
A combinatorial analysis for the critical clause tree

Masaki Yamamoto∗

Abstract

In [FOCS1998], Paturi, Pudlák, Saks, and Zane proposed a simple randomized
algorithm for finding a satisfying assignment of a k-CNF formula. The main lemma
of the paper is as follows: Given a satisfiable k-CNF formula that has a d-isolated
satisfying assignment z, the randomized algorithm finds z with probability at least
2−(1−µk/(k−1)+εk(d))n, where µk/(k − 1) =

∑∞
i=1 1/(i((k − 1)i + 1)), and εk(d) =

od(1). They estimated the lower bound of the probability in an analytical way, and
used some asymptotics. In this paper, we analyze the same randomized algorithm,
and estimate the probability in a combinatorial way. The lower bound we obtain is
a little simpler: 2−(1−µk(d)/(k−1))n, where µk(d)/(k−1) =

∑d
i=1 1/(i((k−1)i+1)).

This value is a little bit larger than that of [FOCS98] although the two values are
asymptotically same when d = ω(1).

1 Introduction

The satisfiability problem is, given a conjunctive normal form (abbrev. CNF) formula,
a problem to determine whether the CNF formula is satisfiable. This is one of the well-
known NP-complete problems even if the clause length is restricted to at most three.
In this paper, we focus on the satisfiability problem where the clause length is at most
a constant k ≥ 3, which is denoted by k-SAT.

Initiated by Monien and Speckenmeyer [2], a number of exponential time algorithms
for k-SAT have been proposed, and the exponential time complexity of k-SAT has been
improved [2, 4, 3, 5, 1], to name but a few. In [4], Paturi, Pudlák, and Zane proposed a
simple randomized algorithm for k-SAT. Given a k-CNF formula over n variables, the
algorithm repeats the following procedure exponentially (in n) many times: Generate a
permutation π on {1, ..., n} and a 0/1 sequence y ∈ {0, 1}n. Then, apply the assignment
y to variables in the order π as follows: Let ϕ(1) = ϕ. For each 1 ≤ i ≤ n, if a unit
clause (xπ(i)) (resp. (x̄π(i))) appears in ϕ(i), then assign true (resp. false) to variable xπ(i).
Otherwise, assign yπ(i) to xπ(i). We define the new formula ϕ(i+1) as a formula obtained
from ϕ(i) by assigning as above. We denote this procedure by assign(ϕ, π, y). It is not
difficult to see that given a satisfiable k-CNF formula ϕ that has a unique solution, the
probability that assign(ϕ, π, y) finds the unique solution is at least 2−(1−1/k)n. Thus,
by repeating this procedure Ω(2(1−1/k)n) times, it finds the unique solution with high

∗Tokai University, yamamoto@tokai-u.jp

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 95 (2010)



probability 1. We denote this exponential-time algorithm by PPZ(ϕ). Note that PPZ(ϕ)
does work for any CNF formula ϕ. Based on this algorithm, Paturi, Pudlák, Saks, and
Zane [3] proposed an improved randomized algorithm: Given a k-CNF formula ϕ, it first
preprocesses ϕ, and constructs a CNF formula. More precisely, it adds clauses to ϕ by
resolution. Let resolve(ϕ, s) be the preprocessing where resolution is applied to clauses
of size at most s/2. Let ϕs be the CNF formula obtained by running resolve(ϕ, s).
Then, it runs PPZ(ϕs). The main lemma of [3] is the following, where they say that
for integer d ≥ 1, a satisfying assignment z is d-isolated if there is no solution around z
within the Hamming distance d.

Lemma 1.1. [Paturi, Pudlák, Saks, and Zane [3]] Let ϕ be a satisfiable k-CNF formula.
Let ϕs be a CNF formula obtained by running resolve(ϕ, s). Suppose that ϕ has a d-
isolated satisfying assignment z. Then, for s ≥ kd,

Pr
π,y

{assign(ϕs, π, y) finds z} ≥ 2−(1−µk/(k−1)+εk(d))n,

where

µk =
∞
∑

i=1

1

i(i + 1/(k − 1))
,

εk(d) =
3

(d − 1)(k − 2) + 2
.

