
Black-Box Search by Unbiased Variation

Per Kristian Lehre∗

University of Birmingham
Birmingham, UK

p.k.lehre@cs.bham.ac.uk

Carsten Witt†

Technical University of Denmark
Kgs. Lyngby, Denmark

cfw@imm.dtu.dk

May 1, 2010

Abstract

The complexity theory for black-box algorithms, introduced by Droste
et al. (2006), describes common limits on the efficiency of a broad class
of randomised search heuristics. There is an obvious trade-off between
the generality of the black-box model and the strength of the bounds
that can be proven in such a model. In particular, the original black-box
model allows polynomial complexity for certain NP-complete problems
and provides for well-known benchmark problems relatively small lower
bounds, which are typically not met by popular search heuristics.

In this paper, we introduce a more restricted black-box model which we
claim captures the working principles of many randomised search heuris-
tics including simulated annealing, evolutionary algorithms, randomised
local search and others. The key concept worked out is an unbiased vari-
ation operator. Considering this class of algorithms, significantly better
lower bounds on the black-box complexity are proved, amongst them an
Ω(n logn) bound for functions with unique optimum. Moreover, a sim-
ple unimodal function and gap functions are considered. We show that a
simple (1+1) EA is able to match the runtime bounds in several cases.

∗Supported by EPSRC under grant no. EP/D052785/1.
†Supported by Deutsche Forschungsgemeinschaft (DFG) under grant no. WI 3552/1-1.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 102 (2010)

1 Introduction

The theory of randomised search heuristics has advanced significantly over the
last years. In particular, there exist now rigorous results giving the runtime
of canonical search heuristics, like the (1+1) EA, on combinatorial optimisa-
tion problems [15]. Ideally, these theoretical advances will guide practitioners
in their application of search heuristics. However, it is still unclear to what
degree the theoretical results that have been obtained for the canonical search
heuristics can inform the usage of the numerous, and often more complex, search
heuristics that are applied in practice. While there is an ongoing effort in ex-
tending runtime analysis to more complex search heuristics, this often requires
development of new mathematical techniques.

To advance the theoretical understanding of search heuristics, it would be
desirable to develop a computational complexity theory of search heuristics.
The basis of such a theory would be a computational model that captures the
inherent limitations of search heuristics. The results would be a classification
of problems according to the time required to solve the problems in the model.
Such a theory has already been introduced for local search problems [9]. The
goal in local search problems is to find any solution that is locally optimal with
regards to the cost function and a neighbourhood structure over the solution
set. Here, we are interested in global search problems, i. e. where the goal is to
find any globally optimal solution.

Droste et al. introduced a model for global optimisation called the black-box
model [4]. The framework considers search heuristics, called black-box algo-
rithms, that optimise functions over some finite domain S. The black-box algo-
rithms are limited by the amount of information that is given about the function
to be optimised and have to make queries to an oracle in order to determine
fitness values. In this framework, lower bounds on the number of queries re-
quired for optimisation can be obtained. An advantage of the black-box model
is its generality. The model covers any realistic search heuristic. Despite this
generality, the lower bounds in the model are in some cases close or equal to
the corresponding upper bounds that hold for particular search heuristics. For
example, it is shown that the needle-in-the-haystack and trap problems are hard
problems, having black-box complexity of (2n + 1)/2 [4].

However, the black-box model also has some disadvantages. For example,
it is proved that the NP-hard MAX-CLIQUE problem has polynomial black
box complexity [4]. One cannot expect any realistic search heuristic to solve
all instances of this problem in polynomial time. Indeed, the black-box algo-
rithm that achieves the polynomial runtime is contrived. The algorithm first
queries for the function values of all possible pairs of nodes, thus uncovering all
the edges in the graph. Given knowledge about the instance, the algorithm can
find the optimal solution through offline brute force search, without making any
further queries to the black-box. This algorithm requires in total no more than(
n
2

)
+ 1 function evaluations. Similar black-box algorithms can be envisaged for

other NP-hard problems. This result exposes two weaknesses: the lower bounds
in the model are often obtained by black-box algorithms that do not resem-

2

ble any randomised search heuristic. Secondly, the model is too unrestricted
with respect to the amount of resources disposable to the algorithm. black-box
algorithms can spend unlimited time in-between queries to do computation.

In order to define a more realistic black-box model, one should consider
which additional restrictions to consider. Droste et al. suggested to limit the
available storage space available to the black box algorithm [4], but did not
prove any lower bounds in the space restricted scenario.

The remaining of this paper is organised as follows. Section 2 introduces
the new black-box model along with a description of the unbiased variation
operators. Section 3 provides the first lower bound in the model for a simple,
unimodal problem. Then, in Section 4, we consider a function class that contains
Hamming cliffs. Finally, in Section 5, we prove lower bounds that hold for any
function with a single, global optimum. The paper is concluded in Section 6.

2 A Refined Black-Box Model

We now present the refined black-box model that is obtained by imposing two
additional restrictions in the old black-box model. We start with a preliminary
informal description and motivation.

Firstly, we limit the degree of independence between the queries. The initial
query is a bitstring chosen uniformly at random. Every subsequent query must
be made for a search point that is obtained by applying an unbiased variation
operator to one of the previously queried search points. Unbiased variation
operators will be defined in Section 2.1.

Secondly, we put an additional restriction on the information that is available
to the algorithm by preventing the algorithm from observing the bit values
of the search points that are queried. Hence, the only information that can
be exploited by the algorithm is the sequence of fitness values obtained when
making queries to the black-box, and not the search points themselves. Note
that without this restriction, any black-box algorithm could be simulated as
follows: For each query x made by the unrestricted algorithm, the restricted
algorithm would solve the problem corresponding of minimising the Hamming
distance to search point x. This simulation would have an expected overhead
factor of O(n log n) function evaluations.

