
Black-Box Search by Unbiased Variation

Per Kristian Lehre∗ and Carsten Witt†

Technical University of Denmark
Kgs. Lyngby, Denmark
{pkle,cfw}@imm.dtu.dk

September 30, 2010

Abstract

The complexity theory for black-box algorithms, introduced by Droste
et al. (2006), describes common limits on the efficiency of a broad class
of randomised search heuristics. There is an obvious trade-off between
the generality of the black-box model and the strength of the bounds
that can be proven in such a model. In particular, the original black-box
model allows polynomial complexity for certain NP-complete problems
and provides for well-known benchmark problems relatively small lower
bounds, which are typically not met by popular search heuristics.

In this paper, we introduce a more restricted black-box model which we
claim captures the working principles of many randomised search heuris-
tics including simulated annealing, evolutionary algorithms, randomised
local search and others. The key concept worked out is an unbiased vari-
ation operator. Considering this class of algorithms, significantly better
lower bounds on the black-box complexity are proved, amongst them an
Ω(n logn) bound for functions with unique optimum. Moreover, a sim-
ple unimodal function and gap functions are considered. We show that a
simple (1+1) EA is able to match the runtime bounds in several cases.

∗Supported by EPSRC under grant no. EP/D052785/1, and Deutsche Forschungsgemein-
schaft (DFG) under grant no. WI 3552/1-1.
†Supported by Deutsche Forschungsgemeinschaft (DFG) under grant no. WI 3552/1-1.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 102 (2010)

1 Introduction

The theory of randomised search heuristics has advanced significantly over the
last years. In particular, there exist now rigorous results giving the runtime
of canonical search heuristics, like the (1+1) EA, on combinatorial optimisa-
tion problems [19]. Ideally, these theoretical advances will guide practitioners
in their application of search heuristics. However, it is still unclear to what
degree the theoretical results that have been obtained for the canonical search
heuristics can inform the usage of the numerous, and often more complex, search
heuristics that are applied in practice. While there is an ongoing effort in ex-
tending runtime analysis to more complex search heuristics, this often requires
development of new mathematical techniques.

To advance the theoretical understanding of search heuristics, it would be
desirable to develop a computational complexity theory of search heuristics.
The basis of such a theory would be a computational model that captures the
inherent limitations of search heuristics. The results would be a classification
of problems according to the time required to solve the problems in the model.
Such a theory has already been introduced for local search problems [11]. The
goal in local search problems is to find any solution that is locally optimal with
regards to the cost function and a neighbourhood structure over the solution
set. Here, we are interested in global search problems, i. e. where the goal is to
find any globally optimal solution.

Droste et al. introduced a model for global optimisation called the black-box
model [5]. The framework considers search heuristics, called black-box algo-
rithms, that optimise functions over some finite domain S. The black-box algo-
rithms are limited by the amount of information that is given about the function
to be optimised and have to make queries to an oracle in order to determine
fitness values. In this framework, lower bounds on the number of queries re-
quired for optimisation can be obtained. An advantage of the black-box model
is its generality. The model covers any realistic search heuristic. Despite this
generality, the lower bounds in the model are in some cases close or equal to
the corresponding upper bounds that hold for particular search heuristics. For
example, it is shown that the needle-in-the-haystack and trap problems are hard
problems, having black-box complexity of (2n + 1)/2 [5].

However, the black-box model also has some disadvantages. For example,
it is proved that the NP-hard MAX-CLIQUE problem has polynomial black
box complexity [5]. One cannot expect any realistic search heuristic to solve all
instances of this problem in polynomial time. Indeed, the black-box algorithm
that achieves the polynomial runtime is contrived. The algorithm first queries
for the function values of all possible pairs of nodes, thus uncovering all the
edges in the graph. Given knowledge about the instance, the algorithm can find
the optimal solution through offline brute force search, without making any
further queries to the black-box. This algorithm requires in total no more than(
n
2

)
+ 1 function evaluations. Similar black-box algorithms can be envisaged for

other NP-hard problems. This result exposes two weaknesses: the lower bounds
in the model are often obtained by black-box algorithms that do not resemble

2

any randomised search heuristic. Secondly, the model is too unrestricted with
respect to the amount of resources disposable to the algorithm. Black-box
algorithms can spend unlimited time in-between queries to do computation.

In order to define a more realistic black-box model, one should consider
which additional restrictions to consider. Droste et al. suggested to limit the
available storage space available to the black box algorithm [5], but did not
prove any lower bounds in the space restricted scenario.

The remaining of this paper is organised as follows. Section 2 introduces
the new black-box model along with a description of the unbiased variation
operators. Section 3 provides the first lower bound in the model for a simple,
unimodal problem. Then, in Section 4, we consider a function class that contains
a plateau. Finally, in Section 5, we prove lower bounds that hold for any function
with a single, global optimum. The paper is concluded in Section 6.

2 A Refined Black-Box Model

We now present the refined black-box model that is obtained by imposing two
additional restrictions in the old black-box model. We start with a preliminary
informal description and motivation.

