Lower Bound

In this section we prove that any two-sided adaptive tester in the unknown-unknown setting must
make Ω(2n/2) queries.

We define two distributions DY and DN on pairs of functions such that any pair of function
drawn according to distribution DY are isomorphic, while any pair drawn according to distribution
DN is 1/8-far from isomorphic.

We define an almost-random function f : {0, 1}n → {0, 1} as follows: if n
2 −
√
n ≤ |x| ≤ n

2 +
√
n

then f(x) = 1 with probability 1/2 and if |x| is less than n
2 −
√
n or greater than n

2 +
√
n then

f(x) = 0.
The distribution DY is constructed by letting the pair of functions consist of an almost-random

function f : {0, 1}n → {0, 1} and a function g that is obtained by permuting f using a random
permutation in Sn.

For the distribution DN the pair of functions are two independently chosen almost-random
functions f and g. Now with probability 1 − o(1) the two functions are 1/8 far from each other.
So we can assume that that the pairs obtained by DN are of functions that are 1/8 far from each
other.

For any Q = {x1, . . . , xt} ⊂ {0, 1}n and any p, q ∈ {0, 1}t let Pr(f,g)∈DY [(f, g)�
Q

= (p, q)] be the
probability that for all 1 ≤ i ≤ t, f(xi) = pi and g(xi) = qi when f and g are drawn according
to DY . Similarly we define Pr(f,g)∈DN [(f, g)�

Q
= (p, q)]. We show that for any Q ⊂ {0, 1}n, if

|Q| < 2n/2/10, then for any p, q ∈ {0, 1}t we have

(2/3) Pr
(f,g)∈DN

[(f, g)�
Q

= (p, q)] < Pr
(f,g)∈DY

[(f, g)�
Q

= (p, q)].

This implies (by Lemma 3.1) a lower bound of 2n/2/10 on the adaptive query complexity for the
two-sided testing for the unknown-unknown setting.

35

Since any function f generated by DY and DN has the property that f(x) = 0 if |x| is less than
n
2 −
√
n or greater than n

2 +
√
n, we can assume that for all xi ∈ Q the number of 1’s in each is

between n/2−
√
n and n/2 +

√
n.

Let Q be {x1, . . . , xt}. Clearly, if the pair is drawn according to distribution DN then the
answers to the queries will be uniformly distributed. So for any p, q ∈ {0, 1}t we have

Pr
(f,g)∈DN

[(f, g)�
Q

= (p, q)] = 1/22t.

Now let the pair be drawn according to DY and let π be the permutation on [n] that defined the
pair. For all i, let π(xi) denote the string obtained by permuting the bits of xi according to the
permutation π. Let EQ denote the event that for all i, j we have π(xi) 6= xj . Conditioned on the
event EQ the answers to the queries will again be distributed uniformly, that is

Pr
(f,g)∈DY

[(f, g)�
Q

= (p, q)|EQ] = 1/22t = Pr
(f,g)∈DN

[(f, g)�
Q

= (p, q)|EQ].

Claim C.2 With probability at least 2/3 event EQ occurs, that is, for all i, j we have π(xi) 6= xj.

Proof. [Of Claim C.2] For any i and taking a random permutation π, the probability that π(xi) =
xj for some j is less than t/

(
n
k

)
where k = |xi|. Since n

2 −
√
n < k < n

2 +
√
n, this probability

is bounded by 25t/2n. Hence, by the union bound, with probability 1 − 25t2

2n for all i, j we have
π(xi) 6= xj . So if t < 2n/2/10, with probability at least 2/3 event EQ happens.

Now Pr(f,g)∈DY [(f, g)�
Q

= (p, q)] is equal to

(Pr[EQ]) Pr
(f,g)∈DN

[(f, g)�
Q

= (p, q)] + (1− Pr[EQ]) Pr
(f,g)∈DY

[(f, g)�
Q

= (p, q)].

Using the above claim we have Pr(f,g)∈DY [(f, g)�
Q

= (p, q)] ≥ (2/3) Pr(f,g)∈DN [(f, g)�
Q

= (p, q)].

This implies a lower bound of 2n/2/10 on the adaptive query complexity for the two-sided testing
for the unknown-unknown setting.

D Distinguishing two random functions with Õ(
√

n) queries

In light of the fact that two trimmed random functions are hard to distinguish with fewer than
roughly n queries, we may ask whether the restriction to trimmed functions is necessary. In this
section we show that without such a restriction, the aforementioned task can be completed with
only Õ(

√
n) queries. We prove the following proposition, which says in particular that any function

can be distinguished from a completely random function using Õ(
√
n) queries.