We now turn our considerations into a formal definition of a refined black-box
model, as stated in Algorithm 1. Let us first pick up the unrestricted black-
box scenario [4]. The black-box algorithm A is given a class of pseudo-Boolean
functions F . An adversary selects a function f from this class and presents it
to the algorithm as a black-box. At this point, the only information available to
the algorithm about the function f is that it belongs to function class F . The
black-box algorithm can now start to query an oracle for the function values
of any search points. The runtime TA,f of the algorithm on function f is the
number of function queries on f until the algorithm queries the function value
of an optimal search point for the first time. The runtime TA,F on the class of
functions is defined as the maximum runtime over the class of functions. In the

3

Algorithm 1 Unbiased Black-Box Algorithm

1: t← 0.
2: Choose x(t) uniformly at random from {0, 1}n.
3: repeat
4: t← t+ 1.
5: Compute f(x(t− 1)).
6: I(t)← (f(x(0)), ..., f(x(t− 1))).
7: Depending on I(t), choose a probability distribution ps on {0, ..., t− 1}.
8: Randomly choose an index j according to ps.
9: Depending on I(t), choose an unbiased variation operator pv(· | x(j)).

10: Randomly choose a bitstring x(t) according to pv.
11: until termination condition met.

unbiased black-box model, queries of new search points must be made according
to Algorithm 1. I.e., the initial search point is chosen uniformly at random by
an oracle, and subsequent search points are obtained by asking the oracle to
apply a given unbiased variation operator to a previously queried search point.

The unbiased black-box complexity of a function class F is the minimum
worst case runtime TA,F among all unbiased black-box algorithms A satisfying
the framework of Algorithm 1. Hence, any upper bound on the worst case of
a particular unbiased black-box algorithm, also implies the same upper bound
on the unbiased black-box complexity. To prove a lower bound on the unbiased
black-box complexity, it is necessary to prove that the lower bound holds for any
unbiased black-box algorithm. Note that since unbiased black-box algorithms
are a special case of black-box algorithms, all the lower bounds that hold for
the general black-box model also hold for the unbiased black-box model.

2.1 Unbiased Variation Operators

We formalise variation operators as conditional probability distributions over the
search space. Given k search points x1, . . . , xk, a variation operator p produces
a search point y with probability p(y | x1, . . . , xk). We put some restrictions
on the probability distribution to capture the essential characteristics of the
variation operators that are used by the common randomised search heuristics.
Firstly, one can limit the number k of search points that are used to produce
the new search point. The number k determines the arity of the variation
operator. Here, we will only consider unary variation operators, i. e. when k = 1.
Furthermore, we will impose the following two unbiasedness-conditions on the
operators:

1) ∀x, y, z, p(y | x1, . . . , xk) = p(y ⊕ z | x1 ⊕ z, . . . , xk ⊕ z),
2) ∀x, y, σ, p(y | x1, . . . , xk) = p(σb(y) | σb(x1), . . . , σb(xk)),

where ⊕ denotes the exclusive or-operation on bitstrings, and for any permu-
tation σ over [n], σb is an associated permutation over the bitstrings defined

4

as

σb(x1x2 · · ·xn) := xσ(1)xσ(2) · · ·xσ(n).

Variation operators that satisfy the first condition are called ⊕-invariant,
while variation operators that satisfy the second condition are called σ-invariant.
In this paper, unbiased variation operators is defined as variation operators that
satisfy both conditions, i. e. ⊕-σ-invariant operators. Note that this is a special
case of the framework by Rowe, Vose and Wright [18], who study invariance
from a group-theoretical point of view.

We claim that the two conditions are natural. Firstly, the variation opera-
tors used by common randomised search heuristics are typically ⊕-σ-invariant,
including flipping a randomly chosen bit position, bitwise mutation with any
mutation probability, and uniform sampling of bitstrings. Furthermore, the
black-box algorithm is allowed to select a different variation operator in each
iteration, as long as the variation operators are statistically independent. This
generality allows adaptive variation operators to be covered, including rank-
based mutation [16]. Secondly, the two conditions on the variation operators
can also be motivated by practical concerns. In applications, the set of bitstrings
typically encode the variable settings of candidate solutions, and is rarely the
optimisation domain per se. Hence, the encoding from variable setting to bit
value, and from variable to bitstring position, can be arbitrary. E.g., whether
the user encodes a “high temperature” variable setting as 0 or 1, or decides to
encode the temperature variable by the first instead of the last variable in the
bitstring, should not influence the behaviour of a search heuristic.

Droste and Wiesmann recommended that all search points that are within
the same distance of the originating search point should have the same probabil-
ity of being produced [5]. This unbiasedness criterion, which we call Hamming-
invariance, can be formalised as follows:

3) ∀x, y, z, H(x, y) = H(x, z) =⇒ p(y | x) = p(z | x),

where H(x, y) denotes the Hamming distance between x and y. We now show
that these criteria are related.

Proposition 1. Every unary variation operator that is ⊕-σ-invariant, is also
Hamming-invariant.

Proof. Assume that p is an ⊕-σ-invariant variation operator. Let x, y, u and v
be any search points such that d(x, y) = d(u, v) =: d. Given these assumptions,
we will prove that p(y | x) = p(v | u) holds. There must exist a permutation σ
such that σ(y ⊕ x) = v ⊕ u. We then have

p(y | x) = p(y ⊕ x | 0n) = p(σ(y ⊕ x) | 0n)

= p(v ⊕ u | 0n) = p(v | u).

By setting u = x, it is clear that p is Hamming-invariant.

