
Making Branching Programs Oblivious Requires Superlogarithmic
Overhead

Paul Beame∗

Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350

beame@cs.washington.edu

Widad Machmouchi∗

Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350

widad@cs.washington.edu

December 15, 2010

Abstract

We prove a time-space tradeoff lower bound of T = Ω
(
n log(n

S) log log(n
S)
)

for randomized obliv-
ious branching programs to compute 1GAP , also known as the pointer jumping problem, a problem
for which there is a simple deterministic time n and space O(log n) RAM (random access machine)
algorithm. We give a similar time-space tradeoff of T = Ω

(
n log(n

S) log log(n
S)
)

for Boolean random-
ized oblivious branching programs computing GIP -MAP , a variation of the generalized inner product
problem that can be computed in time n and space O(log2 n) by a deterministic Boolean branching
program.

These are also the first lower bounds for randomized oblivious branching programs computing ex-
plicit functions that apply for T = ω(n log n). They also show that any simulation of general branching
programs by randomized oblivious ones requires either a superlogarithmic increase in time or a very
substantial increase in space.

1 Introduction

An algorithm is oblivious (sometimes also called input-oblivious) if and only if its every operation, operand,
as well as the order of those operations is determined independent of its input. Certain models of computa-
tion, such as circuits or straight-line programs are inherently oblivious. However, many computing models
such as Turing machines and random access machines (RAMs), which use non-oblivious operations such
as indirect addressing, are not, though fairly efficient simulations of these general models by their more
restricted oblivious variants have been shown [17, 3].

Our main result implies that a superlogarithmic increase in time or very substantial increase in space is
necessary to convert a general algorithm to a randomized oblivious one. We show that a very simple problem
for deterministic RAM algorithms, the pointer jumping or 1GAP problem of out-degree 1 graph reachabil-
ity, when solved on a randomized oblivious algorithm with sufficiently small constant error, requires time T
and S such that T = Ω

(
n log(nS) log log(nS)

)
. This implies that for any δ > 0 any randomized oblivious al-

gorithm using space n1−δ requires time Ω(n log n log log n) which contrasts with the simple spaceO(log n)
∗Research supported by NSF grant CCF-0830626

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 104 (2010)

and time n deterministic RAM algorithm and hence only a polylogarithmic overhead in space requires an
Ω(log n log log n) factor overhead in time.

Our lower bounds apply not only to randomized oblivious RAM algorithms but also to more powerful
randomized oblivious branching programs. Branching programs are the natural generalization of decision
trees to directed acyclic graphs and simultaneously model time and space for both Turing machines and
RAMs: Time is the length of the longest path from the start (source) node to a sink and space is the logarithm
of the number of nodes. Our precise results are the following.

Theorem 1.1. Let ε < 1/2. Randomized oblivious branching programs computing 1GAPn using time T ,
space S and with error at most ε require T = Ω

(
n log(nS) log log(nS)

)
.

Since 1GAPn can be computed by a RAM algorithm in time n and space O(log n), which follows the
path from vertex 1 maintaining the current vertex and a step counter, we immediately obtain the following
corollary.

Corollary 1.2. Any method for converting random access machine algorithms to randomized oblivious
algorithms requires either an n1−o(1) factor increase in space or an Ω(log n log logn) factor increase in
time.

The 1GAPn problem has input variables from a linear sized domain that the RAM can read in one step.
Because of this, the lower bound for computing 1GAPn is at most Ω(log log(n/S)) larger than the number
of its input bits and so sublogarithmic for Boolean branching programs. However, we also obtain analogues
of the above results for Boolean branching programs computing a variant of the generalized inner product
problem that we denote by GIP -MAP .

Deterministic oblivious branching programs have been studied in many contexts. Indeed the much-
studied ordered binary decision diagrams (or OBDDs) [10] correspond to the special case of deterministic
oblivious branching programs that are also read-once in that any source–sink path queries each input at
most once. Our lower bound approach follows a line work based on another reason to consider oblivious
algorithms: their behavior is restricted and thus simpler to analyze than that of general algorithms. Alon and
Maass [5] showed T = Ω(n log(n/S)) lower bounds for certain natural Boolean functions on deterministic
oblivious branching programs and this lower bound tradeoff was increased for a different Boolean function
to T = Ω(n log2(n/S)) by Babai, Nisan, and Szegedy [6].

Beame and Vee [9] used a slightly simpler argument related to that in [6] to give an Ω(log2 n) factor
separation between general branching programs and deterministic oblivious branching programs by proving
a T = Ω(n log2(n/S)) lower bound for the 1GAP problem. However, that separation does not apply to the
randomized simulations nor to the Boolean branching programs that we consider.

Though a number of time-space tradeoff lower bounds have been proven for natural problems in NP
for general deterministic and nondeterministic [8, 1, 2] and randomized computation [7], all of the lower
bounds are sub-logarithmic and, naturally, none can yield a separation between general and randomized
oblivious branching programs. Indeed the largest previous lower bounds for solving decision problems on
randomized branching programs are of the form T = Ω(n log(n/S)) which is at most a logarithmic factor
larger than the trivial time bound of n. These bounds also apply to randomized read-k branching programs
(which roughly generalize oblivious branching programs for related problems) for k = O(log n) [18]. No
prior separations of randomized oblivious computations from general computation have been known.

Our argument builds on the ideas of [9] which uses the connection between oblivious branching pro-
grams and communication complexity that is implicit in [5] and first made explicit in the context of mul-
tiparty communication complexity in [6]. As in [9] we also make use of the fact that inputs to the 1GAP

2

problem can encode functions computable by small branching programs, and in particular, the generalized
inner product. The key to our argument is a way of extending the worst-case reduction in [9] to a more
involved analysis that yields a reduction that works for distributional complexity.

The questions we consider here were inspired by recent results of Ajtai [3, 4] (and similar results of
Damgård, Meldgaard, and Nielsen [11]) who, eliminating cryptographic assumptions from [12, 16, 13],
showed efficient simulations of general RAM algorithms by randomized algorithms that are oblivious and
succeed with high probability, with only a polylogarithmic factor overhead in both time and space. How-
ever, our separations do not apply in the context of their simulations for two reasons. First, their simulations
assume that the original RAM algorithm only has sequential access to its input in which case the small
space upper bound for 1GAPn does not apply (or alternatively the original RAM algorithm has linear space
which a deterministic oblivious branching program can use to compute any function in linear time). Sec-
ond, our lower bounds apply only to randomized oblivious simulations, in which the sequence of locations
accessed must be independent of the input but may depend on the random choices, whereas Ajtai’s simula-
tions are more general oblivious randomized simulations in that the probability distribution of the sequence
of locations accessed is input independent.

