
A Note on Closure Properties of ModL

Thirumalai C. Vijayaraghavan∗

Department of Computer Science
Ramakrishna Mission Vivekananda College

Evening College(Autonomous)
Mylapore, Chennai 600004, INDIA.

20th June 2010

Abstract

Recently in [Vij09, Corollary 3.7] the complexity class ModL has been
shown to be closed under complement assuming NL = UL. In this note
we continue to show many other closure properties of ModL which include
the following.

1. ModL is closed under ≤Lm reduction, ∨(join) and ≤UL
m reduction,

2. ModL is closed under ≤L
1−tt and ≤UL

1−tt reduction assuming NL =
UL,

3. ModLUL = ModL assuming UL = coUL,

4. ULModL
1−tt = ModLUL = ModL assuming NL = UL,

5. if l ∈ Z+ such that l ≥ 2 and ModL is closed under ≤L
l−dtt reduction

then ModkL ⊆ ModL for all k ∈ Z+ such that k ≥ 6 is a composite
number and k has at least 2 and at most l distinct prime divisors,
and

6. if ModL is closed under ≤Ldtt reduction then coC=L ⊆ ModL.

Also using [Vij09, Corollary 3.7] we show that if NL = UL and ModL

is closed under ≤L
l−dtt and ≤

L
dtt reduction then ModL is also closed under

≤L
l−ctt and ≤Lctt reduction respectively.
We also show a proof of the well known result that the determinant of

a matrix with entries in Z is computable in L-uniform TC1 from which it
follows that ModL ⊆ L-uniform TC1.

∗Email:tcvijay@gmail.com,tcvasu@vsnl.net

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 99 (2010)

1 Introduction

The complexity class ModL was defined by Arvind and Vijayaraghavan in
[AV04] (more precisely in [Vij08, Definition 1.4.1] and [AV, Definition 3.1]) to
tightly classify the complexity of solving a system of linear equations mod-
ulo a composite number k (called LCON) where k is given in terms of its
prime factorization such that every distinct prime power divisor that occurs
in the prime factorization of k is given in the unary representation. This prob-

lem was shown to be in LGapL/poly in [AV05]. Using the seminal result of
[Tod91, Vin91, Dam92, Val92] that computing the determinant of an integer ma-
trix is complete for GapL under logspace many-one reductions and the Chinese

remainder theorem it follows from the definition of ModL that LModL = LGapL

[AV04]. As a consequence we obtain LCON ∈ LModL/poly. The LCON problem
has been shown to be logspace Turing reducible to many other problems on
Abelian permutation groups in [Vij08, AV] and as a consequence [Vij08, AV]

also show the upper bound of LModL/poly for these problems also.

1.1 Motivation and recent progress

The LCON problem was shown to be logspace many-one hard for ModL in
[Vij08, Chapter 3]. However subsequently the proof of this result was found to
be incorrect and recently in [AV] it is shown that LCON is logspace Turing hard
for ModL. The logspace many-one hardness of LCON for ModL is yet to be
shown to be true and it serves as one of the main motivation for results shown
in this note.

More recently in [Vij09, Corollary 3.7] it is shown that ModL is closed under
complement under the assumption that NL = UL. To prove this result it is
shown in [Vij09, Theorem 3.6] that if we assume NL = UL and we have a
language L ⊆ Σ∗ with L ∈ ModL then we can decide whether an input x ∈ Σ∗

is in L using f ∈ #L and g ∈ FL where g(x) is a prime number p ∈ Z+ that is
output by g in the unary representation. The proof of [Vij09, Theorem 3.6] is
similar to the result that ModpeP = ModpP shown in [BG92].

However to implement this proof in the logspace setting, it is shown in
[Vij09, Theorem 3.4] by assuming NL = UL that if f ∈ #L and g ∈ FL such
that g(x) is the unary representation of a non-negative integer in Z+, where
x ∈ Σ∗ is the input then the number of ways of choosing exactly |g(x)| distinct
paths from amongst the f(x) accepting computation paths of the NL machine
corresponding to f is also in #L.

One of the main components in the proof of [Vij09, Theorem 3.4] that is
shown in in [Vij09, Corollary 3.3] is that if we are given an instance G of
LDAG-st-CON with vertices s and t in G such that every vertex or edge in G is
in at least one path from the vertex s to the vertex t then the problem of deciding
if the number of paths from s to t is at least p ∈ Z+ is in UL where p is bounded
by a polynomial in the size of G. The proof of [Vij09, Corollary 3.3] is based
on deterministically isolating polynomially many distinct paths from the vertex

2

s to the vertex t in G using a deterministic weight assigment method to the
edges of G which is based on the results shown in [GK87, AHT07, Vij08]. Also
[Lan97] shows many other problems that are complete for UL under logspace
many-one reductions.

Let Σ be the input alphabet. While we know that if L ⊆ Σ∗ and L ∈ NL
then there exists a function f ∈ #L such that on any input x ∈ Σ∗ we have
x ∈ L if and only if f(x) ≥ 1 the results shown in [Vij09, Lemma 3.1 and
Lemma 3.2] (which leads to [Vij09, Corollary 3.3]) also show that we can decide
if f(x) ≥ p for some p ∈ Z+ where p is bounded by a polynomial in |x| is in NL.
This seems interesting and shows a subtle difference between the complexity
classes NL and PL since the results shown in [AO96] imply that if a language
L′ ⊆ Σ∗ and L′ ∈ PL then there exists f ′ ∈ GapL and g′ ∈ FL such that on
any input x ∈ Σ∗ we have x ∈ L′ if and only if f ′(x) ≥ |g′(x)| where g′(x) is a
positive integer in the unary representation.

1.2 Our results

In this note we show in Theorem 3.6 that ModL is closed under ≤Lm reduction
and ∨(join). Also using [Vij09, Theorem 3.6 and Corollary 3.7] we show in

Theorem 3.6(2) that ModL is closed under ≤L
1−tt assuming NL = UL. From

these closure properties of ModL we also show in Corollary 3.9 that ModL is
closed under ≤UL

m reduction and in Corollary 3.10 that if we assume NL = UL

then ModL is closed under≤UL
1−tt reduction. The known relations between ModL

and other logspace counting classes is shown in Figure 1 at the end of Section
3.1. The closure properties of ModL that are known is listed in Table 1 at the
end of Section 3.2.

We also show that ModLUL = ModL assuming UL = coUL in Corollary 3.12.