Firstly, we limit the degree of independence between the queries. The initial
query is a bitstring chosen uniformly at random. Every subsequent query must
be made for a search point that is obtained by applying an unbiased variation
operator to one of the previously queried search points. Unbiased variation
operators will be defined in Section 2.1.

Secondly, we put an additional restriction on the information that is available
to the algorithm by preventing the algorithm from observing the bit values
of the search points that are queried. Hence, the only information that can
be exploited by the algorithm is the sequence of fitness values obtained when
making queries to the black-box, and not the search points themselves. Note
that without this restriction, any black-box algorithm could be simulated as
follows: For each query x made by the unrestricted algorithm, the restricted
algorithm would solve the problem corresponding of minimising the Hamming
distance to search point x. This simulation would have an expected overhead
factor of O(n log n) function evaluations.

We now turn our considerations into a formal definition of a refined black-box
model, as stated in Algorithm 1. Let us first pick up the unrestricted black-
box scenario [5]. The black-box algorithm A is given a class of pseudo-Boolean
functions F . An adversary selects a function f from this class and presents it
to the algorithm as a black-box. At this point, the only information available to
the algorithm about the function f is that it belongs to function class F . The
black-box algorithm can now start to query an oracle for the function values
of any search points. The runtime TA,f of the algorithm on function f is the
number of function queries on f until the algorithm queries the function value
of an optimal search point for the first time. The runtime TA,F on the class of
functions is defined as the maximum runtime over the class of functions. In the

3

Algorithm 1 Unbiased Black-Box Algorithm

1: t← 0.
2: Choose x(t) uniformly at random from {0, 1}n.
3: repeat
4: t← t+ 1.
5: Compute f(x(t− 1)).
6: I(t)← (f(x(0)), ..., f(x(t− 1))).
7: Depending on I(t), choose a probability distribution ps on {0, ..., t− 1}.
8: Randomly choose an index j according to ps.
9: Depending on I(t), choose an unbiased variation operator pv(· | x(j)).

10: Randomly choose a bitstring x(t) according to pv.
11: until termination condition met.

unbiased black-box model, queries of new search points must be made according
to Algorithm 1. I.e., the initial search point is chosen uniformly at random by
an oracle, and subsequent search points are obtained by asking the oracle to
apply a given unbiased variation operator to a previously queried search point.

The unbiased black-box complexity of a function class F is the minimum
worst case runtime TA,F among all unbiased black-box algorithms A satisfying
the framework of Algorithm 1. Hence, any upper bound on the worst case of
a particular unbiased black-box algorithm, also implies the same upper bound
on the unbiased black-box complexity. To prove a lower bound on the unbiased
black-box complexity, it is necessary to prove that the lower bound holds for any
unbiased black-box algorithm. Note that since unbiased black-box algorithms
are a special case of black-box algorithms, all the lower bounds that hold for
the general black-box model also hold for the unbiased black-box model.

2.1 Unbiased Variation Operators

We formalise variation operators as conditional probability distributions over the
search space. Given k search points x1, . . . , xk, a variation operator p produces
a search point y with probability p(y | x1, . . . , xk). We put some restrictions
on the probability distribution to capture the essential characteristics of the
variation operators that are used by the common randomised search heuristics.
Firstly, one can limit the number k of search points that are used to produce
the new search point. The number k determines the arity of the variation
operator. Here, we will only consider unary variation operators, i. e. when k = 1.
Furthermore, we will impose the following two unbiasedness-conditions on the
operators:

1) ∀x, y, z, p(y | x1, . . . , xk) = p(y ⊕ z | x1 ⊕ z, . . . , xk ⊕ z),
2) ∀x, y, σ, p(y | x1, . . . , xk) = p(σb(y) | σb(x1), . . . , σb(xk)),

where ⊕ denotes the exclusive or-operation on bitstrings, and for any permu-
tation σ over [n], σb is an associated permutation over the bitstrings defined

4

as

σb(x1x2 · · ·xn) := xσ(1)xσ(2) · · ·xσ(n).

Variation operators that satisfy the first condition are called ⊕-invariant,
while variation operators that satisfy the second condition are called σ-invariant.
In this paper, unbiased variation operators is defined as variation operators that
satisfy both conditions, i. e. ⊕-σ-invariant operators. Note that this is a special
case of the framework by Rowe, Vose and Wright [21], who study invariance
from a group-theoretical point of view.

We claim that the two conditions are natural. Firstly, the variation opera-
tors used by common randomised search heuristics are typically ⊕-σ-invariant,
including flipping a randomly chosen bit position, bitwise mutation with any
mutation probability, and uniform sampling of bitstrings. Furthermore, the
black-box algorithm is allowed to select a different variation operator in each
iteration, as long as the variation operators are statistically independent. This
generality allows adaptive variation operators to be covered, including rank-
based mutation [20]. Secondly, the two conditions on the variation operators
can also be motivated by practical concerns. In applications, the set of bitstrings
typically encode the variable settings of candidate solutions, and is rarely the
optimisation domain per se. Hence, the encoding from variable setting to bit
value, and from variable to bitstring position, can be arbitrary. E.g., whether
the user encodes a “high temperature” variable setting as 0 or 1, or decides to
encode the temperature variable by the first instead of the last variable in the
bitstring, should not influence the behaviour of a search heuristic.