5

When referring to unbiased black-box algorithms in the following, we mean
any algorithm that follows the framework of Algorithm 1. In particular, by
unary, unbiased black-box algorithms, we mean such algorithms that only use
unary, unbiased variation operators. The class of unary, unbiased black-box
algorithms is general, and includes many well known algorithms, including sim-
ulated annealing [11], random local search (RLS) [14], (µ+λ) EA [3, 8, 20],
and many other population-based EAs that do not use crossover. Note that
the restriction to unary, unbiased variation operators excludes some randomised
search heuristics. In particular, the model does not cover EAs that use crossover.
Many of the commonly used diversity mechanisms are excluded. Also, estima-
tion of distribution algorithms [12], ant colony optimisation [2] and particle
swarm optimisation [10] are not covered by the model.

3 Simple Unimodal Functions

As an initial example, we consider the simple unimodal function LeadingOnes
(x) =

∑n
i=1

∏i
j=1 xj . (The function Onemax is covered by the results in Sec-

tion 5.) The expected runtime of the (1+1) EA on this function is Θ(n2) [3],
which seems optimal among commonly analysed EAs. Increasing either the off-
spring or parent population sizes does not reduce the runtime. For (µ+1) EA,
the runtime is Θ(n2+µn log n) [20], and for (1+λ) EA, the runtime is Θ(n2+λn)
[8].

We now show that the runtime of the (1+1) EA on LeadingOnes is asymp-
totically optimal in the unbiased black-box model. We define the potential of
the algorithm at time step t as the largest number of leading 1- or 0-bits ob-
tained so far, i.e. k := max0≤j≤t{Lo(x(j)),Lz(x(j))}. The number of 0-bits
must be considered because flipping every bit in a bitstring with i leading 0-bits
will produce a bitstring with i leading 1-bits. The increase of the potential will
be studied using drift analysis [6, 7]. To lower bound the drift, it is helpful
to proceed as in the analysis of (1+1) EA on LeadingOnes [3], i. e. to first
prove that the substring after the first 0-bit in a given time step is uniformly
distributed.

Lemma 1. If the potential of the algorithm in step t−1 is k, then the bits from
position k+ 2 to position n in search point xi(t) are independent and uniformly
distributed.

Proof. We first prove the claim that for all t ≥ 0, b ∈ {0, 1} and i, k+ 2 ≤ i ≤ n
it holds that Pr [xi(t) = b] = 1/2. The proof is by induction over the time
step t. The initial search point is sampled uniformly at random, so the claim
holds for t = 0. Assume that the claim holds for t = t0 ≥ 0. The fitness
profile I(t0) does not depend on any of the bits in position i in the previously
sampled search points. The choice of search point x(j) the algorithm makes
is therefore independent of these bits. By the induction hypothesis, search
point x(j) has a bit value of b in position i with probability p := 1/2. Letting
r be the probability that the variation operator flips bit position i, we have

6

Pr [xi(t0 + 1) = b] = p(1 − r) + (1 − p)r = 1/2. By induction, the claim now
holds for all t.

We now prove the lemma by induction over the time t. The lemma holds for
time step t = 0. Assume that the lemma holds for t = t0 ≥ 0. For m := n−k−1,
let Z ∈ {0, 1}m be a random vector where the elements Zi, 1 ≤ i ≤ m, take the
value Zi = 1 if and only if bit position k + i+ 1 flipped in step t0. Then for all
bitstrings y ∈ {0, 1}m,

Pr [xk+2(t0 + 1) · · ·xn(t0 + 1) = y] =∑
z∈{0,1}m

Pr [Z = z]Pr [xk+2(t0) · · ·xn(t0) = y ⊕ z] ,

which by the induction hypothesis (more precisely, the statement about inde-
pendence) equals

∑
z∈{0,1}m

Pr [Z = z]

m∏
i=1

Pr [xk+i+1(t0) = yi ⊕ zi]

= 2−m =

m∏
i=1

Pr [xk+i+1(t0 + 1) = yi] ,

where the last equality follows from the claim above. This proves the indepen-
dence at time t0 + 1, and, therefore, the induction step.

Theorem 1. The expected runtime of any unary, unbiased black-box algorithm
on LeadingOnes is Ω(n2).

Proof. We first prove the claim that w.o.p., the potential of the algorithm will
at some time be in the interval between n/2 and 3n/4, before the optimum
has been found. With probability 1 − 2−n/2, the initial search point will have
potential less than n/2. Let integer i be the number of 0-bits in the interval
from n/2 and 3n/4 in the bitstring that the algorithm selects next. By Lemma 1
and Chernoff bounds, there is a constant δ > 0 such that with overwhelming
probability, this integer satisfies (1−δ)n/8 < i < (1+δ)n/8. In order to increase
the potential from less than n/2 to at least 3n/4, it is necessary to flip every
0-bit in the interval from n/2 to 3n/4 and no other bits. We optimistically
assume that exactly i bits are flipped in this interval. However due to the
unbiasedness condition, every choice of i among n/4 bits to flip is equally likely.

The probability that only the 0-bits are flipped is therefore at most
(
n/4
i

)−1
≤

(4i/n)i ≤ ((1 + δ)/2)n/4(1−δ). The claim therefore holds.
We now apply drift analysis according to the potential k of the algorithm,

only counting the steps starting from a potential in the interval n/2 ≤ k < 3n/4.
In order to find the optimum, the potential must be increased by at least n/4.
Assume that the selected search point has r 0-bits in the first k+1 bit positions.
In order to increase the potential, it is necessary to flip all these 0-bits, and none
of the 1-bits within this interval. This corresponds to consecutively selecting all

7

the r red balls from an urn containing k+ 1 balls. The probability of this event
is less than

r

k + 1
· r − 1

k
· · · 2

k − r + 2
· 1

k − r + 1
≤ 1

k + 1
.

