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Abstract. We study possible formulations of algebraic propositional proof systems
operating with noncommutative formulas. We observe that a simple formulation gives
rise to systems at least as strong as Frege—yielding a semantic way to define a Cook-
Reckhow (i.e., polynomially verifiable) algebraic analogue of Frege proofs, different from
that given in [BIK+97, GH03]. We then turn to an apparently weaker system, namely,
polynomial calculus (PC) where polynomials are written as ordered formulas (PC over
ordered formulas, for short). This is an algebraic propositional proof system that oper-
ates with noncommutative polynomials in which the order of products in all monomials
respects a fixed linear order on the variables, and where proof-lines are written as non-
commutative formulas. We show that the latter proof system is strictly stronger than
resolution, polynomial calculus and polynomial calculus with resolution (PCR) and ad-
mits polynomial-size refutations for the pigeonhole principle and the Tseitin’s formulas.
We conclude by proposing an approach for establishing lower bounds on PC over or-
dered formulas proofs, and related systems, based on properties of lower bounds on
noncommutative formulas.

The motivation behind this work is developing techniques incorporating rank ar-
guments (similar to those used in algebraic circuit complexity) for establishing lower
bounds on propositional proofs.
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1. Introduction

This work attempts to gather certain facts about algebraic proof systems establishing
propositional tautologies, in which proof lines are written as noncommutative algebraic
formulas (noncommutative formulas, for short). Our general motivation here is to develop
a method to lower bound the size of certain propositional proofs via a rank argument,
similar to that used in algebraic circuit complexity. For this purpose, the choice of
noncommutative formulas is natural, since such formulas constitute a fairly weak circuit
class, and the proof of exponential-size lower bounds on noncommutative formulas, given
by Nisan [Nis91], is an especially transparent rank argument.

Research into the complexity of algebraic propositional proofs is a central line in proof
complexity (cf. [Pit97, Tza08] for general expositions). Another prominent line of re-
search is that dedicated to connections between circuit classes and the propositional
proofs based on these classes. In particular, considerable efforts were made to borrow
techniques used for lower bounding certain circuit classes, and utilize them to show lower
bounds on proofs operating with circuits from the given classes. For example, bounded
depth Frege proofs can be viewed as propositional logic operating with AC0 circuits, and
lower bounds on bounded depth Frege proofs use techniques borrowed from AC0 circuits
lower bounds (cf. [Ajt88, KPW95, PBI93]). Pudlák et al. [Pud99, AGP02] studied proofs
based on monotone circuits—motivated by exponential lower bounds on monotone cir-
cuits. Raz and the author [RT08b, RT08a, Tza08] investigated algebraic proof systems
operating with multilinear formulas—motivated by lower bounds on multilinear formulas
for the determinant, permanent and other explicit polynomials [Raz09, Raz06]. Atserias
et al. [AKV04], Kraj́ıček [Kra08] and Segerlind [Seg07] have considered proofs operating
with ordered binary decision diagrams (OBDDs). The current work is a contribution to
this line of research, where the circuit class is noncommutative formulas.

1.1. Results and related works. We concentrate on algebraic proofs establishing
propositional contradictions where polynomials are written as noncommutative formu-
las.

We deal with two kinds of proof systems—both are variants (and extensions) of the
polynomial calculus (PC) introduced in [CEI96]. In PC we start from a set of initial
polynomials from F[x1, . . . , xn], the ring of polynomials with coefficients from F (the
intended semantics of a proof-line p is the equation p = 0 over F). We derive new proof-
lines by using two basic algebraic inference rules: from two polynomials p and q, we can
deduce α · p+ β · q, where α, β are elements of F; and from p we can deduce xi · p, for a
variable xi (i = 1, . . . , n). We also have Boolean axioms x2

i − xi = 0, for all i = 1, . . . , n,
expressing that the variables get the values 0 or 1. Our two proof systems extend PC as
follows:

(1) PC over noncommutative formulas: NFPC. This proof system operates with non-
commutative polynomials over a field, written as (arbitrarily chosen)1 noncom-
mutative formulas. The rules of addition and multiplication are similar to PC,
except that multiplication is done either from left or right. We also add a a
Boolean axiom xixj − xjxi that expresses the fact that for 0, 1 values to the vari-
ables, multiplication is in fact commutative.

(2) PC over ordered formulas: OFPC. This proof system is PC operating with non-
commutative polynomials in which the order of products in all monomials respects
a fixed linear order on the variables, and where proof-lines are written as (arbi-
trarily chosen) noncommutative formulas.
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Both proof systems are shown to be Cook-Reckhow systems (that is, polynomial veri-
fiable, sound and complete proof systems for propositional tautologies).

(1) The first proof system NFPC is shown to polynomially simulate Frege (this is
partly because of the choice of Boolean axioms). This gives a semantic definition of a
Cook-Reckhow proof system operating with algebraic formulas, simpler in some way from
that proposed by Grigoriev and Hirsch [GH03]: the paper [GH03] aims at formulating
a formal propositional proof system for establishing propositional tautologies (that is, a
Cook-Reckhow proof system), which is an algebraic analogue of the Frege proof system.
In order to make their system polynomially-verifiable, the authors augment it with a set
of auxiliary rewriting rules, intended to derive algebraic formulas from previous algebraic
formulas via the polynomial-ring axioms (that is, associativity, commutativity, distribu-
tivity and the zero and unit elements rules). In this framework algebraic formulas are
treated as syntactic terms, and one must explicitly apply the polynomial-ring rewrite
rules to derive one formula from another. Our proof system NFPC is simpler in the
sense that we get a similar proof system to that in [GH03] (both our proof system and
that in [GH03] can simulate Frege and both are polynomially verifiable), while adding no
rewriting rules. The idea is that the only “hard to verify” rewrite rule is the commuta-
tivity axiom; and since we show how to efficiently simulate this rule we do not need the
other polynomial-ring rewrite rules (like distributivity, associativity, etc.) to make the
proof system polynomial verifiable: we can just use the deterministic polynomial identity
testing algorithm for noncommutative formulas devised by Raz and Shpilka [RS05].

(2) For the second proof system, OFPC, we show that, despite its apparent weakness, it
is stronger than Polynomial Calculus with Resolution (PCR; and hence it is also stronger
than both PC and resolution), and also can polynomially simulate a proof system operat-
ing with restricted forms of disjunctions of linear equalities called R0(lin) (introduced in
[RT08a]). The latter implies polynomial-size refutations for the pigeonhole principle and
the Tseitin graph formulas, due to corresponding upper bounds demonstrated in [RT08a].

We then propose a simple lower bound approach for OFPC, based on properties of
products of ordered formulas (these properties are proved in a similar manner to Nisan’s
lower bound on noncommutative formulas, by lower bounding the rank of certain matrices
associated with noncommutative polynomials). We show certain sufficient conditions
yielding super-polynomial lower bounds on OFPC proofs.