As a consequence of these results we show in Corollary 3.13 that ULModL
1−tt =

ModLUL = ModL assuming NL = UL.
While we know that ModpeL ⊆ ModL if pe ∈ Z+ is a prime power, it is

not known whether ModkL ⊆ ModL when k ∈ Z+ and k ≥ 6 is a composite
number that has more than one distinct prime divisor. Similarly it is unknown
if coC=L ⊆ ModL. We show that these inclusions would follow if ModL is closed
under ≤L

l−dtt and ≤Ldtt reductions respectively where l ∈ Z+, l ≥ 2 is such that
the number of distinct prime divisors of k is at most l. Some other implications
of the closure of ModL under ≤L

l−dtt and ≤Ldtt reductions are also discussed in
Section 4.

It is known that the determinant of a matrix with entries in Z is computable
in L-uniform TC1. We show a proof of this result in Theorem 3.2 and using re-
sults on integer multiplication and integer division from [Vol99, HAB02, CDL01]
we also show in Corollary 3.3 that ModL ⊆ L-uniform TC1.

2 Preliminaries

We start by recalling the definitions of logspace counting classes.

3

Definition 2.1. [AJ93] Let Σ be the input alphabet. The complexity class #L
is defined to be the class of functions f : Σ∗ → Z+ such that there exists a NL
Turing machine M for which we have f(x) = accM (x) where accM (x) denotes
the number of accepting computation paths of M on any input x ∈ Σ∗.

The complexity class GapL was defined in [AO96] to precisely classify the
seminal result of [Tod91, Vin91, Dam92, Val92] that computing the determinant
of an integer matrix is complete for GapL under logspace many-one reductions.

Definition 2.2. [AO96] Let Σ be the input alphabet. The complexity class
GapL is defined to be the class of functions f : Σ∗ → Z such that there exists
a NL Turing machine M for which we have f(x) = accM (x) − rejM (x) where
accM (x) and rejM (x) denote the number of accepting and the number of rejecting
computation paths of M on any input x ∈ Σ∗ respectively. We also denote
(accM (x)− rejM (x)) by gapM (x).

Definition 2.3. [BD+92] Let Σ be the input alphabet. Also let k ∈ Z+ and let
k ≥ 2. We say that L ⊆ Σ∗ is a language in the complexity class ModkL if there
exists a function f ∈ #L such that for any input x ∈ Σ∗ we have x ∈ L if and
only if f(x) 6≡ 0(mod k).

Definition 2.4. [AO96] Let Σ be the input alphabet. We say that L ⊆ Σ∗ is a
language in the complexity class C=L if there exists a function f ∈ GapL such
that for any input x ∈ Σ∗ we have x ∈ L if and only if f(x) = 0.

Definition 2.5. [BJ+91] Let Σ be the input alphabet. We say that L ⊆ Σ∗ is a
language in the complexity class UL if there exists a function f ∈ #L such that
for any input x ∈ Σ∗ we have f(x) = 1 if x ∈ L and f(x) = 0 if x 6∈ L.

Definition 2.6. [Vol99] The complexity class TC0 is the class of all sets A ⊆
{0, 1}∗ such that there exists Boolean circuits of size p(n) and depth d ∈ N
containing ¬ gates, unbounded fan-in ∨, ∧ and MAJ gates where n is the size
of the input and p(n) is a polynomial in n.

Definition 2.7. [Vol99] The complexity class NC1 is the class of all sets A ⊆
{0, 1}∗ such that there exists Boolean circuits of size p(n) and depth O(log n)
containing ¬ gates and ∨, ∧ gates that have fan-in 2 where n is the size of the
input and p(n) is a polynomial in n.

Definition 2.8. [Vol99] The complexity class TC1 is the class of all sets A ⊆
{0, 1}∗ such that there exists Boolean circuits of size p(n) and depth O(log n)
containing ¬ gates, unbounded fan-in ∨, ∧ and MAJ gates where n is the size
of the input and p(n) is a polynomial in n.

For the results in this note we also need the notion of uniformity of circuits.
We refer to [Vol99, HAB02] for a clear and detailed exposition of uniformity
of circuits. The following inclusions are known among these complexity classes
(we assume the circuit complexity classes are L-uniform): TC0 ⊆ NC1 ⊆ L ⊆
UL ⊆ ModpL ⊆ ModkL where p, k ∈ Z+ and p is a prime that divides k. Also
UL ⊆ coC=L.

4

Oracle access mechanism

In the results to be shown we assume that any NL oracle Turing machine submits
the queries to its oracle according to the Ruzzo-Simon-Tompa oracle access
mechanism described in [AO96, ABO99]. According to this mechanism any
NL Turing machine can write its queries on the oracle tape in a deterministic
manner only. As a result it follows that any NL Turing machine can submit at
most polynomially many queries to its oracle and the queries can be submitted
to the oracle in a deterministic manner having known only the size of the input
before it starts performing any computation on the given input.

3 ModL

The complexity class ModL is defined in [AV04] (more precisely in [Vij08, Def-
inition 1.4.1] and [AV, Definition 3.1]).

Definition 3.1. Let Σ be the input alphabet. A language L ⊆ Σ∗ is in the
complexity class ModL if there is a function f ∈ GapL and a function g ∈ FL
such that on any input x ∈ Σ∗,

• g(x) = 1p
e

for some prime p and a positive integer e, and

• x ∈ L⇔ f(x) 6≡ 0(mod pe).

In the definition of ModL the FL function g is assumed to output a prime
in the unary representation for every input x ∈ Σ∗. Also the output of g can
vary with the input x. It is easy to note that ModL generalizes the complexity
class ModkL when k = pe ∈ Z+ where p is a prime. Clearly ModpeL ⊆ ModL.

Due to the seminal result of [Tod91, Vin91, Dam92, Val92] that comput-
ing the determinant of an integer matrix is complete for GapL under logspace
many-one reductions we obtain the following canonical complete problem for
ModL under logspace many-one reductions: ModDet = {〈M, 1p

e〉|det(M) 6≡
0(mod pe),where M ∈ Zn×n and p, e ∈ Z+, p is a prime and e ≥ 1}.

The question of whether ModkL ⊆ ModL if k ∈ Z+ and k ≥ 6 is a composite
number that has at least two distinct prime divisors is open (in fact it is also
not known if ModkP ⊆ ModP [KT96]).