The drift in each step is bounded from above by ∆i(t) ≤ (1 + E [Yt])/(k + 1),
where random variable Yt is the number of free-riders [3] in step t. Applying
Lemma 1 gives E [Yt] ≤

∑∞
i=1 2−i ≤ 1. The polynomial drift theorem [7] now

implies that E [T] ≥ (n/4)/∆t(i) = (k + 1)n/4 = Ω(n2).

Note that the complexity of LeadingOnes in the unrestricted black-box
model1 is bounded above by n/2−o(n) [4]. This illustrates that the complexity
of a function class can be significantly higher in the unbiased black-box model
than in the unrestricted black-box model.

4 Enforcing Expected Runtimes

In this section, we are interested in situations where a black-box algorithm
is confronted with a Hamming cliff of size m, i. e., has to change at least m
bits in order to arrive at a better search point. Such situations typically arise
in combinatorial optimisation, e.g., in the analysis of the (1+1) EA on the
minimum spanning tree problem by Neumann and Wegener [14], where at least
two edges have to be flipped for an improvement. In the latter case, this is
accounted for by an Ω(n2) term in the expected runtime. More generally, there
exists combinatorial problems that for any m have instances with Hamming
cliffs of size m [13]. The (1+1) EA needs Ω(nm) steps to overcome a Hamming
cliff of size m, and there is an example called Jumpm [3] where also an upper
boundO(nm) holds, i. e., an expected runtime can be enforced. This corresponds
to a hierarchy consisting of a class of functions with increasing difficulty.

We are aiming at generalising this result to black-box algorithms with unary
unbiased variation. We pick up the general idea of the Jumpm function in [3],
but modify the fitness values of the “gaps” (see below) and make the function
symmetrical compared to the original definition by introducing a second gap.
This prevents black-box algorithms from extracting information from the gap
and from reaching the optimum by flipping a very large number of bits. The
formal definition follows. Given 2 ≤ m < n/2,

Jumpm(x) :=

{
|x|1 if m < |x|1 ≤ n−m or |x|1 = n,

0 otherwise.

1Unlike unbiased black-box algorithms, unrestricted black-box algorithms (the general
model studied in [4]) can optimise function classes containing a single function in constant
time by querying the optimum in the first iteration. To obtain meaningful results in the unre-
stricted model, it is therefore necessary to consider the generalised class of functions containing
LeadingOnesz(x) :=LeadingOnes (x⊕ z) for every bitstring z.

8

Hence, the search points with at most m or more than n−m (but less than n)
1-bits each form a region/a gap of inferior fitness such that from search points
outside at least m bits have to be flipped in order to jump over the gap to the
optimum.

In this section, we prove two different lower bounds and an upper bound.
For the lower-bound proofs, we apply drift analyses of different complexity. The
first drift analysis goes back to the following theorem.

Theorem 2 (Simplified Drift Theorem [17]). Let Xt, t ≥ 0, be the random
variables describing a Markov process over the state space S := {0, 1, ..., N},
and denote ∆(i) := (Xt+1 − Xt | Xt = i) for i ∈ S and t ≥ 0. Suppose there
exists an interval [a, b] of the state space and three constants β, δ, κ > 0 such
that for all t ≥ 0

1. E [∆(i)] ≥ β for a < i < b, and

2. Pr [∆(i) = −j] ≤ 1/(1 + δ)j−κ for i > a and j ≥ 1,

then there exists a constant c∗ > 0 such that for

T ∗ := min{t ≥ 0 : Xt ≤ a | X0 ≥ b}

it holds that Pr
[
T ∗ ≤ 2c

∗(b−a)
]

= 2−Ω(b−a).

For a second bound, we use a more general drift theorem.

Lemma 2 (Hajek [6]). Let X0, X1, X2, . . . be the random variables describing
a Markov process over a state space S and g : S → R+

0 a function mapping
each state to a non-negative real number. Pick two real numbers a(`) and b(`)
depending on a parameter ` such that 0 ≤ a(`) < b(`) holds. Let T (`) be the
random variable denoting the earliest point in time t ≥ 0 such that g(Xt) ≤ a(`)
holds. If there are λ(`) > 0 and p(`) > 0 such that for all t ≥ 0 the condition

E
[
e−λ(`)·(g(Xt+1)−g(Xt)) | a(`) < g(Xt) < b(`)

]
≤ 1− 1

p(`)

holds then for all time bounds L(`) ≥ 0

Pr [T (`) ≤ L(`) | g(X0) ≥ b(`)] ≤ e−λ(`)·(b(`)−a(`)) · L(`) ·D(`) · p(`),

where D(`) = max
{

1,E
[
e−λ(`)(g(Xt+1)−b(`)) | g(Xt) ≥ b(`)

]}
.

In the proof of the forthcoming theorems, we also need upper bounds on the
tail of the hypergeometric distribution. The following result due to Chvátal [1]
is an analogue to the Chernoff bounds for the binomial distribution.

Lemma 3 (Chvátal, [1]). If X is a hypergeometrically distributed random vari-
able with parameters n (number of balls), m (number of red balls) and r (number
of samples), then Pr [X ≥ E [X] + rδ] ≤ exp(−2δ2r), where E [X] = rm

n .

9

We are ready to prove a lower bound that is 2Ω(m), which means that the
size of the gap also increases the lower bound.

Theorem 3. For any m ≤ n(1 − ε)/2 with ε an arbitrary positive constant
0 < ε < 1, the runtime of any unary, unbiased black-box algorithm on Jumpm
is at least 2cm iterations with probability 1− 2−Ω(m) for a constant c > 0.