Related work. There is some resemblance between noncommutative formulas (and in
fact, algebraic branching programs (ABPs)) and ordered binary decision diagrams (OB-
DDs) (e.g., close techniques were used to obtain polynomial identity testing algorithms for
noncommutative formulas [RS05] and for OBDDs [Waa97]). Thus, proofs operating with
noncommutative formulas are reminiscent to the OBDD-based proof systems introduced
in [AKV04, Kra08, Seg07]. Nevertheless, one difference between OBDD-based proofs and
noncommutative formulas-based proofs is that the feasible monotone interpolation lower
bound technique is applicable in the case of OBDD-based systems, while this technique
does not known to lead to super-polynomial size lower bounds even on PC proofs (and
thus, also on OFPC proofs which are shown to polynomially simulate PC proofs).

Another proof system, which is even closer to OFPC, is that operating with multi-
linear formulas introduced in [RT08b] (under the name fMC). The upper bounds on
OFPC proofs are similar to that shown for multilinear proofs in [RT08b]. Moreover,
the technique used by Raz to establish super-polynomial lower bounds on multilinear

1This means that if a proof-line consists of the polynomial p, then one may choose to write any formula
that computes p. (These kind of systems are sometimes called “semantic” proof systems.)
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formulas in [Raz09] is close—though more involved—to that used by Nisan in the lower
bound proof for noncommutative formulas [Nis91]. Therefore, proving lower bounds on
OFPC proofs could be considered as a first step towards establishing lower bounds on
multilinear proofs.

2. Preliminaries

For a natural number we let [n] = {1, . . . , n}.

2.1. Noncommutative polynomials and formulas. Let F be a field. Denote by
F[x1, . . . , xn] the ring of (commutative) polynomials with coefficients from F and variables
x1, . . . , xn. We denote by F〈x1, . . . , xn〉 the noncommutative ring of polynomials with
coefficients from F and variables x1, . . . , xn. In other words, F〈x1, . . . , xn〉 is the ring
of polynomials (where a polynomial is a formal sum of products of variables and field
elements) conforming to all the polynomial-ring axioms excluding the commutativity of
multiplication axiom. For instance, if xi, xj are two different variables, then xi · xj and
xj · xi are two different polynomials in F〈x1, . . . , xn〉 (note that variables do commute
with field elements).

We say thatA is an algebra over F, or an F-algebra, ifA is a vector space over F together
with a distributive multiplication operation; where multiplication in A is associative (but
it need not be commutative) and there exists a multiplicative unity in A.

A noncommutative formula is just a (commutative) arithmetic formula, except that we
take care for the order in which products are done:

Definition 2.1 (Noncommutative formula). Let F be a field and x1, x2, . . . be variables.
A noncommutative algebraic formula is an ordered2 labeled tree, with edges directed from
the leaves to the root, and with fan-in at most two. Every leaf of the tree (namely, a
node of fan-in zero) is labeled either with an input variable xi or a field F element. Every
other node of the tree is labeled either with + or × (in the first case the node is a plus
gate and in the second case a product gate). We assume that there is only one node
of out-degree zero, called the root. An algebraic formula computes a noncommutative
polynomial in the ring of noncommutative polynomials F〈x1, . . . , xn〉 in the following way.
A leaf computes the input variable or field element that labels it. A plus gate computes
the sum of polynomials computed by its incoming nodes. A product gate computes the
noncommutative product of the polynomials computed by its incoming nodes according to
the order of the edges. (Subtraction is obtained using the constant −1.) The output of the
formula is the polynomial computed by the root. The depth of a formula is the maximal
length of a path from the root to the leaf.

The size of an algebraic formula (and noncommutative formula) f is the total number
of nodes in its underlying tree, and is denoted |f |.

Raz and Shpilka [RS05] showed that there is a deterministic polynomial identity testing
(PIT) algorithm that decides whether two noncommutative formulas compute the same
noncommutative polynomial:

Theorem 2.1 (PIT for noncommutative formulas [RS05]). There is a deterministic
polynomial-time algorithm that decides whether a given noncommutative formula over
a field F computes the zero polynomial 0.3

2This means that there is an order on the edges coming into a node.
3We assume here that the field F can be efficiently represented (e.g., the field of the rationals).
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2.2. Polynomial Calculus. Algebraic propositional proof systems are proof systems for
finite collections of polynomial equations having no 0, 1 solutions over some fixed field.
(Formally, each different field yields a different algebraic proof system.) Proof-lines in
algebraic proofs (or refutations) consist of polynomials p over the given fixed field. Each
such proof-line is interpreted as the polynomial equation p = 0. If we want to consider
the size of algebraic refutations we should fix the way polynomials inside refutations are
written.

The Polynomial Calculus is a propositional algebraic proof system first considered in
[CEI96]:

Definition 2.2. (Polynomial Calculus (PC)). Let F be some fixed field and let Q =
{Q1, . . . , Qm} be a collection of multivariate polynomials from F[x1, . . . , xn]. Let the set
of axiom polynomials be:

Boolean axioms: xi · (1− xi) for all 1 ≤ i ≤ n .

A PC proof from Q of a polynomial g is a finite sequence π = (p1, ..., p`) of multivariate
polynomials from F[x1, . . . , xn], where p` = g and for each i ∈ [`], either pi = Qj for
some j ∈ [m], or pi is a Boolean axiom, or pi was deduced from pj, pk , for j, k < i, by
one of the following inference rules:

Product: from p deduce xi · p , for some variable xi ;
Addition: from p and q deduce α · p+ β · q, for some α, β ∈ F.

A PC refutation of Q is a proof of 1 (which is interpreted as 1 = 0, that is the unsatisfiable
equation standing for false) from Q. The degree of a PC-proof is the maximal degree of a
polynomial in the proof. The size of a PC proof is the total number of monomials (with
nonzero coefficients) in all the proof-lines.

Important note: The size of PC proofs can be defined as the total formula sizes of all
proof-lines, where polynomials are written as sums of monomials, or more formally, as
(unbounded fan-in depth-2) ΣΠ formulas.4 This complexity measure is equivalent—up to
a factor of n—to the usual complexity measure counting the total number of monomials
appearing in the proofs (Definition 2.2).

Definition 2.3. (Polynomial Calculus with Resolution (PCR)). The PCR proof
system is defined similarly to PC (Definition 2.2), except that for every variable xi a new
formal variable x̄i and a new axiom xi + x̄i− 1 are added to the system, and the Boolean
axioms of PCR are as follows:

Boolean axioms: xi · x̄i .

The inference rules, and all other definitions are similar to that of PC. Specifically, the
size of a PCR proof is defined as the total number of monomials in all proof-lines, where
now we count monomials in the variables xi and x̄i.