3.1 ModL ⊆ L-uniform TC1

The results of Berkowitz in [Ber84] show that we can compute the determinant
of a matrix A ∈ Zn×n in NC2. Also subsequently the results of [Tod91] show
that the problem of computing the det(A) is logspace many-one reducible to the
problem of computing the (i, j)th entry of the kth power of a matrix B ∈ Zm×m

where 1 ≤ i, j ≤ m and k,m are bounded by a polynomial in n. A proof of
this reduction given in [ABO99, HT03] considers the input matrix A to be the
adjacency matrix of a weighted directed graph G where Aij denotes the weight
of the directed edge (i, j) in G. Also it is easy to note that this many-one

5

reduction is in fact computable by a L-uniform AC0 circuit. We use the above
mentioned reduction and the result that it is possible to compute the iterated
sum and the iterated product of a set of integers given as input in L-uniform
TC0 [Vol99] (which also follows from the results shown in [HAB02, CDL01])
to show an upper bound of L-uniform TC1 for computing the determinant of
an integer matrix. Using this upper bound for computing the determinant and
using the result that we can compute the quotient and remainder upon dividing
a by b in L-uniform TC0 [HAB02, CDL01], where a, b ∈ Z+ and a, b ≥ 1, it
follows that ModL ⊆ L-uniform TC1.

Theorem 3.2. Given a matrix A ∈ Zn×n as input we can compute the det(A)
in L-uniform TC1.

Proof. We use the L-uniform AC0 many-one reduction from the determinant
of an integer matrix to computing the entries of powers of an integer matrix
[Tod91] to obtain a m×m matrix B = (bij), k ∈ Z+ and the pair (i, j) as the
output of this reduction from the input matrix A ∈ Zn×n such that Bk

ij = det(A)
where k ≥ 1 and 1 ≤ i, j ≤ m and m = p(n) for some polynomial p(n).

The following results are computable in L-uniform TC0 [Vol99, HAB02]:

• computing the sum of a set of n input integers a1, . . . , an ∈ Z, and

• computing the product of a, b ∈ Z given as input.

As a consequence of these results it is easy to note that if u,v ∈ Zn then the
inner product of u and v is computable in L-uniform TC0.

From these results it is clear that we can compute the (i, j)th entry in the
product of an input pair of square integer matrices in L-uniform TC0. As a
consequence if we are given a set of n square integer matrices as input where
every entry in each of these matrices is of size n then we can compute the entries
in product of these matrices by combining these TC0 circuits in a pairwise
manner to obtain a Boolean circuit that contains ¬ gates, unbounded fan-in
∨,∧ and MAJ gates and whose size is a polynomial in n and depth O(log n).
Clearly this shows that the problem of computing the (i, j)th entry of the powers
of an input matrix that has entries in Z is in L-uniform TC1. Combining the
L-uniform AC0 circuit that many-one reduces the problem of computing the
determinant of an integer matrix to computing the entries of powers of an integer
matrix with the L-uniform TC1 circuit we have described above and since L-
uniform AC0 ⊆ L-uniform TC1 it follows that we can compute the det(A) in
L-uniform TC1. •

Corollary 3.3. ModL ⊆ L-uniform TC1.

Proof. Let Σ be the input alphabet and let L ⊆ Σ∗ be such that L ∈ ModL.
Also let f ∈ GapL and g ∈ FL be functions using which we decide if an input
string x ∈ Σ∗ is in L. Let x ∈ Σ∗ be the input string and let g(x) = 1p

e

where
p, e ∈ Z+ with p ≥ 2 being a prime and e ≥ 1.

Since computing the determinant of an integer matrix is complete for GapL
under logspace many-one reductions [Tod91, Vin91, Dam92, Val92] it follows

6

that we can obtain the matrix A ∈ Zn×n from the input x using a FL function
such that det(A) = f(x). Clearly we can obtain the prime power pe = |g(x)|
by computing the size of the output of the FL function g when it is given the
input x. Then x ∈ L if and only if f(x) 6≡ 0(mod pe).

We have shown in Theorem 3.2 that it is possible to compute det(A) in
L-uniform TC1. Also since FL ⊆ L-uniform TC1 it follows that it is possible
to compute pe = |g(x)| and also test if det(A) 6≡ 0(mod pe) in L-uniform TC1

since we can compute the quotient and remainder obtained upon dividing a by
b in L-uniform TC0 [HAB02], where a, b ∈ Z+ and b ≥ 1. This shows that we
can decide if x ∈ L in L-uniform TC1 and therefore ModL ⊆ L-uniform TC1. •

Since we can define every logspace counting class based on computing the
determinant of a matrix with entries in Z, it is a standard consequence of Theo-
rem 3.2 that all the logspace counting classes (and in fact the logspace counting
hierarchy #LH [AO96]) are contained in L-uniform TC1. The relation between
ModL and other logspace counting classes is shown in Figure 1 below.

3.2 Closure under ≤L
m, ∨ (join), ≤UL

m , ≤L
1−tt and ≤UL

1−tt

Definition 3.4. Let Σ be the input alphabet and let L1, L2 ⊆ Σ∗. We say that
L1 is logspace 1-truth-table reducible to L2, denoted by L1 ≤L1−tt L2 if there
exists a O(log n) space bounded Turing machine M that has access to L2 as an
oracle and which decides if any given input x ∈ Σ∗ is in L1 by making exactly

7

one query to the L2 oracle where n = |x|.

Definition 3.5. Let Σ be the input alphabet such that {0, 1} ⊆ Σ and let
L1, L2 ⊆ Σ∗. We define the join of L1 and L2 to be L1 ∨ L2 = {x1|x ∈
L1} ∪ {y0|y ∈ L2}.

Theorem 3.6. Let Σ be the input alphabet and let L1, L2 ⊆ Σ∗. Also let
L2 ∈ ModL. Now

1. if L1 ≤Lm L2 then L1 ∈ ModL,

2. assume that NL = UL. If L1 ≤L1−tt L2 then L1 ∈ ModL, and

3. if {0, 1} ⊆ Σ and L1 ∈ ModL then L1 ∨ L2 ∈ ModL.

Proof.

1. Let L2 ∈ ModL and let f2 ∈ GapL and g2 ∈ FL be functions using
which we decide if an input x ∈ Σ∗ is in L2. Also let L1 ≤Lm L2 using
f ∈ FL. If x ∈ Σ∗ is the input then x ∈ L1 if and only if f(x) ∈ L2. But
L2 ∈ ModL and therefore f(x) ∈ L2 if and only if f2(f(x)) 6≡ 0(mod pe)
where pe = |g2(f(x))| ∈ Z+ where p, e ∈ Z+ with p being a prime and
e ≥ 1. Using results from [AO96] it is easy to note that (f2◦f) ∈ GapL and
(g2◦f) ∈ FL. Clearly g2(f(x)) is a prime power in the unary representation
for any x ∈ Σ∗. As a result if x ∈ Σ∗ then x ∈ L1 if and only if f2(f(x)) 6≡
0(mod pe) where pe = |g2(f(x))| which shows L1 ∈ ModL.