2 Preliminaries and Definitions

Branching programs Let D be a finite set and n a positive integer. A D-way branching program is a
connected directed acyclic graph with special nodes: the source node, the 1-sink node and the 0-sink node, a
set of n inputs and one output. Each non-sink node is labeled with an input index and every edge is labeled
with a symbol from D, which corresponds to the value of the input in the originating node. The branching
program computes a function f : Dn → {0, 1} by starting at the source and then proceeding along the
nodes of the graph by querying the corresponding inputs and following the corresponding edges. The output
is the label of the sink node reached. The time T of a branching program is the length of the longest path
from the source to a sink and the space S is the logarithm base 2 of the number of the nodes in the branching
program. The branching program is Boolean if D = {0, 1}.

A branching programB computes a function f if for every x ∈ Dn, the output ofB on x, denotedB(x),
is equal to f(x). B approximates f under µ with error at most ε iff B(x) = f(x) for all but an ε-measure
of x ∈ Dn under distribution µ. (For a probability distribution µ we write supp(µ) denote its support.)

A branching program is leveled if the the underlying graph is leveled. For a leveled branching program,
the width is the maximum number of nodes on any of its levels and thus the space of a width W leveled
branching program is at least logW . (We write log x to denote log2 x.) An oblivious branching program
is a leveled branching program in which the same input symbol is queried by all the nodes at any given
level. A randomized oblivious branching program B is a probability distribution over deterministic oblivious
branching programs with the same input set. B computes a function f with error at most ε if for every input
x ∈ Dn, PrB∼B[B(x) = f(x)] ≥ 1− ε.

Multiparty communication complexity Let f : Dn → {0, 1}. Assume that p parties, each having access
to a part of the input x, wish to communicate in order to compute f(x). The set [n] is partitioned into p
pieces, P = {P1, P2, . . . , Pp} such that each party i has access to every input whose index in Pj for j 6= i.
(Because player i has access to all of the inputs except for those in set Pi, we can view the set Pi as a set
of inputs being written on player i’s forehead.) The parties communicate by broadcasting bits to the other
players, which can be viewed as writing the bits on a common board, switching turns based on the content

3

of the board. The number-on-forehead (NOF) multiparty communication complexity of f with respect to the
partition P , denoted CP(f), is the minimum total number of bits written. When there is a standard partition
of the input into p-parties associated with a given function f , we will simply write Cp(f) instead of CP(f).

Let µ be a probability distribution over Dn. The (µ, ε)-distributional communication complexity of f
with respect to P , denoted Dµ

ε,P(f), is the minimum number of bits exchanged in a NOF communication
protocol with input partition P that computes f correctly on a 1−ε fraction of the inputs weighted according
to µ. Again, we replace the P by p when P is a p-partition that is understood in the context.

Pointer Jumping and Generalized Inner Product We consider the out-degree 1 directed graph reacha-
bility problem, 1GAP , which is also known as the pointer jumping problem. Define 1GAPn : [n+ 1]n →
{0, 1} such that 1GAPn(x) = 1 iff there is a sequence of indices i1, 12, . . . , i` such that i1 = 1, i` = n+ 1
and xij = ij+1 for all j = 2, . . . ` − 1. The 1GAPn problem is s-t connectivity in (n + 1)-vertex directed
graphs of out-degree 1, where x1, . . . , xn represent the out-edges of nodes 1 through n, s is 1, and t is n+ 1
and vertex n+ 1 has a self-loop.

We will relate the complexity of 1GAPn for randomized oblivious branching programs to that of the
generalized inner product problem GIPp,n for a suitable value of p. GIPp,n : ({0, 1}n)p → {0, 1} is
given by GIPp,n(z1, . . . , zp) = ⊕nj=1

∧p
i=1 zij . The standard input partition for GIPp,n places each zi in a

separate class. Babai, Nisan, and Szegedy [6] proved that under the uniform distribution the p-party NOF
communication complexity ofGIPp,n is large. We also will use the fact thatGIPp,n can be computed easily
by a leveled width 4 (read-once) branching program.

3 Time-Space Tradeoff Lower Bound for 1GAPn

In order to derive lower bounds for computing 1GAPn on randomized oblivious branching programs, as
usual we invoke the easy half of Yao’s Lemma [19] showing that the ε-error randomized complexity of
computing any function f is at least its ε-error deterministic complexity under distribution µ. Therefore, it
is enough to find a distribution µ such that every deterministic oblivious branching program approximating
1GAPn under µ will have a large time-space tradeoff.

We will define such a distribution µ to randomly select a 1GAPn graph to simulate the width 4 branching
program computing the generalized inner product,GIPp,n, applied to randomly permuted uniformly random
inputs. In principle we could have stated our results for a permuted GIPp,n problem, though we would need
the value of p as well as the permutation also to be part of the input, which would have made the problem
less clean. (When we consider Boolean branching programs later we will indeed follow this course.)

The idea of the argument is the following: Any deterministic small space oblivious branching program
can be divided up into layers whose queried variables can be assigned to different players in a multiparty
communication game in such a way that many input variables are not seen by at least one of the players. To
derive our bounds for 1GAPn, we will use the hardness of GIPp,n for p-party communication complexity
to derive the lower bound but we cannot work with GIPp,n directly because it is only hard under a fixed
canonical assignment of inputs to parties. Each input variable for 1GAPn will implicitly correspond to an
input bit of a permuted GIPp,n instance, and the structure of the 1GAPn instance itself will determine that
permutation (while the branching program properties will determine the value of p that we use).

4

s

0-edges are

1-edges are

Start node : s

z11

z21

z31

z12

z22

z32

z13

10

Start node : s

z14

z24

z34

z13

z23

z33

Figure 1: A width 4 branching program computing GIP3,4.

3.1 Hard distribution on inputs

To prove a lower bound on the complexity of randomized oblivious branching programs computing 1GAPn
with high probability, we give a distribution µ on its inputs such that any deterministic oblivious branching
program B such that Ex∼µ1{B(x)6=1GAP (x)} ≤ ε, requires a large time-space tradeoff.

As described above, the distribution µ = µp on 1GAPn graphs will simulate a width 4 branching
program computing the generalized inner product,GIPp,n, an example of which is given in Figure 1, applied
to uniformly random inputs. The distribution will do so in a way that the levels of the branching program
correspond to random tuples of nodes in the 1GAPn graph.

