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Abstract. We give a #NC1 upper bound for the problem of counting
accepting paths in any fixed visibly pushdown automaton. Our algorithm
involves a non-trivial adaptation of the arithmetic formula evaluation
algorithm of Buss, Cook, Gupta, Ramachandran ([8]). We also show that
the problem is #NC1 hard. Our results show that the difference between
#BWBP and #NC1 is captured exactly by the addition of a visible stack
to a nondeterministic finite-state automata.

1 Introduction

We investigate the complexity of the following problem: Fix any visibly
pushdown automata V . Given a word w over the input alphabet of V ,
compute the number of accepting paths that V has on w. We show that
this problem is complete for the counting class #NC1.

The class #NC1 was first singled out for systematic study in [9], and
has been studied from many different perspectives; see [1, 9, 6, 5]. It con-
sists of functions from strings to numbers that can be computed by arith-
metic circuits (using the operations + and × and the constants 0, 1)
of polynomial size and logarithmic depth. Equivalently, these functions
compute the number of accepting proof trees in a Boolean NC1 circuit
(a polynomial size logarithmic depth circuit over ∨ and ∧). It is known
that characteristic functions of Boolean NC1 languages can be computed
in #NC1 and that functions in #NC1 can be computed in deterministic
logspace. It is also known that functions in #NC1 can be computed by
Boolean circuits of polynomial size and O(log n log∗ n) depth; that is, al-
most in Boolean NC1. An analogue of Barrington’s celebrated thereom
([4]) stating that Boolean NC1 equals languages accepted by families of
bounded-width branching programs BWBP almost goes through here:
functions computed by arithmetic BWBP, denoted #BWBP, are also
computable in #NC1, and #NC1 functions are expressible as the dif-
ference of two #BWBP functions. All attempts so far to remove this one
subtraction and place #NC1 in #BWBP have failed.
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A nice characterization of #BWBP, extending Barrington’s result for
the Boolean case, is in terms of branching programs over monoids, and
yields the following ([9]): there is a fixed NFA (nondeterministic finite-
state automaton) N such that any function f in #BWBP can be reduced
to counting accepting paths of N . In particular, f(x) equals the number of
accepting paths of N on a word g(x) that is a projection of x (each letter
in g(x) is either a constant or depends on exactly one bit of x) and is of size
polynomial in the length of x. There has been no similar characterization
of #NC1 so far (though there is a characterization of its closure under
subtraction GapNC1, using integer matrices of constant dimension). Our
result does exactly this; the hardness proof shows that there is a fixed
VPA (visibly pushdown automaton) V such that any function f in #NC1

can be reduced via projections to counting accepting paths of V , and
the algorithm shows that any #VPA function (the number of accepting
paths in any VPA) can be computed in #NC1. Thus, the difference (if
any) between #BWBP and #NC1, which is known to vanish with one
subtraction, is captured exactly by the extension of NFA to VPA.

What exactly are visibly pushdown automata? These are pushdown
automata (PDA) with certain restrictions on their transition functions.
(They are also called input-driven automata, in some of the older liter-
ature. See [14, 15, 10, 3].) There are no ε moves. The input alphabet is
partitioned into call, return and internal letters. On a call letter, the PDA
must push a symbol onto its stack, on a return letter it must pop a sym-
bol, and on an internal move it cannot access the stack at all. While this
is a severe restriction, it still allows VPA to accept non-regular languages
(the simplest example is anbn). At the same time, VPA are less powerful
than all PDA; they cannot even check if a string has an equal number of
a’s and b’s. In fact, due to the visible nature of the stack, membership
testing for VPA is significantly easier than for general PDA; it is known
to be in Boolean NC1 ([10]). In other words, as far as membership testing
is concerned, VPA are no harder than NFA.

However, the picture changes where counting accepting paths is con-
cerned. An obvious upper bound on #VPA functions is the upper bound
for #PDA functions. It is tempting to speculate that since membership
testing for VPA and NFA have the same complexity, so does counting.
This was indeed claimed, erroneously, in [12]; the subsequent version in
[13] retracted this claim and showed an upper bound of LogDCFL for
#VPA functions. In this paper, we improve this upper bound to #NC1,
and show via a hardness proof that improving it to #BWBP or #NFA
would imply #BWBP= #NC1. Our main results are:



Theorem 1. #VPA ⊆ #NC1.
For every fixed VPA V , there is a family of polynomial-size logarithmic
depth bounded fanin circuits over + and × that computes, for each word
w, the number of accepting paths of V on w.

