
Optimal Constant-Time Approximation Algorithms and

(Unconditional) Inapproximability Results for Every

Bounded-Degree CSP

Yuichi Yoshida∗

School of Informatics, Kyoto University, and
Preferred Infrastructure, Inc.

yyoshida@lab2.kuis.kyoto-u.ac.jp

Abstract

Raghavendra (STOC 2008) gave an elegant and surprising result: if Khot’s Unique Games
Conjecture (STOC 2002) is true, then for every constraint satisfaction problem (CSP), the best
approximation ratio is attained by a certain simple semidefinite programming and a rounding
scheme for it.

In this paper, we show that a similar result holds for constant-time approximation algorithms
in the bounded-degree model. Specifically, we present the followings: (i) For every CSP, we
construct an oracle that serves an access, in constant time, to a nearly optimal solution of
a basic LP relaxation of the CSP. (ii) Using the oracle, we present a constant-time rounding
scheme that achieves an approximation ratio coincident with the integrality gap of the basic LP.
(iii) We give a generic conversion from integrality gaps of basic LPs to hardness results. All of
those results are “unconditional.” Therefore, for every bounded-degree CSP, we give the best
constant-time approximation algorithm among all.

Key words: Constant-time approximation, constraint satisfaction problems, linear program-
mings, rounding schemes.

∗This work was conducted while the author was visiting Rutgers University.

0

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 106 (2010)

1 Introduction

In a constraint satisfaction problem (CSP), the objective is to find an assignment to a set of variables
that satisfies the maximum number of a given set of constraints on them. Formally, a CSP Λ is
specified by a set of predicates over alphabets [q] = {1, . . . , q}. Every instance of Λ consists of a set
of variables V , and a set of constraints P on them. Each constraint consists of a predicate from Λ
applied to a subset of variables. The objective is to find an assignment to the variables that satisfies
the maximum number of constraints. A large number of fundamental optimization problems, such
as Max Cut and Max k-Sat, are examples of CSPs.

Approximation algorithms for CSPs have been intensively studied. Goemans and Williamson [10]
first exploited semidefinite programmings (SDP) to approximate Max Cut and Max 2SAT achieving
the approximation ratio ≈ 0.878. After this breakthrough, plethora of approximation algorithms
using SDPs have been developed for many optimization problems [15, 21]. For inapproximability
side, tight hardness results have been successfully obtained for some important optimization prob-
lems such as Max 3SAT [14]. However, the approximability of many interesting CSPs such as Max
Cut and Max 2SAT remains open. Towards tightening this gap, Khot [16] introduced the Unique
Games Conjecture (UGC). Assuming the UGC, tight hardness have been shown for Max Cut [17],
Max 2SAT [5], and Max k-CSP [6, 27]. Finally, Raghavendra [25] succeeded to unify and generalize
those approximation and inapproximability results for every CSP. Specifically, Raghavendra showed
that, assuming the UGC, for every CSP, a certain SDP combined with a certain rounding scheme
attains the best approximation ratio among all polynomial-time approximation algorithms. The
ingenious technique in the proof is giving a generic conversion from integrality gaps of SDPs to
hardness results via the UGC.

In this paper, we are concerned with constant-time approximation algorithms for bounded-
degree CSPs. That is, algorithms are supposed to run in time irrespective of sizes of instances.
We use the bounded-degree model for CSPs, which was originally introduced for graphs [12]. In
this model, the number of alphabets, the maximum arity (the number of inputs to a predicate),
the maximum degree (the number of constraints where a variable appears), and the maximum
weight of a constraint is bounded by constants. Let I be a Λ-CSP instance. Since a constant-time
algorithm cannot read the whole I, we assume the existence of an oracle OI with which we can get
information of I. Let V and P be the variable set and the constraint set of I, respectively. Also,
let t be the maximum degree of I. Then, by specifying a variable v ∈ V and an index i ∈ [t], OI
returns P ∈ P where P is the ith constraint where v appears. If there is no such constraint, OI
returns a special symbol. The efficiency of an algorithm is measured by the number of accesses to
OI , which is called query complexity.

In this paper, we show an analogous result to Raghavendra’s result: for every CSP, a certain
linear programming (LP) combined with a certain rounding scheme attains the best approximation
ratio among all constant-time approximation algorithms. Furthermore, our result is unconditional.

To give the statement precisely, we need to define several notions. For a Λ-CSP instance I
with the variable set V and the constraint set P, there is a natural generic LP relaxation shown
in Fig. 1, which we call BasicLP. Let lp(I) denote the objective value of an optimal solution of
BasicLP for I and opt(I) denote the value of an optimal solution of I. We define WI as the sum of
weights of constraints in I. The integrality gap of BasicLP for I is defined as opt(I)/lp(I). Also,
the integrality gap curve αΛ(c) is the minimum ratio of opt(I)/lp(I), given lp(I) = cWI , where
the minimum is taken over all instances I of a CSP Λ. Formally,

αΛ(c) = inf
I∈Λ,

lp(I)=cWI

opt(I)
lp(I)

.

1

A value x is called an (α, β)-approximation to value x∗ if it satisfies αx∗ − β ≤ x ≤ x∗.
Let α(c) : [0, 1] → [0, 1] be a function. Then, an algorithm is called an (α(c), ϵn)-approximation
algorithm for a CSP Λ if, given an oracle access OI to a Λ-CSP instance I of n variables with
lp(I) = cWI , it computes an (α(c), ϵn)-approximation to opt(I) with probability of at least 2/3.

Theorem 1.1. For every CSP Λ and ϵ > 0, there is a constant-time (αΛ(c− ϵ), ϵn)-approximation
algorithm for the CSP Λ, where n is the number variables in an input instance.

Note that we must allow the additive error ϵn. To see this, suppose that the input instance
consists of n variables and constant number of constraints. Then, we have to see at least one
constraint if we do not allow the additive error. However, this is obviously impossible in constant
time.