For proving this lemma, they [3] analyzed the probability that the assignment of a
variable x is uniquely determined by the occurrence of the unit clause (x) or (x̄). Let
C = (x1 ∨ x̄2 ∨ · · · ∨ x̄k) be a clause of ϕ. Suppose that z1 = z2 = · · · = zk = 1. Then,
C is “critical” at x1 under z in a sense that what satisfies C under z is the assignment
only to x1. Thus, if π−1(i) < π−1(1) for all 2 ≤ i ≤ k and yi = 1 for all 2 ≤ i ≤ k, the
clause C becomes a unit clause (x1), and hence the value of x1 is uniquely determined so
that C is satisfied. Intuitively, the probability that assign(ϕ, π, y) finds z increases as
the number of clauses increases keeping z to be a solution. That’s why they [3] obtains
ϕs instead of ϕ. From this, what we estimate is the probability for each variable x that
there exists a critical clause in ϕs at x under z such that x is the last of all variables of
C under the random order π. See the next section for the details.

For analyzing this probability, they introduced a labelled rooted tree. This is defined
for each variable. Fix a variable x arbitrarily. Each node is labelled with a variable,
and the root is labelled with x. We regard any node as a variable labelled the node.
Then, roughly speaking, they observed that there exists a labelled rooted tree Tx such
that any cut of Tx contains all variables of a critical clause of ϕs. They call it a “critical
clause tree” for x. From this, what we estimate is the probability that there exists a cut
in Tx such that x is the last of all variables of the cut under the random order π. See
the next section for the details.

They estimated this probability in an analytical way, and used some asymptotics. In
this paper, we estimate the probability in a combinatorial way. Through the combina-
torial analysis, we obtain a little simpler lower bound on the probability. The following
is our main result:

1Moreover, it is not too difficult to see that given a satisfiable k-CNF formula ϕ, it finds one of the
satisfying assignments of ϕ in time Ω(2(1−1/k)n) with high probability. See [4] for the details.

2



Lemma 1.2. Let ϕ be a satisfiable k-CNF formula. Let ϕs be a CNF formula obtained
by running resolve(ϕ, s). Suppose that ϕ has a d-isolated satisfying assignment z.
Then, for s ≥ kd,

Pr
π,y

{assign(ϕs, π, y) finds z} ≥ 2−(1−µk(d)/(k−1))n,

where

µk(d) =

d
∑

i=1

1

i(i + 1/(k − 1))
.

The above formula of the lower bound of the probability is a little simpler than that
of [3]. Moreover, as we will see in the concluding section, the value is a little bit larger
than that of [3] although the two values are asymptotically same when d = ω(1). The
purpose of this paper is to present another proof of the main lemma of [3], and to study
combinatorial aspects of critical clause trees.

Our analysis

We give a combinatorial analysis of the probability. Fix a variable x arbitrarily. Let Tx

be the critical clause tree for x. Our goal is to estimate the probability that for some cut
A of Tx, all variables of A are before x under π. The idea of our combinatorial analysis
is to exploit the following formula: for a finite sequence of events E1, E2, ...,

Pr

{

∨

i

Ei

}

=
∑

i

Pr
{

Ei ∧ (E1 ∨ · · · ∨ Ei−1)
}

Letting Fi
def
= Ei ∧ (E1 ∨ · · · ∨ Ei−1), we have Pr{

∨

i Ei} =
∑

i Pr{Fi}. Let A be the set
of cuts of Tx. For each cut A ∈ A, let EA be the event that all variables of A are before
x under π. Then, our goal is to estimate the probability Pr{

∨

A∈A EA}. For using the
above formula, we need to define a total order of cuts of Tx. The crucial point is the way
of defining the order. See the section 3 for the precise definition. Let Ai be the ith cut
under the total order, and let Ei be the event that all variables of Ai are before x under
π. Then, Prπ{Fi} can be expressed as a simple formula on |Ai| and the number of nodes
above Ai. (See Lemma 3.5.) Moreover, for any cuts Ai and Aj such that |Ai| = |Aj|, the
numbers of nodes above Ai and Aj are same, and hence P{Fi} = P{Fj}. (See Lemma
3.7.) At this point, it remains to estimate the number of cuts of size i. We see that this
number is related to the generalized Catalan number. (See Lemma 3.8.) Gathering the
above lemmas, we can obtain our main result.

2 Preliminaries

2.1 PPSZ algorithm

Let X = {x1, ..., xn} be a set of n Boolean variables. A literal is either a variable or the
negation of a variable. A clause is a disjunction of literals. The size of a clause is the
number of literals consisting of the clause. We alternatively consider a clause as the set

3



of literals, and hence we denote by |C| the size of a clause C. We call a clause of size
one a unit clause. A conjunctive normal form (abbrev. CNF) formula is a conjunction
of clauses. We alternatively consider a CNF formula as the set of clauses, and hence we
denote by |ϕ| the number of clauses of a CNF formula ϕ. A k-CNF formula is a CNF
formula that the size of every clause is at most k. Let ϕ be a k-CNF formula over X,
and let t be a partial assignment to X. Then, we denote by ϕ|t a formula obtained from
ϕ by applying t to ϕ.