Droste and Wiesmann recommended that all search points that are within
the same distance of the originating search point should have the same probabil-
ity of being produced [6]. This unbiasedness criterion, which we call Hamming-
invariance, can be formalised as follows:

3) ∀x, y, z, H(x, y) = H(x, z) =⇒ p(y | x) = p(z | x),

where H(x, y) denotes the Hamming distance between x and y. We now show
that these criteria are related.

Proposition 1. Every unary variation operator that is ⊕-σ-invariant is also
Hamming-invariant.

Proof. Assume that p is an ⊕-σ-invariant variation operator. Let x, y, u and v
be any search points such that d(x, y) = d(u, v) =: d. Given these assumptions,
we will prove that p(y | x) = p(v | u) holds. There must exist a permutation σ
such that σ(y ⊕ x) = v ⊕ u. We then have

p(y | x) = p(y ⊕ x | 0n) = p(σ(y ⊕ x) | 0n)

= p(v ⊕ u | 0n) = p(v | u).

By setting u = x, it is clear that p is Hamming-invariant.

5

When referring to unbiased black-box algorithms in the following, we mean
any algorithm that follows the framework of Algorithm 1. In particular, by
unary, unbiased black-box algorithms, we mean such algorithms that only use
unary, unbiased variation operators. The class of unary, unbiased black-box
algorithms is general, and includes many well known algorithms, including sim-
ulated annealing [13], random local search (RLS) [17], (µ+λ) EA [4, 10, 23],
and many other population-based EAs that do not use crossover. Note that
the restriction to unary, unbiased variation operators excludes some randomised
search heuristics. In particular, the model does not cover EAs that use crossover.
Many of the commonly used diversity mechanisms are excluded. Also, estima-
tion of distribution algorithms [14], ant colony optimisation [3] and particle
swarm optimisation [12] are not covered by the model.

3 Simple Unimodal Functions

As an initial example, we consider the simple unimodal function LeadingOnes
(x) =

∑n
i=1

∏i
j=1 xj . (The function Onemax is covered by the results in Sec-

tion 5.) The expected runtime of the (1+1) EA on this function is Θ(n2) [4],
which seems optimal among commonly analysed EAs. Increasing either the off-
spring or parent population sizes does not reduce the runtime. For (µ+1) EA,
the runtime is Θ(n2+µn log n) [23], and for (1+λ) EA, the runtime is Θ(n2+λn)
[10].

We now show that the runtime of the (1+1) EA on LeadingOnes is asymp-
totically optimal in the unbiased black-box model. We define the potential of
the algorithm at time step t as the largest number of leading 1- or 0-bits ob-
tained so far, i.e. k := max0≤j≤t{Lo(x(j)),Lz(x(j))}. The number of 0-bits
must be considered because flipping every bit in a bitstring with i leading 0-bits
will produce a bitstring with i leading 1-bits. The increase of the potential will
be studied using drift analysis [7, 8]. To lower bound the drift, it is helpful
to proceed as in the analysis of (1+1) EA on LeadingOnes [4], i. e. to first
prove that the substring after the first 0-bit in a given time step is uniformly
distributed. We will prove a more general statement that will also be used in
Section 4. For notational convenience, subsets of [n] and bitstrings of length n
will be used interchangably, i. e., the bitstring x ∈ {0, 1}n is associated with the
subset {i ∈ [n] | xi = 1}.

Lemma 1. For any t ≥ 0, let X(t) = {x(0), x(1), . . . , x(t)} be the search points
visited by any unary, unbiased black-box algorithm until iteration t when opti-
mising function f . If there exists a subset of indices z ⊆ [n] such that

∀y ⊆ z,∀x ∈ X(t) f(x⊕ y) = f(x),

then the bits {xi(t) | i ∈ z} are independent and uniformly distributed.

Proof. We first prove the claim that for all t ≥ 0, b ∈ {0, 1}, and i ∈ z it
holds that Pr [xi(t) = b] = 1/2. The proof is by induction over the time step

6

t. The initial search point is sampled uniformly at random, so the claim holds
for t = 0. Assume that the claim holds for t = t0 ≥ 0. The fitness profile
I(t0) does not depend on any of the bits in position i in the previously visited
search points. The choice of search point x(j) the algorithm makes is therefore
independent of these bits. By the induction hypothesis, search point x(j) has a
bit value of b in position i with probability p := 1/2. Letting r be the probability
that the variation operator flips bit position i, we have Pr [xi(t0 + 1) = b] =
p(1− r) + (1− p)r = 1/2. By induction, the claim now holds for all t.