The proof of Theorem 1.1 consists of two parts. The first part (Section 3) states that we can
compute a (nearly) optimal solution of BasicLP in constant-time. Since the size of the solution
itself is non-constant, we do not explicitly create the whole solution. Instead, we construct an
oracle that returns the value of a variable when we specify it. The second part (Section 4) states
that, given an oracle access to a (nearly) optimal solution of BasicLP, we can efficiently compute
an (αΛ(c − ϵ), ϵn)-approximation to opt(I). Note that, for an instance I satisfying lp(I) = cWI ,
αΛ(c) is the best possible approximation ratio we can hope for. Thus, the second part gives the
optimal rounding scheme for BasicLP.

For hardness side, we show the following.

Theorem 1.2. For every CSP Λ, c ∈ [0, 1] and ϵ > 0, there exists δ > 0 such that any (αΛ(c) +
ϵ, δn)-approximation algorithm for the CSP Λ requires Ω(

√
n) queries, where n is the number of

variables in an input instance.

Combining with Theorem 1.1, we conclude that the algorithm given in Theorem 1.1 is not
just the best among constant-time approximation algorithm using BasicLP, but the best among all
constant-time approximation algorithms.

Theorem 1.2 has much implication in the setting of property testing. A Λ-CSP instance I is
called satisfiable if there is an assignment to variables that satisfies all the constraints. Also, I
is called ϵ-far from satisfiability if we must remove at least ϵtn constraints to make it satisfiable,
where t is the maximum degree and n is the number of variables. If I is a unweighted instance,
I is ϵ-far from satisfiability if the optimal value is at most WI − ϵtn. An algorithm is called a
testing algorithm for satisfiability of a CSP Λ if, given an oracle access to a Λ-CSP instance, it
accepts with probability of at least 2/3 if the instance is satisfiable, and rejects with probability
of at least 2/3 if the instance is ϵ-far from satisfiability. Unlike the hardness result given in [25],
Theorem 1.2 holds also for c = 1, i.e., satisfiable instances. Thus, if αΛ(1) < 1, then it indicates
that there is no constant-time testing algorithm for satisfiability of the CSP Λ. Max Cut is an
optimization problem for graphs in which we partition vertices into two sets so as to maximize the
number of edges between them. It is now hard to show that αMax Cut(1) < 1, and Theorem 1.2
indicates that testing the satisfiability of Max Cut, or equivalently Bipartiteness, requires Ω(

√
n)

queries. However, it is know that Bipartiteness is testable with Õ(
√

n) queries [11]. Thus, the lower
bound in Theorem 1.2 is almost tight.

1.1 Related Work

Subsequent to Raghavendra’s work [25], under the UGC, certain SDPs and LPs are shown to be
the best approximation algorithms for several classes of problems, such as graph labeling prob-
lems (including k-Way Cut, 0-Extension, and Metric Labeling) [22], kernel clustering problems [18],

2

ordering CSPs (including Maximum Acyclic Subgraph) [13], and strict monotone CSPs (including
Minimum Vertex Cover) [20].

There have been many studies on constant-time approximation algorithms in the bounded-
degree model. For algorithmic side, mainly graph problems have been studied, e.g., Minimum Span-
ning Tree [8], Minimum Vertex Cover [24, 23, 30], Maximum Matching [23, 30], Maximum Independent
Set [1], and Minimum Dominating Set [23, 30]. For inapproximability results of graph problems,
Minimum Dominating Set [1] and Maximum Independent Set [1, 29] have been considered. For CSPs,
it is known that, for every ϵ > 0, there exists δ > 0 such that any (1/2 + ϵ, δn)-approximation
algorithm for Max E2LIN2 and (7/8+ ϵ, δn)-approximation algorithm for Max E3SAT require linear
number of queries [7]. In [29], it was shown that, for every CSP using only symmetric predicates,
for every ϵ > 0 there exists δ > 0 such that any approximation algorithm better than the random
assignment by ϵ requires Ω(n1/2+δ) queries.

We can compute the optimal solution of CSPs within an additive error O(ϵns) by sampling
poly(1/ϵ) variables and by solving the induced problem, where s is the maximum arity and n is the
number of variables [2]. Thus, dense instances are easy to approximate with constant queries [2, 3,
4]. This is the reason why we are concerned with sparse instances in this paper.

1.2 Proof Overview

Let OI be the oracle access to a Λ-CSP instance I. First, we construct an oracle access Olp to
LP solution (x, µ) of BasicLP for I, where (x, µ) is a nearly optimal solution of BasicLP. Namely,
if we specify a variable xv,a(v ∈ V, a ∈ [q]) or µP,β(P ∈ P, β ∈ [q]V (P)), Olp outputs its value
by accessing OI constant times. To this end, we use a distributed algorithm for packing/covering
LP given in [19]. In the distributed setting, a linear programing is bound to a graph G = (V,E).
Each primal variable xi and each dual variable yj is associated with a vertex vp

i ∈ V and vd
j ∈ V ,

respectively. There are edges between primal and dual vertices wherever the respective variables
occur in the corresponding inequality. Thus, (vp

i , v
d
j) ∈ E if and only if xi occurs in the jth

inequality of the primal. Let Gv,k denote the graph induced by vertices whose distance from v is at
most k. Then, a distributed algorithm in k rounds works in such a way that each vertex outputs a
value of the corresponding variable based on Gv,k. In [19], it is shown that if the matrix in the LP
is “sparse,” then there is a distributed algorithm that computes a nearly optimal solution of the LP
in k rounds, where k is an integer determined by the sparsity of the LP. Suppose that the degree
of the graph is bounded by ∆. Then, given a variable, we can compute the value for it with ∆k

queries in the bounded-degree model by simulating the process of the distributed algorithm, and
we achieve Olp. Though BasicLP is not a packing/covering LP, after applying several number of
transformations, we get a packing LP that has essentially the same behavior under approximation.
Technically, we need to show that BasicLP is robust in the sense that even if we violate each
constraint by small amount, the optimal value does not significantly increase.

