
A Derandomized Sparse Johnson-Lindenstrauss Transform

Daniel M. Kane† Jelani Nelson‡

Abstract

Recent work of [Dasgupta-Kumar-Sarlós, STOC 2010] gave a sparse Johnson-Lindenstrauss
transform and left as a main open question whether their construction could be efficiently
derandomized. We answer their question affirmatively by giving an alternative proof of their
result requiring only bounded independence hash functions. Furthermore, the sparsity bound
obtained in our proof is improved. The main ingredient in our proof is a spectral moment bound
for quadratic forms that was recently used in [Diakonikolas-Kane-Nelson, CoRR abs/0911.3389].

1 Introduction

The Johnson-Lindenstrauss lemma states the following.

Lemma 1 (JL Lemma [16]). For any integers k, d > 0, and any 0 < ε < 1/2, there exists a
probability distribution on k × d real matrices for k = Θ(ε−2 log(1/δ)) such that for any x ∈ Rd
with ‖x‖2 = 1,

PrA[|‖Ax‖22 − 1| > ε] < δ.

Several proofs of the JL lemma exist in the literature [1, 7, 10, 13, 15, 16], and it is known
that the dependence on k is tight up to an O(log(1/ε)) factor [5]. Though, these proofs of the JL
lemma give a distribution over dense matrices, where each column has at least a constant fraction
of its entries being non-zero, and thus näıvely performing the matrix-vector multiplication is costly.
Recently, [9] proved the JL lemma where each matrix in the support of their distribution only has
α non-zero entries per column, for α = Θ(ε−1 log(1/δ) log2(k/δ)). This reduces the time to perform
dimensionality reduction from the näıve O(dk) to being O(dα).

The construction of [9] involved picking two random hash functions h : [dα] → [k] and σ :
[dα]→ {−1, 1}, and thus required Ω(dα · log k) bits of seed to represent a random matrix from their
JL distribution. They then left two main open questions: (1) derandomize their construction to
require fewer random bits to select a random JL matrix, for applications in e.g. streaming settings
where storing a long random seed is prohibited, and (2) understand the dependence on δ that is
required in α.

We give an alternative proof of the main result of [9] that yields progress for both (1) and (2)
above simultaneously. Specifically, our proof yields a value of α that is improved by a log(k/δ)
factor. Furthermore, our proof only requires that h be rh-wise independent and σ be rσ-wise
independent for rh = O(log(k/δ)) and rσ = O(log(1/δ)), and thus a random sparse JL matrix can
be represented using only O(log(k/δ) log(dα+ k)) = O(log(k/δ) log d) bits (note k can be assumed
less than d, else the JL lemma is trivial, in which case also log(dα) = O(log d)). We remark that [9]

1Harvard University, Department of Mathematics. dankane@math.harvard.edu.
2MIT Computer Science and Artificial Intelligence Laboratory. minilek@mit.edu.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 98 (2010)

asked exactly this question: whether the random hash functions used in their construction could be
replaced by functions from bounded independence hash families. The proof in [9] required use of the
FKG inequality [6, Theorem 6.2.1], and they suggested that one approach to a proof that bounded
independence suffices might be to prove some form of this inequality under bounded independence.
Our approach is completely different, and does not use the FKG inequality at all. Rather, the main
ingredient in our proof is a spectral moment bound for quadratic forms recently used in [11].

2 Other Related Work

There have been two separate lines of related work: one line of work on constructing JL families1

such that the dimensionality reduction can be performed quickly, and another line of work on
derandomizing the JL lemma so that a random matrix from some JL family can be selected using
few random bits. We discuss both here.

2.1 Works on efficient JL embeddings

Here and throughout, for a JL family A we use the term embedding time to refer to the running
time required to perform a matrix-vector multiplication for an arbitrary A ∈ A. The first work to
give a JL family with embedding time potentially better than O(dk) was in [2]. There, the authors
achieved embedding time O(d log d + k log2(1/δ)). Later, improvements were given by Ailon and
Liberty in [3, 4]. The work of [3] achieves embedding time O(d log k) when k = O(d1/2−γ) for an
arbitrarily small constant γ > 0, and [4] achieves embedding time O(d log d) and no restriction
on k, though the k in their JL family is O(ε−4 log(1/δ) log4 d) as opposed to the O(ε−2 log(1/δ))
bound of the standard JL lemma. Liberty, Ailon, and Singer [18] achieve embedding time O(d)
when k = O(d1/2−γ), but their JL family only applies for x satisfying ‖x‖∞ ≤ ‖x‖2 · k−1/2d−γ .
None of these works however can take advantage of the situation when x is sparse to achieve faster
embedding time. In both [9] and the current work however, if x has support size ‖x‖0, we achieve
embedding time O(‖x‖0 · α).