2. Let L1 ≤L1−tt L2 using f ∈ FL that makes exactly one query to the L2

oracle. In other words f correctly decides if an input x ∈ Σ∗ is in L1 by
making exactly one query to the L2 oracle. Also let qx ∈ Σ∗ be the query
string that is generated by f for the input x ∈ Σ∗. Clearly f decides if
x ∈ L1 based on x and the reply of the L2 oracle when it is given the
query qx as input.

Therefore let f ′ ∈ FL be the function that generates and outputs the
query qx generated by f when it is given the input x. Also let g′ ∈ FL be
such that g′(x, χL2(qx)) = f(x) where χL2 is the characteristic function
of L2. It is clear that g′ correctly decides whether any input x ∈ L1 if the
reply of the L2 oracle is also given when we submit the query qx to the
L2 oracle.

Since L2 ∈ ModL and we have assumed NL = UL, it follows from [Vij09,
Theorem 3.6] that there exists f2 ∈ #L and g2 ∈ FL such that on any
input x ∈ Σ∗ we have x ∈ L2 if and only if f2(x) 6≡ 0(mod p) where
g2(x) = 1p, p ∈ Z+ and p is a prime. We know that #L ⊂ GapL. As a
result we assume without loss of generality that on any input x ∈ Σ∗ the
NL machine corresponding to f2 has at least one accepting computation
path and at least one rejecting computation path.

Let us consider (g′ ◦ f2 ◦ f ′) and (g2 ◦ f ′). Since f ′, g′ ∈ FL and since
FL ⊆ GapL it follows that (g′ ◦ f2 ◦ f ′) ∈ GapL. It is also clear that

8

(g2 ◦ f ′) ∈ FL. Let M denote the NL Turing machine corresponding to
(g′◦f2◦f ′). Clearly the output of M along any computation path depends
on the input x and χL2

(qx). We however note that the output of M is
the same along all the accepting computation paths of the NL Turing
machine corresponding to (f2 ◦ f ′). In other words, M accepts along all
the accepting computation paths of the NL Turing machine corresponding
to (f2 ◦ f ′) or M rejects along all the accepting computation paths of the
NL Turing machine corresponding to (f2 ◦ f ′). It is clear that the same
observation is true for M along all the rejecting computation paths of
the NL Turing machine corresponding to (f2 ◦ f ′). As a result it follows
that |gapM (x)| = |gap(f2◦f ′)(qx)| on any input x ∈ Σ∗. Also note that
depending on χL2(qx) the output of M along any computation path is
either a logspace many-one reduction to L2 or it complements χL2(qx) as
its output along any of its computation path.

Let x ∈ Σ∗ be the input and let g2(f ′(x)) = 1p. We now define a NL
Turing machine M ′ that makes (p − 1) simulations of M on the input
x. In addition M ′ also keeps track of whether the computation path
chosen is the lexicographically least in its computation tree on any input
x ∈ Σ∗. Now if the output of M along any of its computation paths
is the same as the output of the computation path of the NL Turing
machine corresponding to (f2 ◦ f ′) on the input x then M ′ stops with
the output of M on input x after making (p − 1) simulations of M on
input x. On the other hand if we have the output of M along any of its
computation paths is the complement of the output of the computation
path of the NL Turing machine corresponding to (f2 ◦f ′) on a given input
x ∈ Σ∗ then M ′ makes (p − 1) simulations of M on input x. In these
(p − 1) simulations of M by M ′, along any of the computation paths of
M ′ that is not the lexicographically least computation path we assume
that M ′ stops with the output of M on input x. However along the
lexicographically least computation path that we obtain in these (p − 1)
simulations of M by M ′ we assume that M ′ makes sufficiently many non-
deterministic choices at the end of this computation path so that we obtain
gapM ′(x) = (gapM (x))p−1 + (p− 1).

We know that (g2 ◦ f ′) ∈ FL and g2(f ′(x)) = 1p where p ∈ Z+ and p
is a prime. It is easy to note that M ′ can determine if the output of M
along any of its computation path is the same or it is the complement of
the output of the NL Turing machine corresponding to (f2 ◦ f ′) on any
input x ∈ Σ∗ using constant space. Also M ′ can simultaneously keep
track of whether the computation path is the lexicographically least in its
computation tree on input x using constant space. As a result since p ∈
O(log n) where n = |x| it follows that M ′ can make sufficiently many non-
deterministic choices along the lexicographically least computation path
using space at most O(log n) to obtain gapM ′(x) = (gapM (x))p−1+(p−1).
It is therefore clear that M ′ is also a NL Turing machine. Clearly if for
a given input x ∈ Σ∗ if L1 ≤L1−tt L2 is similar to a many-one reduction

9

from L1 to L2 then x ∈ L1 if and only if qx ∈ L2. In this case using our
observations and [Vij09, Theorem 3.6] it follows that x ∈ L1 if and only if

gapM ′(x) 6≡ 0(mod p). Otherwise if the ≤L
1−tt is such that the output of

M complements the output of the NL Turing machine corresponding to
(f2 ◦ f ′) then from the definition of M ′ it follows from [Vij09, Theorem
3.6 and Corollary 3.7] that if x ∈ L1 then gapM ′(x) ≡ (p− 1)(mod p) and
if x 6∈ L1 then gapM ′(x) ≡ 0(mod p). This shows L1 ∈ ModL.

3. Let Li ∈ ModL and assume that we decide if an input string x ∈ Σ∗ is in
Li using functions fi ∈ GapL and gi ∈ FL where 1 ≤ i ≤ 2 respectively.
We assume without loss of generality that the size of any input string x is
at least 1.

Let x = x1x2 · · ·xn+1 and let y = x1 · · ·xn where n ∈ Z+. Also let

f(x) =

{
f1(y) if xn+1 = 1
f2(y) otherwise if xn+1 = 0,

and

g(x) =

{
g1(y) if xn+1 = 1
g2(y) otherwise if xn+1 = 0.

It is easy to note that f ∈ GapL and g ∈ FL. Since |g1(x)| or |g2(x)| is
always a prime power on any input string x ∈ Σ∗ it follows that |g(x)| is
also a prime power. Now f(x) 6≡ 0(mod |g(x)|) for any input x = yxn+1

if and only if exactly one of the following is true:

• (xn+1 = 1 and y ∈ L1),

• (xn+1 = 0 and y ∈ L2).

Clearly this shows that L1 ∨ L2 ∈ ModL and that we can decide if any
input string x ∈ Σ∗ is in L1 ∨ L2 using f ∈ GapL and g ∈ FL which
completes the proof.