Next, we exhibit a solution to the original instance by rounding the LP solution given by
Olp. In [25], instead of BasicLP, Raghavendra considered a certain SDP relaxation, which we call
BasicSDP. In [26], Raghavendra and Stuerer showed an optimal rounding scheme for BasicSDP, i.e.,
get an approximation ratio coincident with the integrality gap of BasicSDP. Our proof is based on
their work. First, from an instance I and its LP solution (x, µ), we create another instance I ′ by
merging variables of I that have close values with respect to (x,µ) so that the number of variables
of I ′ become constant. Though we cannot explicitly construct I ′ since the number of constraints is
not constant, it is possible to enumerate variables without constructing I ′. Then, we perform brute
force search on I ′. That is, using the oracle Olp, we estimate the value obtained by each assignment
to variables in I ′, Finally, we take the maximum of them as the output. Since an assignment to

3

I ′ can be unfolded to the original instance I, opt(I)/WI is higher than opt(I ′)/WI′ . Also, the
crucial fact is that the LP optimum does not change significantly by merging variables. Thus,
we can establish an (αΛ(c − ϵ), ϵn)-approximation to opt(I) since we can get an (αΛ(c − ϵ), ϵn)-
approximation to opt(I ′) by brute force search.

Now, we describe a proof sketch of the hardness result. Let (x∗, µ∗) be the optimal LP solution
of BasicLP for I. First, we create a distribution of instances Dopt by blowing up variables of
BasicLP. With high probability, J ∈ Dopt satisfies that opt(J)/WJ ≤ opt(I)/WI + ϵ where ϵ is
an arbitrarily small constant. Next, using the LP solution (x∗, µ∗), we create another distribution
of instances Dlp, which has the property that for all J ∈ Dlp, opt(J)/WJ ≥ lp(I)/WI . From
Yao’s minimax principle, by showing that any deterministic algorithm that distinguishes Dopt from
Dlp with high probability requires Ω(

√
n) queries, we conclude that any (lp(I)/opt(I) − ϵ, ϵn)-

approximation algorithm requires Ω(
√

n) queries. By choosing an instance with integrality gap
αΛ(c) as I, we have the desired result.

1.3 Organization

In Section 2, we give notations and basic technical tools used in this paper. In Section 3, we present
an oracle access Olp to a (nearly) optimal solution of BasicLP. Section 4 is devoted to describe how
to round the LP solution optimally. We give the proof of robustness of BasicLP in Section 5. In
Section 6, we show that any (αΛ(c) + ϵ, δn)-approximation algorithm requires Ω(

√
n) queries.

2 Preliminaries

2.1 Definitions

The arity of a predicate P : [q]k → {0, 1} is the number of inputs to P , i.e., k here. The degree of
a variable is the number of constraints where the variable appears. For a constraint P in a CSP
instance, V (P) denotes the set of variables in P . Let β be a vector or a set indexed by elements of
a set V . For a subset S ⊆ V , we define β|S = {βv}v∈S .

Definition 2.1. A bounded-degree constraint satisfaction problem Λ is specified by Λ = ([q], s, t, w, P),
where [q] = {1, . . . , q} is a finite domain, s is the maximum arity of predicates, t is the maximum
degree of variable,s w is the maximum weight of predicates, and P = {P : [q]k → {0, 1}|k ≤ t} is a
set of predicates.

In this paper, a CSP stands for a bounded-degree constraint satisfaction problem. Also, symbols
q, s, t and w are used to denote the number of alphabets, the maximum arity, the maximum degree,
and the maximum weight throughout this paper unless mentioned otherwise.

Definition 2.2. An instance I of a CSP Λ = ([q], s, t, w, P) is given by I = (V,P, w), where

• V = {v1, . . . , vn} is a set of variables taking values over [q],

• P is a set of constraints, consisting of predicates P ∈ P applied to sequences S of variables V of
size at most s. More precisely, when a predicate P is applied to a sequence S = {i1, . . . , ik} ⊆
[n]k, P takes variables V|S = {vi1 , . . . , vik} as the input. Also, the degree of each variable is
bounded by t.

• w is a set of weights {wP }P∈P assigned to each constraint P ∈ P, where 0 ≤ wP ≤ w.

4

max
∑

P∈P
wP

(∑
β∈[q]V (P)

P (β)µP,β

)
s.t.

∑
a∈[q]

xv,a = 1 ∀v ∈ V∑
β∈[q]V (P),βv=a

µP,β = xv,a ∀P ∈ P, v ∈ V (P), a ∈ [q]

xv,a ≥ 0 ∀v ∈ V

µP,β ≥ 0 ∀P ∈ P, β ∈ [q]V (P).

Figure 1: BasicLP for a Λ-CSP instance I = (V,P, w)

The objective is to find an assignment to variables β : V → [q] that maximizes the number of
satisfied constraints, i.e.,

∑
P∈P wP P (β).

We consider an LP relaxation for a CSP Λ, which we call BasicLP (see Fig. 1). The goal is to
find a collection of vectors {xv,a}v∈V,a∈[q] and {µP,β}P∈P,β∈[q]V (P) . Here, xv = {xv,a}a∈[q] (resp.,
µP = {µP,β}β∈[q]V (P)) can be seen as a distribution over assignments to a variable v ∈ V (resp., a
constraint P ∈ P), and we often identify them as distributions. For an LP solution (x, µ), we define
val(I,x, µ) as the value of the objective function of BasicLP obtained by (x,µ). Let β : V → [q]
be an assignment to variables. Then, val(I, β) denote the value of I (not BasicLP for I) obtained
by this assignment. We call an LP solution (x,µ) ϵ-infeasible if it satisfies constraints of the form
xv,a ≥ 0 and µP,x ≥ 0 and violates other constraints by at most ϵ. Also, we call an LP solution
(x, µ) (α, β)-approximate if val(I, x, µ) is an (α, β)-approximation to lp(I).