We now prove the lemma by induction over the time t. The lemma holds for
time step t = 0. Assume that the lemma holds for t = t0 ≥ 0. Let U ∈ {0, 1}n
be a random vector where the elements Ui, 1 ≤ i ≤ n, take the value Ui = 1 if
bit position i flipped in step t0, and Ui = 0 otherwise. Then for all bitstrings
y ∈ {0, 1}n,

Pr

[∧
i∈z

xi(t0 + 1) = yi

]
=

∑
u∈{0,1}n

Pr [U = u]Pr

[∧
i∈z

xi(t0) = yi ⊕ ui

]
,

which by the induction hypothesis (more precisely, the statement about inde-
pendence) equals∑
u∈{0,1}n

Pr [U = u]
∏
i∈z

Pr [xi(t0) = yi ⊕ ui] = 2−|z| =
∏
i∈z

Pr [xi(t0 + 1) = yi] ,

where the last equality follows from the claim above. This proves the indepen-
dence at time t0 + 1, and, therefore, the induction step.

Theorem 1. The expected runtime of any unary, unbiased black-box algorithm
on LeadingOnes is Ω(n2).

Proof. We first prove the claim that w.o.p., the potential of the algorithm will at
some time be in the interval between n/2 and 3n/4, before the optimum has been
found. With probability 1−2−n/2, the initial search point will have potential less
than n/2. Let integer i be the number of 0-bits in the interval from n/2 and 3n/4
in the bitstring that the algorithm selects next. By Lemma 1 with the index set
z := [n/2+1, n], and a Chernoff bound, there is a constant δ > 0 such that with
overwhelming probability, this integer satisfies (1 − δ)n/8 < i < (1 + δ)n/8.
In order to increase the potential from less than n/2 to at least 3n/4, it is
necessary to flip every 0-bit in the interval from n/2 to 3n/4 and no other bits.
We optimistically assume that exactly i bits are flipped in this interval. However
due to the unbiasedness condition, every choice of i among n/4 bits to flip is
equally likely. The probability that only the 0-bits are flipped is therefore at

most
(
n/4
i

)−1
≤ (4i/n)i ≤ ((1 + δ)/2)n/4(1−δ). The claim therefore holds.

We now apply drift analysis according to the potential k of the algorithm,
only counting the steps starting from a potential in the interval n/2 ≤ k < 3n/4.
In order to find the optimum, the potential must be increased by at least n/4.
Assume that the selected search point has r 0-bits in the first k+1 bit positions.

7

In order to increase the potential, it is necessary to flip all these 0-bits, and none
of the 1-bits within this interval. This corresponds to consecutively selecting all
the r red balls from an urn containing k+ 1 balls. The probability of this event
is less than

r

k + 1
· r − 1

k
· · · 2

k − r + 2
· 1

k − r + 1
≤ 1

k + 1
.

The drift in each step is bounded from above by ∆i(t) ≤ (1 + E [Yt])/(k + 1),
where random variable Yt is the number of free-riders [4] in step t. Applying
Lemma 1 with the index set z := [k + 2, n] gives E [Yt] ≤

∑∞
i=1 2−i ≤ 1. The

polynomial drift theorem [8] now implies that E [T] ≥ (n/4)/∆t(i) = (k +
1)n/4 = Ω(n2).

Note that the complexity of LeadingOnes in the unrestricted black-box
model1 is bounded above by n/2−o(n) [5]. This illustrates that the complexity
of a function class can be significantly higher in the unbiased black-box model
than in the unrestricted black-box model.

4 Enforcing Expected Runtimes

We are interested in problem classes where the unbiased black-box complexity
depends on some parameter of the problem. More specifically, is there a class
of functions F = {fi | i ∈ Z}, such that the unbiased black-box complexity of
the functions fm in the class F increases with the problem parameter m, e. g.
as Θ(2m)?

In the case of the (1+1) EA, it is known that the runtime can depend on
the size of so-called Hamming cliffs. A Hamming cliff of size m is a search
point where all other search points within Hamming distance m are of inferior
quality. Hamming cliffs are common in combinatorial optimisation problems.
For example, on the minimum spanning tree problem, the (1+1) EA must flip
two edges to make an improvement [17]. This is accounted for by an Ω(n2) factor
in the expected runtime. More generally, there exists combinatorial optimisation
problems that for any m have instances with Hamming cliffs of size m [16]. The
(1+1) EA needs Ω(nm) steps to overcome a Hamming cliff of size m, and there
is an example called Jumpm [4] where also an upper bound O(nm) holds, i. e., an
expected runtime can be enforced. This corresponds to a hierarchy consisting
of a class of functions with increasing difficulty.

We are aiming at generalising this result to black-box algorithms with unary
unbiased variation. We pick up the general idea of the Jumpm function in [4],

1Unlike unbiased black-box algorithms, unrestricted black-box algorithms (the general
model studied in [5]) can optimise function classes containing a single function in constant
time by querying the optimum in the first iteration. To obtain meaningful results in the unre-
stricted model, it is therefore necessary to consider the generalised class of functions containing
LeadingOnesz(x) :=LeadingOnes (x⊕ z) for every bitstring z.

8

but modify the “gap”. For any m, where 0 ≤ m ≤ n, define

Jumpm(x) :=

n−m∑
i=1

xi +

n∏
i=1

xi.

Hence, the gap corresponds to the last m bit positions which do not influence
the function value, except at the optimal search point 1n, i. e., a plateau. For
m = 0, we obtain the easy Onemax function, and for m = n, we obtain the
hard Needle function. The following result shows that the hardness of Jumpm
depends on the problem parameter m.