Theorem 2. #NC1 ≤ #VPA.
There is a fixed VPA V such that for any function family {fn} in #NC1,
there is a uniform reduction (via projections) π such that for each word
w, f(w) equals the number of accepting paths of V on π(w).

Combining the two results, we see that branching programs over VPA
characterize #NC1 functions. Using notation from [13, 9]:

Corollary 1. #NC1 = #BP-VPA

Here is a high-level description of how we achieve the upper bound.
In [7], Buss showed that Boolean formulas can be evaluated in NC1. In
[8], Buss, Cook, Gupta, and Ramachandran extended this to arithmetic
formulas over semi-rings. We use the algorithm of [8], but not as a black-
box. We show that counting paths on a word in a VPA can be written
as a formula in a new algebra which is not a semi-ring. However, the
crucial way in which semi-ring properties are used in [8] is to assert that
for any specified position (called scar) in the formula, the final value is
a linear function of the value computed at the scar. We show that this
property holds even over our algebra, because of the behaviour of VPA.
Thus the strategy of [8] for choosing scar positions can still be used to
produce a logarithmic depth circuit, where each gate computes a constant
number of operations over this algebra. We also note that in our algebra,
basic operations are in fact computable in #NC0 (constant-depth constant
fanin circuits over + and ×). Thus the circuit produced above can be
implemented in #NC1.

The rest of this paper is organised as follows. In Section 2 we set up
the basic notations required for our main result. In Section 3 we present
an overview of the arithmetic formula evaluation algorithm of [8], high-
lighting the points where we will make changes. Section 4 describes our
adaptation of this algorithm, placing #VPA in #NC1. In Section 5, we
show that #VPA functions are hard for #NC1.

2 Preliminaries

Definition 1 (Visibly pushdown automaton). A visibly pushdown
automaton on finite words over a tri-partitioned alphabet Σ = Σc∪Σr∪Σi



is a tuple V = (Q,QI , Γ, δ,QF ) where Q is a finite set of states, QI ⊆ Q
is a set of initial states, Γ is a finite stack alphabet that contains a special
bottom-of-stack symbol ⊥, δ is the transition function δ ⊆ (Q×Σc×Q×
Γ ) ∪ (Q × Σr × Γ × Q) ∪ (Q × Σi × Q), and QF ⊆ Q is a set of final
states. The letters in Σc, Σr, and Σi are called call letters, return letters,
and internal letters, respectively.

The transitions of the VPA are of the form p
a−→ qX or pY b−→ q

or or p c−→ q, where p, q ∈ Q, X,Y ∈ Γ , and α ∈ Σc is a call letter,
β ∈ Σr is a return letter, ν ∈ Σi is an internal letter. The technical
definition in [3] also allows pop moves on an empty stack, with a special
bottom-of-stack marker ⊥. However, we will not need such moves because
of well-matchedness, discussed below.

Definition 2 (#VPA). A function f : Σ∗ −→ N is said to be in #VPA
if there is a VPA V over the alphabet Σ such that for each w ∈ Σ∗, f(w)
is exactly the number of accepting paths of V on w.

Without loss of generality, we can assume that there are no internal
letters. (If there are, then design another VPA such that it has as many
new extra call and return letters, stack letters, and states as the number
of internal letters. Replace every internal letter ν by a string αβ where α
is a call letter and β a return letter added for ν.)

We say that a string is well-matched if the VPA never sees a return
letter when its stack is empty, and at the end of the word its stack is
empty. It can be assumed that all strings are well-matched; in [13], there
is a conversion from VPA V to VPA V ′, and a reduction (computable in
NC1) from inputs w of V to inputs w′ of V ′ such that the number of
accepting paths is preserved.

Our Theorem 1 places #VPA functions in #NC1. But #NC1 is a class
of functions from {0, 1}∗ to N, while VPA may have arbitrary input al-
phabets. Using standard terminology (see for instance [2, 9]), we assume
that the leaves of the #NC1 circuits can be labeled by predicates of the
form [wi = a].

For hardness, we use the notion of reductions via projections.

Definition 3 (Projections, [9]). A function f : Σ∗ −→ ∆∗ is a projec-
tion if for each x ∈ Σ∗, each letter in f(x) is either a constant or depends
on exactly one letter of x.

