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Abstract
The deterministic space complexity of approximating the length of the longest increasing subse-

quence of a stream of N integers is known to be Θ̃(
√

N). However, the randomized complexity is wide
open. We show that the technique used in earlier work to establish the Ω(

√
N) deterministic lower bound

fails strongly under randomization: specifically, we show that the communication problems on which the
lower bound is based have very efficient randomized protocols. The purpose of this note is to guide and
alert future researchers working on this very interesting problem.

1 Introduction

For a sequence σ of integers, let lis(σ) denote the length of the longest (strictly) increasing subsequence of
σ . In the APPROXIMATE-LIS problem (abbreviated ALISM

N,ε ), we are given streaming access to a sequence
σ of length N, with entries in [M] := {1,2, . . . ,M}, and must report a (1± ε)-approximation to lis(σ).
The goal, as is usual in data stream algorithms [Mut03], is to minimize the space (i.e., amount of working
memory) and the per-item processing time used to do so. We are concerned here primarily with the space
complexity of this problem; both deterministic and randomized algorithms are of interest.

The vast majority of sublinear space streaming algorithms use randomization as a key technique and, in
fact, provably need to do so [AMS99]. The ALIS problem presents one of the very few instances where (1) a
natural problem has a sublinear space deterministic streaming algorithm, (2) randomization is not known to
provide any extra space savings, and (3) randomization could provide an exponential improvement, based
on current knowledge. We believe that this makes the randomized space complexity of ALIS an extremely
interesting theoretical question about data stream algorithms.

A sublinear upper bound for ALIS was given by Gopalan et al. [GJKK07], who showed the following.

Theorem 1.1. There is a deterministic O(
√

N/ε · logM)-space streaming algorithm for ALISM
N,ε .

An essentially matching lower bound was then given by Gál and Gopalan [GG07] and also — inde-
pendently and via a different argument — by Ergün and Jowhari [EJ08]. These lower bounds applied only
to deterministic algorithms and used reductions from certain communication problems on which suitable
“direct sum” theorems could be proven. In this note, we show that these techniques do not generalize to give
randomized streaming lower bounds, because the underlying communication problems do have randomized
protocols with cost exponentially lower than the best deterministic protocol.

2 Preliminaries

For a communication problem f , let Dmax( f ) denote the maximum number of bits sent by any single player
in a deterministic protocol that computes f , minimized over all such protocols. Let Rmax( f ) denote the
analogous quantity for constant-error randomized protocols.
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In the HIDDEN-INCREASING-SEQUENCE problem (abbreviated HISm
t,n,k), the input is a t×n matrix X =

{xi j}i∈[t], j∈[n] with entries in [m], with the promise that each column X j of X satisfies one of the following:

1. The column is non-increasing, i.e., lis(X j) = 1.

2. The column has a “long” increasing subsequence, i.e., lis(X j)≥ k.

This input is divided amongst t players, named PLR1, . . . , PLRt , with player i receiving the ith row of X . The
goal is to compute the predicate HISm

t,n,k(X) :=
∨n

j=1(lis(X j)≥ k), in the following model of communication:
PLR1 sends a (private) message to PLR2, who then sends a message to PLR3 and so on, until we reach PLRt ,
who then announces the output.

Let σX denote the length-(tn) sequence, with elements in [tm], obtained by applying the mapping xi j 7→
( j−1)m+ xi j to the entries of X and reading off the result in row-major order. It is easy to see that

HISm
t,n,k(X) = 0 =⇒ lis(σX) = n , and HISm

t,n,k(X) = 1 =⇒ lis(σX)≥ n+ k−1 . (1)

This was first formally observed by Gopalan et al. [GJKK07], and it immediately implies the following.

Lemma 2.1 (Lemma 4.4 of [GJKK07]). The deterministic and randomized streaming space complexities of
ALISM

N,ε , with M = tm, N = tn and ε = (k−1)/n, are at least Dmax(HISm
t,n,k) and Rmax(HISm

t,n,k), respectively.

Thus, a natural approach to establishing space lower bounds on ALIS is to prove communication complexity
lower bounds for HIS. Using this approach, Gál and Gopalan proved a tight determinstic lower bound:

Theorem 2.2 (Theorems 1.1 and 4.1 of [GG07]). Let Hb denote the binary entropy function. Then, we have

Dmax(HISm
t,n,k) ≥ n

((
1− k

t

)
log
(

m
k−1

)
−Hb

(
k
t

))
− log t .