•

Definition 3.7. Let Σ be the input alphabet and let L1, L2 ⊆ Σ∗. We say that
L1 ≤UL

m L2 if there exists a FNL Turing machine M such that on any input
x ∈ Σ∗ the number of accepting computation paths of M(x) is at most 1. Also
x ∈ L1 if and only if there exists an accepting computation path of M on input x
such that if we obtain y ∈ Σ∗ as the output along the accepting computation path
then y ∈ L2. If x 6∈ L1 then either M does not have any accepting computation
path on input x or if there exists an accepting computation path of M on input
x and y ∈ Σ∗ is the output along this computation path then y 6∈ L2.

Definition 3.8. Let Σ be the input alphabet and let L1, L2 ⊆ Σ∗. We say that
L1 ≤UL

1−tt L2 if there exists a NL Turing machine M such that on any input
x ∈ Σ∗ the number of accepting computation paths of M(x) is at most 1. Also
M submits exactly one query qx ∈ Σ∗ to the L2 oracle on any input x ∈ Σ∗

10

to decide if x ∈ L1. We assume that the query is submitted by the NL Turing
machine M in a deterministic manner to the L2 oracle according to the Ruzzo-
Simon-Tompa oracle access mechanism as described in [AO96, ABO99]. Here if
x ∈ L1 then there exists exactly one accepting computation path of M on input
x. Otherwise if x 6∈ L1 then M rejects the input x on all of its computation
paths.

Corollary 3.9. Let Σ be the input alphabet and let L1, L2 ⊆ Σ∗. Also let
L2 ∈ ModL. Now if L1 ≤UL

m L2 then L1 ∈ ModL.

Proof. Proof is similar to Theorem 3.6(1). We however use [Vij09, Lemma 3.5]
for L2 and assume that there exists f ∈ #L and g ∈ FL such that on any input
x ∈ Σ∗ we have g(x) = 1p

e

where p, e ∈ Z+, p is a prime, e ≥ 1 and x ∈ L2 if
and only if f(x) 6≡ 0(mod pe).

Also we note that the the ≤UL
m reduction has at most one accepting com-

putation path. Therefore if the computation path we obtain is an accepting
computation path and y ∈ Σ∗ is output along this accepting computation path,
then simulating the NL Turing machine for L2 ∈ ModL with y as the input
shows that the congruence relation based on the #L function f and the FL
function g that is used to decide if any input x ∈ Σ∗ is in L2 can also be used
for deciding if x ∈ L1. Otherwise if the computation path of the ≤UL

m reduction
that we obtain is a rejecting computation path then our NL Turing machine
makes sufficiently many non-deterministic choices so that the number of ac-
cepting computation paths that we obtain at the end of each of these rejecting
computation paths is divisible by |g(x)|. This shows L1 ∈ ModL. •

Corollary 3.10. Let Σ be the input alphabet and let L1, L2 ⊆ Σ∗. Also assume
that NL = UL and let L2 ∈ ModL. Now if L1 ≤UL

1−tt L2 then L1 ∈ ModL.

Proof. Proof is similar to Theorem 3.6(2). We however need to use [Vij09,
Lemma 3.5] and consider the accepting computation paths of the NL Turing
machine corresponding to L2 as in the proof of Corollary 3.9. We also use
[Vij09, Theorem 3.6] as in Theorem 3.6(2) and thereby assume that the FL
function that is used to decide if any input string is in L2 outputs a prime
number in the unary representation.

Based on whether the ≤UL
1−tt reduction is a ≤UL

m reduction or if the output
of the computation paths of the UL Turing machine is the complement of the
output of the computation paths of the NL Turing machine for the language L2

on the oracle query string, we define the NL Turing machine for L1 similar to
the proof of Theorem 3.6(2). To be precise if the output of computation paths
of the NL Turing machine for L2 on the input query string is the complement
of the output of the computation paths of the UL Turing machine on the given
input then we use [Vij09, Theorem 3.6 and Corollary 3.7] and ensure that our NL
Turing machine for L1 simulates the NL Turing machine for L2 sufficiently many
times and that it also makes sufficiently many non-deterministic choices at the
end of the lexicographically least computation path in its computation tree (we
need to note that non-deterministic choices that the NL Turing machine for L1

11

we define does not depend on whether the lexicographically least computation
path ends in an accepting state or in a rejecting state. We only ensure that
sufficiently many accepting computation paths are added to the computation
tree at the end of this computation path for this NL Turing machine). The
proof that the Turing machine we define is O(log n) space bounded and that
the computation tree is defined suitably to decide if any input x ∈ Σ∗ is in L1

based on the congruence relation is similar to the proof of Theorem 3.6(2). •
The following table lists the closure properties of ModL that are known.

Closure property True/False Reference

complement true (assuming NL = UL) [Vij09, Corollary 3.7]

≤Lm true Theorem 3.6(1)

≤L
1−tt true (assuming NL = UL) Theorem 3.6(2)

∨ true Theorem 3.6(3)

≤UL
m true Corollary 3.9

≤UL
1−tt true (asuming NL = UL) Corollary 3.10

Table1: Closure properties of ModL

3.3 ModL and UL

Theorem 3.11. Assume that UL = coUL. Then ModLUL ⊆ ModL.

Proof. Assume that UL = coUL. Let Σ be the input alphabet such that
L1, L2 ⊆ Σ∗. Also let L2 ∈ UL and L1 ∈ ModLL2 . As a result using [Vij09,
Lemma 3.5] for L1 it follows that on any input x ∈ Σ∗ there exists a NL
machine M that accesses L2 as an oracle such that if f ∈ #L and f(x) denotes
the number of accepting computation paths of M on input x and g ∈ FL then
we have x ∈ L1 if and only if f(x) 6≡ 0(mod |g(x)|) where g(x) = 1p

e

with
p, e ∈ Z+, p being a prime and e ≥ 1.

Here we assume that the queries that are submitted to the L2 oracle by M
are generated in a deterministic manner according to the Ruzzo-Simon-Tompa
oracle access mechanism as stated in [AO96, ABO99]. As a consequence we
assume that M submits the queries to the L2 oracle and also obtains the reply
of the oracle on the oracle tape before it starts any other computation on the
input. In addition since M is O(log n) space bounded for any given input x ∈ Σ∗

such that n = |x| it is clear that the size of each query is at most nj and the
number of queries that M can submit to L2 is at most nk where j, k ∈ Z+. Let

us denote the ith query that is generated by M as q
(i)
x ∈ Σ∗ where 1 ≤ i ≤ nk.