For a definition of uniformity in projections, see [9].



3 An overview of the BCGR algorithm

The algorithm of [8] for arithmetic formula evaluation over commutative
semirings (S,+, ·) builds upon Brent’s recursive evaluation method [6],
but uses a pebbling game to make the construction uniform and oblivious.
The recursive strategy is as follows:

For formula φ let A be the value of φ, and for a position j within it, let
φj be the formula rooted at j and let Aj be the value of φj . Let A(j,X)
be the function corresponding to the formula φ with the subformula φj
replaced by the indeterminateX. We say φ is scarred at j. Then A(j,X) =
B ·X+C, and to compute the value A, we recursively determine B, C, and
the correct value of X (that is, Aj). The recursive procedure ensures that
there is at most one scar at each stage. Thus while considering A(j,X),
the next scar is always chosen to be an ancestor of φj . It is shown in [8]
that there is a way of choosing scars such that the recursion terminates
in O(log |φ|) rounds. The main steps of the algorithm of [8] can thus be
stated as follows:

1. Convert the given formula φ′ to an equivalent formula represented in
post-fix form, with the longer operand of each operator appearing first
in the expression. Call this PLOF (Post-Fix Longer Operand First).
Pad the formula with a unary identity operator, if necessary, so that
its length is a power of 2. Let φ be the resulting formula.

2. Construct an O(log |φ|) depth fanin 3 “circuit” C, where each “gate”
of C is a constant-size program, or a block, associated with a particular
sub-formula. The top-most block is associated with the entire formula.
A block associated with interval g of length 4m has as its three children
the blocks associated with the prefix interval g1, the centred interval
g2, and the suffix interval g3, each of length 2m. Each interval has
upto 9 designated positions or sub-formulas, and the block computes
the values of the subformulas rooted at these positions. The set of
these positions will contain all possible scar positions that are good
(that can lead to an O(log 4m) depth recursion).

3. Describe Boolean NC1 circuitry that determines the designated posi-
tions within each block. This circuitry depends only on the position
of the block within C, and on the letters appearing in the associated
interval, not on the values computed so far.

4. Using this Boolean circuitry along with the values at the designated
positions in the children gi, compute the values at designated positions
for the interval g using #NC0 circuits. Plug in this #NC0 circuit for
each block of C to get a #NC1 circuit.



To handle the non-commutative case, add an operator ·′. In conversion
to PLOF, if the operands of · have to be switched, then replace the
operator by ·′. The actual operator is correctly applied within the #NC0

block at the last step.

4 Adaption of the BCGR algorithm

The algorithm in the previous section works for any non-commutative
ring. Unfortunately we were not able to find a non-commutative ring in
which we can compute the value of a given VPA. So we will define an
algebraic structure that uses constant size matrices as its elements and
has two operations ⊗ and �, but which is not a ring. For example we
do not have the distributivity law in our structure. Then we show that
the algorithm of the previous section can be modified to work for our
algebraic structure, and give the precise differences.

Let V = (Q,QI , Γ, δ,QF ) be a fixed VPA and let q = |Q|.
In describing the NC1 algorithm for membership testing in VPA, Dy-

mond [10] constructed a formula using operators Ext and ◦ described be-
low. In [13] it was shown that this formula can also evaluate the number
of paths (and the number was computed using a deterministic auxiliary
logspace pushdown machine which runs in polynomial time). Essentially,
the formula builds up a q×q matrix M̂w for the input word w by building
such matrices for well-matched subwords. The (i, j)th entry of M̂w gives
the number of paths from state qi to state qj on reading w. (Due to well-
matchedness, the stack contents are irrelevant for this number.) For the
zero-length word w = ε, the matrix is the identity matrix Î. The unary
Extαβ operator computes, for any word w, the matrix M̂αwβ from the
matrix M̂w. The binary ◦ operator computes the matrix M̂ww′ from the
matrices M̂w and M̂w′ . The formula over these matrices can be obtained
from the input word in NC1 (and in fact, even in TC0, see [13, 11]). The
leaves of the formula all carry the identity matrix Î = M̂ε.

Lemma 1 ([10, 13]). Fix a VPA V . For every well-matched word, there
is a formula over Extαβ, ◦, constructible in NC1, which computes the q×q
matrix M̂w. The (i, j)th entry of M̂w is the number of paths from qi to qj
while reading w.