In particular, setting k− 1 = t/2 = εn, we have Dmax(HISm
t,n,k) = Ω(n log(m/εn)). Combining this bound

with Lemma 2.1 shows that the deterministic space complexity of ALISM
N,ε is Ω(

√
N/ε · log(M/εN)).

In fact, they also generalized this theorem to apply to multi-pass, but still deterministic, streaming al-
gorithms by extending the communication lower bound to multi-round protocols. Our concern here is with
a different potential generalization: can one generalize Theorem 2.2 to randomized protocols, and thus,
randomized streaming algorithms? Our main result is a negative one, showing that this is not possible.

3 A Randomized Communication Upper Bound

Theorem 3.1 (Main Theorem). We have

Rmax(HISm
t,n,k) = O

(
nt logm

k2

)
.

In particular, for the setting k = Θ(t) = Θ(εn), which was used for the lower bound in Theorem 2.2, we
have Rmax(HISm

t,n,k) = O(ε−1 logm).

Proof. Let r = 2(t−1)/(k−1). Consider the following protocol. Each player goes through a receive-and-
compute phase (skipped by PLR1) followed by a transmit phase (skipped by PLRt). In the transmit phase,
PLRi chooses a subset Ji⊆ [n] of size |Ji|= d2n/(k−1)e uniformly at random from amongst all such subsets.
He then sends to PLRi+1 the following data.

1. The set Si = {xi j : j ∈ Ji}; for each j ∈ Ji, we say that PLRi samples column j.

2. The sets Sh for max{1, i− r +1} ≤ h < i, which he obtains from PLRi−1.
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In the receive-and-compute phase (which precedes the transmit phase), PLRi receives from PLRi−1 the
sets Sh, for all h ∈ Hi := {h : max{1, i− r} ≤ h < i}. He checks whether the following condition holds:

∃h ∈ Hi ∃ j ∈ Jh : xh j < xi j . (2)

He can do so because xh j is available to him from the message he receives and xi j is within the part of
the input he knows to begin with. If (2) holds, he terminates the protocol and outputs 1. Notice that he is
correct to do so, because he has discovered that lis(X j) > 1, which, by the promise, means that lis(X j)≥ k.
Otherwise, if (2) does not hold, he moves on to the transmit phase as described above.

If the protocol reaches PLRt , and no player (including himself) has output 1 in their receive-and-compute
phase, then he outputs 0. This completes the description of the protocol. Clearly, one can tweak it so that
the output is always announced by PLRt , as in our definition.

We now argue that this protocol is correct. Suppose that HISm
t,n,k(X) = 0. Then (2) never holds, and the

protocol always reaches PLRt , who correctly outputs 0.
Suppose that HISm

t,n,k(X) = 1, and suppose that the jth column of X contains a “hidden increasing sub-
sequence” 〈xi j〉i∈I , where I ⊆ [t] and |I|= k. Call the player PLRi critical if the following condition holds:

i ∈ I ∧
(
∃ i′ ∈ I : 0 < i′− i≤ r

)
. (3)

Also, in this case, call PLRi′ the follower of PLRi, where i′ is the minimum integer such that 0 < i′− i≤ r.
A straightforward estimation argument shows that there exist at least (k−1)/2 critical players. Notice

that if a critical player samples column j, then his follower correctly announces the output to be 1. Thus,
the probability that the protocol fails to output 1 is at most

Pr[no critical player samples column j] ≤
(

1− 2
k−1

)(k−1)/2

≤ e−1 .

Finally, note that in order to achieve this constant error probability, each player had to send at most
r · d2n/(k−1)e entries of X , which required O((nr/k) · logm) = O((nt/k2) · logm) bits.

4 Concluding Remarks

We remark that a similar randomized communication upper bound can be shown to hold for the slightly dif-
ferent communication problem used by Ergün and Jowhari [EJ08] in their alternate proof of the deterministic
lower bound for ALIS.

These protocols raise an obvious question: does the idea extend to give a polylogarithmic-space stream-
ing upper bound for ALIS? We leave this question open.
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