2.3. Proof systems and simulations. Let L ⊆ Σ∗ be a language over some alphabet
Σ. A proof system for a language L is a polynomial-time algorithm A that receives
x ∈ Σ∗ and a string π over a binary alphabet (“the [proposed] proof” of x), such that
there exists a π with A(x, π) = true if and only if x ∈ L. Following [CR79], a Cook-
Reckhow proof system (or a propositional proof system) is a proof system for the language
of propositional tautologies in the De Morgan basis {true, false,∨,∧,¬} (coded in some
efficient [polynomial-time] way, e.g., in the binary {0, 1} alphabet).

4A ΣΠ formula F is an algebraic formula whose underlying tree is of depth 2, such that the root
is labeled with a plus gate, the children of the root are labeled with product gates and the leaves are
labeled with either variables or field elements.
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Assume that P is a proof system for the language L, where L is not the set of propo-
sitional tautologies in De Morgan’s basis. In this case we can still consider P as a proof
system for propositional tautologies by fixing a translation between L and the set of
propositional tautologies in De Morgan basis (such that x ∈ L iff the translation of x is
a propositional tautology [and such that the translation can be done in polynomial-time
and is one-to-one]). If two proof systems P1 and P2 establish two different languages
L1, L2, respectively, then for the task of comparing their relative strength we fix a trans-
lation from one language to the other. In most cases, we shall confine ourselves to proofs
establishing propositional tautologies or unsatisfiable CNF formulas.

A propositional proof system is said to be a propositional refutation system if it estab-
lishes the language of unsatisfiable propositional formulas (this is clearly a propositional
proof system by the definition above, since we can translate every unsatisfiable proposi-
tional formula into its negation and obtain a tautology).

Definition 2.4. Let P1,P2 be two proof systems for the same language L (in case the
proof systems are for two different languages we fix a translation from one language to
the other, as described above). We say that P2 polynomially simulates P1 if given a P1

proof (or refutation) π of a F , then there exists a proof (respectively, refutation) of F in
P2 of size polynomial in the size of π. In case P2 polynomially simulates P1 while P1

does not polynomially simulates P2 we say that P2 is strictly stronger than P1.

3. Polynomial calculus over noncommutative formulas

3.1. Discussion. In this section we propose a possible formulation of algebraic propo-
sitional proof systems that operate with noncommutative polynomials. We observe that
dealing with propositional proofs—that is, proofs whose variables range over 0, 1 values—
makes the variables “semantically” commutative. Therefore, for the proof systems to be
complete (for unsatisfiable collections of noncommutative polynomials over 0, 1 values),
one may need to introduce rules or axioms expressing commutativity. We show that such
a natural formulation of proofs operating with noncommutative formulas polynomially
simulate the entire Frege system.

This justifies—if one is interested in concentrating on propositional proof systems
weaker than Frege (and especially on concrete lower bounds questions)—our formula-
tion in Section 4 of algebraic proofs operating with noncommutative algebraic formulas
with a fixed product order (called ordered formulas). The latter system can be viewed as
operating with commutative polynomials over a field precisely like PC, while the com-
plexity of proofs is measured by the total sizes of ordered formulas needed to write the
polynomials in the proof. In other words, the role played by the noncommutativity in
this system is only in measuring the sizes of proofs: while in PC-proofs the size measure
is defined as the number of monomials appearing in the proofs—or equivalently, the total
size of formulas in proofs in which formulas are written as (depth-2) ΣΠ circuits—the
proof system developed in Section 4 is measured by the total ordered formula size.

3.2. The proof system NFPC. We now define a proof system operating with noncom-
mutative polynomials written as noncommutative algebraic formulas.

In algebraic proof systems like the polynomial calculus we transform unsatisfiable
propositional formulas into a collection Q of polynomials having no solution over a field
F. In the noncommutative setting we translate unsatisfiable propositional formulas into
a collection Q of noncommutative polynomials from F〈x1, . . . , xn〉 that have no solu-
tion over any noncommutative F-algebra (e.g., the matrix algebra with entries from F).
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Although our “Boolean” axioms will not force only 0, 1 solutions over noncommutative F-
algebras, they will be sufficient for our purpose: every unsatisfiable propositional formula
translates (via a standard polynomial translation) into a collection Q of noncommutative
polynomials from F〈x1, . . . , xn〉, for which Q and the Boolean axioms have no (common)
solution in any noncommutative F-algebra. Furthermore, the Boolean axioms will in fact
force commutativity of variables product—as required for variables that range over 0, 1
values (although, again, the Boolean axioms do not force only 0, 1 values when variables
range over noncommutative F-algebras).

Definition 3.1 (Polynomial calculus over noncommutative formulas: NFPC). Fix a
field F and let Q := {q1, . . . , qm} be a collection of noncommutative polynomials from
F〈x1, . . . , xn〉. Let the set of axiom polynomials be:

Boolean axioms:

xi · (1− xi) for all 1 ≤ i ≤ n

xi · xj − xj · xi for all 1 ≤ i 6= j ≤ n .

Let π = (p1, . . . , p`) be a sequence of noncommutative polynomials from F〈x1, . . . , xn〉,
such that for each i ∈ [`], either pi = qj for some j ∈ [m], or pi is a Boolean axiom, or
pi was deduced by one of the following inference rules using pj, pk , for j, k < i:

Left/right product:
p

xr · p
,

p

p · xr

for r ∈ [n] .

Addition:
p q

a · p+ b · q
for a, b ∈ F

We say that π is an NFPC proof of p` from Q if all proof-lines in π are written as non-
commutative formulas. (The semantics of an NFPC proof-line pi = 0 is the polynomial
equation pi = 0.) An NFPC refutation of Q is a proof of the polynomial 1 from Q. The
size of an NFPC proof π is defined as the total sizes of all the noncommutative formula
sizes in π and is denoted by |π|.

Remark: (i) The Boolean axioms might have roots different from 0, 1 over noncommuta-
tive F-algebras. (ii) The Boolean axioms are true for 0, 1 assignments: xi ·xj −xi ·xj = 0
for all xi, xj ∈ {0, 1}.

We now show that NFPC is a sound and complete Cook-Reckhow proof system. First
note that we have defined NFPC with no rules expressing the polynomial-ring axioms
(the latter are sometimes added to algebraic proof systems operating with algebraic for-
mulas for the purpose of verifying that every formula in the proof was derived correctly
[via the deduction rules of the system] from previous lines; see discussion in Section 1.1).
Nevertheless, due to the deterministic polynomial-time PIT procedure for noncommuta-
tive formulas (Theorem 2.1) the proof system defined will be a Cook-Reckhow system
(that is, verifiable in polynomial-time [whenever the base field and its operations can be
efficiently represented]).

Proposition 3.1. There is a deterministic polynomial-time algorithm that decides
whether a given string is an NFPC-proof (over efficiently represented fields).

Proof. We can assume that the proof also indicates from which previous lines a new
line was inferred via the NFPC inference rules. Then, by Proposition 2.1, there is a
polynomial-time algorithm that, e.g., given two noncommutative formulas F1, F2 such
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that the proof indicates that F2 was inferred from F1 via the Left product rule, decides
whether the formula xi × F1 and F2 computes the same noncommutative polynomial.
And similarly for the other deduction rules of NFPC. �

For the next statements we use the algebraic propositional proof system F -PC intro-
duced by Grigoriev and Hirsch [GH03] as an algebraic counterpart of the Frege system.
We refer the reader to [GH03] for definitions.