The unary operators Extαβ used above are functions mapping Nq×q −→
Nq×q. From the definition of the operators,

[Extαβ(M)]ij =
∑
kl

Mkl · |{X | qi
α−→ qkX; qlX

β−→ qj}|



it is easy to see that these functions are linear operators on Nq×q. The
linear operators of Nq×q can be written as q×q matrices with q×q matrices
as entries, or simply as matrices of size q2× q2. So we can represent every
unary Extαβ operator as a q2×q2 matrix. However, the binary ◦ operator
works with q × q matrices. To unify these two sizes, we embed the q × q
matrices from Lemma 1 into q2 × q2 matrices in a particular way.

We require that for a matrix M̂ at some position in Dymond’s formula,
our corresponding matrix M satisifes the following: M̂ij = M(ij)(oo) for
all indices o. (The values at M(ij)(kl) when k 6= l are not important.)

The operators to capture Extαβ and ◦ are defined as follows.

Definition 4. Let M be the family of q2 × q2 matrices over N.

1. The matrix I is defined as the “pointwise” identity matrix, i.e. I(ij)(kl) =
1 if i = j ∧ k = l and I(ij)(kl) = 0 otherwise.

2. For each well-matched string αβ of length 2, the matrix EXTαβ ∈M
is the matrix corresponding to Extαβ and is defined as follows:

EXTαβ(ij)(kl) = [Extαβ(Ekl)]ij ,

where Ekl is a q × q matrix with a 1 at position (k, l) and zeroes
everywhere else.

3. The operator ⊗ : M −→M is matrix multiplication, i.e.

M = S ⊗ T ⇐⇒ M(ij)(kl) =
∑
u,v

S(ij)(uv)T(uv)(kl)

4. The operator � : M −→M is defined as a “point-wise” matrix multi-
plication:

M = S � T ⇐⇒ M(ij)(kl) =
∑
u

S(iu)(kl)T(uj)(kl)

5. The algebraic structure V′ is defined as follows.

V′ = (M,⊗,�, I, {EXTαβ}α∈Σc,β∈Σr)

Now we change Dymond’s formula into a formula that works over the
algebra V′ and produces a matrix in M. The ◦ operator that represented
concatenation is now replaced by the new � operator defined above. Each
unary Extαβ operator with argument ψ is replaced by the sub-formula
EXTαβ ⊗ ψ. Each leaf matrix Î is replaced by I.

Let w = ααβααβββ be word over {α, β}, where α is a call letter and
β is a return letter. Figure 1 shows Dymond’s formula and our translated
formula.
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Fig. 1. Dymond’s formula (left) and our translated formula (right) for w = ααβααβββ

Lemma 2. Let w be a well-matched word, and let φ̂ be the corresponding
formula from Lemma 1. Let φ be the formula over V′ obtained by changing
φ̂ as described above. Then, for each sub-formula ψ̂ of φ̂ and corresponding
ψ of φ, if ψ̂ computes P̂ ∈ Nq×q and ψ computes P ∈ M, the following
holds:

∀i, j, o ∈ [q] P̂(ij) = P(ij)(oo)

Proof. We will prove this by induction over the structure of the formula.

Base Case: For the matrix Î translated to I this is clear.
Case 1: ψ̂ = Extαβ(τ̂). Then φ = EXTαβ ⊗ τ , where τ is the formula

corresponding to τ̂ . By induction we already know that:

∀i, j, o ∈ [q] T̂(ij) = T(ij)(oo)

where τ̂ computes T̂ and τ computes T . We let P̂ be the matrix
computed by ψ̂ and P be the matrix computed by ψ. Then

P(ij)(kl) =
∑
u,v

EXTαβ(ij)(uv)T(uv)(kl)

Hence for all o ∈ [q] we have P(ij)(oo) =
∑

u,v EXT
αβ
(ij)(uv)T(uv)(oo) =∑

u,v EXT
αβ
(ij)(uv)T̂(uv).