Proposition D.1 Let δ > 0 be an arbitrary constant. For any function f and any distribution
Dy over functions isomorphic to f , it is possible to distinguish g ∈ Dy from g ∈ U with probability
1− δ using Õ(

√
n) queries.

36

We prove the above proposition momentarily, but first we note that querying g only on inputs
of Hamming weights 1, 2, n−1, n cannot help much. By querying the all-zero and all-one inputs, we
can distinguish between the two cases only with probability 3/4.9 When considering the singletons
(similarly, inputs of weight n − 1), then f, g are isomorphic only if |{x ∈ L1 : f(x) = 1}| = |{x ∈
L1 : g(x) = 1}|. So a natural (and only) approach would be to test the equality of these measures
by sampling. But notice that for most f , with very high probability (over the choice of g), these
two measures will be at most O(

√
n) away from each other, which means that distinguishing the

two cases requires at least Ω(n) samples.

Proof. We show that Õ(
√
n) queries into inputs of weight ≤ 2 are sufficient for distinguishing

g ∈ Dy from g ∈ U with high probability. One way to do this is to interpret the restriction of f
and g to

(
[n]
2

)
as adjacency functions of graphs on n vertices. It is not hard to prove that for any

f and a randomly chosen g, the corresponding graphs Gf , Gg are 1/3-far from being isomorphic
with overwhelming probability. On the other hand, if f is isomorphic to g then Gf is obviously
isomorphic to Gg. Hence, we can use the isomorphism tester of [FM08] (in the appropriate setting)
to distinguish between the two cases.

But in fact, the graphs case is more complicated, since it is concerned with the worst case
scenario (i.e., it should work for any pair of graphs). In our case, we only wish to distinguish a
(possibly random) permutation of some given f from a random function g. Indeed, it turns out that
we can reduce our problem directly to the task of testing equivalence of a samplable distribution to
an explicitly given one. Then we can use an algorithm of Batu et al. [BFF+01] that solves exactly
this problem with Õ(

√
n) queries. We work out the formal details below.

Let ` = 2 log n. Given a function f : {0, 1}n → {0, 1} and i ∈ [n] we define α(f, i) ∈ {0, 1}` as
follows: the j’th bit of α(f, i) is one if and only if f({i, j}) = 1. We then define the distribution
Df over {0, 1}`, where the probability of β ∈ {0, 1}` under Df is 1

n |{i ∈ [n] : α(f, i) = β}|. Clearly,
if f = g then Df = Dg. Now we claim something similar for f and g that are isomorphic.

Let Π be a set of permutations of [n], such that there is one-to-one correspondence between the
elements of Π and the possible injections I : [`]→ [n] as follows. Each π ∈ Π is associated with an
injection Iπ : [`]→ [n], such that

π(i) =


Iπ(i) , i ∈ [`]
i , i ∈ [n] \ [`] and I−1

π (i) = ∅
I−1
π (i) , i ∈ [n] \ [`] and I−1

π (i) 6= ∅

 .

Clearly, |Π| ≤ n`.

Claim D.2 If f is isomorphic to g, then for some π ∈ Π, Df = Dgπ . On the other hand, for any
function f ,

Pr
g

[
|Df −Dgπ | ≤ 1/4 for some π ∈ Π

]
= 1− o(1).

9Notice that this success probability cannot be amplified, since the probability is taken over the choice of functions,

rather than the randomness of the tester.

37

Proof. The first statement is straightforward: Let f and g be isomorphic, i.e. f = gσ for some
σ : [n]→ [n]. Take π ∈ Π such that σ(i) = π(i) for all i ∈ [`]. Then Df = Dgπ .

Now, fix f , and let g be chosen uniformly at random. We would like to show that for all π ∈ Π,
Prg

[
|Df −Dgπ | ≤ 1/4

]
= 1−o(1/|Π|), so that we can apply the union bound. But notice that it is

sufficient to prove this inequality when π is the identity, because the function g is chosen uniformly
at random.

Fix i ∈ [n]. For every j ∈ [n],

Pr
g

[
α(f, i) = α(g, j)

]
= 2−`,

hence
Pr
g

[
α(f, i) = α(g, j) for some j ∈ [n]

]
≤ n2−` = 1/n.