Other related works include [8] and [22]. Implicitly in [8], and more explicitly in [22], it was
shown that the JL family of [9] can achieve arbitrary constant error probability δ > 0 as long as
h is pairwise independent and σ is 4-wise independent. The claim fails for subconstant δ though,
since with such mild independence assumptions on h, σ one needs k to be polynomially large in
1/δ.

2.2 Works on derandomizing the JL lemma

Karnin, Rabani, and Shpilka [17] recently gave a JL family where the distortion ε and failure
probability δ are 1/kC for some absolute constant C > 0 — note that in Lemma 1, the failure
probability decays exponentially in ε2k. Other works giving derandomized JL lemmas are [11,
19], which give pseudorandom generators (PRGs) against degree-2 polynomial threshold functions
(PTFs) over the hypercube. A degree-t PTF is a function f : {−1, 1}d → {−1, 1} which can be
represented as the sign of a degree-t d-variate polynomial. A PRG that δ-fools degree-t PTFs is a

1In many known proofs of the JL lemma, the distribution over matrices in Lemma 1 is obtained by picking a
matrix uniformly at random from some set A. In such a case, we call A a JL family.

2

function F : {−1, 1}s → {−1, 1}d such that for any degree-t PTF f ,

|Ez∈Us [f(F (z))]−Ex∈Ud [f(x)]| < δ,

where Um is the uniform distribution on {−1, 1}m.
Note that the conclusion of the JL lemma can be rewritten as

EA[I[1−ε,1+ε](‖Ax‖22)] ≥ 1− δ,

where I[a,b] is the indicator function of the interval [a, b], and furthermore A can be taken to have
random ±1 entries [1]. Noting that I[a,b](z) = (sign(z − a) − sign(z − b))/2 and using linearity of
expectation, we see that any PRG which δ-fools sign(p(x)) for degree-t polynomials p must also
δ-fool I[a,b](p(x)). Now, for fixed x, ‖Ax‖22 is a degree-2 polynomial over the boolean hypercube
in the variables Ai,j and thus a PRG which δ-fools degree-2 PTFs also gives a JL family with the
same seed length. Each of [11, 19] thus give JL families with seed length poly(1/δ) · log d. It can
be shown via the probabilistic method that there exist PRGs for degree-2 PTFs with seed length
O(log(d/δ)) (see Section B of the full version of [19] for a proof); an explicit construction of such
a PRG would achieve the holy grail for derandomized JL family constructions.

Other derandomizations of the JL lemma include the works [12] and [20]. A common application
of the JL lemma is the case where there are n vectors x1, . . . , xn ∈ Rd and one wants to find a
matrix A ∈ Rk×d to preserve ‖xi − xj‖2 to within relative error ε for all i, j. In this case, one can
set δ = 1/n2 and apply the JL lemma, then perform a union bound over all i, j pairs. The works
of [12, 20] do not give JL families, but rather give derandomizations for this application in the case
that the vectors x1, . . . , xn are known up front.

3 Conventions and Notation

Definition 2. For A ∈ Rn×n, we define the Frobenius norm of A as ‖A‖F =
√∑

i,j A
2
i,j.

Definition 3. For A ∈ Rn×n, we define the operator norm of A as

‖A‖2 = sup
‖x‖2=1

‖Ax‖2.

In the case A has all real eigenvalues (e.g. it is symmetric), we also have that ‖A‖2 is the largest
magnitude of an eigenvalue of A.

Throughout this paper, ε is the quantity given in Lemma 1, and is assumed to be smaller than
some absolute constant ε0 > 0. All logarithms are base-2 unless explicitly stated otherwise.

4 Our Main Theorem

We recall the sparse JL transform construction of [9] (though the settings of some of our constants
differ). Let k = 16 · 642 · ε−2 log(1/δ).2 Pick random hash functions h : [d] → [k] and σ : [d] →
{−1, 1}. Let δi,j be a random variable indicating h(i) = j. Define the matrix A ∈ {−1, 1}k×d by

2Though our constant factor is quite large, most likely the 64 could be made much smaller by tightening the
analysis of constants in [11, Theorem 5.1].