Now we compute P̂ . We can write the matrix T̂ as a sum of its entries
and since Extαβ is a linear operator pull the sum and the factors out:

P̂ = Extαβ(T̂ ) = Extαβ

(∑
u,v

Euv · T̂uv

)
=
∑
u,v

Extαβ (Euv) T̂uv



By definition of EXTαβ we get P(ij)(oo) = Pij .
Case 2: ψ̂ = σ̂ � τ̂ . Then ψ = σ � τ , where σ̂ and τ̂ are the formulas

corresponding to σ and τ . Let Ŝ, T̂ , S, T be the values of these
formulas. By induction we already know that:

∀i, j, o ∈ [q] Ŝij = S(ij)(oo) and T̂ij = T(ij)(oo)

For a fixed o ∈ [q], the definition of� becomes simple pointwise matrix
multiplication: P(ij)(oo) =

∑
u S(iu)(oo)T(uj)(oo) =

∑
u ŜiuT̂uj = P̂ij .

Hence by induction the result follows. ut

From Lemma 2, and since we only did a syntactic local replacement
at each node of Dymond’s formula, we conclude:

Lemma 3. For every well-matched word w, there is a formula over V′,
constructible in NC1, which computes a q2 × q2 matrix M satisfying the
following: For each i, j, the number of paths from qi to qj while reading
w is M(ij)(oo) for all o.

For the purposes of using the template of [8], we need to convert our
formula to PLOF format. But our operators ⊗ and � are not commuta-
tive. We handle this exactly as in [8], extending the algebra to include
the antisymmetric operators. We also need that the length of the formula
is a power of 2. In order to handle this, we introduce a unary identity
operator 	(S).

Definition 5. The operators ⊗′ : M ×M −→ M, �′ : M ×M −→ M,
	 : M −→ M are defined as follows: S ⊗′ T = T ⊗ S; S �′ T = T � S,
	(S) = S.

The algebraic structure V is the extension of the structure V′ to include
the operators ⊗′, �′, and 	.

Since the conversion to PLOF as outlined in [8] does not depend on
the semantics of the structure, we can do the same here. Further, since
our formula has a special structure (at each ⊗ node, the left operand is
a leaf of the form EXTαβ), we can rule out using some operators.

Lemma 4. Given a formula over V in infix notation as constructed in
Lemma 3, there is a formula over V in postfix longest operator first PLOF
form, constructible in NC1, which computes the same matrix. The formula
over V in PLOF form will not make use of the operator ⊗.



Proof. We only need to make sure that the resulting formula does not
contain the ⊗ operator. But since the formula constructed in Lemma 3
uses ⊗ only when the left operand is a single matrix EXTαβ, for every
subformula (EXTαβ⊗ψ) we have |ψ| ≥ 1, and hence we can assume that
the arguments are switched and only ⊗′ is used. ut

In the following we do not want to allow arbitrary formulas but only
formulas that describe the run of the VPA V . We say that a formula over
V is valid if it is constructed as in Lemma 3 and then converted to PLOF
as in Lemma 4.

Definition 6. Let φ be a valid formula in V, and let φj be a sub-formula
of φ appearing as a prefix in the PLOF representation of φ. If we replace
φj by an indeterminate X and obtain a formula ψ over V[X], we call ψ a
formula with a left-most scar. In a natural way a formula with a left-most
scar represents a function f : M→M which we call the value of ψ.

We say a formula/formula with a left-most scar over V is valid if it
is obtained by Lemma 3 and converted to PLOF and then scarred at a
prefix subformula. In the following we will only consider valid formulas.
Following the algorithm we need to show that we can write every formula
with a left-most scar as a fixed expression.

From Lemma 4 it follows that the valid formulas with a left-most scar
have the following form.

Lemma 5. Let ψ be a valid formula in PLOF over V with a left-most
scar X. Then ψ is of the form:

1. X
2. σ	, where σ is a valid formula V with a left-most scar X.
3. σEXTαβ⊗′, where σ is a valid formula V with a left-most scar X,

and α ∈ Σc, β ∈ Σr.
4. στ�, where σ is a valid formula with a left-most scar X, and τ is a

valid formula.
5. στ�′, where σ is a valid formula over V with a left-most scar X, and

τ is a valid formula.

Let ψ be a formula over an algebraic structure V with a left-most
scar X. Then the value of this formula with a scar in general can be
represented by a function f : M → M. In our case the situation is much
simpler; we show that all the functions that occur in our construction can
be represented by functions of the form f(X) = B ·X, where B ∈ M is
an element of our structure, i.e. a q2× q2 matrix of the natural numbers.



(By the definition of ⊗ we know that B⊗X is also given by matrix multi-
plication B ·X, but still we use the · operator here to distinguish between
the different uses of the semantical equivalent expressions.) Actually the
situation is a bit more technical. Since we are only interested in comput-
ing the values in the “diagonal”, we only need to ensure that these values
are computed correctly. In the following lemma we show that the alge-
braic structure does allow us to represent the computation of these values
succinctly. In Lemma 7 we will show that these succinct representations
can be computed as required.