Proposition 3.2. The systems NFPC is sound and complete. Specifically, let Q be a
collection of noncommutative polynomials from F〈x1, . . . , xn〉. Assume that for every F-
algebra, there is no 0, 1 solution for Q (that is, an 0, 1 assignment to variables that gives
all polynomials in Q the value 0), then the contradiction 1 = 0 can be derived in NFPC
from Q.

Proof. Soundness holds because both rules of inference are sound over any F-algebra.
Completeness stems by the simulation of F -PC shown in Theorem 3.3 below (and the
fact that if no F-algebra has a solution then also there is no solution in F itself, which
implies, by completeness of F -PC, that there exists an F -PC refutation of Q). �

Theorem 3.3. NFPC (over any field) polynomially-simulates Frege. Specifically, NFPC
polynomially-simulates F -PC in the following sense: let f1, . . . , fm be a set of commu-
tative formulas computing (commutative) polynomials that have no common 0, 1 root,
and assume that there is a size s F -PC refutation of f1, . . . , fm. Then, there exists an
NFPC refutation of the same set of formulas f1, . . . , fm (but now viewed as computing
noncommutative polynomials) of size polynomial in s.

Proof. By [GH03], F -PC polynomially simulates Frege. The proof system F -PC is an
algebraic propositional proof system operating with (general, that is, commutative) alge-
braic formulas over a field, and it includes auxiliary rewriting rules allowing to develop
equal polynomials syntactically via the polynomial-ring axioms. We proceed by showing
a simulation of F -PC by NFPC. The proof system F -PC has the Boolean axioms of PC,
the rules of PC and in addition the rewrite rules expressing the polynomial-ring axioms.
Each line in F -PC is treated as a term, that is, a formula, and so the rules are also
syntactic: addition of terms via the plus gate and product of a term by a variable from
the left. See [GH03] for the exact definition.

We proceed to simulate F -PC by induction on the number of steps in an F -PC proof.

Base case: Axioms and initial formulas. All axioms of F -PC are also axioms in NFPC.
Also, if the F -PC refutation uses an initial formula fi, then we use the same formula in
NFPC.
Induction step:
Case 1: Addition rule. Assume we derive in F -PC the formula p + q. By induction
hypothesis we already have the two formulas p, q in NFPC. Thus, we can add them via
the addition rule.
Case 2: Product rule. Assume we derive the formula xi · p from the formula p in F -PC.
By induction hypothesis we already have the formula p in NFPC. Thus, we can derive
xi · p by the Left product rule.
Case 3: Rewriting rules. Assume we have derived a formula f using one of the rewriting
rules of F -PC: associativity, distributivity unit and zero rules and commutativity. The
rewriting rules of associativity, distributivity and unit and zero rules of F -PC do not
change the noncommutative polynomial computed by an algebraic formula. Therefore, we
get them “for free” in NFPC: since we can choose to write a noncommutative polynomial
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p in the proof as any noncommutative formula computing p. Thus, we only need to show
how to simulate the commutativity rule, namely to show how to simulate commuting a
term inside a formula. The key lemma for this is the following:

Lemma 3.4. Let F be any field and let f, g be two noncommutative formulas computing
(non-constant) polynomials from F〈x1, . . . , xn〉. Then, there is an NFPC proof of size
polynomial in |f |+ |g| of the formula f · g − g · f .

Proof. First, we need to show that NFPC allows for substitution of identities inside proof-
lines. Let A, h be noncommutative formulas and assume that the variable z occurs inside
A only once. Then A[h/z] denotes the noncommutative formula obtained from A by
replacing the leaf labeled z by the formula h.

Claim 3.5. Let A be a noncommutative formula, and let z be a variable that occurs only
once inside A. Let h, h′ be two noncommutative formulas h, h′ of maximal size s. Then,
there is an NFPC proof of A[h/z]− A[h′/z] from h− h′ of size polynomial in |A|+ s.

Proof of claim: Straightforward induction on the size of A. Claim

We get back to the proof of Lemma 3.4: proceed by induction on |f |+ |g| ≥ 2.
Base case: |f | + |g| = 2. By assumption the polynomials computed by f, g are both
non-constant, and so f = xi and g = xj, for some i, j ∈ [n]. Therefore, we are done by
the Boolean axiom xixj − xjxi .

Induction step: Either |f | > 1 or |g| > 1. Assume without loss of generality that |f | > 1.
Following Claim 3.5, we shall use freely substitutions in formulas.

Case (i): f = f1 + f2. Start from

f · g − f · g = f · g − (f1 + f2) · g = f · g − f1 · g − f2 · g . (1)

By induction hypothesis we have a proof of f1 ·g−g ·f1 and of f2 ·g−g ·f2. Thus, we can
substitute these identities in (1), to get f ·g−g ·f1−g ·f2 = f ·g−g ·(f1 +f2) = f ·g−g ·f .
Case (ii): f = f1 · f2. Start from

f · g − f · g = f · g − (f1 · f2) · g = f · g − f1 · (f2 · g) . (2)

By induction hypothesis we have a proof of f2 · g − g · f2. Thus, we can substitute this
identity in (2), to get f ·g−f1 · (g ·f2) = f ·g− (f1 ·g) ·f2. By induction hypothesis again,
we have f1 ·g−g ·f1. And similarly, we get by substitution f ·g− (g ·f1) ·f2 = f ·g−g ·f .

This concludes the proof of Lemma 3.4 �

To conclude the simulation of the commutativity rewrite rule of F -PC (which will also
conclude the proof of Theorem 3.3) we notice that, by Claim 3.5 and by Lemma 3.4, for
any noncommutative formula A, such that z is a variable that occurs only once inside A,
there is an NFPC proof of A[(f ·g)/z]−A[(g ·f)/z] of size polynomial in |A[(f · g)/z]|. �

4. Polynomial calculus over ordered formulas

In this section we formulate an algebraic proof system OFPC that operates with non-
commutative polynomials from F〈x1, . . . , xn〉, in which every monomial is a product of
variables in nondecreasing order (from left to right; and according to some fixed linear
order on the variables), and where polynomials in proofs are written as noncommutative
formula.

Let X = {x1, . . . , xn} be a set of variables and let F be a field. Let � be a linear
order on the variables X. Let f =

∑
j∈J bjMj be a commutative polynomial from
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F[x1, . . . , xn], where the bj’s are coefficient from F and theMj’s are monomials in the X
variables. We define JfK ∈ F〈x1, . . . , xn〉 to be the (unique) noncommutative polynomial∑

j∈J bj · JMjK, where JMjK is the (noncommutative) product of all the variables in
Mj such that the order of multiplications respects �. We denote the image of the map
J·K : F[x1, . . . , xn]→ F〈x1, . . . , xn〉 by G.