Theorem 2. For 0 ≤ m ≤ n, the expected optimisation time of any unary,
unbiased black-box algorithm on Jumpm is at least 2m−2. Furthemore, the prob-
ability that the optimum is found within 2m(1−ε) iterations for any ε, 0 < ε < 1,
is no more than 2−εm.

Proof. The time T to find the optimum is bounded from below by the time T ′

until all the last m bits are 1-bits. The time is analysed as if the algorithm was
presented with the function f(x) =

∑n−m
i=1 xi instead of Jumpm. This function

differs from Jumpm only on the optimal search point 1n. The distribution of T ′

will therefore be the same for f and Jumpm.
Lemma 1 now applies for the function f and the set of indices z = [n −

m + 1, n]. The probability that the search point visited in any given iteration
has 1m as suffix is 2−m. By union bound, the probability that this suffix is
obtained before iteration t ≥ 0 is no more than t · 2−m. In particular, the
probability that the optimisation time is shorter than 2m−1 is less than 1/2, so
the expected optimisation time is at least 2m−2. Furthermore, the probability
that the optimum has been found within 2m(1−ε) iterations is no more than
2−εm.

We supplement an upper bound.

Theorem 3. There exists a unary, unbiased black-box algorithm whose expected
runtime on Jumpm is nem +O(n log n).

Proof. We show that the well-known algorithm random local search (RLS) [17]
has the stated expected runtime.

The first phase lasts as long as the algorithm can increase the number of
1-bits in the first n−m positions. By a coupon collector argument, the expected
time of this phase is O(n log n).

In the second phase, the function value of the current search point is n−m,
and the algorithm will only accept a new search point if it was obtained by
flipping one of the m bits in the suffix. We call such steps relevant, and we
ignore the other steps. Assume that the current search point has i, 1 ≤ i ≤ m,
0-bits in the suffix. To reach the optimum, it is sufficient to have i relevant
steps, each flipping a 0-bit. The probability of such a sequence can be bounded

9

by Stirling’s approximation as

i

m
· (i− 1)

m
· · · 1

m
=

i!

mi
≥
(

i

em

)i
.

The right hand side of this inequality is monotonically decreasing in i ≤ m, and
hence at least e−m. The expected waiting time for one relevant step is n/m.
By linearity of expectation, the expected waiting time for i relevant steps is
in/m < n. The expected time until the suffix of the current search point only
contains 1-bits is no more than nem.

The theorem now follows by adding the expected durations of the two phases.

5 General Functions

In the previous sections, we provided bounds on particular pseudo-Boolean func-
tions that are commonly considered in the runtime analysis of randomised search
heuristics. In this section, we focus on finding lower bounds that hold for any
function. Such bounds are only interesting when we consider functions that
correspond to realistic optimisation problems, as trivial functions like constant
functions can be optimised with a single function evaluation. We therefore focus
on functions that have a unique global optimum.

It is of interest to compare the lower bounds in the black-box models with
those bounds that have been obtained for specific EAs. Wegener proved a
lower bound of Ω(n log n) for the (1+1) EA on any function with a unique
optimum [22]. This bound is significantly larger than the Ω(n/ log n) bound
that holds for a generalisation of the Onemax problem in the black-box model
[5]. Given this discrepancy, one can ask whether there is room to design better
EAs which overcome the n log n barrier, or whether the black-box bound is too
loose. Jansen et al. provided evidence that there is little room for improvement
by showing that any EA that uses uniform initialisation, selection and bitwise
mutation with probability 1/n needs Ω(n log n) function evaluations to optimise
functions with a unique optimum [10].

In the following, we will generalise this result further, showing that the
n log n-barrier for functions of a unique optimum even holds for the wider class of
unary, unbiased black-box algorithms. The idea behind the proof is to show that
the probability of making an improving step reduces as the algorithm approaches
the optimum. To implement this idea, we will apply Theorem 5. This is a lower-
bound analogue to a technique which is called expected multiplicative weight
decrease in the evolutionary computation literature [18]. Theorem 5 will be
proved using the following polynomial drift-theorem.

Theorem 4 ([9]). Let X1, X2, . . . be random variables with bounded support and
let T be the stopping time defined by T := min{t | X1 + · · · + Xt ≥ g} for a
given g > 0. If E [T] exists and E [Xi | T ≥ i] ≤ u for i ∈ N, then E [T] ≥ g/u.

10

Theorem 5. Let β(n), γ(n), and b(n) be positive reals where b(n) > 2β(n).
Let Z1, Z2, . . . be a stochastic process with bounded support on the set of non-
negative integers, and define T to be the smallest t such that Zt = 0. If for all
t > 1, and z, where 0 < z ≤ b(n), it holds that

1. E [z − Zt | Zt−1 = z, T > t] ≤ zγ(n)

2. Pr [z − Zt ≥ β(n) | Zt−1 = z, T > t] ≤ γ(n)/z,

then

E [T | Z1 ≥ b(n)] ≥ 1

3γ(n)
· ln
(
b(n) + 1

2β(n) + 1

)
.