We first present a simple randomized algorithm for SAT, denoted by PPZ, which
was proposed by Paturi, Pudlák, and Zane [4]. The algorithm proposed by [3] is based
on PPZ. Let ϕ be a CNF formula over X of n variables. The algorithm PPZ is shown
in Fig. 1.

PPZ(ϕ, I) // ϕ: a CNF formula over n variables, I: an integer

for I times do
pick a random permutation π on [n]
pick a random 0/1 sequence y of length n
t = assign(ϕ, π, y)
if t satisfies ϕ, then output t

output “not satisfiable”

assign(ϕ, π, y)

set t = ∅
for i : 1 ≤ i ≤ n

if there is a unit clause xπ(i) in ϕ|t, then set tπ(i) = 1
else if there is a unit clause x̄π(i) in ϕ|t, then set tπ(i) = 0
else tπ(i) = yπ(i)

return t

Figure 1: PPZ algorithm

Given a satisfiable CNF formula ϕ, we estimate the probability that assign(ϕ, π, y)
returns a satisfying assignment of ϕ for a random permutation π and a random 0/1
sequence y. Let τ(ϕ) (resp. τ(ϕ, z)) be the probability that assign(ϕ, π, y) returns a
satisfying assignment (resp. a satisfying assignment z) of ϕ (for random π and random
y). Let F (ϕ, π, y) be the set of variables the assignment of which is determined by the
occurrence of a unit clause in running assign(ϕ, π, y). Then, it is not difficult to see
that τ(ϕ) =

∑

z∈SAT(ϕ) τ(ϕ, z), where SAT(ϕ) is the set of satisfying assignments of ϕ,
and

τ(ϕ, z) =
1

2nn!

∑

π

2|F (ϕs,π,z)| = 2−n E
π

[

2|F (ϕs,π,z)|
]

.

4



See [3] for the proof of the above equations. By the convexity of the exponential function,

τ(ϕ, z) ≥ 2−n · 2Eπ [|F (ϕ,π,z)|].

By the following equation,

Eπ[|F (ϕ, π, z)|] =
∑

x∈X

Pr
π
{x ∈ F (ϕ, π, z)}.

we will focus on lower bounds of Prπ{x ∈ F (ϕ, π, z)} for any x ∈ X. For a satisfying
assignment z of ϕ, we say that a clause C ∈ ϕ is critical at x under z if C is not satisfied
by an assignment z′ which is obtained from z by flipping the value of x. For a satisfying
assignment z of ϕ, we say that z is d-isolated if there is no satisfying assignment around
z of distance at most d.

Let ϕ be a k-CNF formula over X of n variables. The algorithm proposed by [3]
is PPZ(ϕs, I) where ϕs is a CNF formula obtained from ϕ by a “preprocessing”. Let
C and C ′ be two clauses for which there is a unique variable x such that C contains x
and C ′ contains x̄. Then, the resolvent R(C, C ′) of C and C ′ is a clause C ∪ C ′ \ {x}.
We call such two clauses a resolvable pair. We say that a resolvable pair of C and C ′

is s-bounded if |C| ≤ s, |C ′| ≤ s and |R(C, C ′)| ≤ s. The algorithm proposed by [3],
denoted by PPSZ, is shown in Fig. 2. Similar to the analysis of PPZ, we will focus

PPSZ(ϕ, s, I) // ϕ: a k-CNF formula over n variables, s, I: integers

ϕs = resolve(ϕ, s)
run PPZ(ϕs, I)

resolve(ϕ, s)

let ϕs = ϕ
while (there is a s-bounded resolvable pair (C, C ′) in ϕs

such that R(C, C ′) 6∈ ϕ)
ϕs = ϕs ∧ R(C, C ′)

return ϕs

Figure 2: PPSZ algorithm

on lower bounds of Prπ{x ∈ F (ϕs, π, z)} for any x ∈ X, where ϕs is given by running
resolve(ϕ, s).

2.2 Tree cut

For estimating the probability Prπ{x ∈ F (ϕs, π, z)}, a labelled rooted tree was intro-
duced by [3]. Such a rooted tree will be constructed for each variable. For defining it,
we need some terminologies. The degree of a node in a rooted tree is the number of its
children. The depth of a node is its distance from the root. A rooted tree is of uniform

5



depth d if every leaf is of depth d. A subset A of nodes is a cut if it does not include
the root, and every path from the root to a leaf includes a node of A. In this paper, we
only consider “minimal” cuts in the following sense: A \ {v} is no longer a cut for any
v ∈ A. That is, any two nodes v, v′ of a cut, v is not an ancestor of v′.