Definition 4.1 (Ordered formula). The class of noncommutative formulas (Definition
2.1) computing polynomials from G is called the class of ordered formulas (under the
given fixed linear order �). We say that an order formula F computes the commutative
polynomial f ∈ F[x1, . . . , xn] whenever F computes JfK.

Definition 4.1 enables us to define OFPC in a convenient way, that is, without referring
to noncommutative polynomials: the system OFPC is defined similarly to PC, except that
the proof-lines are written as ordered formulas:

Definition 4.2 (PC over ordered formulas (OFPC)). Let π = (p1, . . . , pm) be a PC proof
of pm from some set of initial polynomials Q (that is, pi are commutative polynomials from
the ring of polynomials F[x1, . . . , xn]), and let � be some linear order on the variables.
The sequence (p1, . . . , pm) in which each pi is written as an ordered formula (according
to the order �), is called an OFPC proof of pm from Q. The size of an OFPC proof is
the total size of all the ordered formulas appearing in it.

Similar to the proof system NFPC we define OFPC with no rules expressing the
polynomial-ring axioms. Also, similar to NFPC, the system OFPC will constitute a
Cook-Reckhow proof system, that is, there is a deterministic polynomial-time algorithm
that decides whether a given string is an OFPC proof or not (whenever the base field
and its operations can be efficiently represented):

Proposition 4.1. For any linear order on the variables, OFPC is a sound, complete and
polynomially-verifiable refutation system for establishing that a collection of polynomial
equations over a field does not have 0, 1 solutions. Specifically, (considering the language
of polynomial translations of Boolean contradictions) OFPC is a Cook-Reckhow proof
system.

Proof. The soundness and completeness of OFPC stem from the soundness and complete-
ness of PC. The fact that OFPC is a Cook-Reckhow proof system, stems from the PIT
algorithm for noncommutative formulas (Theorem 2.1).5 �

Notes:

(1) We shall sometimes assume that there is an apriori fixed linear order of variables.
Thus, we may speak about ordered formulas without referring explicitly to some
linear order.

(2) Formally, for different n’s, every set of variables x1, . . . , xn may have linear orders
that are incompatible with each other. Nevertheless, in this paper, given a family
Q of collections of initial polynomials {Qn |n ∈ N} parameterized by n, and as-
suming that Qn ⊆ F[x1, . . . , xn] for all n, we will consider only linear orders such
that: for every n > 1, the linear order on x1, . . . , xn is an extension of the linear
order on x1, . . . , xn−1. Equivalently, we can consider one fixed linear order on a
countable set of variables X = {x1, x2, . . .}.

5Formally, one should show precisely how to check that an ordered formula computes a polynomial
that was deduced correctly by previous polynomials via the PC deduction rules. It is not hard to show
how to perform such a check in deterministic polynomial time.
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5. Simulations, short proofs and separations for OFPC

In this section we are concerned with the relative strength of OFPC. Specifically, we
show that OFPC is strictly stronger than the polynomial calculus, polynomial calculus
with resolution (PCR, for short; see Definition 2.3) and resolution (for a definition, see for
example [ABSRW02]). For this purpose, we show first that, for any linear order on the
variables, OFPC polynomially simulates PCR. Since PCR polynomially simulates both
PC and resolution, we get that OFPC also polynomially simulates PC and resolution.
Second, we show that OFPC admits polynomial-size refutations of tautologies (formally,
families of unsatisfiable collections of polynomial equations) that are hard (that is, do
not have polynomial-size proofs) in PCR.

Let τ denote the linear transformation that maps the variables x̄i, for any i ∈ [n], to
(1− xi), and denote p�τ the polynomial p under the transformation τ .

Proposition 5.1. For any linear order on the variables, OFPC polynomially simulates
PCR (and PC and resolution). Specifically, if there is a size s PCR proof (with the vari-
ables x1, . . . , xn, x̄1, . . . , x̄n) of p from the axioms pj1 , . . . , pjk

, then there is an OFPC proof
of p�τ from pj1�τ, . . . , pjk

�τ of size O(n · s).

Proof. Given some linear order on the variables, we assume that all ordered formulas
respect this linear order (and so we do not refer explicitly to this order).

Let π = (p1, . . . , pt) be a PCR proof of size s from the axioms pj1 , . . . , pjk
(that is, pi’s

are [commutative] polynomials from F[x1, . . . , xn, x̄1, . . . , x̄n], for some field F, such that
the total number of monomials occurring in all proof-lines in π is s). We need to show
that there is an OFPC proof π′ of pi from the axioms, such that π′ has size O(n · s).

Let Γ be the sequence obtained from π by replacing every product rule application in
π, deriving x̄i · p from p (for any i = 1, . . . , n), by the following proof sequence:

1. p
2. xi · p
3. (1− xi) · p

(the second polynomial is derived by the product rule from the first polynomial, and the
third polynomial is derived by the addition rule from the first and second polynomials).

Let Γ� τ be the sequence obtained from Γ by applying the substitution τ on every
proof-line in Γ. We claim that Γ� τ is a PC proof of pt� τ from the initial polynomials
pj1 � τ, . . . , pjk

� τ : first, note that all product rule applications using x̄i variables were
eliminated in Γ � τ , and thus all product rule applications in Γ � τ are legitimate PC
product rule applications. Second, note that for any pair of polynomials g, h we have
g�τ + h�τ = (g + h)�τ . Third, note that the axioms of PCR transform under τ to either
0 (which we can ignore in the new proof sequence) or to the PC axiom xi(1− xi).

By construction, every proof-line in Γ� τ is either pi� τ or xj · (pi� τ), for some pi ∈ π
and j ∈ [n]. Therefore, by definition of OFPC, it suffices to show that every pi� τ and
xj · (pi� τ), for some pi ∈ π and j ∈ [n], have ordered formulas of size at most O(m · n),
where m is the number of monomials in pi. For this purpose it is enough to show that for
every monomial M in pi there exists an O(n) ordered formula computing the polynomial
M � τ . The latter is true since every such polynomial is a product of at most n terms,
where each term is either xi or 1 − xi, for some i ∈ [n]; such a product can be clearly
written as an ordered formula of size O(n). �

5.0.1. OFPC polynomially simulates R0(lin). We now show that OFPC can polynomially
simulate the proof system R0(lin) introduced in [RT08a]. This will be used in Section
5.0.2 to establish the OFPC upper bounds. In that paper a refutation system R(lin) was
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introduced. R(lin) is a refutation system extending resolution to work with disjunctions
of linear equations instead of disjunction of literals. R0(lin) is defined to be a subsystem
of R(lin) in which certain restrictions put on the possible disjunctions of linear equations
allowed in a proof. For the precise definition of R(lin) and R0(lin) we refer the reader
to [RT08a]. However, it is not entirely necessary to know the definitions of R(lin) and
R0(lin), since we will use a polynomial translation of R0(lin) defined below, and describe
explicitly what is needed for the proofs ahead.