Proof. The proof generalises the proof of Theorem 1 in [2]. The random variable
T is non-negative, so if the expectation of T does not exist, then it is positive
infinite and the theorem holds. We condition on the events T > t and Zt−1 = z,
but we omit stating these events in the expectations for notational convenience.
We define the stochastic process Yt := ln(Zt + 1), and apply Theorem 4 with
respect to the random variables ∆t(z) := (Yt−1 − Yt | Zt−1 = z). For technical
reasons, we only consider the time until Zt ≤ 2β(n), and therefore use the
parameter g := ln(b(n) + 1)− ln(2β(n) + 1) > 0. We then have

E [∆t(z)] = E [ln(z + 1)− ln(Zt + 1)]

= E [ln((z + 1)/(Zt + 1))] .

The logarithmic function is concave, so by Jensen’s inequality, this is less than

ln

(
E

[
z + 1

Zt + 1

])
= ln

(
1 + E

[
z − Zt
Zt + 1

])
.

By using the inequality ln(1 + x) ≤ x, and the law of total probability, this
expectation can be bounded by the two terms

E

[
z − Zt
Zt + 1

]
≤ Pr [z − Zt ≤ β(n)]E

[
z − Zt
Zt + 1

]
+

Pr [z − Zt > β(n)]E

[
z − Zt
Zt + 1

| z − Zt > β(n)

]
. (1)

In the first term, we have omitted the condition z − Zt ≤ β(n), which will only
increase the expectation. By condition 1, and the assumption that z ≥ 2β(n),
the first term in Eq. (1) is bounded from above by

zγ(n)

z − β(n)
=

γ(n)

(1− β(n)/z)
≤ 2γ(n).

It follows from the assumption T > t that Zt ≥ 1 and hence (z−Zt)/(Zt+1) ≤ z.
The second term in Eq. (1) can therefore be bounded by applying the second
condition, giving Pr [z − Zt > β(n)] z ≤ γ(n).

From the above, one can conclude that E [∆t(z)] ≤ 3γ(n). From Theorem 4,
it now follows that E [T | Z1 ≥ b(n)] ≥ ln((b(n) + 1)/(2β(n) + 1))/3γ(n).

11

When analysing unbiased black-box algorithms, it is helpful to model the
application of an unbiased variation operator as a classical urn experiment.
Assume that the black-box algorithm chooses a search point that has m 0-bits
and that the variation operator flips r bits. This corresponds to drawing r balls
without replacement from an urn containing m red balls and n−m white balls.
The number of red balls Z in the sample, i. e., the number of flipped 0-bits, is a
hypergeometrically distributed random variable with expectation rm/n.

If the optimal search point is 1n, the improvement made by the algorithm
in one step can be expressed as Z − (r − Z) = 2Z − r, i. e., as the reduction
in the number of 0-bits. Clearly, the algorithm only makes an improvement if
this number is positive. Hence, in order to apply Theorem 5, it will be helpful
to have an estimate of the expectation of a hypergeometric random variable,
conditional on the event that this variable takes at least a certain value.

Lemma 2. Let Z be a hypergeometrically distributed random variable with pa-
rameters n (number of balls), r (number of samples) and m (number of red
balls), then for all k, 0 ≤ k ≤ r, E [Z | Z ≥ k] ≤ k + (r − k)(m− k)/(n− k).

Proof. The remaining number of trials where red balls can be obtained is max-
imised if already all of the first k sampled balls were red. Then the number
of additionally sampled red balls is denoted by Y and hypergeometrically dis-
tributed with parameters n− k, r − k and m− k. Hence,

E [Z | Z ≥ k] = k +

r∑
i=k

(Pr [Z = i | Z ≥ k] ·E [Z − k | Z = i ≥ k])

= k +

r∑
i=k

(Pr [Z = i | Z ≥ k] · (i− k))

≤ k +

r∑
i=k

(Pr [Y = i− k] · (i− k))

= k + E [Y] = k +
(r − k) · (m− k)

n− k
.

We also need upper bounds on the tail of the hypergeometric distribution.
The following result due to Chvátal [1] is an analogue to the Chernoff bounds
for the binomial distribution.

Lemma 3 (Chvátal, [1]). If X is a hypergeometrically distributed random vari-
able with parameters n (number of balls), m (number of red balls) and r (number
of samples), then Pr [X ≥ E [X] + rδ] ≤ exp(−2δ2r), where E [X] = rm

n .

We now state the main result of this section.

Theorem 6. The expected runtime of any unary, unbiased black-box algorithm
on any pseudo-Boolean function with a single global optimum is Ω(n log n).

12

Proof. Without loss of generality, assume that the optimum is the search point
1n. Since this optimum can easily be obtained from search point 0n by flipping
all bits, the runtime will be bounded by the number of steps until either 1n or
0n is sampled for the first time. The potential Pt of the algorithm in a given
iteration t ≥ is defined as the shortest Hamming distance from any previously
sampled search point to either 1n or 0n. To find the optimum, it is necessary
to reduce the potential to 0.