Let p > 0 be a positive integer. Assume for simplicity and without loss of generality that 4p divides n.
Divide {1, . . . , n} into N = n

4 tuples of 4 consecutive nodes each: (1, 2, 3, 4), . . . , (n− 3, n− 2, n− 1, n).
The path starting at node 1 will reach precisely one node in each tuple. Randomly group the tuples into
blocks, each of size p. Hence, there are M = n

4p blocks U1, U2, . . . , UM , each containing p tuples. Within
each block, order the tuples by increasing node numbers. With each choice of grouping we associate some
fixed order to the blocks such that (1, 2, 3, 4) is (the first tuple) in U1 and (n− 3, n− 2, n− 1, n) is (the last
tuple) in UM . We denote the distribution on the groupings by U .

Let z1, z2, . . . , zp be chosen uniformly at random from {0, 1}M ; i.e., zi ∈U {0, 1}M , for i = 1, . . . , p.
We denote this distribution as Z . We connect the nodes in the graph according to the values of the zi’s as in
Figure 2, which is described more formally as follows:

• There are no edges between nodes in the same tuple.

• Within each block Uj , for i = 1, . . . , p − 1, we connect tuple i = (a, a + 1, a + 2, a + 3) to tuple
i + 1 = (b, b + 1, b + 2, b + 3) according to the value of zij : If zij = 1, add directed edges (a, b),
(a+ 1, b+ 1),(a+ 2, b+ 2) an (a+ 3, b+ 3). If zij = 0, add directed edges (a, b+ 1), (a+ 1, b+
1),(a+ 2, b+ 3) an (a+ 3, b+ 3).

5

Within same block

XOR

AND

Zij = 1

0 1

1 0 1 0

a a+1 a+2 a+3

b b+1 b+2 b+3

XOR

AND

Zij = 0

0 1

1 0 1 0

a a+1 a+2 a+3

b b+1 b+2 b+3

a a+1 a+2 a+3

b b+1 b+2 b+3

a a+1 a+2 a+3

b b+1 b+2 b+3

Between consecutive blocks

XOR

AND

Zpj = 1

0 1

1 0 1 0

XOR

AND

Zpj = 0

0 1

1 0 1 0

Figure 2: Edges between the nodes according to the value of the z′
is.

• We connect consecutive blocks Uj and Uj+1 according to the value of zpj . Let (a, a+ 1, a+ 2, a+ 3)
be the pth tuple in Uj and (b, b+ 1, b+ 2, b+ 3) the first tuple in Uj+1. If zpj = 1, we add (a, b+ 2),
(a + 1, b), (a + 2, b) and (a + 3, b + 2). If zpj = 0, we add (a, b), (a + 1, b), (a + 2, b + 2) and
(a+ 3, b+ 2).

• The pth tuple of UM is (n − 3, n − 2, n − 1, n). We add the directed edges (n − 2, n − 2) and
(n, n + 1), independent of the value of zpM . If zpM = 1, we add the directed edges (n − 3, n + 1)
and (n− 1, n− 1). If zpM = 0, we add the directed edges (n− 3, n− 3) and (n− 1, n+ 1).

Therefore, the probability distribution µ = µp on inputs to 1GAPn can be defined as a deterministic
function of two independent probability distributions U and Z , where U is given by the random grouping of
tuples into blocks and Z is given by the random choice of z1, z2, . . . , zp.

The construction above emulates computing GIPp,M on the input (z1, z2, . . . , zp). The first two nodes
in each tuple represent the value of the AND up to the corresponding zij given that the current value of the
XOR is 0. The second two nodes represent the value of the AND up to the corresponding zij given that the
current value of the XOR is 1. The tuples within each block are connected in a way to compute the AND
of the variables corresponding to those tuples. The connections between blocks are established in a way to
compute the current value of the XOR.

3.2 Branching Program Complexity and NOF Multiparty communication

LetB be a deterministic oblivious branching program of length kn and widthW computing a function from
Dn to {0, 1} . Since B is oblivious, it can be viewed as a sequence π of queries to input symbols of length
kn. The following proposition is adapted from [6, 9] for oblivious BPs approximating a function.

6

Proposition 3.1. Let f : Dn → {0, 1}. Let B be a deterministic oblivious branching program of width
W that approximates f under a probability distribution µ with error at most ε. Let P ′ be a partition of a
subset I ′ of [n], and let µ be a distribution on Dn that has fixed values for all input variables indexed by
[n] − I ′. Suppose that the query sequence of B can be written as s1 . . . sr such that for each si, there is
some class Pji ∈ P ′ whose variables do not appear in si. Then for any partition P that extends P ′ to all of
[n], (r − 1) log(W) + 1 ≥ Dµ

ε,P(f).

Proof. Associate party j with each class Pj of P and place all input variables in class Pj on the forehead of
party j. The communication protocol starts at the source node of B and for every i ∈ {1, . . . , r}, party ji
queries the input variables in si and then records on the board the last node reached at the end of si. These
queries are possible since si does not contain any of the elements of Pji except those known to all parties
and hence all variables queried in si are either known or on the foreheads of parties other than party ji. To
record the last node reached, each player needs logW bits since B has width W , except for the last player,
who needs only one bit to record the output of B.

To obtain the segments as required above we will break the branching program for 1GAPn into r layers
consisting of many time steps and randomly assign each layer to the party that will simulate the layer. The
following lemma will be useful in arguing that in the course of this assignment, it is likely that a block
of p tuples in the 1GAPn input distribution can be placed on the foreheads of p different players. In its
application d will be an upper bound on the number of players in which a given tuple is queried.

Lemma 3.2. For every δ > 0, there is a pδ > 0 such that for every integer p ≥ pδ and d ≤ 1
8 p log p, the

following holds: Let G = (L,R) be a bipartite graph, where |L| = |R| = p. For each i ∈ L, repeat the
following process di ≤ d times: independently at random choose a node j from R with probability 1/p and
add edge (i, j) if it is not already present. Let H be the graph resulting from subtracting G from Kp,p. Then
H has a perfect matching with probability at least 1− δ. In particular, if p ≥ 69, this probability is at least
15/16.

Note that the Lemma 3.2 is asymptotically tight with respect to d since, by the standard coupon collector
analysis, for any c > 1/ ln 2 and p ≥ cp log p, the probability that even a single left vertex has a neighbor in
H goes to 0 as p goes to infinity. The main idea of the proof follows from the fact that significantly below
the coupon-collector bound the complement graph is a random bipartite graph of relatively large left degree
and hence likely contains a matching. We give the details below.