Definition 2.1. A rooted tree is said to be admissible if it has the following properties:

• the root is labelled with a variable.

• each node in the tree is either labelled with a variable or unlabelled.

• for any path from the root to a leaf, no two nodes in the path have the same label.

Definition 2.2. Let ϕ be a CNF formula over X, and let z be a satisfying assignment
of ϕ. A rooted tree is said to be a critical clause tree with respect to ϕ, z, and a variable
x ∈ X if it is admissible, and it has the following properties:

• the root is labelled with x.

• for any cut A of the tree, ϕ has a critical clause C at x under z such that each
variable of C except for x is a label of some node of A,

We denote by Tx(ϕ, z) such a critical tree with respect to ϕ, z, x.

Lemma 2.1. [Paturi, Pudlák, Saks, and Zane: [3]] Let ϕ be a k-CNF formula over X,
and let z be a d-isolated satisfying assignment of ϕ. For any variable x ∈ X, and for
any s ≥ kd, there exists a critical clause tree Tx(ϕs, z) which is of degree at most k − 1
and of uniform depth d.

By [3], considering the worst case, we may assume that all nodes of a critical clause
tree are labelled with different variables. Moreover, we will show in the next section
(just after the proof of Lemma 3.5) that the worst case is when every node of the tree
is of degree exactly the maximum, i.e., k − 1 for a k-CNF formula.

3 A combinatorial analysis

In this section, we prove Lemma 1.2. Given a satisfiable k-CNF formula ϕ over X, let
x be an arbitrary variable of X. Suppose that ϕ has a d-isolated satisfying assignment
z. We will estimate the probability Prπ{x ∈ F (ϕs, π, z)}, where ϕs is the output of
resolve(ϕ, s). Note from Lemma 2.1 that we are given a critical clause tree Tx =
Tx(ϕs, z) of degree at most k − 1 and of uniform depth d. Moreover, we assume that all
nodes of the tree are labelled with different variables. In what follows, we alternatively
regard any node of Tx as a variable labelled the node. Thus, the root of Tx is x. We
prove the following lemma in a combinatorial way, from which we easily derive Lemma
1.2.

Lemma 3.1. Let ϕ be a satisfiable k-CNF formula, and let x be an arbitrary variable
of ϕ. Let ϕs be a CNF formula obtained by running resolve(ϕ, s). Suppose that ϕ has
a d-isolated satisfying assignment z. Then, for s ≥ kd,

Pr
π
{x ∈ F (ϕs, π, z)} ≥

d
∑

i=1

1

i((k − 1)i + 1)
.

6



As a first step to a combinatorial proof, we define a total order of cuts of Tx, denoted
by ≤∗. Recall that we only consider minimal cuts. For any cut A of Tx, we denote by
T (A) the rooted subtree of Tx obtained by cutting below A. (T (A) contains A.) Let A
and A′ be distinct cuts of Tx. (We define A ≤∗ A′ for A = A′.) Let T = T (A) ⊕ T (A′),
where T is (a tree) induced by edges of Tx that are exclusively contained in T (A)∪T (A′).
Note that T is not empty, and does not contain the root of Tx. Thus, T is forest.
Moreover, each (connected) component of T can be viewed as a rooted tree. Let W be
the set of the roots of those rooted trees in T . Let v ∈ W be the left-most node of W
in Tx. Note that either A or A′ contains v. Then, we define A ≤∗ A′ if and only if A
contains v. We show that ≤∗ is well-defined.

Proposition 3.2. The set of cuts of Tx is totally ordered under ≤∗.

Proof. It is obvious about anti-symmetry. It is also obvious about totality since we see
from definition that the order between A and A′ is uniquely determined for any distinct
cuts A and A′. We show transitivity of ≤∗. Before that, we define some terminologies
on rooted trees. Given a rooted tree, let v, v ′ be distinct nodes of the rooted tree such
that v is not an ancestor of v′, nor vice versa. Let w be the (unique) common ancestor
of v and v′ that has maximum depth. Let u (resp. u′) be the child node of w that is an
ancestor of v (resp. v′), or u = v (resp. u′ = v′). We say that v is left (resp. right) to
v′ if u is left (resp. right) to u′. Given a rooted tree, let v be a node of the rooted tree.
Let L be the subtree of the rooted tree induced by all left nodes to v, all ancestors of v,
and v itself. We call L the left part of v.