We consider it a failure if the initial potential is less than b(n) := n/3. By a
Chernoff bound, the probability of this failure event is e−Ω(n).

Assuming no failure occurs, we estimate the time to reduce the potential to 0
by applying Theorem 5 to the stochastic process Pt≥0. Clearly, this process has
bounded support. If we can prove that the conditions of the theorem hold for the
parameters b(n) = n/3, β(n) = ln2(n), and γ(n) = O(1/n), then the expected
runtime conditional on no failure is Ω(n log n). Since the failure probability
is only e−Ω(n), this also implies that the unconditional, expected runtime is
Ω(n log n). It therefore remains to show that the conditions of Theorem 5 holds.

We first verify the second condition. Let i be the number of 0-bits in the
search point selected in iteration t, and r ≥ 1 be the number of bits that was
flipped by the variation operator. The number of 0-bits that is flipped by the
variation operator is a hypergeometrically distributed random variable Zt with
parameters n (number of balls), i < n/3 (number of red balls) and r (number of
samples). The expectation of Zt is ri/n < r/3. In order to reduce the potential
by β(n), it is necessary to flip at least r ≥ β(n) bits. Furthermore, the distance
to the optimum can only be reduced if the variation operator flips more 0-bits
than 1-bits, i. e. Zt ≥ r − Zt. The probability of this event is

Pr [Zt ≥ r/2] ≤ Pr [Zt ≥ ri/n+ r/6] = Pr [Zt ≥ E [Zt] + r/6] .

By Lemma 3, the probability of reducing the potential when flipping at least
β(n) bits is therefore no more than exp(−r/18) = exp(−Ω(β(n))) = n−Ω(lnn).
So the second condition holds, because γ(n)/z = Ω(n−2) is asymptotically larger
than n−Ω(lnn).

We then verify the first condition, i. e., we must prove that if the current
potential is Pt = αn for any α, 0 ≤ α < 1/3, then the expected reduction in
potential in one iteration is bounded from above by O(α), independently of r
and c. The expected reduction in potential after varying a search point x is first
estimated conditional on the event that the chosen variation operator pv flips
exactly r ≥ 1 bits. Conditional on this event, the varied search point x′ will be
uniformly sampled among all bitstrings that have Hamming distance r to search
point x. Assume that the chosen search point x has αn+ cr number of 0-bits.
In order to obtain a search point with less than αn 0-bits, it is necessary that
0 ≤ c < 1. Let X be the random variable such that the number of 0-bits in the
new search point x′ is αn−X.

We first consider the case where 1 ≤ r < n/2. Let random variable Z denote
the number of 0-bits that are flipped. The number of 0-bits in search point
x′ is αn − X = αn + cr − Z + (r − Z), hence X = 2Z − r(1 + c). Random

13

variable Z corresponds to the number of red balls obtained after sampling r
balls without replacement from an urn containing n balls, where αn+ cr of the
balls are red. Random variable Z is therefore hypergeometrically distributed
with expectation r · (α+ cr/n). The potential will only decrease when the new
search point x′ has at least cr fewer 0-bits than x. The probability of this event
is pz := Pr [X ≥ 0] = Pr [Z ≥ r(1 + c)/2]. By Lemma 2, when r < n/2, the
expected reduction in potential equals

pz ·E [X | X ≥ 0] = pz ·E
[
2Z − r(1 + c) | Z ≥ r(1 + c)

2

]
≤ 2pz ·

(r − r(1 + c)/2) · (αn+ cr − r(1 + c)/2)

n− r(1 + c)/2

≤ pz
rαn

n− r
= αpzr · 1/(1− r/n) ≤ 2αpzr.

For r ≤ n/2 and α < 1/3, Lemma 3 gives

pz = Pr [Z > r(1 + c)/2] ≤ exp(−2t2r)

where t = (1 + c)/2−α− cr/n ≥ 1/6. So, expected reduction in potential when
r < n/2 is 2αr/er/18 = O(α).

For the case where n/2 ≤ r < n, we exploit a symmetry in the hypergeo-
metric distribution. Instead of selecting r bit positions to flip, one can select
q := n−r bit positions to keep and flip the other bit positions. Assume that the
selected search point contains αn+ cq 1-bits. Clearly, the constant c is bounded
by c < 1, otherwise more than αn 1-bits will be flipped into 0-bits, and the
potential would not decrease. Let random variable O denote the number of
1-bits selected not to be flipped. The number of 0-bits in search point x′ is
αn+ cq−O+(q−O), hence X = 2O− q(1+ c). Random variable O is hyperge-
ometrically distributed, corresponding to the number of red balls obtained after
sampling q balls without replacement from an urn containing n balls, where
αn+cq of the balls are red. This corresponds exactly to the case when r < n/2,
where the roles of variables q and O are replaced with r and Z. It therefore
follows that the expected decrease in potential is bounded from above by O(α).

Both conditions of Theorem 5 hold, and the theorem follows.