First, we need the definitions that follow. A polynomial translation of a clause∨
j∈J(x

bj

j ) is a any product of the form
∏

j∈J(xj − bj), where bj ∈ {0, 1} for all j ∈ J ,

and where x
bj

j is the literal xj if bj = 1 and ¬xj if bj = 0. Accordingly, we define the poly-
nomial translation of a CNF formula as the set consisting of the polynomial translations
of the clauses in a CNF.

Definition 5.1 (Polynomial translation of Rc,d(lin)-lines). A polynomial translation of
an Rc,d(lin)-line is a product D =

∏
j∈J Lj, where the Lj’s are linear forms:

(1) All variables in the linear forms have integer coefficients with absolute values at
most c (the constant terms are unbounded).

(2) D can be written as
∏d

i=1 Di, where each Di either consists of (an unbounded)
product of linear forms that differ only in their constant terms, or is a translation
of a clause (as defined above).

The width of a polynomial-translation of an Rc,d(lin)-line D is defined to be the total
degree of the polynomial D.

In other words, any polynomial translation of an Rc,d(lin)-line has the following general
form:

∏
j∈J

(xj − bj) ·
k∏

t=1

∏
i∈It

(
n∑

r=1

a(t)
r xr − `(t)

i

)
, (3)

where k ≤ d and for all r ∈ [n] and t ∈ [k], a
(t)
r is an integer such that |a(t)

r | ≤ c, and
bj ∈ {0, 1} (for all j ∈ J) (and I1, . . . , Ik, J are unbounded sets of indices). Clearly, a
disjunction of clauses is a clause in itself, and so we can assume that in any Rc,d(lin)-line
only a single polynomial translation of a clause occurs.

We shall use the following propositions:

Proposition 5.2 (Algebraic translation of R0(lin); Corollary 9.11 [RT08a] (restated)).
Let K := {Kn | n ∈ N} be a family of unsatisfiable CNF formulas6, and let {Pn | n ∈ N}
be a family of R0(lin)-proofs of K. Then, there are two constants c, d that do not depend
on n and a family of PC proofs {P ′n | n ∈ N} of the polynomial translations of the family of
CNFs K, such that for every n the proof P ′n has polynomial-size in the size of Pn number
of steps, and where every line in P ′n is a (polynomial translation of an) Rc,d(lin)-line
(Definition 5.1) whose width is polynomial in the size of Pn.

Remark: It is immaterial to define the size measure for R0(lin) refutations (though this
concept is mentioned in Theorem 5.2); we shall only use the fact that R0(lin) has short
refutations for some hard contradictions.

Note: Although corollary 9.11 in [RT08a] is stated for PCR instead of PC, the translation
holds also for PC (see Remark before Corollary 9.11 in [RT08a]).

6Formally, we have a straightforward translation of CNFs to the language of R0(lin) (see [RT08a]).
12



Definition 5.2 (Multilinearization operator). Given a field F and a polynomial q ∈
F[x1, . . . , xn], we denote by M[q] the unique multilinear polynomial equal to q modulo the
ideal generated by all the polynomials x2

i − xi, for all variables xi.

For example, if q = x2
1x2 + ax3

4 (for some a ∈ F) then M[q] = x1x2 + ax4 .

Proposition 5.3 (Implicit in [RT08b, RT08a]). Let P be a PCR refutation from initial
multilinear polynomials. Then we can transform P into a new PCR refutation P ′ from
the same initial multilinear polynomials such that P ′ contains only multilinear polyno-
mials, with only a polynomial increase in the number of steps. Moreover, if the proof
lines in P are all Rc,d(lin)-lines of maximal width w, then all the proof lines in P ′ are
multilinearizations of Rc′,d′(lin)-lines of maximal width polynomial in w and where c′, d′

depend only on c, d.

Proof sketch: Given a PCR proof P = (p1, . . . , pm) in the variables
{x1, . . . , xn, x̄1, . . . , x̄n}, consider the sequence S of multilinearized polynomials
(M[p1] , . . . ,M[pm]). Then, by the proof of Theorem 5.1 in [RT08b] one can add polyno-
mially in m many multilinear polynomials to S so that the new sequence S ′ consists of
only multilinear polynomials and constitutes a PCR refutation of the initial polynomials.
(Theorem 5.1 from [RT08b] talks about fMC refutations [Definition 2.6 in [RT08b]]. How-
ever, it is clear from the definition of fMC that the underlying sequence of polynomials
in any fMC refutation constitutes a PCR refutation as well.)

Assume in addition that all polynomials in P are polynomial translations of Rc,d(lin)-
lines (Definition 5.1). Then, S = (M[p1] , . . . ,M[pm]) is a sequence of multilinearizations
of Rc,d(lin)-lines. The only thing left to check is that the additional polynomials added
to S to yield S ′ in the proof of Theorem 5.1 [RT08b] are all polynomial translations of
Rc′,d′(lin)-lines, where c′, d′ depend only on c, d. This could be done by straightforward
inspection of the proof of Theorem 5.1 [RT08b].

Now we are ready to prove the main simulation of this subsection:

Theorem 5.4. For any linear order on the variables, OFPC polynomially simulates
R0(lin) (over large enough fields). Moreover, we can assume that all formulas appearing
in the OFPC proofs simulating R0(lin) are depth-3 ordered formulas.

By Propositions 5.2 and 5.3 and by the definition of OFPC, in order to prove that
OFPC simulates R0(lin), the following lemma from [RT08a] suffices:

Lemma 5.5 (Implicit in Lemma 9.14 [RT08a]). Let p be a polynomial translation of an
Rc,d(lin)-line of width w over n variables. Then, M[p] can be computed by an ordered
formula of size polynomial in w · n over fields of size bigger than w · n. Moreover, the
ordered formula is a ΣΠΣ formula7.

Proof. The proof uses the fact that Rc,d(lin)-lines are close to a product of d symmetric
polynomials, and the fact that symmetric polynomials can be computed by small ordered
formulas (of depth-3) over large enough fields. Specifically:

Claim 5.6 (Restatement of Claim 9.15 in [RT08a]). Let D be a polynomial translation
of an Rc,d(lin)-line of width w. Then, D is a linear combination (over F) of (w + c)c·d

7This means that every path from the root to the leaf in the formula tree starts with a plus gate, and
the number of alternation in the path between plus and product gates is at most two
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many terms, such that each term is of degree at most w and can be written as

q ·
∏
k∈K

zrk
k , (4)

where K is a collection of indices such that |K| ≤ c ·d, and rk’s are non-negative integers
≤ w, and the zk’s are homogenous linear forms such that each zk has a single integral
coefficient for all variables in it8, and q is a polynomial translation of a clause.