Let A, A′, A′′ be cuts of Tx such that A ≤∗ A′ and A′ ≤∗ A′′. We will show that
A ≤∗ A′′. Let T = T (A) ⊕ T (A′) and T ′ = T (A′) ⊕ T (A′′). As in definition, let W
(resp. W ′) be the set of the roots of rooted trees in T (resp. T ′). Let v (resp. v′) be the
left-most node of W (resp. W ′) in Tx. By definition, v ∈ A and v′ ∈ A′. First, we can
discard the possibility that v = v′ or v′ is an ancestor of v. Since v ∈ A, there are nodes
of A′ below v. On the other hand, v′ ∈ A′. Thus, there are two nodes u, u′ ∈ A′ such
that u is an ancestor of u′, contradicting to our assumption: we only consider minimal
cuts. From this, we have three cases: (1) v is an ancestor of v ′, (2) v is left to v′, and
(3) v is right to v′.

Let T ′′ = T (A) ⊕ T (A′′), and let W ′′ be the set of the roots of rooted trees in T ′′.
Consider case (1), that is, v is an ancestor of v ′. Let L (resp. L′) be the left part of v
(resp. v′). By definition, T (A) and T (A′) (resp. T (A′) and T (A′′)) are identical on L
(resp. L′). Moreover, L ( L′. Thus, T (A) and T (A′′) are identical on L, but they are
different on the subtree below v. From this, we see that the left-most node of W ′′ in Tx

is v. Since v ∈ A, we have A ≤∗ A′′. The above argument is similarly applied to case
(2).

Consider case (3), that is, v is right to v′. Let L (resp. L′) be the left part of v
(resp. v′). Then, T (A) and T (A′) (resp. T (A′) and T (A′′)) are identical on L (resp. L′).
Moreover, L ) L′. Thus, T (A) and T (A′′) are identical on L′, but they are different on
parts below v′. From this, we see that the left-most node of W ′′ in Tx is v′. Moreover,
v′ ∈ A since T (A) and T (A′) are identical on L, and hence identical on L′ ⊂ L. Thus,
we have A ≤∗ A′′. Therefore, we show transitivity of ≤∗.

We denote by Vi the ith cut under the total order ≤∗. Let π be the random permu-

7



tation on [n]. Let Ei be the event that all nodes of Vi are before x under π. Then,

x ∈ F (ϕs, π, z) ⇐⇒
∨

i

Ei.

Thus, we will estimate the probability Prπ{
∨

i Ei}. Note that it suffices to consider
permutations on variables labelled nodes of Tx, instead of all the variables [n]. For
estimating Prπ{

∨

i Ei}, we exploit the following equation:

∨

i

Ei =
∨

i

Fi, where Fi
def
= Ei ∧ (E1 ∨ · · · ∨ Ei−1).

Note that any pair of Fi and Fj (i 6= j) is disjoint. Thus,

Pr
π

{

∨

i

Ei

}

= Pr
π

{

∨

i

Fi

}

=
∑

i

Pr
π
{Fi}.

Thus, we will estimate the probability Prπ{Fi}. Let Ui be the set of nodes above Vi

except for the root. Before proving a lemma on the value of Prπ{Fi}, we present two
propositions for the lemma.

Proposition 3.3. For any two cuts Vi and Vj such that T (Vj) is a subtree of T (Vi), we
have Vj ≤∗ Vi, and hence j ≤ i.

Proof. It is obvious in case of Vi = Vj. Suppose that Vi 6= Vj. Let T = T (Vi) ⊕ T (Vj).
Let W be the set of the roots of rooted trees of T . Note that W 6= ∅ since Vi 6= Vj. Let
v be the left-most nodes of W in Tx. Since T (Vj) is a subtree of T (Vi), we have v ∈ Vj.
Thus, Vj ≤∗ Vi.

Proposition 3.4. Let Vi (resp. Vj) be ith (resp. jth) cuts, and let Ui (resp. Uj) be the
set of nodes above Vi (resp. Vj). Then, for any i, j such that j < i, we have Vj ∩Ui 6= ∅.

Proof. We prove its contraposition. Suppose that Vj ∩ Ui = ∅. For any path from
the root to a leaf, let u ∈ Vi (resp. v ∈ Vj) be the node contained in the path. Since
Vj ∩ Ui = ∅, we have u = v or u is an ancestor of v. This means that T (Vi) is a subtree
of T (Vj). From Proposition 3.3, Vi ≤∗ Vj, and hence i ≤ j.

Lemma 3.5. For any i ≥ 1,

Pr
π
{Fi} =

|Vi|! · |Ui|!

(|Vi| + |Ui| + 1)!
.