6 Conclusions

This paper takes a step forward in building a unified theory of randomised search
heuristics. We have defined a new black-box model that captures essential
aspects of randomised search heuristics. The new model covers many of the
common search heuristics, including simulated annealing and EAs commonly
considered in theoretical studies. We have proved upper and lower bounds on the
runtime of several commonly considered pseudo-Boolean functions. For some
functions, the lower bounds coincide with the upper bounds for the (1+1) EA,
implying that this simple EA is asymptotically optimal on the function class.

14

It is shown that any search heuristic in the model needs Ω(n log n) function
evaluations to optimise functions with a unique optimum. Also, it is shown
that a function with a plateau can pose a difficulty for any black-box search
heuristic in the model.

This work can be extended in several ways. Firstly, it is interesting to con-
sider more problem classes than those considered here. Secondly, the analysis
should be extended to variation operators with greater arity than one. Finally,
alternative black-box models could be defined that cover ant colony optimisa-
tion, particle swarm optimisation and estimation of distribution algorithms.

Acknowledgements

We thank Benjamin Doerr and Timo Kötzing for pointing out some errors in
an earlier version of this report, and in the publication at GECCO 2010 [15]. In
particular, Section 4 has been subject to a thorough correction. We also thank
Daniel Johannsen for reading the proof of Theorem 5.

References

[1] V. Chvátal. The tail of the hypergeometric distribution. Discrete Mathe-
matics, 25(3):285–287, 1979.

[2] B. Doerr, M. Fouz, and C. Witt. Quasirandom evolutionary algorithms.
In GECCO 10: Proceedings of the 12th annual conference on Genetic and
evolutionary computation, pages 1457–1464, New York, NY, USA, 2010.
ACM.

[3] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, 2004.

[4] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) Evolu-
tionary Algorithm. Theoretical Computer Science, 276:51–81, 2002.

[5] S. Droste, T. Jansen, and I. Wegener. Upper and lower bounds for ran-
domized search heuristics in black-box optimization. Theory of Computing
Systems, 39(4):525–544, 2006.

[6] S. Droste and D. Wiesmann. Metric based evolutionary algorithms. In
Proceedings of Genetic Programming, European Conference, volume 1802
of LNCS, pages 29–43. Springer, 2000.

[7] B. Hajek. Hitting-time and occupation-time bounds implied by drift analy-
sis with applications. Advances in Applied Probability, 13(3):502–525, 1982.

[8] J. He and X. Yao. A study of drift analysis for estimating computation
time of evolutionary algorithms. Natural Computing, 3(1), 2004.

[9] J. Jägersküpper. Algorithmic analysis of a basic evolutionary algorithm
for continuous optimization. Theoretical Computer Science, 39(3):329–347,
2007.

15

[10] T. Jansen, K. A. D. Jong, and I. Wegener. On the choice of the off-
spring population size in evolutionary algorithms. Evolutionary Computa-
tion, 13(4):413–440, 2005.

[11] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, 1988.

[12] J. Kennedy and R. C. Eberhart. Swarm intelligence. Morgan Kaufmann
Publishers Inc., 2001.

[13] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, May 1983.

[14] P. Larrañaga and J. A. Lozano. Estimation of distribution algorithms: a
new tool for evolutionary computation. Kluwer Academic Publishers, 2002.

[15] P. K. Lehre and C. Witt. Black-box search by unbiased variation. In Pro-
ceedings of the 12th annual conference on Genetic and evolutionary compu-
tation (GECCO’10), pages 1441–1448, New York, NY, USA, 2010. ACM.

[16] P. K. Lehre and X. Yao. Runtime analysis of (1+1) EA on computing
unique input output sequences. In Proceedings of 2007 IEEE Congress on
Evolutionary Computation (CEC’07), pages 1882–1889. IEEE Press, 2007.

[17] F. Neumann and I. Wegener. Randomized local search, evolutionary algo-
rithms, and the minimum spanning tree problem. Theoretical Computer
Science, 378(1):32–40, 2007.

[18] F. Neumann and C. Witt. Ant colony optimization and the minimum span-
ning tree problem. In Proceedings of Learning and Intelligent Optimization
(LION’2008), pages 153–166, 2008.

[19] P. S. Oliveto, J. He, and X. Yao. Time complexity of evolutionary algo-
rithms for combinatorial optimization: A decade of results. International
Journal of Automation and Computing, 4(1):100–106, 2007.

[20] P. S. Oliveto, P. K. Lehre, and F. Neumann. Theoretical analysis of rank-
based mutation - combining exploration and exploitation. In Proceedings of
the 10th IEEE Congress on Evolutionary Computation (CEC ’09), pages
1455–1462. IEEE, 2009.

[21] J. E. Rowe, M. D. Vose, and A. H. Wright. Neighborhood graphs and
symmetric genetic operators. In Proceedings of Foundations of Genetic
Algorithms 9, number 4436 in LNCS, pages 110–122, 2007.

[22] I. Wegener. Methods for the analysis of evolutionary algorithms on pseudo-
Boolean functions. In R. Sarker, M. Mohammadian, and X. Yao, editors,
Evolutionary Optimization, pages 349–369. Kluwer, 2002.

[23] C. Witt. Runtime analysis of the (µ + 1) EA on simple pseudo-Boolean
functions. Evolutionary Computation, 14(1):65–86, 2006.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