Proof. We partition the set of non-optimal search points into three sets: A1 is all
search points x with |x|1 ≤ m, A2 is all search points x with m < |x|1 ≤ n−m,
and A3 is all search points x with n −m < |x|1 < n. We distinguish between
two cases. Either, the optimum is obtained by varying a search point in region
A2, or the optimum is obtained by entering one of the two plateau regions A1

and A3.
In the first case, we assume that the chosen search point x in region A2 has

i,m ≤ i ≤ n−m, 0-bits. The probability of obtaining the optimal solution from
x is bounded using the arguments presented in the proof of Theorem 1. We
obtain an upper bound of no more than

i

n
· i− 1

n− 1
· · · 2

n− i+ 2
· 1

n− i+ 1
=

1(
n
i

) ≤ 1(
n
m

) ≤ (m/n)m ≤ ((1 + ε)/2)m.

By union bound, the probability that less than 2cm applications of the variation
operator to points in region A2 will produce the optimum is 2−Ω(m) for a small
enough constant c.

In the second case, we consider any search path x(t0), x(t1), x(t2), ... that
enters region A3, i. e. x(t0) 6∈ A3 and x(ts) ∈ A3 for s > 1. Let Xt≥0 be
the Markov process, where Xt corresponds to the number of 0-bits in the t-th
step of the search path. Let r ≥ 1 be the number of bits that was flipped
by the variation operator in step t. The number of 0-bits that is flipped by
the variation operator is a hypergeometrically distributed random variable Zt
with parameters n (number of balls), Xt (number of red balls) and r (number
of samples). We will now show that the drift of this Markov process which is
defined as ∆(i) := (Xt+1 −Xt | Xt = i) = r − 2Zt satisfies the two conditions
of Theorem 2 on the interval [0,m). By noting that E [Zt | Xt = i] = ri/n ≤
r(1− ε)/2, we have

E [∆(i) | Xt = i] = r − 2E [Zt | Xt = i] = r(1− 2i/n) ≥ ε,

and the first condition of the drift theorem holds for the parameter β := ε. The
probability of reducing the distance by j ≤ r can be bounded using Lemma 3
as

Pr [∆(i) = −j] = Pr [r − 2Zt = −j] = Pr [Zt = r/2 + j/2]

≤ Pr

[
Zt ≥ r ·

(
i

n
+
ε

2
+

j

2r

)]
= Pr

[
Zt ≥ E [Zt] + r ·

(
ε

2
+

j

2r

)]
≤ exp(−ε2r/2) ≤ exp(−ε2j/2).

10

The second condition of the drift theorem now holds for the parameters δ :=
exp(ε2/2)− 1 and κ := 0. As both conditions hold, the probability that a given
search path reaches the optimum within 2c

∗m steps is 2−Ω(m) for some constant
c∗. Note that all search paths that enter region A3 are indistinguishable with
regards to their fitness. Hence, the probability that the algorithm selects a
search path that leads to the optimum in less than 2c

∗m steps is 2−Ω(m).
Finally, it can be proven in the same way that the probability that search

paths that enter region A1 will lead to a global optimum within 2c
∗m steps is

2−Ω(m).

We can show a partly stronger bound if rm ≤ κn for some κ < 1/2. This

time, the order of growth is
(
n
rm

)Ω(m)
, i. e., there is also a trade-off between the

size of r and m in the bound. If rm = ω(n), the bound is useless. However,
e.g., for constant r, we have the runtime behaviour (n/m)Ω(m). This has for
constantm the same asymptotics as the runtime of the (1+1) EA, but is different
for larger m. For m = Ω(n), we again obtain 2Ω(m).

Theorem 4. There is a constant 0 < κ < 1/2 such that under the assumption
rm ≤ κn, the runtime of any unary, unbiased black-box algorithm on Jumpm is
at least

(
n
rm

)cm
iterations with probability 1−2−Ω(m ln(n/(rm))) for some constant

c > 0.

Proof. Note that r ≤ n/2 must hold. We reuse terminology and arguments from
the proof of Theorem 4. Search points in the region A2 can be handled in the
same way as before because we already have proved an upper bound of (m/n)m

on the probability of obtaining an optimal solution from such a search point.
The main difference of this proof is that we apply Hajek’s drift theorem

(Lemma 2) for the interval A3 (and, analogously, also the region A1). The
distance function will be the identity, we choose b := m and a := 0 and we will
use a λ that is Ω(ln(n/(rm))) (note that λ needs not be constant). For i ≤ m, we
derive a better bound on Pr [∆(i) = −j] for j ≥ 1 compared to Theorem 4. The
aim is to bound the expression by (rm/n)Ω(j). Observe that it is necessary to
flip at least j 0-bits. Even when already r bits have been flipped, there are n−r
unflipped 1-bits left and the probability of choosing a zero-bit as next flipping
bit is at most m/(n−r). If already some 0-bits have been flipped, the probability
is only smaller. Note that m/(n− r) ≤ m/(n− n/2) ≤ (m/n) · 2κ/n < 1 since
r ≤ n/2 and κ < 1/2. There are at most

(
r
j

)
ways of flipping the j 0-bits within

r trials. Hence,

Pr [∆(i) = −j] ≤
(
r

j

)(
2m

n

)j
≤
(

2mr

n

)j
≤ e−c

′j ln
(

n
rm

)
for a constant c′ > 0 that gets the closer to 1 the closer the constant κ is to 0
(note that κ ≤ 1/2 is necessary for c′ > 0). If we choose λ := (c′/d) ln(n/(rm))
for some d > 1, we can estimate the contribution of the distance-decreasing

11

steps to the expectation E
[
e−λ(Xt+1−Xt) | Xt = i

]
as follows:

Q :=

∞∑
j=1

Pr [∆(i) = −j] · eλj

=

∞∑
j=1

e−c
′j ln(n/(rm))+(c′/d)j ln(n/(rm)) =

(
rm
n

)c′(1−1/d)

1− rm
n
c′(1−1/d)

.