3

Ai,j = δi,j · σ(i). The work of [9] showed that as long as x ∈ Rd satisfies ‖x‖2 = 1 and has bounded
‖x‖∞, then Prh,σ[|‖Ax‖22 − 1| > ε] < O(δ). We show the same conclusion without the assumption
that h, σ are perfectly random; in particular, we show that h need only be rh-wise independent
and σ need only be rσ-wise independent for rh = O(log(k/δ)) and rσ = O(log(1/δ)). Furthermore,
our assumption on the bound for ‖x‖∞ is ‖x‖∞ ≤ c for c = Θ(

√
ε/(log(1/δ) · log(k/δ))), whereas

[9] required c = Θ(
√
ε/(log(1/δ) · log2(k/δ))). This is relevant since the column sparsity obtained

in the final JL transform construction of [9] is 1/c2. This is because, to apply the dimensionality
reduction of [9] to an arbitrary x of unit `2 norm (which might have ‖x‖∞ � c), one should
first map x to a vector x̃ by a (d/c2) × d matrix Q with Qi1r+i2,i1+1 = c and other entries 0 for
i1 ∈ {0, . . . , d − 1}, i2 ∈ [1/c2]. Then ‖x̃‖2 = 1 and ‖x̃‖∞ ≤ c, and thus the set of products with
Q of JL matrices in the distribution of [9] over dimension d/c2 serves as a JL family for arbitrary
unit vectors. Thus, the sparsity obtained by our proof in the final JL construction is improved by
a Θ(log(k/δ)) factor.

Before proving our main theorem, first we note that

‖Ax‖22 = ‖x‖22 + 2
∑

(s,t)∈([d]2)

 k∑
j=1

δs,jδt,jxsxt

σ(s)σ(t).

We would like that ‖Ax‖22 is concentrated about 1, or rather, that

Z = 2
∑
s<t

 k∑
j=1

δs,jδt,jxsxt

σ(s)σ(t) (1)

is concentrated about 0. Let ηs,t be a random variable indicating that s 6= t and h(s) = h(t). Then
note that, for fixed h, Z is a quadratic form in the σ(i) which can be written as σTTσ for an n×n
matrix T with Ts,t = xsxtηs,t.

Our main theorem follows by applying the following three lemmas. The first two lemmas give
high probability bounds on the Frobenius and operator norms of T , and are proven in Section 5
and Section 6 respectively. The third lemma gives a central moment bound for quadratic forms
in terms of both the Frobenius and operator norms of the associated matrix, and was proven in
[11, 14]3. By applying the bound of the third lemma to the quadratic form σTTσ, conditioned on
the high probability event that both ‖T‖F and ‖T‖2 are small, we obtain our main theorem.

Henceforth in this paper, we assume ‖x‖2 = 1, ‖x‖∞ ≤ c, and T is the matrix described above.

Lemma 4. Prh[‖T‖2F > 4/k] < δ.

Lemma 5. Prh[‖T‖2 > ε/(128 · log(1/δ))] < δ.

Lemma 6 ([11, Theorem 5.1]4, [14]). Let z = (z1, . . . , zn) be a vector of i.i.d. Bernoulli ±1 random
variables. Then for any B ∈ Rn×n and even integer ` ≥ 2,

E
[(
zTBz − trace(B)

)`] ≤ 64` ·max
{√

` · ‖B‖F , ` · ‖B‖2
}`
.

3[14] proves a tail bound, but it is not hard to then derive a moment bound via integration; [11] directly proves a
moment bound.

4What are denoted ‖B‖F and ‖B‖2 here were denoted ‖B‖2 and ‖B‖∞, respectively, in [11].

4

Theorem 7 (Main Theorem).

Prh,σ[|‖Ax‖22 − 1| > ε] < 3δ.

Proof. Write

‖Ax‖22 = ‖x‖22 + 2
∑

(s,t)∈([d]2)

xsxtηs,tσ(s)σ(t)

= 1 + Z.

We will show Prh,σ[|Z| > ε] < 3δ. Condition on h, and let E be the event that ‖T‖2F ≤ 4/k
and ‖T‖2 ≤ ε/ log(1/δ). By applications of Lemma 4 and Lemma 5 and a union bound,

Prh,σ[|Z| > ε] < Prσ[|Z| > ε | E] + 2δ.