2.2 Basic Tools

As a simple application of Hoeffding’s inequality, we obtain the following.

Lemma 2.3. Suppose that we have an oracle access to a function f : [n] → [0, w]. That is, by
specifying x ∈ [n] as a query, we can see the value of f(x). Then, by querying O(w2

ϵ2
log 1

δ) times,
with probability of at least 1 − δ, we can compute a (1, ϵn)-approximation to

∑
i f(i).

Let I be a Λ-CSP instance. Not surprisingly, we cannot compute the optimal solution (x∗,µ∗)
of BasicLP for I in constant time. Even worse, it is also hard to obtain a feasible solution in
constant time. Instead, as we will see, we can compute a feasible (nearly) optimal solution (x, µ)
of a resulting LP obtained by relaxing equality constraints. Though this is an infeasible solution
for the original LP, The following lemma states that val(I, x, µ) is close to lp(I). The proof is
given in Section 5.

Lemma 2.4 (Robustness of BasicLP). Let I be a Λ-CSP instance. Suppose that (x, µ) is an
ϵ-infeasible LP solution for I of value cWI . Then, it holds that

lp(I) ≥ (c − ϵ · poly(qs))WI .

3 A (1 − ϵ, ϵn)-approximation algorithm for BasicLP

In this section, we show the following theorem.

5

Theorem 3.1. Let I be a Λ-CSP instance of n variables. Given an oracle access OI to I, for any
ϵ > 0, we can construct an oracle that gives an access to an ϵ-feasible (1−ϵ, ϵn)-approximate LP solu-
tion (x, µ). For each query, the number of queries performed to OI is at most exp(exp(poly(qstw/ϵ))).

As described in the introduction, we utilize a distributed algorithm that solves a packing LP
given in [19]. A packing LP is expressed as follows.

max bT z
s.t. AT z ≤ c

z ≥ 0,

(1)

where A ∈ Rm×n
+ is a non-negative matrix and b, c ∈ Rn

+ are non-negative vectors. Then, there is
a distributed algorithm in a constant round to compute a nearly optimal solution of the packing
LP (see Appendix A for a formal statement).

When a variable xv,a, v ∈ V, a ∈ [q] or µP,β , P ∈ P, β ∈ [q]V (P) is specified as a query, we locally
simulate the distributed algorithm and output the value for it. The only issue is that BasicLP is
not a packing LP. Thus, this section is devoted to transform BasicLP to a packing LP, and we will
show that we can restore a good approximation to BasicLP from an approximation to the resulting
packing LP.

First, we substitute xv,a by 1 − xv,a and relax each equality constraint by ϵ. Then, we obtain
the following LP.

max
∑

P∈P
wP

(∑
β∈[q]V (P)

P (β)µP,β

)
s.t.

∑
a∈[q]

xv,a ≤ q − 1 + ϵ ∀v ∈ V∑
a∈[q]

xv,a ≥ q − 1 − ϵ ∀v ∈ V

xv,a +
∑

β∈[q]V (P),βv=a

µP,β ≤ 1 + ϵ ∀P ∈ P, v ∈ V (P), a ∈ [q]

xv,a +
∑

β∈[q]V (P),βv=a

µP,β ≥ 1 − ϵ ∀P ∈ P, v ∈ V (P), a ∈ [q]

xv,a ≥ 0 ∀v ∈ V

µP,x ≥ 0 ∀P ∈ P, β ∈ [q]V (P).

(2)

Lemma 3.2. Let I be a Λ-CSP instance and (x, µ) be an ϵ-infeasible solution for LP (2) of value
cWI . Then, lp(I) ≥ (c − ϵ · poly(kq))WI holds.

Proof. Clearly, (1 − x, µ) is an 2ϵ-infeasible solution for BasicLP of value c. From Lemma 2.4, the
lemma holds.

Next, to make the directions of the inequalities the same, we introduce a complement variable
for each variable, i.e., we define xv,a = 1 − xv,a and µP,β = 1 − µP,β. However, such equality
constraints cannot be used in a packing LP. Thus, we relax those equality constraints again. That
is, we introduce constraints of the form xv,a +xv,a ≤ 1 and µP,β +µP,β ≤ 1. Instead, to discourage
them to become much smaller than one, we add additional terms to the objective function. We get
the following LP.

6

max
∑

P∈P
wP

(∑
β∈[q]V (P)

P (β)µP,β

)
+ 1T (x + x) + 1T (µ + µ),

s.t.
∑

a∈[q]

xv,a ≤ q − 1 + ϵ ∀v ∈ V∑
a∈[q]

xv,a ≤ 1 + ϵ ∀v ∈ V

xv,a +
∑

β∈[q]V (P),βv=a

µP,x ≤ 1 + ϵ ∀P ∈ P, v ∈ V (P), a ∈ [q]

xv,a +
∑

x∈[q]V (P),βv=a

µP,β ≤ q|V (P)|−1 + ϵ ∀P ∈ P, v ∈ V (P), a ∈ [q]

xv,a + xv,a ≤ 1, xv,a ≥ 0, xv,a ≥ 0 ∀v ∈ V

µP,β + µP,β ≤ 1, µP,β ≥ 0, µP,β ≥ 0 ∀P ∈ P, β ∈ [q]V (P).

(3)

Fortunately, the optimal solutions of LP (3) and LP (2) are essentially the same.

Lemma 3.3 ([9]). Let I be a Λ-CSP instance and (x∗, x∗, µ∗, µ∗) be the optimal solution of LP (3)
with value cWI + N where N is the number of variables in LP (3). Then, x∗ + x∗ = 1 and
µ∗ + µ∗ = 1 hold. Also, (x∗, µ∗) is the optimal solution of LP (2) with value cWI .