By this claim, to complete the proof of Lemma 5.5 it is sufficient to show that the
multilinearization of any term as in (4):

M

[
q ·
∏
k∈K

zrk
k

]
(5)

can be computed by an ordered ΣΠΣ formula of size polynomial in cdn, over fields of size
bigger than c · w. This is done by using polynomial interpolation, as shown (implicitly)
in Claim 9.16 in [RT08a]. More specifically, Claim 9.16 in [RT08a] demonstrated that
(5) can be computed by a formula Φ such that: (i) Φ consists of polynomially in d, c
many summands; (ii) each of these summands is a depth-3 ΣΠΣ formula, in which every
product gate is a product of linear forms; (iii) and each of these linear forms consists of
only a single variable.

Note that any such formula Φ is also an ordered formula: since the products are of
linear forms, each of a single variable, one can order the products in a way that respects
the underlying variable order �. �

5.0.2. Corollaries: short proofs and separations. For natural numbers m > n, denote by
¬FPHPm

n the following unsatisfiable collection of polynomials:

Pigeons : ∀i ∈ [m], (1− xi,1) · · · (1− xi,n)
Functional : ∀i ∈ [m]∀k < ` ∈ [n], xi,k · xi,`

Holes : ∀i < j ∈ [m]∀k ∈ [n], xi,k · xj,k

(6)

As a corollary of the polynomial simulation of R0(lin) by OFPC, and the upper bounds
on R0(lin) proofs demonstrated in [RT08a], we get the following result:

Corollary 5.7. For any linear order on the variables, and for any m > n there are
polynomial-size (in n) OFPC refutations of the m to n pigeonhole principle FPHPm

n

(over large enough fields).

¬FPHPm
n is a direct translation of the CNF formula for them to n functional pigeonhole

principle. Thus, by known lower bounds, OFPC is strictly stronger than resolution and
is separated from bounded depth Frege. On the other hand, Razborov [Raz98] and
subsequently Impagliazzo et al. [IPS99] gave exponential lower bounds on the size of PC-
refutations of a different low degree version of the Functional Pigeonhole Principle. In this
low degree version the Pigeons polynomials in (6) are replaced by 1− (xi,1 + . . .+ xi,n),
for all i ∈ [m]. It is not hard to show (via reasoning inside R0(lin)) that OFPC admits
polynomial-size refutations also for this low-degree version of the functional pigeonhole
principle. This shows that OFPC is strictly stronger than PC (under the size measures
as defined for OFPC and PC).

8That is, zk = b ·
∑l

j=1 xij
for some natural number b.
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The Tseitin graph tautologies were proved to be hard tautologies for several propo-
sitional proof system. We refer the reader to [RT08a], Definition 6.5, for the precise
definition of the (generalized, mod p) Tseitin tautologies. We have the following:

Corollary 5.8. Let G be an r-regular graph with n vertices, where r is a constant, and
fix some modulus p. Then, for any linear order on the variables there are polynomial-size
(in n) OFPC refutations of the corresponding Tseitin mod p formulas ¬TseitinG,p (over
large enough fields).

This stems from the R0(lin) polynomial-size refutations of the Tseitin mod p formulas
demonstrated in [RT08a]. From the known exponential lower bounds on PCR (and PC
and resolution) refutation size of Tseitin mod p tautologies (when the underlying graphs
are appropriately expanding; cf. [BGIP01, BSI99, ABSRW04]), and for the polynomial
simulation of PCR by OFPC, we conclude that OFPC is strictly stronger than PCR.

6. Towards lower bounds on OFPC proofs

6.1. Lower bounds on product formulas. In this section we show that the ordered
formula size of certain polynomials can increase exponentially when multiplying the poly-
nomials together. We use this to suggest an approach for lower bounding the size of
OFPC proofs in Section 6.2. We use a method of partial derivatives matrix introduced
by Nisan to obtain exponential-size lower bounds on noncommutative formulas in [Nis91].

Proposition 6.1. Let F be a field, X := {x1, . . . , xn} be a set of variables and �⊆
(X ×X) be some linear order. Then, for any natural numbers m ≤ n and d ≤ bn/mc,
there exist polynomials f1, . . . , fd from F[x1, . . . , xn], such that every fi can be computed

by an ordered formula of size O(m) and every ordered formula computing
∏d

i=1 fi has size
2Ω(d).

Proof. Note first that it is sufficient to prove the proposition for m = 2 and any d ≤ bn/2c:
assume that the proposition holds for m = 2 and any d ≤ bn/2c. Let m′ ≤ n and
d′ ≤ bn/m′c. By assumption, for m = 2 and d′ ≤ bn/m′c ≤ bn/2c, there are f1, . . . , fd′

from F[x1, . . . , xn] that can be computed by ordered formulas of size constant (that is,

O(2), and hence of size O(m′)), and such that every ordered formula computing
∏d′

i=1 fi

has size 2Ω(d′).
Thus, let m = 2 and d ≤ bn/2c. Assume without loss of generality that the linear

order � is such that x1 � x2 � . . . � xn. Abbreviate the variables x1, . . . , xd as y1, . . . , yd,
respectively, and abbreviate the variables xd+1, . . . , x2d as z1, . . . , zd, respectively (that is,
the yi’s and zi’s are just different notations for their corresponding xi variables, introduced
to simplify the writing). We thus have y1 � . . . � yd � z1 � . . . � zd.

For every i = 1, . . . , d, define the following polynomial:

fi := (yi + zi) .

Define

HARDd :=
d∏

i=1

fi =
d∏

i=1

(yi + zi) .

We show that every ordered formula of HARDd (under �) is of size at least 2Ω(d). Note
that HARDd is a homogenous and multilinear polynomial of degree d.

Recall that JHARDdK is the noncommutative polynomial obtained from HARDd by or-
dering the products in every monomial in accordance to the fixed linear order �. By
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definition of ordered formulas, we need to lower bound the size of noncommutative for-
mulas computing JHARDdK. For this purpose we use a rank argument introduced in
[Nis91]. Nisan defined the matrix Mk(f) associated with a noncommutative polynomial
f as follows:

Definition 6.1 ([Nis91]). Let f ∈ F〈x1, . . . , xn〉 be a noncommutative homogenous poly-
nomial of degree d. For every 0 ≤ k ≤ d, we define Mk(f) to be a matrix of dimension
nk × nd−k as follows: (i) there is a row corresponding to every degree k noncommutative
monomial over the variables {x1, . . . , xn}, and a column corresponding to every degree
d − k noncommutative monomial over the variables {x1, . . . , xn}; (ii) for every degree
k monomial M and every degree d − k monomial N , the entry in Mk(f) on the row
corresponding to M and column corresponding to N is the coefficient of the degree d
monomial M ·N in f .

Theorem 6.2 ([Nis91] Theorem 1). Let f be a degree r homogenous noncommuta-
tive polynomial. Then, every noncommutative formula computing f has size at least∑r

k=0 rank (Mk(f)) .

In view of Theorem 6.2, it suffices to prove the following claim:

Claim 6.3. For any 0 ≤ k ≤ d we have rank(Mk(JHARDdK)) ≥
(

d
k

)
.