The NL Turing machine M ′ that we define for L1 simulates M on the input
x. However unlike M the NL Turing machine M ′ does not have access to any
oracle. However M ′ needs to obtain the reply of the L2 oracle for the queries
that M submits in its computation path. For this purpose we follow the proof

of the result that L⊕L = ⊕L in [HRV00] which also shows ⊕L⊕L = ⊕L in

[HRV00] and assume that M ′ generates the ith query q
(i)
x in a deterministic

manner during its simulation of M on input x where 1 ≤ i ≤ nk.

12

For every query q
(i)
x that is generated by M ′, to determine if q

(i)
x ∈ L2, the

NL Turing machine M ′ simulates the UL Turing machine ML2
corresponding to

L2. Clearly if q
(i)
x ∈ L2 then ML2 has exactly one accepting computation path.

If the simulation of ML2
by M ′ results in this accepting computation path then

M ′ assumes the output of the oracle query that M would have obtained when

it submits the query q
(i)
x as input to the L2 oracle to be “yes” and it continues

its simulation of M on input x. Otherwise let us assume that the simulation
of ML2

by M ′ results in a rejecting computation path. In this case to test

if q
(i)
x ∈ L2 we use the assumption that UL = coUL and hence allow M ′ to

simulate the UL machine ML2
corresponding to L2 on input q

(i)
x to test if this

simulation results in an accepting computation path. If M ′ ends in an accepting

computation path in this simulation then it implies q
(i)
x ∈ L2. Therefore M ′

assumes that the reply of the L2 oracle is “no” on the query q
(i)
x and continues

its simulation of M on input x. Otherwise if both these simulations of M ′ on

input q
(i)
x results only in rejecting computation paths then M ′ makes sufficiently

many non-deterministic choices in the computation tree and ends in a rejecting
state in all these computation paths.

For any query string q
(i)
x that is generated byM ′ along any of its computation

paths we either have q
(i)
x ∈ L2 or we have q

(i)
x ∈ L2 where 1 ≤ i ≤ nk. Now it

follows from the definition of M ′ that we can determine if q
(i)
x ∈ L2 by simulating

ML2
or if necessary ML2

on q
(i)
x during its computation on the input x where 1 ≤

i ≤ nk. Due to our assumption that UL = coUL it also follows that the number

of computation paths in these simulations that correctly determine if q
(i)
x ∈ L2

is exactly one where 1 ≤ i ≤ nk. Apart from simulating ML2
and ML2

since the
computation of M ′ is identical to M on input x it follows that accM ′(x) = f(x).
As a result we have x ∈ L1 if and only if accM ′(x) 6≡ 0(mod |g(x)|). This shows
L1 ∈ ModL. •

Corollary 3.12. Assume that UL = coUL. Then ModLUL = ModL.

Proof. The containment ModL ⊆ ModLUL follows immediately from the def-
inition of ModL. Conversely if we assume UL = coUL then we have shown in

Theorem 3.11 that ModLUL ⊆ ModL which completes the proof. •

Corollary 3.13. Assume that NL = UL. Then ULModL
1−tt = ModLUL = ModL.

Proof. Since we know from the Immerman-Szelepscényi Theorem [Pap94, The-
orem 7.6] that NL is closed under complement, our assumption that NL = UL
implies UL = coUL. Proof of our result now follows from Corollary 3.10 and
Corollary 3.12. •

4 Closure under ≤L
l−dtt and ≤L

dtt reductions

Definition 4.1. [ABO99] Let Σ be the input alphabet and let L1, L2 ⊆ Σ∗. We
say that L1 is logspace k-disjunctive truth-table reducible to L2 for some k ∈ Z+,

13

k ≥ 1, denoted by L1 ≤Lk−dtt L2, if there exists f ∈ FL such that given an input

x ∈ Σ∗ of length n we have f(x) = {y1, . . . , yk} and x ∈ L1 if and only if yi ∈ L2

for at least one 1 ≤ i ≤ k.

Definition 4.2. [ABO99] Let Σ be the input alphabet and let L1, L2 ⊆ Σ∗.
We say that L1 is logspace disjunctive truth-table reducible to L2, denoted by
L1 ≤Ldtt L2, if there exists f ∈ FL such that given an input x ∈ Σ∗ of length
n we have f(x) = {y1, . . . , yp(n)} and x ∈ L1 if and only if yi ∈ L2 for at least
one 1 ≤ i ≤ p(n) where p(n) is a polynomial in n.

It follows from the definition of ModL that if p ∈ Z+ is a prime then
ModpL ⊆ ModL. However if k ∈ Z+ such that k ≥ 6 is a composite number that
has more than one distinct prime divisor then it is not known if ModkL ⊆ ModL.
We show that if ModL is closed under ≤L

l−dtt reductions for some l ∈ Z+ such

that l ≥ 2 then ModkL ⊆ ModL for all k ∈ Z+ such that k ≥ 6 is a composite
number that has at most l distinct prime divisors.

Theorem 4.3. If ModL is closed under ≤L
l−dtt reductions where l ∈ Z+ and

l ≥ 2 then ModkL ⊆ ModL for all k ∈ Z+ such that k ≥ 6 is a composite
number that has at least 2 and at most l distinct prime divisors.

Proof. Let us assume that ModL is closed under ≤L
l−dtt reductions for some

l ∈ Z+ such that l ≥ 2. Let Σ be the input alphabet and let] 6∈ Σ. Also
let L ∈ Σ∗ and assume that L ∈ ModkL where k = pe11 · · · pemm is a composite
number such that pi is a prime, ei ∈ Z+ with ei ≥ 1 and pi 6= pj for all
1 ≤ i < j ≤ m ≤ l.

It is shown in [BD+92] that if A ∈ Zn×n then determining if det(A) 6≡
0(mod k) is complete for ModkL under logspace many-one reductions. Let us
denote this language that is complete for ModkL by ModkDet. Also [BD+92]
have shown that det(A) 6≡ 0(mod k) if and only if det(A) 6≡ 0(mod pi) for at
least one of the primes pi|k, where 1 ≤ i ≤ m. Based on these observations let
us define Lk = {〈A]1pi〉|det(A) 6≡ 0(mod |g(〈A]1pi〉)|) ∀ pi|k where g ∈ FL and
g(〈A]1pi〉) = 1pi}. It follows from Definition 3.1 that Lk ∈ ModL.

Therefore if A ∈ Zn×n is the input then A ∈ L if and only if 〈A]1pi〉 ∈ Lk

for at least one prime pi where 1 ≤ i ≤ m. But it is easy to note that given A
as input, a O(log |x|) space bounded Turing machine M can obtain the prime
factorization of k and also output 〈A]1pi〉 for all primes pi|k where 1 ≤ i ≤ m.
If m < l then we assume that M outputs the last query 〈A]1pj 〉 that it generates
with repetition sufficiently many times to output l strings where 1 ≤ j ≤ m ≤ l.
Now A ∈ L if and only if 〈A]1pj 〉 ∈ Lk for at least one 1 ≤ j ≤ l. However

we have assumed that ModL is closed under ≤L
l−dtt reductions which implies

L ∈ ModL. This shows that ModkL ⊆ ModL whenever k ≥ 6 is a composite
number such that the number of distinct prime divisors of k is at least 2 and at
most l. •

Theorem 4.4. If ModL is closed under ≤Ldtt reductions then coC=L ⊆ ModL.