Proof of Lemma 3.2. We use Hall’s theorem to calculate the probability that G has a perfect matching:

Proposition 3.3. (Hall’s Theorem) LetH = (L,R) be a bipartite graph. If for every S ⊆ L, |N(S)| ≥ |S|,
then H has a perfect matching, where N(S) denotes the neighborhood of S in R.

Therefore we can upper bound the probability that there is no perfect matching in H by the probability
that there is some S ⊆ L with 1 ≤ |S| ≤ p − 1 and |N(S)| ≤ |S|. (Any witnessing set S′ for Hall’s
Theorem must be non-empty and the case that |S′| = p is included in the probability that there is a set S
with |N(S)| ≤ |S| = p− 1.) Fix S ⊆ L, let |S| = s, and fix T ⊆ R such that |T | = s. Now N(S) ⊆ T in
H iff every i ∈ S has an edge to every j ∈ R \ T in the original graph G. (i, j) is not an edge in G if j is

not one of the di choices for i; thus, we have Pr[(i, j) is an edge in G] = 1−
(

1− 1
p

)di
≤ 1−

(
1− 1

p

)d
≤

1 − 4−d/p ≤ 1 − 1
p1/4

, since di ≤ d ≤ 1
8 p log p and

(
1− 1

p

)d
≥ 4−d/p for p ≥ 2. For each j ∈ R \ T ,

7

these events are negatively correlated, hence Pr[∀j ∈ R \T, (i, j) is an edge in G] ≤
(

1− 1
p1/4

)p−s
. Since

the choices for each i ∈ S are independent, it follows that:

Pr[∀i ∈ S, ∀j ∈ R \ T, (i, j) is an edge in G] ≤
(

1− 1
p1/4

)s(p−s)
.

By a union bound, we have

Pr[∃S ⊆ L, T ⊆ R, such that |T | = |S| and N(S) ⊆ T]

≤
p−1∑
s=1

(
p

s

)2

(1− 1
p1/4

)s(p−s)

≤
∑

1≤s≤p/2

(
p

s

)2

(1− 1
p1/4

)sp/2 +
∑

p−1≥s≥p/2

(
p

s

)2

(1− 1
p1/4

)(p−s)p/2

=
∑

1≤s≤p/2

(
p

s

)2

(1− 1
p1/4

)sp/2 +
∑

1≤p−s≤p/2

(
p

p− s

)2

(1− 1
p1/4

)(p−s)p/2

≤ 2
∑

1≤s≤p/2

[
p2(1− 1

p1/4
)p/2

]s
≤ 2

∑
s≥1

[
p2e−p

3/4/2
]s

≤ 2p2e−p
3/4/2

1− p2e−p
3/4/2

≤ δ

provided that p ≥ pδ, where pδ is a constant such that 2p2δe
−p3/4
δ

/2

1−p2δe
−p3/4
δ

/2
≤ δ. For δ = 1

16 , pδ ≤ 69. Therefore,

H has a perfect matching with probability at least 15/16, for p ≥ 69.

The following is our main lemma showing that we can convert oblivious branching programs approxi-
mating 1GAP under a hard distribution to an efficient communication protocol for GIP under the uniform
distribution.

Lemma 3.4. Let 1GAPn : [n + 1]n → {0, 1} and let p be an integer such that 69 ≤ p ≤
√
n/2 and

k ≤ 1
16p log p. LetB be an oblivious branching program of length T ≤ kn and widthW , that approximates

1GAPn with error at most ε under the probability distribution µ = µp. Then, for m = n
64p2p and

ε′ = ε + e
− n

32p24p + 1
p + 1

8 , under the uniform distribution on inputs there is a deterministic ε′-error NOF
p-party protocol for GIPp,m of complexity at most 32k2p3 logW .

Proof. Divide {1, . . . , n} into a set L = {(1, 2, 3, 4), . . . , (n − 3, n − 2, n − 1, n)} of n
4 4-tuples of input

indices. We assume that each node in B reading an input variable ` also can read all the input variables that
appear in the same tuple as `. Hence, we can assume without loss of generality that B is an (n + 1)4-way
branching program of length kn and width W that reads entire tuples. Since B is oblivious we can let s be
the sequence of kn elements in L thatB queries in order. Divide s into r equal segments s1, s2, . . . , sr, each

8

of length kn
r , where r will be specified later. Independently assign each segment si to a set inA1, A2, . . . , Ap

with probability 1/p. Denote this probability distributionA. EachAj represents the elements of L that party
j will have access to and hence we will place a subset of L \ Aj on the forehead of party j. Since the sets
L \Aj , j = 1, . . . , p, might overlap, they might not form a partition of L into p sets.
The distribution µ = (U ,Z) on 1GAPn inputs randomly divides the tuples into M blocks U1, U2, . . . , UM ,
each of size p. We calculate the probability, under the random assignment of segments to parties and tuples
to blocks, that we obtain a relatively large number of blocks such that, for every party j, each block contains
exactly one tuple not belonging to Aj . We bound the probability that a block has tuples such that:

(1) they do not occur too frequently in the sequence,

(2) their assignments to parties are independent, and

(3) each tuple can be placed on the forehead of a different party.

Obtaining (1) We first remove all tuples that appear more than 2k times in the sequence s. By a simple
application of Markov’s inequality, at least half the tuples appear at most 2k times in s. For ` ∈ [M],

Pr
U

[all tuples in U` appear at most 2k times in s] ≥ (n/8)(p)/(n/4)(p) =
n/8
n/4
· · · (n/8− (p− 1))

(n/4− (p− 1))

= 2−p ·
p−1∏
i=0

(
1− i

n/4− i

)
>

1
2p

(
1− 2p2

n

)
≥ 1

2p+1

since p ≤
√
n/2. Hence, the expected number of such blocks is at least n

4p2p+1 . Let E1 be the event that the
number of blocks for which all tuples appear at most 2k times in s is at least N = n

4p2p+2 , which is at least
half the expected number.

Let Bi be the block that tuple i falls into according to the distribution U . Let Y be the number of
blocks for which all tuples appear at most 2k times in s. Then Yt = E[Y |B1, B2, . . . , Bt] is a Doob’s
martingale, with Y0 = E[Y] ≥ n

4p2p+1 and Yn
4

= Y . Let E1 be the event that Y is at least N . Then, by the
Azuma-Hoeffding inequality, we have

Pr
U

[E1] = Pr
[
|Yn

4
− Y0| ≥

n

4p2p+2

]
≤ e−2

„
n

4p2p+2

«2

n/4 = e
− n

32p24p .