Proof. Fix i arbitrarily. The event Fi is the event that Ei occurs and any Ej for 1 ≤
j ≤ i− 1 does not occur. Note that Ei is the event that all nodes of Vi are before x. We
consider permutations on Vi ∪ Ui ∪ {x} rather than all nodes of Tx. The total number
of permutations on Vi ∪ Ui ∪ {x} is (|Vi| + |Ui| + 1)!. Now, we count the number of
permutations such that all nodes of Vi are before x, and any Ej for 1 ≤ j ≤ i − 1 does
not occur.

8



Claim 1. Given that all nodes of Vi are before x,

E1 ∨ · · · ∨ Ei−1 ⇐⇒ all of Ui are after x

Proof. (⇒) We prove its contraposition. That is, let u ∈ Ui be a node that are before
x. Let V ′

i ⊂ Vi be the set of nodes that are descendants of u. (Note that V ′
i 6= ∅.) Let

W = {u}∪ (Vi \V ′
i ). Then, W is a cut such that W 6= Vi. Note here that all nodes of W

are before x. Since T (W ) is a subtree of T (Vi), by Proposition 3.3, we have W ≤∗ Vi.
Since W 6= Vi, we have W = Vj for some j < i. Thus, since all nodes of Vj are before x,
we have that Ej occurs.

(⇐) We prove its contraposition. Suppose that E1 ∨ · · · ∨Ei−1 holds. Consider that
Ej occurs for some j < i. This means that all nodes of Vj are before x. On the other
hand, from Proposition 3.4, we have Vj ∩ Ui 6= ∅, which means that some node of Ui is
before x.

Thus, any permutation that we count in is a permutation such that all nodes of
Vi are before x, and all nodes of Ui are after x. The number of those permutations is
|Vi|! · |Ui|!. This proves the lemma.

From this lemma, we have

Pr

{

∨

i

Ei

}

=
∑

i

|Vi|! · |Ui|!

(|Vi| + |Ui| + 1)!
. (1)

For estimating the value of the right-hand-side of the above, we will show that the worst
case (i.e., the lowest value of Pr{

∨

i Ei}) is when every node of Tx is of degree exactly
k − 1. This is proved using (1) as follows.

Suppose that Tx is not such a rooted tree. Let v be an arbitrary node the degree
of which is less than k − 1. Add a new child node to v, and then add a path to the
child node so that the resulting rooted tree, denoted by T ′

x, is of uniform depth. Note
that we may assume that all nodes of T ′

x are labelled with different variables. We will
show that the case of T ′

x is worse than that of Tx. Let N be the number of cuts of Tx.
Let S ⊂ [N ] be the set of indices i such that Vi contains neither v nor ancestors of v.
Similar to Vi and Ei for Tx, let V ′

i be the ith cut of T ′
x under ≤∗, and let E ′

i be the event
that all nodes of V ′

i are before x. Similar to N and S for Tx, let N ′ be the number of
cuts of T ′

x, and let S ′ ⊂ [N ′] be the set of indices i such that V ′
i contains neither v nor

ancestors of v. We easily see the following two facts.

Fact 1. The two sets {Vi : i ∈ [N ] \ S} and {V ′
i : i ∈ [N ′] \ S ′} are identical.

Fact 2. For any i ∈ S ′, let V be the projection of V ′
i onto the nodes of Tx. Then, there

is a unique j ∈ S such that V = Vj. Moreover, V ′
i \ Vj = {u} for some u that is on the

path added to Tx.

From these two facts, it is not difficult to see that

Pr







∨

i∈[N ′]

E ′
i







=
∑

i∈[N ′]

|V ′
i |! · |U

′
i |!

(|V ′
i | + |U ′

i | + 1)!

9



=
∑

i∈[N ′]\S′

|V ′
i |! · |U

′
i |!

(|V ′
i | + |U ′

i | + 1)!
+
∑

i∈S′

|V ′
i |! · |U

′
i |!

(|V ′
i | + |U ′

i | + 1)!

=
∑

i∈[N ]\S

|Vi|! · |Ui|!

(|Vi| + |Ui| + 1)!
+
∑

i∈S

d′
∑

j=0

(|Vi| + 1)! · (|Ui| + j)!

((|Vi| + 1) + (|Ui| + j) + 1)!
,

where d′ is the length of the path added to Tx. Thus, it suffices to show that for any
i ∈ S and for any d′ ≥ 0,

|Vi|! · |Ui|!

(|Vi| + |Ui| + 1)!
≥

d′
∑

j=0

(|Vi| + 1)! · (|Ui| + j)!

((|Vi| + 1) + (|Ui| + j) + 1)!
.