14

Proof. Let us assume that ModL is closed under ≤Ldtt reductions. We know
that ModDet is a canonical complete language for ModL under logspace many-
one reductions. Also given A ∈ Zn×n as input the problem of determining if
det(A) 6= 0 is complete for coC=L under logspace many-one reductions [AO96].
Using the Chinese remainder theorem we know that the det(A) is uniquely
determined by its residues modulo all the primes from 2 and n4. Therefore
det(A) 6= 0 if and only if det(A) 6≡ 0(mod p) for some prime 2 ≤ p ≤ n4.

Similar to the proof of Lemma 4.3 it is easy to note that there exists a
O(log n) space bounded Turing machine M that when given the matrix A as
input computes all the primes from 2 to n4 and also outputs the pairs 〈A]1pi〉
for all of the primes from 2 to n4. Clearly det(A) 6= 0 if and only if 〈A]1pi〉 ∈
ModpDet for at least one of the primes p ∈ {2, . . . , n4}. However we have

assumed that ModL is closed under ≤Ldtt reductions from which it follows that
we can determine if det(A) 6= 0 in ModL and this implies coC=L ⊆ ModL. •

Corollary 4.5. Assume that NL = UL. If ModL is closed under ≤Ldtt reduc-
tions then C=L ⊆ ModL.

Proof. Proof follows from Theorem 4.4 and [Vij09, Corollary 3.7]. •

4.1 Implications for ≤L
l−ctt and ≤L

ctt reductions

Definition 4.6. [ABO99] Let Σ be the input alphabet and let L1, L2 ⊆ Σ∗.
We say that L1 is logspace k-disjunctive truth-table reducible to L2, denoted by
L1 ≤Lk−ctt L2, if there exists f ∈ FL such that given an input x ∈ Σ∗ of length
n f(x) = {y1 . . . , yk} and x ∈ L1 if and only if yi ∈ L2 for every 1 ≤ i ≤ k.

Definition 4.7. [ABO99] Let Σ be the input alphabet and let L1, L2 ⊆ Σ∗.
We say that L1 is logspace conjunctive truth-table reducible to L2, denoted by
L1 ≤Lctt L2, if there exists f ∈ FL such that given an input x ∈ Σ∗ of length
n we have f ∈ FL such that f(x) = {y1 . . . , yp(n)} and x ∈ L1 if and only if
yi ∈ L2 for every 1 ≤ i ≤ p(n) where p(n) is a polynomial in n.

Lemma 4.8. Assume that NL = UL. If ModL is closed under ≤L
l−dtt reductions

where l ∈ Z+ and l ≥ 2 then ModL is closed under ≤L
l−ctt reductions.

Proof. Let Σ be the input alphabet and let] 6∈ Σ. Also let L1, L2 ⊆ Σ∗ and
let L2 ∈ ModL be such that L1 ≤Ll−ctt L2 using a function f ∈ FL. Therefore
if x ∈ Σ∗ is the input then we have f(x) = 〈y1] · · ·]yl〉 such that x ∈ L1 if and
only if yi ∈ L2 for all 1 ≤ i ≤ l.

However this is equivalent to x 6∈ L1 if and only if yi ∈ L2 for at least
one 1 ≤ i ≤ l where L2 denotes the complement of L2. But since we have
assumed NL = UL it follows from [Vij09, Corollary 3.7] that L2 ∈ ModL.

These observations show that L1 ≤Ll−dtt L2 and since we have assumed ModL

is closed under ≤L
l−dtt we have L1 ∈ ModL. Once again from our assumption

that NL = UL using the result that ModL is closed under complement shown
in [Vij09, Corollary 3.7] it follows that L1 ∈ ModL. •

15

Theorem 4.9. Assume that NL = UL. If ModL is closed under ≤Ldtt reductions

then ModL is closed under ≤Lctt reductions.

Proof. Proof of this result is similar to the proof of Lemma 4.8. We need
to observe that the number of instances of L2 that can be output by a ≤Ldtt
reduction is at most a polynomial in the size of the input. Since we have
assumed NL = UL it follows from [Vij09, Corollary 3.7] that ModL is closed
under complement and by using this property of ModL we obtain this result. •

5 Remarks

As mentioned in [Vij09, Section 4] in an earlier submission to the STACS 2009
conference I had claimed and given proofs of many of the closure properties of
ModL. These properties followed from the statement that we need not restrict
the FL function g in the definition of ModL to output a prime power in the
unary representation but that it can be a composite number in the unary rep-
resentation that has more than one distinct prime divisor. However once again
as it is mentioned in [Vij09, Section 4] the proof of this statement was found to
be incorrect.

In this note we have shown that ModL is closed under ≤Lm reduction, ∨(join)

and ≤UL
m reduction. Also using [Vij09, Theorem 3.6 and Corollary 3.7] we

have shown that ModL is closed under ≤UL
1−tt and ≤L

1−tt reductions assuming
NL = UL. Following this under the assumption that UL = coUL we are also

able to show that ModLUL = ModL. This in turn shows that ULModL
1−tt =

ModLUL = ModL assuming NL = UL.
As we had mentioned in Section 1.1 the LCON problem was claimed to be

logspace many-one hard for ModL in [Vij08]. Using [Vij09, Theorem 3.6] it
follows that LCON is logspace many-one hard for ModL under the assumption
that NL = UL. The results shown in this note do not seem to unconditionally
show that LCON is logspace many-one hard for ModL.

In this note we have also considered the possibility of ModL being closed
under ≤L

l−dtt and ≤Ldtt and shown its implications to other logspace counting

classes such as ModkL and C=L where k, l ∈ Z+ and k ≥ 6 is a composite
number that has more than one and at most l distinct prime divisors. Also
[HT04] have shown results that deal with the closure of GapL under division.
We remark that other than showing the closure of ModL under different types of
reductions exploring the closure properties of GapL also leads to showing many
relations among logspace counting classes.