Now, using the distributed algorithm given by [19], we have the following lemma. The analysis
of the query complexity is tedious and the proof is given in Appendix A.

Lemma 3.4. Let I be a Λ-CSP instance. Given an oracle access OI to I, for any ϵ > 0,
we can construct an oracle that serves an access to (x, x, µ, µ), which is a feasible (1 − ϵ, 0)-
approximate solution to LP (3). For each query, the number of queries performed to OI is at most
exp(poly(qstw/ϵ)).

Proof of Theorem 3.1. Let (x, x,µ, µ) be a feasible (1 − ϵ′, 0)-approximate solution obtained by
Lemma 3.4, where ϵ′ is a constant determined later. For notational simplicity, we write the objective
function as wT µ + 1T (z + z) where z = (x, µ). Let (z∗, z∗) be the optimal solution of LP (3).
From Lemma 3.3, z∗ + z∗ = 1. Also, let N ≤ qn + qs · tn = (q + tqs)n be the number of variables,
where n is the number of variables in I. Then, we have

wT µ + 1T (z + z) ≥ (1 − ϵ′)(wT µ∗ + 1T (z∗ + z∗)) = (1 − ϵ′)(wT µ∗ + N).

Thus,

1T (z + z) ≥ (1 − ϵ′)N + (1 − ϵ′)(wT µ∗ − wT µ) − ϵ′wT µ ≥ N − ϵ′(w + 1)N,

wT µ ≥ (1 − ϵ′)wT µ∗ + (1 − ϵ′)(N − 1T (z + z)) − ϵ′1T (z + z) ≥ (1 − ϵ′)wT µ∗ − ϵ′N.

In the former inequality, we used the fact that wT µ∗ ≥ wT µ and wT µ ≤ wN . Also, in the latter
inequality, we used the fact that N ≥ 1T (z + z).

From the former inequality, we have

1T (1 − z − z) ≤ ϵ′(w + 1)N.

Let S be the set of variables zi (= xv,a or µP,β) such that (1 − zi − zi) ≥ ϵ′′ where ϵ′′ is a
constant determined later. From Markov’s inequality, we have |S| ≤ ϵ′/ϵ′′ · (w + 1)N . Let Sx =
S ∩ {xv,a}v∈V,a∈[q] and Sµ = S ∩ {µP,β}P∈P,β∈[q]V (P) . The variables in Sx and Sµ are problematic

7

since constraints in LP (3) involving them are far from being satisfied. Thus, in what follows, we
modify these variables and obtain nearly feasible solution of LP (3).

First, we construct variables {x′
v,a}v∈V,a∈[q] in such a way that x′

v,a = xv,a if none of {xv,a′}a′∈[q]

is in Sx, and x′
v,a = 1/q if otherwise. Then, we construct variables {µ′

P,β}P∈V (P),β∈[q]V (P) as follows.
If none of {xv,a}v∈V (P),a∈[q] was modified in the previous step, we set µ′

P,β = µP,β . If otherwise, we
set the values of {µ′

P,β}β∈[q]V (P) in such a way that the distribution µ′
P becomes consistent with the

marginal distributions determined by {x′
v}v∈P . Note that each modification to x in the previous

step involves at most 2tqs modifications to µ.
We calculate the decrease of the objective function. The decrease caused by the modification

to xv,a is at most
∑

P∋v wP ≤ tw, and the decrease caused by the modification to µP,β is at most
wP ≤ w. Thus, the total decrease is at most tw|S| + 2twqs|S| ≤ ϵ′/ϵ′′ · (1 + 2qs)tw(w + 1)N .

Note that for each unmodified variable zi (= xv,a or µP,β), z′
i + z′

i ≥ 1 − ϵ′′ holds. Thus,
(x′, x′, µ′,µ′) is an ϵ′′-infeasible solution with value of at least

(1 − ϵ′)wT µ∗ − ϵ′N − ϵ′/ϵ′′ · (1 + 2qs)tw(w + 1)N
≥ (1 − ϵ′)wT µ∗ − ϵ′(1 + (1 + 2qs)tw(w + 1)/ϵ′′)(q + tqs)n.

Thus, (x′, µ′) is an ϵ′′-infeasible (1−ϵ′, ϵ′(1+(1+2qs)tw(w+1)/ϵ′′)(q+tqs)n)-approximate solu-
tion. By choosing ϵ′ = ϵ2/(qO(s)poly(tw)) and ϵ′′ = ϵ, we have an ϵ-feasible (1− ϵ, ϵn)-approximate
solution.

We need to look at q variables {xv,a}a∈[q] to decide the value of x′
v,a, and we need to look at at

most qs variables {xv,a}v∈V (P),a∈[q] to decide the value of µ′
P,β . Thus, the query complexity is

max(q, qs) exp(poly(qstw/ϵ′)) = exp(exp(poly(qstw/ϵ))).

4 Optimal Rounding of BasicLP

In this section, we describe how we can optimally round LP solutions, and we give the proof of
Theorem 1.1.

Variable folding: Let I = (V,P, w) be a Λ-CSP instance. For a mapping ϕ : V → V ′, we define
a new Λ-CSP instance I/ϕ = (V ′,P ′, w′) on the variable set V ′ by identifying variables of I that
get mapped to the same variable in V ′. That is, for each constraint P ∈ P on the variable set
{v1, . . . , vk} with the weight wP , we have a constraint P ′ ∈ P ′ on the variable set {ϕ(v1), . . . , ϕ(vk)}
with the weight wP .