Lemma 6. Let ψ be a valid formula in PLOF over V with a left-most
scar X, and let f : V → V be the value of ψ. Then there is an element
B ∈M such that f(X)(ij)(oo) = (B ·X)(ij)(oo) for all i, j, o ∈ [q].

Proof. We will prove this by induction over the structure of ψ.

1. Let ψ = X, then we let B = id, and hence f(X) = X = id ·X.

2. Let ψ = σ	, where σ is a valid formula with a left-most scar that
evaluates to f ′(X) = B′ ·X. Then f(X) = 	(B′ ·X). By the definition
of 	, f(X) = B′ ·X.

3. Let ψ = σEXTαβ⊗′, where σ is a valid formula with a left-most scar
that evaluates to f ′(X) = B′ · X. Then f(X) = EXTαβ ⊗ (B′ · X),
which by associativity of the matrix multiplication can be rewritten
as f(X) = (EXTαβ ⊗ B′) · X. Hence f is of the correct form with
B = (EXTαβ ⊗B′).

4. Let ψ = στ�, where σ is a valid formula with a left-most scar that
evalutes to f ′(X) = B′ ·X, and τ is a valid formula that evaluates to
B′′. Then f(X) = (B′ ·X) � B′′. We need to show that we can find
a matrix B such that f(X) agrees with B · X at all the “diagonal”
positions (ij)(oo). Since B′′ is the evalutation of a valid formula we
know that B′′(ij)(oo) is the same value for all o, and these are the only
“important” values of B′′ for our computation.



We define B as B(ij)(kl) =
∑

mB
′
(im)(kl)B

′′
(mj)(11). Then

f(X)(ij)(oo) =
(
(B′ ·X)�B′′

)
(ij)(oo)

=
∑
m

(∑
u,v

B′(im)(uv)X(uv)(oo)

)
·B′′(mj)(oo)

=
∑
u,v

(∑
m

B′(im)(uv)B
′′
(mj)(oo)

)
·X(uv)(oo)

=
∑
u,v

(
B(ij)(uv)

)
·X(uv)(oo)

(since by induction, B′′(mj)(oo) = B′′(mj)(11))

= (B ·X)(ij)(oo) (by definition of B)

5. Let ψ = στ�′, where σ is a valid formula with a left-most scar that
evalutes to f(X) = B′ ·X, and τ is a valid formula that evaluates to
B′′. This case is similar to the previous case: f(X) = B′′ � (B′ · X)
and we define B as B(ij)(kl) =

∑
mB

′′
(im)(11)B

′
(mj)(kl). Then

f(X)(ij)(oo) =
∑
m

B′′(im)(oo) ·

(∑
u,v

B′(mj)(uv)X(uv)(oo)

)

=
∑
u,v

(∑
m

B′′(im)(11)B
′
(mj)(uv)

)
·X(uv)(oo)

= (B ·X)(ij)(oo)
ut

Since we are able to represent every scarred formula by a constant
size matrix, we can apply a conversion similar to the BCGR algorithm
and end up with a circuit of logarithmic depth. The only thing that
remains is to show that computations within the blocks can be computed
by #NC0 circuits, so that the total circuit will be in #NC1. Note that
each block is expected to compute for its associated formula the element
B ∈ V guaranteed by Lemma 6, assuming the corresponding elements at
designated subformulas have been computed.

The construction of the blocks is very restricted by the BCGR algo-
rithm. We know that there are only two major cases that happen:

– Either we need to compute a formula ψ with a scar X from the value
of the formula ψ with a scar Y and the value of the formula Y with
the scar X (here X can be the empty scar),



– or we need to compute a formula ψ with operand one of ⊗′ �, �′, 	,
and a scar X, where the left argument contains the scar X and we
are already given the value of the left argument with the scar X and
the value of the right argument.

Hence we need to show that we can compute the operators in our
algebraic structure in constant depth, as well as the computations for the
matrix representations of our functions as in the proof of Lemma 6.

Lemma 7. Let S, T ∈ M. There are #NC0 circuits that compute the
matrix P , where P is defined in any one of the following ways:

1. P = S · T
2. P = S ⊗′ T
3. P = S � T
4. P = S �′ T
5. P(ij)(kl) =

∑
m S(im)(kl)T(mj)(11).