5.1 Open problems

While we know that UL ⊆ ⊕L ⊆ ModL we are yet to show NL ⊆ ModL.
This containment is believed to be true especially since we know due to the
results shown in [Wig94, GW96] that NL/poly = ⊕L/poly and in [RA00] that

16

NL/poly = UL/poly and that these classes coincide in the uniform setting also
which follow by using well known derandomization techniques for construct-
ing pseudo-random generators that depend on the existence of functions in
DSPACE(n) that require circuits of exponential size to be computed which
are also believed to exist. A believably far more difficult problem of showing

LModL = ModL is also left open in [Vij09].
Interestingly many of these closure properties and containments have already

been examined in the polynomial time setting and analogous problems are open
for the complexity class ModP (see [KT96]). It seems very likely that proof of
any of these closure properties for ModP will also imply the same property to
be true for ModL (possibly with some assumptions used in [Vij09] and in the
results shown in this note such as NL = UL or UL = coUL).

References

[ABO99] Eric Allender, Robert Beals and Mitsunori Ogihara. The complexity
of matrix rank and feasible system of linear equations. Computational
Complexity, 8:99-126, 1999.

[AHT07] Manindra Agrawal, Thanh Minh Hoang and Thomas Thierauf. The
polynomially bounded perfect matching problem is in NC2. In STACS
’07: Proceedings of the 24th Annual Symposium on Theoretical Aspects
of Computer Science, pages 489-499, 2007. Also published as ECCC
Report No.129(2006).

[AJ93] Carme Àlvarez and Birgit Jenner. A very hard log-space counting
class. Theoretical Computer Science, 107:3-30, 1993.

[AO96] Eric Allender and Mitsunori Ogihara. Relationships among PL, #L
and the determinant. RAIRO - Theoretical Informatics and Applica-
tions, 30:1-21, 1996.

[AV04] V. Arvind and T.C. Vijayaraghavan. Abelian Permutation Group
Problems and Logspace Counting Classes. CCC ’04: Proceedings
of the 19th IEEE Annual Conference on Computational Complexity,
pages 204-214, 2004.

[AV05] V. Arvind and T.C. Vijayaraghavan. The Complexity of Solving Lin-
ear Equations over a Finite Ring. STACS ’05: Proceedings of the 22nd
Annual Symposium on Theoretical Aspects of Computer Science, pages
472-484, 2005.

[AV] V. Arvind and T.C. Vijayaraghavan. Classifying Problems on Linear
Congruences and Abelian Permutation Groups using Logspace Count-
ing Classes. To appear in Computational Complexity.

17

[BD+92] Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf and Christoph
Meinel. Structure and Importance of Logspace-MOD Classes. Math-
ematical Systems Theory, 25(3):223-237, 1992.

[Ber84] Stuart Berkowitz. On computing the determinant in small parallel
time using a small number of processors. Information Processing Let-
ters, 18:147-150, 1984.

[BG92] Richard Beigel and John Gill. Counting classes: Thresholds, Parity,
Mods and Fewness. Theoretical Computer Science, 103(1):3-23, 1992.

[BJ+91] Gerhard Buntrock, Birgit Jenner, Klaus-Jörn Lange and Peter Ross-
manith. Unambiguity and fewness for logarithmic space. In FCT ’91:
Proceedings of the 8th International Conference on Fundamentals of
Computation Theory, LNCS 529, pages 168-179, Springer, 1991.

[CDL01] Andrew Chiu, George Davida and Bruce Litow. Division in logspace-
uniform NC1. RAIRO - Theoretical Informatics and Applications,
35:259-276, 2001.

[Dam92] Carsten Damm. DET=L#L. Informatik-Preprint 8, Fachbereich In-
formatik der Humboldt-Universitat zu Berlin, 1991.

[GK87] Dimitri Grigoriev and Marek Karpinski. The matching problem for
bipartite graphs with polynomially bounded permanent is in NC. In
FOCS ’87: Proceedings of the 28th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 166-172, IEEE Computer Society
Press, 1987.

[GW96] Anna Gál and Avi Wigderson. Boolean complexity classes versus their
arithmetic analogs. Random Structures and Algorithms, 9(1-2):99-111,
1996.

[HAB02] William Hesse, Eric Allender and David A. Mix Barrington. Uniform
constant-depth threshold circuits for division and iterated multiplica-
tion. Journal of Computer and System Sciences, 65(4):695-716, 2002.

[HT03] Thanh Minh Hoang and Thomas Thierauf. The complexity of the
characteristic and the minimal polynomial. Theoretical Computer Sci-
ence, 295(1-3):205-222, 2003.

[HT04] Thanh Minh Hoang and Thomas Thierauf. On Closure Properties of
GapL. Electronic Colloquium on Computational Complexity Report
No.24(2004).

[HRV00] Ulrich Hertrampf, Steffan Reith and Heribert Vollmer. A Note on
Closure Properties of Logspace MOD Classes. Information Processing
Letters, 75(3):91-93 2000

18

[KT96] Johannes Köbler and Seinosuke Toda. On the power of generalized
MOD-classes. Mathematical Systems Theory, 29(1):33-46, 1996.

[Lan97] Klaus-Jörn Lange. An unambiguous class possessing a complete set. In
Proceedings of the 14th Annual Symposium on Theoretical Aspects of
Computer Science (STACS ’97), LNCS 1200, pages 339-350, Springer,
1997.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-
Wesley Publishing Company, 1994.

[RA00] Klaus Reinhardt and Eric Allender. Making nondeterminism unam-
biguous. SIAM Journal on Computing, 29(4):1118-1131, 2000.

[Tod91] Seinosuke Toda. Counting problems computationally equivalent to
computing the determinant. Technical Report CSIM 91-07, Depart-
ment of Computer Science, University of Electro-Communications,
Tokyo, Japan, May 1991.

[Val92] Leslie G. Valiant. Why is boolean complexity theory difficult? Pro-
ceedings of the London Mathematical Society symposium on Boolean
function complexity, pages 84-94, Cambridge University Press, 1992.

[Vij08] T.C. Vijayaraghavan. Classifying certain algebraic problems using
logspace counting classes. Ph.D Thesis, The Institute of Mathematical
Sciences, Homi Bhabha National Institute, December 2008.

[Vij09] T.C. Vijayaraghavan. Characterization of ModL using Prime Mod-
ulus. Electronic Colloquium on Computational Complexity Report
No.82(2009).

[Vin91] V. Vinay. Counting auxiliary pushdown automata and semi-
unbounded arithmetic circuits. In Structure in Complexity Theory
Conference, pages 270-284, 1991.

[Vol99] Heribert Vollmer. Introduction to Circuit Complexity. Springer, 1999.

[Wig94] Avi Wigderson. NL/poly ⊆ ⊕L/poly. In Proceedings of the 9th Struc-
ture in Complexity Theory Conference, pages 59-62, 1994.

19

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