For x ∈ [0, 1], we define xϵ = (k+1)ϵ where k is the positive integer such that kϵ < x ≤ (k+1)ϵ.
If x = 0, then we define xϵ = 0. Let (x, µ) be an LP solution for I. We identify variables of I
that have the same values {xϵ

v,a}a∈[q]. Formally, we output another Λ-CSP instance I/ϕx where
ϕx : V → {0, . . . , 1/ϵ}q is defined as

ϕx(v) = (xϵ
v,1, . . . ,x

ϵ
v,q).

In what follows, we assume that 1/ϵ is an integer. This is achieved by slightly decreasing ϵ until
1/ϵ become an integer.

8

Lemma 4.1. Let I be a Λ-CSP instance and (x, µ) be an ϵ-infeasible LP solution for I. Then,
(xϵ, µ) is a (q + 1)ϵ-infeasible LP solution for I.

Proof. Since we move each xv,a by at most ϵ, each constraint
∑

a∈[q] x
ϵ
v,a = 1 can be at most (q+1)ϵ-

infeasible. Also, each constraint
∑

β∈[q]V (P),βv=a µP,β = xϵ
v,a can be at most 2ϵ-infeasible.

Lemma 4.2. Let I be a Λ-CSP instance of n variables and (x, µ) be an ϵ-infeasible (1 − ϵ, ϵ)-
approximate LP solution for I, where ϵ > 0 is a small constant. Then, the variable folding I/ϕx
satisfies that

• lp(I/ϕx) ≥ lp(I) − ϵ · poly(qstw)n,

• The variable set of I/ϕx has a cardinality exp(poly(q/ϵ)).

Proof. Since the range of ϕx is (1/ϵ)O(q), the second claim is obvious.
Suppose that (x,µ) has an LP value cWI . From the fact that (x, µ) is a (1− ϵ, ϵ)-approximate

solution, we have cWI ≥ (1− ϵ)lp(I)− ϵn. Also, by Lemma 4.1, (xϵ, µ) is a (q + 1)ϵ-infeasible LP
solution. Since only µ affects the value of the objective function, the LP value of (xϵ, µ) equals
cWI . A key observation is that (xϵ, µ) is also an LP solution for the folded instance I/ϕx. Thus,
we see that I/ϕx has a (q + 1)ϵ-infeasible solution of value at least cWI . Lemma 2.4 asserts that

lp(I/ϕx) ≥ (c − (q + 1)ϵ · poly(qs))WI

≥ (1 − ϵ)lp(I) − ϵn − ϵ · poly(qs)WI

≥ lp(I) − ϵ · poly(qstw)n.

In the last inequality, we use the fact that lp(I) ≤ WI and WI ≤ twn.

Theorem 4.3 (Theorem 1.1 restated). Let Λ be a CSP and ϵ > 0 be a small constant. Then, there
is an algorithm such that, given an oracle access OI to a Λ-CSP instance I with lp(I) = cWI , it
outputs an (αΛ(c − ϵ), ϵn)-approximation to opt(I). The number of queries performed to OI is at
most exp(exp(poly(qstw/ϵ))).

Proof. Let ϵ′ be a constant chosen later and (x, µ) be an ϵ′-infeasible (1 − ϵ′, ϵ′)-approximate
solution for I. Suppose the folded instance I ′ = I/ϕx on the variable set V ′. Since there are
at most exp(poly(q/ϵ′)) variables in V ′, there are at most N := exp(exp(poly(q/ϵ′))) assignments
to V ′. For each assignment β′ : V ′ → [q], we estimate the value val(I ′, β′) as follows. First, we
note that β′ can be unfolded to an assignment β : V → [q] to I with the same value. For each
variable v ∈ V , we assign the value f(v) =

∑
P∋v P (β)/|P |. It is clear that 0 ≤ f(v) ≤ tw and∑

v∈V f(v) = val(I, β) = val(I ′, β′). Also, we can calculate the value f(v) by querying Olp at
most st times. Thus, using the algorithm given in Lemma 2.3, we get a (1, ϵn/2)-approximation
to val(I ′, β′) with probability of at least 1 − 1/3N by querying Olp at most O(poly(stw/ϵ) log N)
times.

By the union bound, with probability of at least 2/3, we obtain a (1, ϵn/2)-approximation
to val(I ′, β′) for every assignment β′. Taking the maximum of these values, we obtain (1, ϵn/2)-
approximation to opt(I ′). The number of queries to OI and Olp is at most O(poly(stw/ϵ)N log N).

Since we are concerned with (·, ϵn)-approximation, we can safely assume that WI ≥ ϵn. If not,
val(I, β) is indeed a (1, ϵn)-approximation to opt(I).

9

When WI ≥ ϵn, it holds that

val(I, β) ≥ opt(I ′) − ϵn

2
≥ αΛ

(
lp(I ′)
WI′

)
lp(I ′) − ϵn

2

≥ αΛ

(
lp(I) − ϵ′ · poly(qstw)n

WI′

)
(lp(I) − ϵ′ · poly(qstw)n) − ϵn

2
(using Lemma 4.2)

= αΛ

(
lp(I)
WI

− ϵ′ · poly(qstw)n
WI

)
(lp(I) − ϵ′ · poly(qstw)n) − ϵn

2
(using WI = WI′)

≥ αΛ

(
lp(I)
WI

− ϵ′ · poly(qstw)
ϵ

)
(lp(I) − ϵ′ · poly(qstw)n) − ϵn

2
(using WI ≥ ϵn)

≥ αΛ

(
lp(I)
WI

− ϵ′ · poly(qstw)
ϵ

)
(opt(I) − ϵ′ · poly(qstw)n) − ϵn

2
. (using lp(I) ≥ opt(I))

By setting ϵ′ = ϵ/poly(qstw), we have the desired result. The number of queries performed to OI
is at most

poly(stw/ϵ)N log N exp(exp(poly(qstw/ϵ′))) = exp(exp(poly(qstw/ϵ))).