By a Markov bound applied to the random variable Z` for ` an even integer,

Prσ[|Z| > ε | E] < Eσ[Z` | E]/ε`.

Since Z = σTTσ and trace(T) = 0, applying Lemma 6 with B = T and ` ≤ rσ gives

Prσ[|Z| > ε | E] < 64` ·max

{
ε−1

√
4`

k
,

`

128 · log(1/δ)

}`
. (2)

since the `th moment is determined by rσ-wise independence of σ. We conclude the proof by noting
that the expression in Eq. (2) is at most δ for ` = log(1/δ). �

5 A high probability bound on ‖T‖F
In this section we prove Lemma 4.

Proof (of Lemma 4). Recall that for s, t ∈ [d], ηs,t is the random variable indicating that s 6= t and
h(s) = h(t). Then, Eq. (1) implies that ‖T‖2F =

∑
s<t x

2
sx

2
t ηs,t. Note ‖T‖2F is a random variable

depending only on h. The plan of our proof is to directly bound the `th moment of ‖T‖2F for
some large ` (specifically, ` = Θ(log(1/δ))), then conclude by applying Markov’s inequality to the
random variable ‖T‖2`F . We bound the `th moment of ‖T‖2F via some combinatorics.

We now give the details of our proof. Consider the expansion (‖T‖2F)`. We have

(‖T‖2F)` =
∑

s1,...,s`
t1,...,t`
∀i∈[`]si<ti

∏̀
i=1

x2
six

2
tiηsi,ti (3)

Let G` be the set of all isomorphism classes of graphs (possibly containing multi-edges) with between
2 and 2` unlabeled vertices, minimum degree at least 1, and exactly ` edges with distinct labels in

[`]. We now define a map f : {
(

[d]
2

)`
} → G`; i.e. f maps the monomials in Eq. (3) to elements of G`.

Focus on one monomial in Eq. (3) and let S = {s1, . . . , s`, t1, . . . , t`}. We map the monomial to an

5

|S|-vertex element of G` as follows: associate each u ∈ S with a vertex, and for each si, ti, draw an
edge from the vertices associated with si, ti using edge label i.

We now analyze the expectation of the summation in Eq. (3) by grouping monomials which
map to the same elements of G` under f .

Eh

[
(‖T‖2F)`

]
=
∑
G∈G`

∑
{(si,ti)}∈([d]2)

`

f({(si,ti)})=G

(∏̀
i=1

x2
six

2
ti

)
·Eh

[∏̀
i=1

ηsi,ti

]
. (4)

Observe that
∏`
i=1 ηsi,ti is determined by h(si), h(ti) for each i ∈ [`], and hence its expectation

is determined by 2`-wise independence of h. Note that this product is 1 if si and ti hash to the
same element for each i and is 0 otherwise. Each si, ti pair hash to the same element if and only
if for each connected component of G, all elements of S = {s1, . . . , s`, t1, . . . , t`} corresponding to
vertices in that component hash to the same value. For the vG elements we are concerned with,
where vG = |S| is the number of vertices in G, we can choose one element of [k] for each connected
component. Hence the number of possible values of h on S that cause

∏`
i=1 ηsi,ti to be 1 is kmG ,

where G has mG connected components. Each possibility happens with probability k−vG . Hence
Eh[
∏`
i−1 ηsi,ti] = kmG−vG .

Also, consider the term
∏`
i=1 x

2
six

2
ti =

∏vG
i=1 x

2·`i
ri , where S = {ri}vGi=1, each `i is at least 1, and∑

i `i = 2` (`i is just the degree of the vertex associated with ri in G). Then,

vG∏
i=1

x2·`i
ri =

(
vG∏
i=1

x2·(`i−1)
ri

)
·

(
vG∏
i=1

x2
ri

)
≤

(
vG∏
i=1

x2·(`i−1)
ri

)
·

(
vG∏
i=1

x2
ri

)
≤ c2(2`−vG) ·

(
vG∏
i=1

x2
ri

)
.