Proposition 3.6. For any d′ ≥ 0, and for a ≥ 0 and b ≥ 0,

a! · b!

(a + b + 1)!
≥

d′
∑

j=0

(a + 1)! · (b + j)!

(a + 1 + b + j + 1)!
.

Proof. We re-define a as a − 1. (Thus, a ≥ 1.) Then, the inequality is equivalent to

b

a
≥

d′
∑

j=0

(b + j)(b + j − 1) · · · (b + 1)b

(a + b + j + 1)(a + b + j) · · · (a + b + 1)
. (2)

For d′ = 0, the right-hand-side of (2) is b/(a + b + 1), which is less than b/a. Suppose
that d′ ≥ 1. Then, the right-hand-side of (2) is

b

a + b + 1
+

d′
∑

j=1

(b + j)(b + j − 1) · · · (b + 1)b

(a + b + j + 1)(a + b + j) · · · (a + b + 1)

=
b

a + b + 1

(

1 +

d′
∑

j=1

(b + j)(b + j − 1) · · · (b + 1)

(a + b + j + 1)(a + b + j) · · · (a + b + 2)

)

.

Thus, (2) with d′ ≥ 1 is equivalent to

b

a
≥

b

a + b + 1

(

1 +

d′
∑

j=1

(b + j)(b + j − 1) · · · (b + 1)

(a + b + j + 1)(a + b + j) · · · (a + b + 2)

)

,

which is equivalent to

b + 1

a
≥

d′
∑

j=1

(b + j)(b + j − 1) · · · (b + 1)

(a + b + j + 1)(a + b + j) · · · (a + b + 2)
.

Applying the above arguments repeatedly, (2) is reduced to the following inequality:

b + d′

a
≥

b + d′

a + b + d′ + 1
.

It is obvious that the above inequality holds, and hence this proves the proposition.

10



From the above, we see that the case of Tx is worse than that of T ′
x. Applying this

argument repeatedly until every node of the resulting rooted tree is of degree exactly
k − 1, we see that the case of the final tree is the worst. Thus, in what follows, we
assume that every node of Tx is of degree k − 1.

Lemma 3.7. Let V be an arbitrary cut of Tx, and let U be the set of nodes above V .
Then,

|V | = (k − 2)(|U | + 1) + 1.

Proof. We prove it by induction on |U |. It is obvious for |U | = 0 since the cut V such
that |U | = 0 is the set of all children of x. Suppose that the equation in the lemma holds
for any cut such that the number of nodes above the cut is `. Let V be an arbitrary
cut such that |U | = ` + 1. Note that there exists a node u in U such that all children
of u are in V . This is because otherwise we can find a path from the root to a leaf that
does not contain any node of V . Let V ′ be the cut obtained from V by adding u and
erasing all children of u. Let U ′ be the set of nodes above V ′. Note that |U ′| = `. By
induction, |V ′| = (k − 2)(` + 1) + 1. Thus,

|V | = |V ′| + (k − 1) − 1

= (k − 2)(` + 1) + 1 + k − 2

= (k − 2)((` + 1) + 1) + 1

= (k − 2)(|U |) + 1) + 1.

In the above arguments, we have focused on cuts of Tx. For any cut, we call the set
of nodes above the cut its upper set. From now on, we switch our attention from cuts to
their upper sets. Note that there is a one-to-one correspondence between cuts and their
upper sets. Furthermore, observe that any upper set and the root x (uniquely) induce
a connected subtree of Tx, which is also rooted at x, and any two upper sets induce
distinct connected subtrees. On the other hand, for any connected subtree of Tx which
is rooted at x, there is an upper set that induces the connected subtree. Thus, there is
also a one-to-one correspondence between upper sets and connected subtrees of Tx that
are rooted at x. From this, since the size of connected subtrees of Tx which are rooted
at x takes the value from {1, 2, ...}, we see that the size of an upper set takes the value
from {0, 1, 2, , ...} while the size of a cut takes from {(k − 2)i + k + 1 : i ∈ {0, 1, 2, , ...}}.

From this observation, for estimating the right-hand-side of (1), we classify cuts
according to the size of their upper sets. Let si be the number of cuts V such that the
number of nodes above V is i. The following lemma is obtained from the “generalized
Catalan number”. See Appendix for a proof.

Lemma 3.8. For i ≥ 0,

si =
((k − 1)(i + 1))!

((k − 2)(i + 1) + 1)! · (i + 1)!
.

Theorem 3.9. For any d ≥ 1,

Pr

{

∨

i

Ei

}

≥
d
∑

i=1

1

i((k − 1)i + 1)
.