Obtaining (2) We will only consider blocks such that no two tuples in that block appear in the same
segment. If that is the case, the assignment of occurrences of these tuples to parties will be independent.
Let t(i) be the number of segments in which i appears, and write i ∼ i′ if tuples i and i′ appear in the same
segment at least once. Then the number of i′ such that i ∼ i′ is at most t(i)kn/r. For every ` = 1 . . .M ,
we have

Pr
U

[∃i, i′ ∈ U` such that i ∼ i′] ≤
∑
i

∑
i′∼i

(
1
n
4p

)2

≤
∑
i

t(i)kn
r

16p2

n2
=

16p2k2n2

rn2
=

16p2k2

r
.

Setting r = 32k2p3, the expected number of such blocks, conditioned on the event E1, is at most N2p . Hence,
by Markov’s inequality, PrU [the number of blocks with ∼ tuples ≥ N/2 | E1] ≤ 1

p . Let E2 be the event
that the number of blocks with no ∼ tuples is at least N ′ = N

2 = n
32p2p . We have PrU [E2 | E1] ≤ 1

p .

9

Obtaining (3) Now, we calculate the probability that the number of blocks with tuples that can be placed
on the forehead of the p different parties is relatively large, conditioned on the events E1 and E2. Given that a
block has tuples occurring at most 2k times in s and no two tuples appear in the same segment, we calculate
the probability that the assignment of segments to parties ensures that each of the tuples in the block can be
placed on the forehead a different party. For a block U`, we construct a bipartite graph where the left vertices
represent the p tuples in the block and the right vertices represent the p parties. We add an edge (i, j) if
tuple i cannot be assigned to party j, because it is read in a segment in Aj . Observe that each tuple in block
U` can be placed on the forehead of a different party if and only if this graph contains a perfect matching.
Since the segments are assigned to the various Aj independently each with probability 1/p, the resulting
distribution on the graph is equivalent to that of the graph H in Lemma 3.2 with d = 2k ≤ 1

8 p log p.
Since p ≥ 69, conditioned on E1 and E2, we can apply Lemma 3.2 to say that the probability that the

graph associated with a given block U` does not contain a perfect matching is at most 1/16. By Markov’s
inequality, the probability, conditioned on E1 and E2, that fewer than N ′/2 such blocks contain a perfect
matching is at most 1/8.

Let E3 ⊆ supp(U)× supp(A) be the event that there are at least m = n
64p2p blocks whose tuples can be

placed on the foreheads of different parties. Combining all the above, E3 occurs except with probability at
most ε1 = e

− n
32p24p + 1

p+ 1
8 over the distributions U andA. There must be some choice ofA = (A1, . . . , Ap)

for which the probability, over the distribution U on the grouping of blocks, that E3 does not occur is at most
the average ε1. We fix such an A.

Since the branching programB correctly computes 1GAPn under distribution µwith probability at least
1 − ε, there must some choice U of grouping of tuples into blocks with (U,A) ∈ E3 such that B correctly
computes 1GAPn with probability at least 1 − ε − ε1 under the distribution µ conditioned on the choice
of U . This conditional distribution is now determined entirely by the uniform distribution Z . Let I , with
|I| = m be the set of blocks witnessing event E3. By simple averaging there must be some assignment ζ to
the blocks not in I so thatB correctly computes 1GAPn with probability at least 1−ε−ε1 under distribution
µ conditioned on the choice of grouping U and assignment ζ. Let µ′ be this conditional distribution.

By construction, we can create a p-partition P ′ of the set of 4pm nodes in the blocks in I so that
each class contains all the nodes of precisely one tuple from each block. We extend P ′ to a partition P
of all of [n] by arbitrarily assigning to each class all the nodes from one tuple of each block not in I .
Applying Proposition 3.1 with r = 32k2p3, we obtain a deterministic NOF p-party protocol of complexity
32k2p3 logW for 1GAPn with error ε′ = ε+ ε1 under distribution µ′.

Reduction from GIPp,m By construction, the distribution µ embeds the computation of an oblivious
branching program BGIPp,n of width 4 and size 4pn + 2 computing GIPp,n on a uniformly random input
into the set of 1GAPn instances. The branching programBGIPp,n consists of n blocks of p layers each, plus
a 0-node and a 1-node for the output.

We reduce the communication problem for GIPp,m under the uniform distribution to 1GAPn under µ′

by observing that a branching program BGIPp,m for the GIPp,m problem on a uniformly random input can
be embedded into the unfixed blocks of the 1GAPn instances given by the distribution µ′. Let z′1, . . . , z

′
p be

the remaining 4pm random choices given by Z ′, the unfixed portion Z ′ of Z under distribution µ′.
Let n′ = n

4p−m. Note that the fixed portion of the assignment ζ can be viewed as the input to aGIPp,n′
problem in a natural way. Observe that, by construction and the symmetry of ⊕, there is a path from nodes
1 to n+ 1 in the 1GAPn instance given by µ′ if and only if GIPp,m(z′1, . . . , z

′
p)⊕GIPp,n′(ζ) = 1. Since

ζ is fixed, GIPp,n′(ζ) is known to all players and they can determine the value of GIPp,m(z′1, . . . , z
′
p) by

10

computing the 1GAPn answer on the sample from µ′ and XORing it with GIPp,n′(ζ).
More precisely, the probability distribution µ′ fixes the partition into blocks and the values of m′ blocks

of nodes. Let U`1 , . . . , U`m be the remaining m blocks, ordered according to the fixed ordering in µ. The
nodes of the i-th block ofBGIPp,m will correspond to the nodes of U`i in the 1GAPn problem in the obvious
way. In order to solve GIPp,m, the players apply the protocol for 1GAPn. Whenever they need to query the
pointer for a node belonging to player i in a U`j block they use the bit z′ij . Whenever they need the pointer
for any other node, the value is fixed by ζ so all players know it. Clearly µ′ is induced by the uniform
distribution over Z ′ and the partition induced on the inputs in P is precisely the standard partition on the
inputs of GIPp,m.

Therefore, we have a p-party protocol that computes GIPp,m for a (1− ε′)-fraction of the inputs under
the uniform distribution on ({0, 1}m)p.

We now apply the following lower bound for GIPp,m under the uniform distribution.

Proposition 3.5. [6] Duniform
ε,p (GIPp,m) is Ω(m4p + log(1− 2ε)).

Finally, we obtain the desired time-space tradeoff.

Theorem 3.6. Let ε < 1/2. If a randomized oblivious branching program computes 1GAPn with time T ,
space S and error at most ε, then T = Ω

(
n log(nS) log log(nS)

)
.