Note then that the monomials (
∏vG
i=1 x

2
ri) that arise from the summation over {(si, ti)} ∈

(
d
2

)`
with

f({(si, ti)}) = G in Eq. (4) are a subset of those monomials which appear in the expansion of
(
∑d

i=1 x
2
i)
vG = 1. Thus, plugging back into Eq. (4),

Eh

[
(‖T‖2F)`

]
≤
∑
G∈G`

c2(2`−vG)

kvG−mG
. (5)

Note the value ` in the c2(2`−vG) term just arose as eG, the number of edges in G. We bound
the above summation by considering all ways to form an element of G` by adding one edge at a
time, starting from the empty graph G0 with zero vertices and edges. In fact we will overcount
some G ∈ G`, but this is acceptable since we only want an upper bound on Eq. (5).

Define F (G) = c2(2eG−vG)/kvG−mG . Initially we have F (G0) = 1. We will add ` edges in order by
label, from label 1 to `. For the ith edge we have three options to form Gi from Gi−1: (a) we can add
the edge between two existing vertices in Gi−1, (b) we can add two new vertices to Gi−1 and place
the edge between them, or (c) we can create one new vertex and connect it to an already-existing
vertex of Gi−1. For each of these three options, we will argue that ni · F (Gi)/F (Gi−1) ≤ 1/k,
where ni is the number of ways to perform the operation we chose at step i. This implies that the
summation in Eq. (5) is at most (3/k)` since at each step of forming an element of G` we have three
options for how to form Gi from Gi−1.

Let e be the number of edges, v the number of vertices, and m the number of connected
components for some Gi−1. In option (a), v remains constant, e increases by 1, and m either

6

remains constant or decreases by 1. In any case, F (Gi)/F (Gi−1) ≤ c4, and ni < 2`2; the latter
is because we have

(
v
2

)
< 2`2 choices of vertices to connect. In option (b), ni = 1, v increases

by 2, e increases by 1, and m increases by 1, implying ni · F (Gi)/F (Gi−1) = 1/k. Finally, in
option (c), ni = v ≤ 2`, v increases by 1, e increases by 1, and m remains constant, implying
ni · F (Gi)/F (Gi−1) ≤ 2`c2/k. Thus, regardless of which of the three options we choose, ni ·
F (Gi)/F (Gi−1) ≤ max{2`2c4, 1/k, 2`c2/k}, which is 1/k for ` = O(log(1/δ)).

As discussed above, when combined with Eq. (5) this gives Eh[(‖T‖2F)`] ≤ (3/k)`. Then, by
Markov’s inequality on the random variable (‖T‖2F)` for ` ≥ 2 and even, and assuming 2` ≤ rh,

Prh[‖T‖2F > 4/k] < (k/4)` ·Eh[(‖T‖2F)`] < (3/4)`,

which is at most δ for ` = Θ(log(1/δ)) < rh. �

6 A high probability bound on ‖T‖2

In this section we prove Lemma 5. For each j ∈ [k] we use αj to denote
∑

i∈[d]
h(i)=j

x2
i .

Lemma 8. ‖T‖2 ≤ max{c2,maxj∈[k] αj}.

Proof. Define the diagonal matrix R with Ri,i = x2
i , and put S = T + R. For each j ∈ [k],

consider the vector vj whose support is h−1(j), with (vj)i = xi for each i in its support. Then

S =
∑k

j=1 vj · vTj . Thus rank(S) is equal to the number of non-zero vj , since they are clearly
linearly independent (they have disjoint support and are thus orthogonal) and span the image of S.
Furthermore, these non-zero vj are eigenvectors of S since Svj = αjvj , and are the only eigenvectors
of S with non-zero eigenvalue since if u is perpendicular to all such vj then Au = 0.

Now, ‖T‖2 = sup‖x‖2=1 |xTTx| = sup‖x‖2=1 |xTSx − xTRx|. Since S,R are both positive

semidefinite, we then have ‖T‖2 ≤ max{‖S‖2, ‖R‖2}. ‖R‖2 is clearly ‖x‖2∞ ≤ c2, and we saw
above that ‖S‖2 = maxj∈[k] αj . �

We will need the following form of the Chernoff bound in our proof of Lemma 5, as well as the
following facts concerning the Gaussian and Gamma distributions.

Theorem 9 ([21, Theorem 2]). Let X1, . . . , Xn be independent scalar random variables with |Xi| ≤
K almost surely, with mean µi and variance σ2

i . Then for any λ > 0, one has

Pr

[∣∣∣∣∣
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ λσ
]
≤ C1 ·max

{
exp(−C2λ

2), exp(C2λσ/K)
}
.

for some absolute constants C1, C2 > 0, where µ =
∑n

i=1 µi and σ2 =
∑n

i=1 σ
2
i .