Recalling that c′ and d are constants (and c′ approaches 1 if κ decreases),
we can choose κ so small that the denominator is at least 1/2. Then Q ≤
2(rm/n)c

′(1−1/d).
To complete a proof, we need a good lower bound on Pr [∆(i) ≥ 1]. To this

end, observe that Markov’s inequality (using E [Zt] = ri/n ≤ rm/n) yields

Pr [∆(i) ≥ 1] = Pr [r − 2Zt ≥ 1] = Pr

[
Zt ≤

r − 1

2

]
= 1−Pr

[
Zt >

r − 1

2

]
≥ 1− ri

n(r − 1)/2
≥ 1− 4m

n

for r ≥ 2. For r = 1, the bound Pr [∆(i) ≥ 1] = 1− i/n ≥ 1−m/n follows by
standard arguments. Altogether, we use the bound Pr [∆(i) ≥ 1] ≥ 1−4m/n for
any r. Furthermore, we pessimistically assume that Pr [∆(i) = 1] = 1 − 4m/n
(the terms for j > 1 get a smaller weight in the moment-generating function)
and obtain

E
[
e−λ(Xt+1−Xt) | Xt = i

]
≤ 2rm

n
+

(
1− 4m

n

)
· e−λ +Q

≤ 2rm

n
+
(rm
n

)c′/d
+ 2

(rm
n

)c′(1−1/d)

.

We consider the last bound as a function of rm/n < 1. In fact, after having
fixed a lower bound on c′ (recalling that c′ grows with decreasing κ) and having
chosen a large enough d, a constant small choice of κ bounds the expectation
by a constant less than 1.

Bounding D = max
{

1,E
[
e−λ·(Xt+1−m) | Xt ≥ m

]}
by O(1) works in the

same way. It is enough to use the upper bound on Pr [∆(i) = −j] for i = m since
the probability of making a step of size j+k towards the optimum from a current
number of m+ k 0-bits cannot be bigger than the probability of making a step
of size j from a current number of m 0-bits. Altogether, Lemma 2 bounds the
probability of reaching the optimum within some ec ln(n/(rm))·m = (n/(rm))cm

steps by 2−Ω(ln(n/(rm))·m) for a small enough constant c > 0.

We supplement an upper bound that contains the discussed (n/m)O(m) term.

Theorem 5. There exists a unary, unbiased black-box algorithm whose expected
runtime on Jumpm is no more than O(n log n+m(en/m)m).

12

Proof. Our black-box algorithm, called (1+1) EA-RW, contains a hill-climbing
component as the (1+1) EA, and a random-walk component. From the best-
so-far search point, it creates an offspring by bitwise mutation. If this is an
improvement, the best-so-far is updated and nothing else happens. Otherwise,
the algorithm will start a random walk from the offspring until a search point
with different fitness value is encountered. If this improves on the best-so-far,
the best-so-far is updated. This procedure is repeated infinitely.

Algorithm 2 (1+1) EA-RW

Choose x uniformly at random.
while true do
y ← x.
Flip each bit of y independently with probability 1/n.
if f(y) ≥ f(x) then
x← y

else
f∗ ← f(y).
repeat

Flip a bit of y chosen uniformly at random.
until f(y) 6= f∗.
if f(y) ≥ f(x) then x← y.

end if
end while

For the analysis, we reuse the partition of the search space into sets A1, A2

and A3 from the proof of Theorem 3. As long as no search point with n −m
1-bits has been found, the black-box algorithm (1+1) EA-RW behaves like the
(1+1) EA. Given that the current search point of the (1+1) EA-RW is in the
set A2, we can use the analysis of the (1+1) EA on Onemax by [3], whence it
follows that a search point with n−m 1-bits is found in an expected number of
O(n log n) steps in this situation. We will show that the set A1 and A3 are left
in favour of A2 after O(m(en/m)m−1) steps in expectation, altogether resulting
in an expected time O(n log n+m(en/m)m−1) until a search point with n−m
1-bits is found (pessimistically assuming that the optimum is not found before).
From that time on, we will analyse the behaviour of the random-walk component
(the else branch).

Given a search point x in A3, let k, 1 ≤ k < m, denote the current number
of 0-bits. Note that all search points in A3 have minimal fitness such that every
offspring produced by standard bit mutation is accepted until the set is left. In
order to reach the set A2, it is sufficient to have m−k consecutive steps flipping
only a 1-bit. The probability of this joint event is bounded from below by

m−1∏
i=k

n− i
n
·
(

1− 1

n

)n−1

≥
m−1∏
i=1

n− i
en

≥
(m
en

)m−1

using that n ≥ 2m. The expected number of phases of length m − k ≤ m

13

until this event happens is bounded by (en/m)m−1, resulting altogether in an
expected time of no more than m(en/m)m−1 until the set A2 (or the optimum)
is reached. A symmetrical analysis reveals the same bound when starting from
the set A1.

Starting with m 0-bits, the algorithm can make a random walk. The re-
maining process is divided into phases, each of length k, 1 ≤ k ≤ m, where k is
the number of 0-bits by the start of the phase. We focus on the event of having
k consecutive steps, each flipping only a 0-bit, where the first step may be made
according to bit-wise mutation and the rest flips single bits. The probability of
this event is bounded from below by

m

n

(
1− 1

n

)n−1 m−1∏
i=1

i

n
≥ m!

enm
≥ (m/e)m

enm
=

1

e

(m
en

)m
.

Each phase lasts at most m steps, so the expected time until the random-walk
component finds the optimum is therefore no more than em · (en/m)m.