Proof. Let B̃ be such a randomized branching program computing 1GAPn. By standard probability ampli-
fication which increases the width by an additive constant and the time by a constant factor we can assume
without loss of generality that the error ε of B̃ is < 1/5. Apply Yao’s Lemma [19] to B̃ using distribution µ
to obtain a deterministic oblivious branching programB with the same time and space bounds that computes
1GAPn with error at most ε under µ.

Let T = kn and let p be the smallest integer ≥ 69 such that k ≤ 1
16p log p. If p ≥ log(n/S)/4

then the result is immediate so assume without loss of generality that 69 ≤ p < log(n/S)/4. Let ε1 =
e
− n

32p24p + 1
p + 1

8 which is < 1/5 for these values of p.

Since 69 ≤ p ≤
√
n/2 we can combine Lemma 3.4 and Proposition 3.5 to say that there is a constant C

independent of n and p such that

32k2p3 logW ≥ C(
m

4p
+ log(1− 2ε′)),

where m = n
64p2p and ε′ = ε + ε1 ≤ 2/5. Rewriting m and k in terms of n and p and using S ≥ logW ,

we obtain p7 log2 pS ≥ C1n4−2p, for some constant C1. Simplifying and taking logarithms, we have
p ≥ C2 log(nS), for some constant C2. Since p is the smallest integer ≥ 69 such that k ≤ 1

16p log p, we have
k ≥ C3 log(nS) log log(nS) for some constant C3 and the theorem follows.

4 Time-Space Tradeoff Lower Bound for Randomized Oblivious Boolean
Branching Programs

As mentioned in the introduction, 1GAPn requires Ω(n log n) bits of input and hence is unsuitable for sepa-
rations involving Boolean branching programs. One can easily see that for a given space S the lower bound
for 1GAPn also applies to a permuted version of GIPp,n/p for suitable p where the permutation is given as

11

part of the input. Unfortunately, as with 1GAPn, specifying the permutation would itself require Θ(n log n)
bits. Instead, we consider GIP -MAP , an extension of GIPp,n/p where the input bits are shuffled by an
almost 2p-wise independent permutation and arranges these bits into the p vectors z1, z2, . . . , zp that are the
input to GIPp,n/p. The key difference is that specifying the function requires only O(p log n) bits.

DEFINITION 4.1. A set of permutations F of A with |A| = n is a δ-almost t-wise independent family of
permutations iff for every set of t distinct points a1, . . . , at ∈ A and for π chosen uniformly from F , the
distribution of (π(a1), . . . , π(at)) is δ-close to the uniform distribution on sequences of t distinct points
from A. It is simply t-wise independent if δ = 0.

For any prime power q, the set of permutations on Fq given by F2,q = {fa,b | a 6= 0, b ∈ Fq} where
fa,b(x) = ax + b over Fq is a pairwise independent family of permutations. For t > 2, the family Ft,q
consisting of all polynomials of degree t − 1 over Fq is a t-wise independent family of functions but there
is no analogous subset of this family that yields a t-wise independent family of permutations. While there
are now a number of constructions of almost 2p-wise independent random permutations in the literature
for simplicity we fix a construction of Naor and Reingold [15] based on analyzing variants of Luby and
Rackoff’s pseudorandom permutation construction that uses Feistel operations [14]. They showed that a
simple combination of two copies of each of these two kinds of pseudorandom families yields a family of
permutations that is δ-almost t-wise independent and whose inverses are pairwise independent provided t is
not too large and δ is not too small.

Let w be an integer and for ` = w, 2w, identify the elements of F2` with {0, 1}`. The construction
uses the Feistel operator Ff on 2w bits which maps (x, y) for x, y ∈ {0, 1}w to (y, f(x) ⊕ y) where
f : {0, 1}w → {0, 1}w. Define a family Fwt of permutations on F22w is the set of all functions constructed
as follows: For each independent choice of h1, h2 from F2,22w and f1, f2 from Ft,2w define the permutation

πh1,h2,f1,f2 = h−1
2 ◦ Ff2 ◦ Ff1 ◦ h1.

Observe that 8w + 2tw bits suffice to specify an element of Fwt .

Proposition 4.1. ([15] Corollary 8.1) Let w be an integer and t be an integer. Then Fwt is δ-almost t-wise
independent family of permutations on F22w for δ = t2/2w + t2/22w and its set of inverses forms a pairwise
independent family of permutations.

DEFINITION 4.2. Let N be a positive integer and n = 22w be the largest even power of 2 such that n +
log2 n ≤ N . Let p be a power of 2 such that 2 ≤ p ≤ 1

8 log n (of which the are fewer than log log n
possibilities).

DefineGIP -MAPN : {0, 1}N → {0, 1} as follows: We interpret input bits n+1, . . . , n+log log log n
as encoding the value p ≤ 1

8 log n and the next 8w+ 4pw ≤ 3
4 log2 n bits as encoding a permutation π from

Fw2p which we identify with permutation on [n].

GIP -MAPN (x1x2 . . . xn, p, π) = GIPp,n(z1, z2, . . . , zp)

where zi = xπ((i−1)n/p+1) . . . xπ(in/p), i = 1, . . . , p.

Proposition 4.2. GIP -MAPN is computable by a deterministic Boolean branching program using time
N and O(log2N) space.

12

Proof. The program begins with a full decision tree that first reads the bits of the encoding of p and then
the bits encoding π. At each leaf of the tree, the program contains a copy of the width 4 branching program
computing GIPp,n/p where variable zij is replaced by xπ((i−1)n+j).

We obtain the following time-space tradeoff for GIP -MAPN .

Theorem 4.3. Let ε < 1/2. Any randomized oblivious Boolean branching program computingGIP -MAPN
with time T , space S and error at most ε requires then T = Ω

(
N log(NS) log log(NS)

)
.

Proof. The proof follows the basic structure as in the argument for 1GAPn as a permuted GIPp,n problem
though we now fix the p that is part of the input to be roughly 1

8 log(n/S) and k to be 1
16p log p. The δ-

almost 2p-wise independence of the permutation ensures that the probability that a block of the permuted
GIPp,n problem has all its variables accessed at most 2k times is roughly 2−p and that these events are
roughly pairwise independent. The pairwise independence of the inverse of the permutation ensures that
two variables in a block are unlikely to be assigned to the same segment. We now work through the details
of this argument.