Fact 10. The Gaussian distribution N (µ, σ2) with mean µ and variance σ2 has density

f(x) =
1√

2πσ2
e−

x2

2σ2 ,

and for X ∼ N (µ, σ2) and ` ≥ 1 an integer,

E
[
|X − µ|`

]
= σ` · (`− 1)!! ·

{√
2/π, for ` odd

1, for ` even
.

where (2r)!! = r! · 2r and (2r − 1)!! = (2r)!/(r! · 2r) for r ≥ 1.

7

Fact 11. For `, θ > 0, the function

f(x) = x`−1 · e−x/θ

θ` · Γ(`)

is a probability density on R+ (the Gamma distribution Γ(`, θ)). In particular,
∫∞

0 f(x) = 1.

We also make use of the following lemma in our proof of Lemma 5 in order to convert tail
bounds for a probability distribution into moment bounds.

Lemma 12. Let D be a distribution on [0,∞) with density function f and cumulative distribution
function Φ. Let ` ≥ 1 be such that for X ∼ D, E[X`] is finite and limx→∞ x

` · (1−Φ(x)) = 0. Then

E[X`] = ` ·
∫ ∞

0
x`−1(1− Φ(x))dx = ` ·

∫ ∞
0

x`−1 ·PrX∼D[X ≥ x]dx.

Proof. Note −f is the derivative of 1− Φ so that, by integration by parts,

E[X`] = −
(∫ ∞

0
x`(−f(x)dx)

)
= −[x` · (1− Φ(x))]∞0 + ` ·

∫ ∞
0

x`−1 · (1− Φ(x))dx.

�

Proof (of Lemma 5). Our plan of the proof is as follows. First, we define βj to be
∑

g(i)=j x
2
i for a

truly random hash function g : [d]→ [k]. Since we have full independence, we can apply Theorem 9
to obtain a tail bound for a single βj . Integrating this tail bound then gives moment bounds. Since
rh-wise independence preserves `th moments for ` ≤ rh, we can then use these moment bounds to
argue tail bounds for the αj under the rh-wise independence of h. We conclude by applying a tail
bound for a single αj , then using a union bound over all j ∈ [k].

Letting δ′i,j indicate g(i) = j, we have βj =
∑n

i=1 x
2
i δ
′
i,j . Letting Xi = x2

i δ
′
i,j , in the notation

of Theorem 9 we have µ = ‖x‖22/k = 1/k and σ2
i ≤ Eh[X2

i] = x4
i /k so that σ2 =

∑n
i=1 x

4
i /k ≤

‖x‖2∞ · ‖x‖22/k ≤ c2/k. Furthermore, each Xi is never larger than c2. Thus,

Prh

[∣∣∣∣βj − 1

k

∣∣∣∣ ≥ λ] ≤ C1 ·max

{
e−C2·λ

2k
c2 , e−C2· λ

c2

}
.

Applying Lemma 12 for even ` ≥ 2,

Eh

[(
βj −

1

k

)`]
≤ C1` ·

∫ ∞
0

λ`−1 ·max

{
e−C2·λ

2k
c2 , e−C2· λ

c2

}
dλ

≤ C1` ·

(∫ 1/k

0
λ`−1 · e−C2·λ

2k
c2 dλ+

∫ ∞
1/k

λ`−1 · e−C2· λ
c2 dλ

)

≤ C1` ·
(∫ ∞
−∞
|λ|`−1 · e−C2·λ

2k
c2 dλ+

∫ ∞
0

λ`−1 · e−C2· λ
c2 dλ

)
= C1` ·

(
√

2π · (`− 2)!! ·
(

c2

2C2k

) `
2

+ (`− 1)! ·
(
c2

C2

)`)
(6)

with the last equality using Fact 10 and Fact 11.