6. P(ij)(kl) =
∑

m S(im)(11)T(mj)(kl).

Proof. This is trivial since all operations use only 2 constant size matrices
as inputs and hence are defined by a constant expression over +,×. ut

Hence we can replace the blocks by #NC0 circuits and obtain a #NC1

circuit. But this implies Theorem 1.

5 Hardness

In this section we will show that there is a hardest function in #NC1 and
that it can be computed by a VPA. Let Σ = {[, ], ]̄,+,×, 0, 1}. We will
define a function f : Σ∗ → N that is #NC1 hard under projections and is
computable by a VPA.

Informally speaking, the following language will represent equations
with +,× over the natural numbers, where the operation + is always
bracketed by [ and ]̄]. The 2 closing brackets are necessary for the technical
reasons.

Definition 7. Define L to be the smallest language such that:

1. 0, 1 ∈ L,
2. [u+ v̄]] ∈ L for u, v ∈ L,
3. uv ∈ L for u, v ∈ L.

Note that L is uniquely determined as the closure of the set of expressions
{0, 1} under appropriately bracketed + and ×.

Also, define the function f : Σ∗ → N by:



1. f(0) = 0, f(1) = 1,
2. f([u+ v̄]]) = f(u) + f(v) for u, v ∈ L,
3. f(uv) = f(u) · f(v) for u, v ∈ L,
4. f(u) = 0 for u /∈ L.

Please note that the value of f(w) does not depend on the decompo-
sition of w since multiplication on natural numbers is associative.

Lemma 8. Computing the value of f(w) on words w ∈ L is #NC1 hard
under Projections.

Proof. Given a #NC1 circuit we can expand the circuit to a tree and
do a traversal of the tree to obtain a formula over the inputs x1, . . . , xn
with +,×. It is easy to see that for a fixed circuit, we can get a program
that outputs the expression w where + is enclosed by [, ]̄], removes all ×,
and x1, . . . , xn are replaced by 0 or 1 depending on the input x. By the
definition f(w) evalutates to the same value as the #NC1 circuit for the
input x. ut

We will design a fixed VPA V . The idea for this VPA is to compute
inductively the value of f as paths from one state qC to qC , while always
keeping a single path from another state qI to qI . This allows us to tem-
porarily store a value in the computation, and with the stack of the VPA
we use this as a stack for storing values.

We will first give the definition of the VPA and then prove that it
computes f on all words of L. It will have a tripartitioned input alphabet
Σ = Σc ∪Σr ∪Σi where Σc = {[,+}, Σr = {̄], ]}, and Σi = {0, 1}.

We let V = {{qC , qI}, {qC}, {T1, T2}, δ, {qC}}, where the transition
function is defined as (ordered by input letters):

Σi qC qI

1 qC qI

0 − qI

Σc qC qI

[ qCT1, qIT1 qIT2

+ qIT1 qCT1, qIT2

Σr qCT1 qIT1 qCT2 qIT2

]̄ qC qC − qI

] qC − − qI

For a better understanding of δ we provide a graphical version of δ
(see Figure 2).

We now show that this VPA actually computes f .

Lemma 9. For all w ∈ L, the number of accepting paths of the VPA V
is exactly computes f(w).

Proof. We will prove this by induction on the structure of L. Please note
that all words w ∈ L are well-matched inputs to the VPA, since the
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Fig. 2. Graphical version of δ

number of call and return letters is always equal, and the number of
return letters never exceeds the number of return letters in any prefix.

We will show that for every word w ∈ L, the number of paths from
qI to qI is 1, and from qC to qC is f(w), and there are no paths from qC
to qI or from qI to qC .

For w = 0 and w = 1 this is clear by the definition of δ.
Also for w = uv with u, v ∈ L it is clear that the VPA has f(w) =

f(u)f(v) paths for w. And also the other properties of the induction
hypothesis are clear.

For w = [u+ v̄]] with u, v ∈ L this requires a small computation. We
give a picture below (see Figure 3) with all the paths generated by δ,
which should help to check the computation.
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Fig. 3. Paths for uv and [u+ v̄]]

ut



It is also easy to see that L itself can be recognized by an VPA (with
the same partition into call and return letters). Since f is 0 outside L,
hence there is another VPA that computes f on all of Σ∗.
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