Let B̃ be such a randomized branching program computing GIP -MAPN . By standard probability
amplification which increases the width by an additive constant and the time by a constant factor we can
assume without loss of generality that the error ε of B̃ is < 1/5.

Let n be given as in the definition of GIP -MAPN . We can assume wlog that log(n/S) ≥ 210 or the
result follows immediately. Otherwise let p be the largest power of 2 such that p ≤ 1

8 log(n/S). Then
p ≥ 69.

Let µp be the uniform distribution over the input bits to GIP -MAPN conditioned on the fixed value of
p. Apply Yao’s Lemma to B̃ using distribution µp to obtain a deterministic oblivious branching program B
with the same time and space that computes GIP -MAPN with error at most ε under µp.

Suppose that the time of B, T ≤ kn where k = 1
16p log p. Since B is oblivious we can let s be the

sequence of at most kn elements from the set of input positions L = [n] that B queries, in order. (We do not
include the input positions queried outside of [n] since their values will eventually be fixed.) Divide s into
r equal segments s1, s2, . . . , sr, each of length at most knr , where r will be specified later. Independently
assign each segment si to a set in A1, A2, . . . , Ap with probability 1/p. Denote this probability distribution
A. Each Aj represents the elements of L that party j will have access to and hence we will place a subset of
L \Aj on the forehead of party j. Since the sets L \Aj , j = 1, . . . , p, might overlap, they might not form a
partition of L into p sets.

The permutation π randomly divides [n] into n/p blocksU1, U2, . . . , Un/p, each of size pwhere blockUj
contains the jth bits of the vectors z1, z2, . . . , zp as given in the definition ofGIP -MAPN . By construction
the distribution of π is δ-almost 2p-wise independent for δ = 8p2/

√
n.

We now follow many of the lines of the remainder of the proof of Lemma 3.4. The key difference in the
calculations is that we no longer have a truly random permutation. A minor point is that the parameter n
here corresponds to n/4 in the proof of Lemma 3.4.

As before we calculate the probability, under the random assignment of segments to parties and elements
of [n] to blocks, that we obtain a relatively large number of blocks such that, for every party j, each block
contains exactly one element of [n] not belonging to Aj . To do this, we bound the probability that a block
has elements of [n] such that:

(1) they do not occur too frequently in the sequence,

13

(2) their assignments to parties are independent, and

(3) each element can be placed on the forehead of a different party.

In the proof of Lemma 3.4, conditioned on (1) and (2), the argument for (3) is independent of the
choice of π and depends only on the randomness of the assignment of segments to parties. The proof of
(2) conditioned on (1) depends only on the pairwise independence of π−1 which is guaranteed here by
Proposition 4.1. Only the proof of part (1) needs to be modified substantially.

As before, we first remove all input indices that appear more than 2k times in the sequence s. By
Markov’s inequality, at least half the input indices appear at most 2k times in s. Let the first n/2 elements
of this set be G.

Therefore, for ` ∈ [n/p], let Y` be the indicator function for the event that U` ⊂ G. Then since π is
δ-almost 2p-wise independent

Pr
µp

[Y` = 1] = Pr
µp

[U` ⊂ G] ≥ (n/2)(p)/n(p) − δ > 2−p − 2−p−1p2/n− δ = 2−p − δ′

where δ′ = δ + 2−p−1p2/n < 9p2/
√
n. Similarly and more simply, Prµp [Y` = 1] ≤ 2−p + δ ≤ 2−p + δ′.

Let E1 be the event that the number of blocks for which all elements appear at most 2k times in s is at least
M = n

p2p+1 .

We use the second moment method to upper bound Prµp [E1]. Let Y be the number of blocks for which all
elements appear in G. Then Y =

∑
`∈[n/p] Y` and |E(Y)− n

p2p | ≤
n
p δ
′. Since the Yi are indicator variables

V ar(Y) = E(Y) +
∑

i 6=j Cov(Yi, Yj) where Cov(Yi, Yj) = Pr[YiYj = 1] − Pr[Yi = 1] Pr[Yj = 1].
Since the outputs of π are δ-almost 2p-wise independent, we have: Pr[YiYj = 1] = Pr[Ui ∪ Uj ⊆ G] ≤
2−2p + δ ≤ 2−2p + δ′. Therefore

V ar(Y) ≤ n

p
2−p +

n

p
δ′ +

n

p
(
n

p
− 1)[2−2p + δ′ + (2−p − δ′)2]

=
n

p
2−p +

n

p
δ′ +

n

p
(
n

p
− 1)δ′[1 + 21−p − δ′]

≤ n

p
2−p +

2n2

p2
δ′.

Now E1 holds if Y ≥M = n
p2p+1 ≥ E(Y)− n

p (2−p−1 + δ′). So by Chebyshev’s inequality, we have

Pr
µp

[E1] ≤ Pr
[
|Y − E(Y)| ≥ n

p
(2−p−1 + δ′)

]
≤ V ar(Y)

(np (2−p−1 + δ′))2

≤ (n/p)2−p + 2(n/p)2δ′

(n/p)2(2−p−1 + δ′)2

≤ p2p+2

n
+ 2δ′

=
p2p+2

n
+

18p2

√
n

Since 69 ≤ p ≤ 1
8 log n, we obtain Prµp [E1] ≤ 2−3p.

14

As in the proof of Lemma 3.4 we only consider blocks with two elements appearing in the same segment
so that the assignment of occurrences of these elements to parties will be independent. Again let t(i) be the
number of segments in which i appears, and write i ∼ i′ if elements i and i′ appear in the same segment
at least once. Then the number of i′ such that i ∼ i′ is at most t(i)kn/r. By construction the inverse of
the random permutation π is pairwise independent and so π−1 maps any two input bits i 6= i′ ∈ [n] to two
randomly chosen distinct points in [n]. Therefore the probability that they are both chosen for some block
Uj is precisely p(p− 1)/n(n− 1) ≤ p2/n2. Hence for every ` ∈ [n/p], we have

Pr
µp

[∃i, i′ ∈ U` such that i ∼ i′] ≤
∑
i

∑
i′∼i

p2

n2
=
∑
i

t(i)kn
r

p2

n2
=
k2p2n2

rn2
=
k2p2

r
.

Setting r = 2k2p3, the expected number of such blocks, conditioned on the event E1, is at most M2p . Hence,
by Markov’s inequality, Prµp [the number of blocks with ∼ tuples ≥M/2 | E1] ≤ 1

p . Let E2 be the event
that the number of blocks with no∼ tuples is at least M ′ = M

2 = n
p2p+2 . As before we have Prµp [E2 | E1] ≤

1
p .