8

By Markov’s inequality on the random variable (αj − 1/k)`,

Prh

[∣∣∣∣αj − 1

k

∣∣∣∣ > λ

]
<

Eh[(αj − 1/k)`]

λ`

for any even integer ` ≥ 2. As long as ` ≤ rh the moment bound of Eq. (6) holds for h by rh-wise
independence, in which case

Prh

[∣∣∣∣αj − 1

k

∣∣∣∣ > λ

]
< 2O(`) ·

(c
√
`

λ
√
k

)`
+

(
c2`

λ

)` (7)

by approximating the factorials of Eq. (6) via Stirling’s formula (namely, `! = ``/2Θ(`)). For rh =
Ω(log(k/δ)), we can set ` = Ω(log(k/δ)) and λ = ε/(256 · log(1/δ)) in Eq. (7) to obtain

Prh

[∣∣∣∣αj − 1

k

∣∣∣∣ > λ

]
< δ/k

as long as c is a sufficiently small constant times
√
ε/(` · log(1/δ)). Then by a union bound over

each j, we have Prh[maxj αj > 1/k + λ > ε/(128 · log(1/δ))] < δ. Our lemma then follows by
applying Lemma 8, and using the fact that c2 < ε/(128 · log(1/δ)) for ε < ε0. �

Acknowledgments

This work was done while both authors were interns at Microsoft Research New England in Summer
2010. We thank Venkatesan Guruswami for showing us [21], which was very helpful.

References

[1] Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with bi-
nary coins. J. Comput. Syst. Sci., 66(4):671–687, 2003.

[2] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast Johnson-
Lindenstrauss transform. In Proceedings of the 38th ACM Symposium on Theory of Computing
(STOC), pages 557–563, 2006.

[3] Nir Ailon and Edo Liberty. Fast dimension reduction using Rademacher series on dual BCH
codes. Discrete Comput. Geom., 42(4):615–630, 2009.

[4] Nir Ailon and Edo Liberty. Almost optimal unrestricted fast Johnson-Lindenstrauss transform.
CoRR, abs/1005.5513, 2010.

[5] Noga Alon. Problems and results in extremal combinatorics I. Discrete Mathematics, 273(1-
3):31–53, 2003.

[6] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley-Interscience, 2nd edition,
2000.

[7] Rosa I. Arriaga and Santosh Vempala. An algorithmic theory of learning: Robust concepts
and random projection. Machine Learning, 63(2):161–182, 2006.

9

[8] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. In Proceedings of the 29th International Colloquium on Automata, Languages and
Programming (ICALP), pages 693–703, 2002.

[9] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. A sparse Johnson-Lindenstrauss trans-
form. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC), pages
341–350, 2010.

[10] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of Johnson and
Lindenstrauss. Random Struct. Algorithms, 22(1):60–65, 2003.

[11] Ilias Diakonikolas, Daniel M. Kane, and Jelani Nelson. Bounded independence fools degree-2
threshold functions. CoRR, abs/0911.3389, 2009.

[12] Lars Engebretsen, Piotr Indyk, and Ryan O’Donnell. Derandomized dimensionality reduction
with applications. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 705–712, 2002.

[13] Peter Frankl and Hiroshi Maehara. The Johnson-Lindenstrauss lemma and the sphericity of
some graphs. J. Comb. Theory. Ser. B, 44(3):355–362, 1988.

[14] David Lee Hanson and F. Tim Wright. A bound on tail probabilities for quadratic forms in
independent random variables. Ann. Math. Statist., 42(3):1079–1083, 1971.

[15] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of the 30th ACM Symposium on Theory of Computing
(STOC), pages 604–613, 1998.

[16] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. Contemporary Mathematics, 26:189–206, 1984.

[17] Zohar Karnin, Yuval Rabani, and Amir Shpilka. Explicit dimension reduction and its appli-
cations. Electronic Colloquium on Computational Complexity (ECCC), (121), 2009.

[18] Edo Liberty, Nir Ailon, and Amit Singer. Dense fast random projections and Lean Walsh trans-
forms. In Proceedings of the 12th International Workshop on Randomization and Computation
(RANDOM), pages 512–522, 2008.

[19] Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial threshold func-
tions. In Proceedings of the 42nd Annual ACM Symposium on Theory of Computing (STOC),
to appear (see also CoRR abs/0910.4122), 2010.

[20] D. Sivakumar. Algorithmic derandomization via complexity theory. In Proceedings of the 34th
Annual ACM Symposium on Theory of Computing (STOC), pages 619–626, 2002.

[21] Terence Tao. Notes 1: Concentration of measure, 2010. http://terrytao.wordpress.com/

2010/01/03/254a-notes-1-concentration-of-measure/.

[22] Mikkel Thorup and Yin Zhang. Tabulation based 4-universal hashing with applications to
second moment estimation. In Proceedings of the 15th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 615–624, 2004.

10

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