It is an open problem to determine the exact order of growth of the com-
plexity of unary, unbiased black-box algorithms on Jumpm. We conjecture
(n/m)Θ(m), i. e., the lower bounds should be improved.

14

5 General Functions

In the previous sections, we provided bounds on particular pseudo-Boolean func-
tions that are commonly considered in the runtime analysis of randomised search
heuristics. In this section, we focus on finding lower bounds that hold for any
function. Such bounds are only interesting when we consider functions that
correspond to realistic optimisation problems, as trivial functions like constant
functions can be optimised with a single function evaluation. We therefore focus
on functions that have a unique global optimum.

It is of interest to compare the lower bounds in the black-box models with
those bounds that have been obtained for specific EAs. Wegener proved a
lower bound of Ω(n log n) for the (1+1) EA on any function with a unique
optimum [19]. This bound is significantly larger than the Ω(n/ log n) bound
that holds for a generalisation of the Onemax problem in the black-box model
[4]. Given this discrepancy, one can ask whether there is room to design better
EAs which overcome the n log n barrier, or whether the black-box bound is too
loose. Jansen et al. provided evidence that there is little room for improvement
by showing that any EA that uses uniform initialisation, selection and bitwise
mutation with probability 1/n needs Ω(n log n) function evaluations to optimise
functions with a unique optimum [8].

In the following, we will generalise this result further, showing that the
n log n-barrier for functions of a unique optimum even holds for the wider class of
unary, unbiased black-box algorithms. The idea behind the proof is to show that
the probability of making an improving step reduces as the algorithm approaches
the optimum. To implement this idea, we use a proof technique called expected
multiplicative weight decrease [14]. It will be helpful to have an estimate of the
expectation of a random variable, conditional on the event that this variable
takes at least a certain value. We will therefore first provide such an estimate
for hypergeometrically distributed random variables.

Lemma 4. Let Z be a hypergeometrically distributed random variable with pa-
rameters n (number of balls), r (number of samples) and m (number of red
balls), then for all k, 0 ≤ k ≤ r, E [Z | Z ≥ k] ≤ k + (r − k)(m− k)/(n− k).

Proof. The remaining number of trials where red balls can be obtained is max-
imised if already all of the first k sampled balls were red. Then the number
of additionally sampled red balls is denoted by Y and hypergeometrically dis-

15

tributed with parameters n− k, r − k and m− k. Hence,

E [Z | Z ≥ k] = k +

r∑
i=k

(Pr [Z = i | Z ≥ k] ·E [Z − k | Z = i ≥ k])

= k +

r∑
i=k

(Pr [Z = i | Z ≥ k] · (i− k))

≤ k +

r∑
i=k

(Pr [Y = i− k] · (i− k))

= k + E [Y] = k +
(r − k) · (m− k)

n− k
.

We now state the main result of this section.

Theorem 6. The expected runtime of any unary, unbiased black-box algorithm
on any pseudo-Boolean function with a single global optimum is Ω(n log n).

Proof. Without loss of generality, assume that the optimum is the search point
1n. Since this optimum can easily be obtained from search point 0n by flipping
all bits, the runtime will be bounded by the number of steps until either 1n or
0n is sampled for the first time. The potential αtn of the population in a given
iteration t is defined as the shortest Hamming distance from any previously
sampled search point to either 1n or 0n.

The algorithm will only be charged for steps starting from a potential of
α0n > n/3. By Chernoff bounds, the potential in the initial generation is at
least n/3 with exponentially high probability. The time to reduce the potential
to 0 is estimated using the method of multiplicative weight decrease.

The expected weight decrease after varying a search point x is first estimated
conditional on the event that the chosen variation operator pv flips exactly r ≥ 1
bits. Conditional on this event, the varied search point x′ will be uniformly
sampled among all bitstrings that have Hamming distance r to search point x.
Assume that the chosen search point x has αn+ cr number of 0-bits. In order
to obtain a search point with less than αn 0-bits, it is necessary that 0 ≤ c < 1.
Let X be the random variable such that the number of 0-bits in the new search
point x′ is αn−X.

We claim that if the current potential is αn for any α, 0 ≤ α < 1/3, then the
expected reduction in potential in one iteration is bounded from above by O(α),
independently of r and c. If the claim holds, then the expected potential in the
following iteration is αn · (1− O(n−1)), and the expected number of iterations
t until the optimum has been found satisfies

(n/3) · (1−O(n−1))t < 1

t · log(1−O(n−1)) < − log(n/3)

t ·O(n−1) > log(n/3)

t = Ω(n log n).

16

We first prove that the claim holds for all r, where 1 ≤ r < n/2. Let random
variable Z denote the number of 0-bits that are flipped. The number of 0-bits in
search point x′ is αn−X = αn+cr−Z+(r−Z), henceX = 2Z−r(1+c). Random
variable Z corresponds to the number of red balls obtained after sampling r balls
without replacement from an urn containing n balls, where αn+ cr of the balls
are red. Random variable Z is therefore hypergeometrically distributed with
expectation r · (α+cr/n). The potential will only decrease when the new search
point x′ has at least cr fewer 0-bits than x. The probability of this event is
pz := Pr [X ≥ 0] = Pr [Z ≥ r(1 + c)/2]. By Lemma 4, when r < n/2, the
expected reduction in potential equals

pz ·E [X | X ≥ 0] = pz ·E
[
2Z − r(1 + c) | Z ≥ r(1 + c)

2

]
≤ 2pz ·

(r − r(1 + c)/2) · (αn+ cr − r(1 + c)/2)

n− r(1 + c)/2

≤ pz
rαn

n− r
= αpzr · 1/(1− r/n) ≤ 2αpzr.