11



Proof. From the equation (1) and Lemma 3.8,

Pr







∨

i∈[N ]

Ei







=
∑

i∈[N ]

|Vi|! · |Ui|!

(|Vi| + |Ui| + 1)!

≥
d
∑

i=0

((k − 2)(i + 1) + 1)! · i!

((k − 2)(i + 1) + 1 + i + 1)!
· si

=
d
∑

i=0

((k − 2)(i + 1) + 1)! · i!

((k − 2)(i + 1) + 1 + i + 1)!
·

((k − 1)(i + 1))!

((k − 2)(i + 1) + 1)! · (i + 1)!

=
d
∑

i=0

1

(i + 1)((k − 1)(i + 1) + 1)

≥
d
∑

i=1

1

i((k − 1)i + 1)
.

4 Concluding remarks

We have estimated the probability that the randomized procedure finds a d-isolated
satisfying assignment. Below, we compare two exponents of the probabilities in this
paper and [3]:

d
∑

i=1

1

i((k − 1)i + 1)
−

(

∞
∑

i=1

1

i((k − 1)i + 1)
−

3

(d − 1)(k − 2) + 2

)

=
3

(d − 1)(k − 2) + 2
−

∞
∑

i=d+1

1

i((k − 1)i + 1)

≥
3

(d − 1)(k − 2) + 2
−

1

k − 1

∞
∑

i=d+1

1

i2

≥
3

(d − 1)(k − 2) + 2
−

1

d(k − 1)

(

∵

∞
∑

i=d+1

1

i2
≤

1

d

)

> 0.

From this, we see that our result is a little bit better than [3] although the two results
are asymptotically same when d = ω(1).

References

[1] K. Iwama and S. Tamaki, “Improved upper bounds for 3-SAT”, In Proceedings of
the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA04), p.
328, 2004.

12



[2] B. Monien and E. Speckenmeyer, “Solving satisfiability in less than 2n steps”,
Discrete Applied Mathematics 10, pp. 287-295, 1985.

[3] R. Paturi, P. Pudlák, M. Saks, and F. Zane, “An Improve Exponential-Time Algo-
rithm for k-SAT”, In Proceedings of the 39th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS1998), pp. 628-637, 1998. (This is the preliminary
version of J. of the ACM 52(3), pp. 337-364, 2005.)

[4] R. Paturi, P. Pudlák, and F. Zane, “Satisfiability coding lemma”, In Proceed-
ings of the 38th Annual IEEE Symposium on Foundations of Computer Science
(FOCS1997), pp. 566-574, 1997.

[5] U. Schöning, “A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems”, In Proceedings of the 40th Annual IEEE Symposium on Foundations of
Computer Science (FOCS1999), pp. 410-414, 1999.

[6] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University
Press, 2001.

13



Appendix

A proof of Lemma 3.8

For i ≥ 0, let bi be the number of (k − 1)-ary rooted trees of i nodes including the root.
We define b0 = 1 for convenience. We first observe that si−1 = bi for i ≥ 1, and hence
we estimate bi for i ≥ 0. For this, let B(z) =

∑∞
i=0 biz

i be the generating function for
bi. Then, it is easy to see that

B(z) = 1 + z · {B(z)}k−1.

For analyzing B(z), we make use of the Lagrange inversion formula (see [6], for example):

Theorem 4.1 (Lagrange inversion formula). Let f(w) be an analytic function at w = 0
with f(0) 6= 0. Suppose that z = w/f(w). Then, w =

∑∞
i=1 ci(0)zi, where

ci(w) =
1

i!

(

d

dw

)i−1

(f(w))i.

Let C(z) = B(z) − 1. Then,

z =
C(z)

(C(z) + 1)k−1
.

Applying the above theorem to C(z) with w = C(z) and f(w) = (w + 1)k−1, we obtain

ci(w) =
1

i!

(

d

dw

)i−1

(w + 1)(k−1)i

=
1

i!
((k − 1)i)i−1(w + 1)(k−1)i−(i−1).

From this, we obtain

ci(0) =
1

i!
((k − 1)i)i−1

=
((k − 1)i)!

((k − 2)i + 1)! · i!
.

Thus,

C(z) =
∞
∑

i=1

ci(0)zi =
∞
∑

i=0

((k − 1)i)!

((k − 2)i + 1)! · i!
· zi.

From this, we have b0 = 1, and

bi =
((k − 1)i)!

((k − 2)i + 1)! · i!
.

Therefore,

si = bi+1 =
((k − 1)(i + 1))!

((k − 2)(i + 1) + 1)! · (i + 1)!
.

14

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