Conditioned on events E1 and E2, the probability that the number of blocks among the M ′ blocks guar-
anteed by E2 for which elements that can be placed on the forehead of the p different parties is independent
of the choice of π and depends only on the assignment A. By the same calculation as that of Lemma 3.4
with the larger value of M ′ here, except with a probability of 1/8, conditioned on E1 and E2, there are at
least m = n

8p2p blocks whose elements can be placed on the foreheads of different parties. Let E3 be the
probability over the joint distribution of µp and A that there are at least m such blocks. The Pr[E3] is at
most ε1 = 2−3p + 1/p + 1/8. There must be some choice of A = (A1, . . . , Ap) for which the probability,
over the distribution µp on the grouping of blocks, that E3 does not occur is at most the average ε1. We fix
such an A.

Since the branching programB correctly computesGIP -MAPN under distribution µp with probability
at least 1− ε, there must some choice π of the permutation that groups the elements of [n] into blocks with
(π, A) ∈ E3 such that B correctly computes GIP -MAPN with probability at least 1 − ε − ε1 under the
distribution µp conditioned on the choice of π. (This conditional distribution is now determined entirely by
the uniform distribution over {0, 1}n.)

Let I , with |I| = m be the set of blocks witnessing event E3. By averaging there must be some as-
signment ζ to the blocks not in I so that B correctly computes GIP -MAPN with probability at least
1− ε− ε1 under distribution µ conditioned on the choice of the permutation π and assignment ζ. Let µ′ be
this conditional distribution which is uniform on the inputs appearing in the blocks of I . As in the proof of
Lemma 3.4, we can use the branching program B to obtain a deterministic p-party communication protocol
of complexity at most rS = 2k2p3S that computesGIPp,m with the standard input partition for a uniformly
random input in {0, 1}pn with error at most ε′ = ε+ ε1 < 2/5.

Hence, by Proposition 3.5, there is an absolute constant C such that 2k2p3S ≥ Cm
4p = Cn

8p23p . Since
k = 1

16p log p, we obtain 23pp6 log2 p ≥ 16Cn/S which contradicts the assumption that p is the largest
power of 2 smaller than 1

8 log(n/S) for n/S sufficiently large.
Our only hypothesis was that T ≤ kn so we must have T > kn = 1

16np log p which is at least
cn log(n/S) log log(n/S)) for some constant c > 0. Since n is Θ(N), the theorem follows.

15

5 Discussion

Our results apply to randomized oblivious algorithms and are the largest explicit time-space tradeoff lower
bounds known for randomized non-uniform branching programs. However, it would be interesting to extend
these bounds to more powerful classes of randomized branching programs, in particular oblivious random-
ized ones where the probability distribution on the input sequence is independent of the input. We conjecture
that 1GAPn is also hard for this stronger oblivious randomized model. It is important to note that if we ap-
plied Yao’s Lemma directly on this model then we would lose the requirement of obliviousness when the
randomness is fixed.

Acknowledgements

We are very grateful to Russell Impagliazzo for helping us to clarify the difference between randomized
oblivious and oblivious randomized branching programs and for suggesting the approach for separations for
Boolean branching programs based on pseudorandom permutations of the generalized inner product.

References

[1] M. Ajtai. Determinism versus non-determinism for linear time RAMs with memory restrictions. Jour-
nal of Computer and System Sciences, 65(1):2–37, August 2002.

[2] M. Ajtai. A non-linear time lower bound for Boolean branching programs. Theory of Computing,
1(1):149–176, 2005.

[3] M. Ajtai. Oblivious RAMs without cryptographic assumptions. In Proceedings of the Forty-Second
Annual ACM Symposium on Theory of Computing, pages 181–190, Cambridge, Ma, June 2010.

[4] M. Ajtai. Oblivious RAMs without cryptographic assumptions. Technical Report TR10-028, Elec-
tronic Colloquium in Computation Complexity, http://www.eccc.uni-trier.de/eccc/,
2010.

[5] Noga Alon and Wolfgang Maass. Meanders and their applications in lower bounds arguments. Journal
of Computer and System Sciences, 37:118–129, 1988.

[6] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseudorandom generators for logspace, and
time-space trade-offs. Journal of Computer and System Sciences, 45(2):204–232, October 1992.

[7] P. Beame, M. Saks, X. Sun, and E. Vee. Time-space trade-off lower bounds for randomized computa-
tion of decision problems. Journal of the ACM, 50(2):154–195, 2003.

[8] Paul Beame, T. S. Jayram, and Michael Saks. Time-space tradeoffs for branching programs. Journal
of Computer and System Sciences, 63(4):542–572, December 2001.

[9] Paul Beame and Erik Vee. Time-space tradeoffs, multiparty communication complexity, and nearest-
neighbor problems. In Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Com-
puting, pages 688–697, Montreal, Quebec, Canada, May 2002.

16

[10] R. E. Bryant. Symbolic Boolean manipulation with ordered binary decision diagrams. ACM Computing
Surveys, 24(3):283–316, 1992.

[11] I. Damgård, S. Meldgaard, and J. B. Nielsen. Perfectly secure oblivious RAM without random oracles.
Technical Report 2010/108, Cryptology ePrint Archive, 2010.

[12] O. Goldreich. Towards a theory of software protection and simulation by oblivious RAMs. In Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pages 182–194, New
York, NY, May 1987.

[13] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. Journal of
the ACM, 43(3):431–473, 1996.

[14] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom functions.
SIAM Journal on Computing, 17(2):373–386, 1988.

[15] M. Naor and O. Reingold. On the construction of pseudorandom permutations: Luby-rackoff revisited.
J. Cryptology, 12(1):29–66, 1999.

[16] R. Ostrovsky. Efficient computation on oblivious RAMs. In Proceedings of the Twenty-Second Annual
ACM Symposium on Theory of Computing, pages 514–523, Baltimore, MD, May 1990.

[17] Nicholas J. Pippenger and Michael J. Fischer. Relations among complexity measures. Journal of the
ACM, 26(2):361–381, April 1979.

[18] M. Sauerhoff. A lower bound for randomized read-k-times branching programs. In (STACS) 98: 15th
Annual Symposium on Theoretical Aspects of Computer Science, volume 1373 of Lecture Notes in
Computer Science, pages 105–115, Paris, France, February 1998. Springer-Verlag.

[19] A. C. Yao. Probabilistic computations: Toward a unified measure of complexity. In 18th Annual Sym-
posium on Foundations of Computer Science, pages 222–227, Providence, RI, October 1977. IEEE.

17

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