Proof of claim: Consider the matrix Mk(JHARDdK). Let Ak be the matrix obtained
from Mk(JHARDdK) by removing all rows and columns excluding the following rows and
columns:

(1) the rows corresponding to degree k multilinear monomials containing only yi vari-
ables, such that the order of products in the monomial respects � ;

(2) the columns corresponding to degree d−k multilinear monomials containing only
zi variables, such that the order of products in the monomial respects �.

Consider a degree k monomial M = yi1 · · · yik , where i1 < . . . < ik. Let J = [d] \
{i1, . . . , ik}. We can denote the elements of J as {j1, . . . , jd−k}, where j1 < . . . < jd−k.
Observe that the monomial M has on its corresponding row in Ak only zeros, except for
a single 1 in the position (that is, column) corresponding to the degree d − k monomial
N = zj1 · · · zjd−k

. (Indeed, note that the coefficient of the degree d monomial M ·N in
JHARDdK is 1.)

Note that Ak contains
(

d
k

)
rows corresponding to all possible degree k multilinear

monomials M in the ȳ variables whose product order respect �. Similarly, Ak contains(
d
k

)
columns corresponding to all possible degree d− k multilinear monomials N in the

z̄ variables whose product order respect �. By the previous paragraph: (i) each of the
rows in Ak has only one nonzero entry; and (ii) for every row, the nonzero entry is in a
different column from those of other rows. We then conclude that Ak is a permutation
matrix. Therefore:

rank(Ak) =

(
d

k

)
.

The claim follows since clearly rank(Ak) ≤ rank(Mk (JHARDdK)) . Claim

By the claim and by Theorem 6.2, we conclude that the ordered formula size of HARDd

is at least
d∑

k=0

rank (Ak) =
d∑

k=0

(
d

k

)
= 2d .

�
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6.2. A lower bound approach. Here we discuss a simple possible approach intended
to establish lower bounds on OFPC proofs, roughly, by reducing the lower bounds to PC
degree lower bounds and using the bound in Section 6.1.

Let Q1(x̄), . . . , Qm(x̄) be a collection of constant degree (independent of n) polynomials
from F[x1, . . . , xn] with no common solutions in F, such that m is polynomial in n. Let
f1(ȳ), . . . , fn(ȳ) be m homogenous polynomials of the same degree from F[y1, . . . , y`],
such that the ordered formula size of each fi(ȳ) (for some linear order on the variables)
is polynomial in n and such that the fi(ȳ)’s do not have common variables (that is, each
fi(ȳ) is over disjoint set of variables from ȳ). Assume that for any distinct i1, . . . , id ∈ [n]

the ordered formula size of
∏d

j fij (ȳ) is 2Ω(d).

Note: By the proof of Proposition 6.1, the conditions above are easy to achieve. Indeed,
the fi(yi, zi)’s defined in the proof of Proposition 6.1 have these properties: homogeneity,
same degrees for all fi’s and disjointness of variables, and an exponential increase in
ordered formula size for any product of the fi’s.

Consider the polynomials Q1(x̄), . . . , Qm(x̄) after applying the substitution:

xi 7→ fi(ȳ) . (7)

In other words, consider

Q1(f1(ȳ), . . . , fn(ȳ)), . . . , Qm(f1(ȳ), . . . , fn(ȳ)) . (8)

Note that (8) is also unsatisfiable over F. We suggest to lower bound the OFPC refu-
tations size of (8), based on the following simple idea: it is known that some families
of unsatisfiable collections of polynomials require linear Ω(n) degree PC refutations. In
other words, every refutation of these polynomials must contain some polynomial of lin-
ear degree. By definition, also every OFPC refutation of these polynomials must contain
some polynomial of linear degree.

Thus, assume that the initial polynomials Q = {Q1(x̄), . . . , Qm(x̄)} in the x1, . . . , xn

variables, require linear degree refutations—in fact, an ω(log n) degree lower bound would
suffice. Thus, every PC refutation contains some polynomial h of degree ω(log n). Then,
we might expect that every PC refutation of (8) contains a polynomial g ∈ F[ȳ] which is
a substitution instance (under the substitution (7)) of an ω(log n)-degree polynomial in
the x̄ variables. This, in turn, leads (under some conditions; see below for an example
of such conditions) to a lower bound on OFPC refutations. Specifically, an example of
sufficient conditions for super-polynomial OFPC lower bounds, is as follows: every PC
refutation of (8) contains a polynomial g so that one of g’s homogenous components
is a substitution instance (under the substitution (7)) of a degree ω(log n) multilinear
polynomial from F[x1, . . . , xn]. We formalize this argument:

Example: conditional OFPC size lower bounds. (Assume the above notations and
conditions.) If: every PC refutation of (8) that has polynomial in n number of proof-
lines contains a polynomial g ∈ F[y1, . . . , y`] such that for some t ≤ deg(g), the t-th
homogenous component g(t) of g (that is, the sum of all monomials of total degree t in
g) is a substitution instance (under the substitution (7)) of a degree ω(log n) multilinear
polynomial from F[x1, . . . , xn];
Then: every OFPC refutation of (8) is of super-polynomial size (in n).

Proof of example: It suffices to show that any ordered formula of g is of super-polynomial
size in n. Note that breaking an algebraic formula into its corresponding homogenous
components—according to the standard procedure (cf. [Raz08], Section 2.1)—is also
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applicable to ordered formulas: in other words, if g has a polynomial-size ordered formula
then each of g’s homogenous components has a polynomial-size ordered formula as well.9

Thus, it remains to show that every ordered formula of g(t) is of size super-polynomial in
n.

By assumption, g(t) is a substitution instance of some degree ω(log n) multilinear poly-
nomial h ∈ F[x1, . . . , xn]. Since g(t) is homogenous and the fi(ȳ)’s are homogenous, h
must be homogenous too. Also, since g(t) is multilinear h is also multilinear. Thus, we can
write h =

∑
j∈J bjMj, where the Mj’s are multilinear monomials in the x̄ variables and

bj are coefficients from F. Now, consider some single monomialM from
∑

j∈J bjMj. By
multilinearity and homogeneity of h every other monomialM′ 6=M in h must contain an
xi variable that does not appear in M. We can assign 0 to such xi. Doing this for every
monomial M′ 6= M, we get that h (under this partial assignment to the x̄ variables) is
equal to bM, for some coefficient b ∈ F. In a similar manner, by disjointness of the vari-
ables in the fi(ȳ)’s, there exists a partial assignment ρ : ȳ → {0}, such that g(t)�ρ is just
a substitution instance (under the substitution (7)) of a single degree ω(log n) multilinear
monomial in the x̄ variables. This means that g(t)� ρ is the product of ω(log n) distinct
fi(ȳ)’s (multiplied by b). Therefore, by assumption, every ordered formula of g(t) is of
size exponential in 2ω(log n), which is super-polynomial in n.
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