Therefore, the expected intersection size between the multisets10 {α(f, i) : i ∈ [n]} and {α(g, i) : i ∈
[n]} is O(1). But notice that in order for the distributions Df and Dg to be close, the intersection
of these multisets must be of size Ω(n). Using the fact that the events

Ei , I
[
α(f, i) = α(g, j) for some j ∈ [n]

]
are independent, we can apply standard concentration bounds to conclude that

Pr
g

[
|Df −Dg| ≤ 1/4

]
= 1− 2−Ω(n) = 1− o(1/|Π|),

completing the proof.
Notice that the distribution Df can be constructed exactly given f . On the other hand, given

an oracle access to g, we can obtain a random sample from Dg by picking a random i ∈ [n] and
querying g on ` inputs {i, 1}, . . . , {i, `}. This observation, together with Claim D.2, suggests that
we use the following lemma from [BFF+01], which states that Õ(

√
n) samples are sufficient for

testing equivalence between a samplable distribution and an explicitly given one.

Lemma D.3 There is a tester TDist that for any two distributions DK ,DU over {0, 1}∗, each having
support of size at most n, and where DK is given explicitly and DU is given as a black box that
allows sampling, satisfies the following: If DK = DU then the TDist accepts with probability at least
1−n−3 logn; and if |DK −DU | ≥ 1/4 then TDist rejects with probability at least 1−n−3 logn. In any
case, TDist uses Õ(

√
n) samples.

Actually, this is an amplified version of the lemma from [BFF+01], which can be achieved
by independently repeating the algorithm provided there polylog(m) many times and taking the
majority vote.

To conclude, we can reduce our problem to testing equivalence of distributions as follows. Given
f and oracle access to g, go over all permutations π ∈ Π and test, with TDist, if Df and Dgπ are
equal. If TDist accepts for some π, accept; otherwise reject.

10Intersection here can be a multiset as well. For example, {a, a, b, c, c, c} ∩ {a, a, b, b, c} = {a, a, b, c}.

38

By Claim D.2, if f is isomorphic to g then for some π ∈ Π we have Df = Dgπ , and so TDist

will with high probability accept while checking that particular π. On the other hand, every π

for which |Df − Dgπ | ≥ 1/4 is accepted with probability at most n−3 logn = o(1/|Π|). Thus, for
randomly chosen g, TDist rejects with probability 1− o(1).

As for the query complexity, the amplified version of Lemma D.3 allows us to reuse the same
Õ(
√
n) samples for checking all permutations in Π. Therefore, since simulating a random sample

from Dgπ requires ` = 2 log n queries to g, the bound on the query complexity is Õ(
√
n).

E Upper bound for testing isomorphism to k-juntas with one-

sided error

Recall that for every f : {0, 1}n → R, Isomf denotes the collection of functions isomorphic to f .

Proposition E.1 Isomorphism to any given f : {0, 1} → R can be tested with O(log |Isomf |/ε)
queries.

This immediately implies the desired upper bound, since |Isomf | ≤
(
n
k

)
· k! for any k ∈ [n] and k-

junta f . In view of Theorem 8.1, this implies a tight upper bound for testing isomorphism against
k-parities, since |PARk| =

(
n
k

)
.

Proof. [of Proposition E.1] Consider the simple tester described in Algorithm 4. It is clear that

Algorithm 4 (non-adaptive one-sided error tester for the known-unknown setting)
let q ← 2

ε log |Isomf |
for i = 1 to q do

pick xi ∈ {0, 1}n uniformly at random
query g on xi

end for
accept if and only if there exists h ∈ Isomf such that g(xi) = h(xi) for all i ∈ [q]

this is a non-adaptive one-sided error tester, and that for any fixed ε > 0 it makes only O(log |Isomf |)
queries to g. So we only need to show that for any f and any g that is ε-far from f , the probability
of acceptance is small. Indeed, for a fixed h ∈ Isomf the probability that g(xi) = h(xi) for all
i ∈ [q] is at most (1− ε)q. Applying the union bound on all functions h ∈ Isomf , we can bound the
probability of acceptance by |Isomf |(1− ε)q ≤ |Isomf |e−εq < 1/3.

In addition to the fact that Proposition E.1 implies a tight upper bound of O(log
(
n
k

)
) queries for

testing PARk, something much stronger holds. Since the distance between any two parity functions
is 1/2, the algorithm from Proposition E.1 (which can be thought of as a learning algorithm) can
actually decode the parity bits of the tested function with the same number of queries:

Fact E.2 There is a non-adaptive algorithm A that, given n,k and oracle access to g : {0, 1}n →
{0, 1}, satisfies the following:

39

• if g is a k-parity then A outputs the k parity indices of g with probability 1;

• if g is ε-far from being k-parity then A rejects with probability at least 2/3;

• A makes O(log
(
n
k

)
) queries to g.

Furthermore, without the second item, A can be even made deterministic11.

This is in contrast to the matching lower bound that applies even for the much simpler task of
deciding whether the size of a given parity is k.

11The fact that for all n and k there is such deterministic algorithm follows from a simple probabilistic argument.

40

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