5 Robustness of BasicLP

In this section, we give a proof of Lemma 2.4. Our strategy is transforming (x, µ) to a feasible
solution without decreasing the LP value much. In the first step, we construct x′ from x that
satisfies

∑
a∈[q] x

′
v,a = 1 for every v ∈ V .

Lemma 5.1. Let (x, µ) be an ϵ-infeasible LP solution for a Λ-CSP instance I where ϵ > 0 is a
small constant. Then, x can be transformed to x′ in such a way that∑

a∈[q]

x′
v,a = 1 ∀v ∈ V, (4)

|x′
v,a − xv,a| = 2ϵ ∀v ∈ V, a ∈ [q]. (5)

In particular, (x′, µ) is a 3ϵ-infeasible LP solution that satisfies
∑

a∈[q] x
′
v,a = 1 for every v ∈ V .

Proof. We define x′
v,a = xv,a/

∑
a∈[q] xv,a. The condition (4) clearly holds. From the ϵ-infeasibility

of x, |
∑

a∈[q] xv,a − 1| ≤ ϵ holds. It follows that |x′
v,a −xv,a| ≤ ϵ/(1− ϵ) ≤ 2ϵ (when ϵ is small).

In the second step, we construct µ′ that satisfies
∑

β∈[q]V (P),βv=a µ′
P,β = x′

v,a for all P ∈ P, v ∈
V (P).

Lemma 5.2. Let (x, µ) be an ϵ-infeasible solution for a Λ-CSP instance I satisfying
∑

a∈[q] xv,a

for every v ∈ V . Then, µ can be transformed to µ′ in such a way that

Pr
β∼µ′

P

[βv = a] = (1 − δ)xv,a + δ
1
q

∀P ∈ P, v ∈ V (P), a ∈ [q],

||µP − µ′
P ||1 ≤ 2δ ∀P ∈ P.

where δ = kq3ϵ.

10

Proof. Let us fix a predicate P ∈ P and S = V (P). We may assume S = {1, . . . , k} where k ≤ s.
We can think of µP as a function f : [q]k → R such that f(β) is the probability of the assignment
β under the distribution µP .

Let χ1, . . . , χq be an orthonormal basis of the vector space {f : [q] → R} such that χ1 ≡ 1. Here,
orthonormal means that Ea∈[q][χi(a)χj(a)] = δij for all i, j ∈ [q] where δ is Kronecker’s delta. By
tensoring this basis, we obtain the orthonormal basis {χρ}ρ∈[q]k of the vector space {f : [q]k → R}.
That is, for ρ ∈ [q]k, β ∈ [q]k, we have χρ(β) = χρ1(β1) · · ·χρk

(βk). For a function f : [q]k → R,
we define f̂(σ) =

∑
β∈[q]k f(x)χσ(β). Note that f(β) = Eσ∈[q]k [f̂(σ)χσ(β)]. Therefore, if we let f

again be the function corresponding to µP , we have

Pr
β∼µP

[βi = a] =
∑

β∈[q]k,βi=a

E
σ∈[q]k

[
f̂(σ)χσ(β)

]
= E

σ∈[q]

[
f̂i(σ)χσ(a)

]
.

Here, f̂i(s) = f̂(σ) where σi = s and σr = 1 for all r ∈ [k] \ {i}. In the second inequality, we used
that for every σ with σr ̸= 1 for some r ∈ [k] \ {i}, the sum over the values of χσ vanishes.

We let gi : [q] → R be the function gi(a) = xi,a. We define a function f ′ : [q]k → R as follows.

f̂ ′(σ) =
{

ĝi(s) if σi = s and σr = 1 for all r ∈ [k] \ {i},
f̂(σ) otherwise.

This is well-defined since for any i ∈ [k], it holds that ĝi(1) =
∑

a∈[q] gi(a) =
∑

a∈[q] xi,a = 1.

Therefore, the function f ′ satisfies
∑

β∈[q]k f ′(β) = f̂(1) = 1, Then, we can define a distribution
µ′

P corresponding to f ′, and we have

Pr
β∼µ′

P

[βi = a] = E
σ∈[q]

[
f̂ ′

i(σ)χσ(a)
]

= xv,a.

Thus, it looks that the µ′
P is the desired distribution. However, in general, the function f ′ might

take negative values. We will show that these values cannot be too negative and that the function
can be made to a proper distribution by smoothing.

Let K be an upper bound on the values of the functions χ1, . . . , χq. From the orthonormality
of the functions, it follows that K ≤ √

q. Let fi(a) = Prβ∼µP
[βi = a]. Since the LP solution (x, µ)

is ϵ-infeasible, we have

∣∣∣ĝi(s) − f̂i(s)
∣∣∣ =

∣∣∣∣∣∣
∑
a∈[q]

gi(a)χs(a) −
∑
a∈[q]

fi(a)χs(a)

∣∣∣∣∣∣ ≤ Kqϵ.

Therefore, |f̂ ′(σ) − f̂(σ)| ≤ Kqϵ for all σ ∈ [q]k. Recall that |f̂ ′(σ) − f̂(σ)| = 0 for σ ∈ [q]k if there
are i ̸= j such that σi ̸= 1, σj ̸= 1. Thus,

|f ′(β) − f(β)| =

∣∣∣∣∣ E
σ∈[q]k

[
f̂ ′(σ)χσ(β) − f̂(σ)χσ(β)

]∣∣∣∣∣ ≤ δ/qk, (6)

where δ = K2kq2ϵ. Hence, if we let h = (1 − δ)f ′ + δU , where U : [q]k → R is the uniform
distribution U ≡ 1/qk, then

h(x) = (1 − δ)f ′(x) + δ/qk ≥ (1 − δ)f(x) ≥ 0.

11

It follows that h corresponds to another distribution µ′
P over assignments [q]k. Furthermore, it

holds

Pr
β∼µ′

P

[βi = a] = (1 − δ)xi,a +
δ

q
.