For r ≤ n/2 and α < 1/3, Lemma 3 gives

pz = Pr [Z > r(1 + c)/2] ≤ exp(−2t2r)

where t = (1 + c)/2 − α − cr/n ≥ 1/6. So, the expected weight decrease when
r < n/2 satisfies 2αr/er/18 = O(α).

To prove that the claim holds when n/2 ≤ r < n, we can use a symmetry
in the hypergeometric distribution. Instead of selecting r bit positions to flip,
one can select q := n − r bit positions to keep and flip the other bit positions.
Assume that the selected search point contains αn + cq 1-bits. Clearly, the
constant c is bounded by c < 1, otherwise more than αn 1-bits will be flipped
into 0-bits, and the potential would not decrease. Let random variable O denote
the number of 1-bits selected not to be flipped. The number of 0-bits in search
point x′ is αn+ cq −O + (q −O), hence X = 2O − q(1 + c). Random variable
O is hypergeometrically distributed, corresponding to the number of red balls
obtained after sampling q balls without replacement from an urn containing n
balls, where αn + cq of the balls are red. This corresponds exactly to the case
when r < n/2, where the roles of variables q and O are replaced with r and
Z. It therefore follows that the expected decrease in potential is bounded from
above by O(α).

The claim now holds for any r and c, and the theorem follows.

6 Conclusions

This paper takes a step forward in building a unified theory of randomised search
heuristics. We have defined a new black-box model that captures essential
aspects of randomised search heuristics. The new model covers many of the
common search heuristics, including simulated annealing and EAs commonly

17

considered in theoretical studies. We have proved upper and lower bounds on the
runtime of several commonly considered pseudo-Boolean functions. For some
functions, the lower bounds coincide with the upper bounds for the (1+1) EA,
implying that this simple EA is asymptotically optimal on the function class.
It is shown that any search heuristic in the model needs Ω(n log n) function
evaluations to optimise functions with a unique optimum. Also, it is shown
that Hamming cliffs pose a difficulty for any black-box search heuristic in the
model.

This work can be extended in several ways. Firstly, it is interesting to con-
sider more problem classes than those considered here. Secondly, the analysis
should be extended to variation operators with greater arity than one. Finally,
alternative black-box models could be defined that cover ant colony optimisa-
tion, particle swarm optimisation and estimation of distribution algorithms.

References

[1] V. Chvátal. The tail of the hypergeometric distribution. Discrete Mathe-
matics, 25(3):285–287, 1979.

[2] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, 2004.

[3] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) Evolu-
tionary Algorithm. Theoretical Computer Science, 276:51–81, 2002.

[4] S. Droste, T. Jansen, and I. Wegener. Upper and lower bounds for ran-
domized search heuristics in black-box optimization. Theory of Computing
Systems, 39(4):525–544, 2006.

[5] S. Droste and D. Wiesmann. Metric based evolutionary algorithms. In
Proceedings of Genetic Programming, European Conference, volume 1802
of LNCS, pages 29–43. Springer, 2000.

[6] B. Hajek. Hitting-time and occupation-time bounds implied by drift analy-
sis with applications. Advances in Applied Probability, 13(3):502–525, 1982.

[7] J. He and X. Yao. A study of drift analysis for estimating computation
time of evolutionary algorithms. Natural Computing, 3(1), 2004.

[8] T. Jansen, K. A. D. Jong, and I. Wegener. On the choice of the off-
spring population size in evolutionary algorithms. Evolutionary Computa-
tion, 13(4):413–440, 2005.

[9] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, 1988.

[10] J. Kennedy and R. C. Eberhart. Swarm intelligence. Morgan Kaufmann
Publishers Inc., 2001.

18

[11] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, May 1983.

[12] P. Larrañaga and J. A. Lozano. Estimation of distribution algorithms: a
new tool for evolutionary computation. Kluwer Academic Publishers, 2002.

[13] P. K. Lehre and X. Yao. Runtime analysis of (1+1) EA on computing
unique input output sequences. In Proceedings of 2007 IEEE Congress on
Evolutionary Computation (CEC’07), pages 1882–1889. IEEE Press, 2007.

[14] F. Neumann and I. Wegener. Randomized local search, evolutionary algo-
rithms, and the minimum spanning tree problem. Theoretical Computer
Science, 378(1):32–40, 2007.

[15] P. S. Oliveto, J. He, and X. Yao. Time complexity of evolutionary algo-
rithms for combinatorial optimization: A decade of results. International
Journal of Automation and Computing, 4(1):100–106, 2007.

[16] P. S. Oliveto, P. K. Lehre, and F. Neumann. Theoretical analysis of rank-
based mutation - combining exploration and exploitation. In Proceedings of
the 10th IEEE Congress on Evolutionary Computation (CEC ’09), pages
1455–1462. IEEE, 2009.

[17] P. S. Oliveto and C. Witt. Simplified drift analysis for proving lower bounds
in evolutionary computation. In Proceedings of Parallel Problem Solving
from Nature (PPSN’X), number 5199 in LNCS, pages 82–91, 2008.

[18] J. E. Rowe, M. D. Vose, and A. H. Wright. Neighborhood graphs and
symmetric genetic operators. In Proceedings of Foundations of Genetic
Algorithms 9, number 4436 in LNCS, pages 110–122, 2007.

[19] I. Wegener. Methods for the analysis of evolutionary algorithms on pseudo-
Boolean functions. In R. Sarker, M. Mohammadian, and X. Yao, editors,
Evolutionary Optimization, pages 349–369. Kluwer, 2002.

[20] C. Witt. Runtime analysis of the (µ + 1) EA on simple pseudo-Boolean
functions. Evolutionary Computation, 14(1):65–86, 2006.

19

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