Finally, let us estimate the statistical distance between the distributions µP and µ′
P .

||f − h||1 = ||(1 − δ)(f − f ′) + δ(f − U)||1 ≤ ||f − f ′||1 + δ ≤ 2δ.

The first inequality is from the triangle inequality and the second inequality is from (6).

Proof of Lemma 2.4. Let us consider an ϵ-infeasible LP solution (x,µ) for a Λ-CSP instance I
of value cWI . First, we construct vector x′ as in Lemma 5.1. These variables together with the
original local distributions µ form an 3ϵ-infeasible LP solution for I. Next, we construct local
distributions µ′ as in Lemma 5.2. Define new variables

x′′
i,a = (1 − δ)x′

i,a + δ/q.

It follows that (x′′, µ′) is a feasible LP solution for I. The LP value of this solution is∑
P∈P

wP E
β∼µ′

P

[P (β)] = cWI −
∑
P∈P

wP

∑
β∈[q]V (P)

P (β)
(
µP,β − µ′

P,β

)
≥ cWI −

∑
P∈P

wP ||µP − µ′
P ||1

≥ cWI − ϵ · poly(kq)WI .

We used |P (x)| ≤ 1 for the first inequality, and the second inequality follows from Lemma 5.2.

6 Lower Bounds

In this section, we prove Theorem 1.2. As we described in the introduction, we utilize Yao’s
minimax principle to show lower bounds on the query complexity for approximating Λ-CSP. That
is, we construct two distributions of instances such that they have much different optimal values
and also it is hard to distinguish them in constant time. We fix a Λ-CSP instance I = (V,P,w)
with the optimal LP solution (x∗, µ∗) throughout this section, and let n and m be the number of
variables and constraints in I, respectively. To convert the LP integrality gap of I to hardness
results, we construct two distributions Dopt

N,T and Dlp
N,T using I and (x∗, µ∗). Here, N and T will

determine the number of variables and the maximum degree of instances generated by Dopt
N,T and

Dlp
N,T , respectively. We show that, by taking T as a large constant (irrespective of N), almost

all instances J ∈ Dopt
N,T satisfy that opt(J)/WJ ≤ opt(I) + ϵ. Also, we show that all instances

J ∈ Dlp
N,T satisfy that opt(J)/WJ ≥ lp(I). Finally, we define DN,T as the distribution that takes

an instance from Dopt
N,T with probability 1/2 and from Dlp

N,T with probability 1/2. Then, given an
oracle access OJ to an instance J generated by DN,T , an algorithm is supposed to guess the original
distribution (Dopt

N,T or Dlp
N,T) of J . By showing that such an algorithm requires Ω(

√
N) queries,

we conclude that any (opt(I)/lp(I)+ ϵ, δn)-approximation algorithm requires Ω(
√

N) queries. By
choosing as I an instance with the worst integrality gap, we have the desired result.

12

vu

Figure 2: Construction of Dopt
N,T (P) and Dlp

N,T (P). Here, the alphabet size q = 2, and we choose
N = 5 and T = 1. Also, µ∗

P,00 = 0.4, µ∗
P,01 = 0.2, µ∗

P,10 = 0.4, and µ∗
P,11 = 0. It follows that

x∗
u,0 = 0.6, x∗

u,1 = 0.4, x∗
v,0 = 0.8, and x∗

v,1 = 0.2. White (resp., black) variables in Dlp
N,T indicate

that they are assigned to 0 (resp., 1).

Construction of Dopt
N,T : Before stating the construction of Dopt

N,T , we introduce a distribution
Dopt

N,T (P) for each constraint P ∈ P (see Fig. 2). An instance JP of Dopt
N,T (P) is generated as

follows. Let k = |V (P)| be the arity of P . Then, the variable set of JP is V (P)× [N] and we regard
that it consists of k parts. Next, we create TN constraints among those variables. To this end, we
split each variable of JP into T variables. Then, we take random perfect k-partite matchings in
such a way that each matching takes one variable from each part. For each matching {v1, . . . , vk},
we create a copy of P on the variable set {v1, . . . , vk} of weight wP . Finally, we merge the split
variables again.

We define the distribution Dopt
N,T using Dopt

N,T (P). An instance J of Dopt
N,T is generated as follows.

For each P ∈ P, we create an instance JP according to the distribution Dopt
N,T (P). Then, J is

a union of {JP }P∈P obtained by merging variable sets as follows. Let P1, . . . , Pk ∈ P be the
set of constraints containing a variable v ∈ V . We let Vi(1 ≤ i ≤ k) denote the set of variables
in JPi corresponding to v. Then, we take random perfect k-partite matchings among V1, . . . , Vk

and we merge vertices in each matching. We repeat the same process for every v ∈ V . We note
that the variable set of J is V × [N] and the number of constraints of J is |P|TN . Now, we
decide the indices of constraints, which are used as arguments of the oracle access OJ . We use the
following rule. If P is the ith constraint where v ∈ P appears (in the sense of I), then for vertices
{(v, j) | j ∈ [N]} ⊆ V × [N], we use indices {(T − 1)i + 1, . . . , T i} to designate constraints in JP .
Finally, the labels of vertices are randomly permuted.

Let JP be an instance generated by PN
T (P). Let Pi(1 ≤ i ≤ 2) be a constraint on a variable set

{ui
1, . . . , u

i
k} in JP . Note that the arities of Pi are the same since they both are copies of P . For

each j ∈ [k], we choose v1
j ∈ {u1

j , u
2
j} arbitrarily and v2

j be the remaining one, i.e., {u1
j , u

2
j} \ {v1

j }.
Then, we define a constraint Qi(1 ≤ i ≤ 2) on the variable set {vi

1, . . . , v
i
k}. We create another

instance J ′
P by replacing {P1, P2} by {Q1, Q2}. We call this method switching. The following

concentration bound holds from a simple modification of Theorem 2.19 in [28].

Lemma 6.1. If X is a random variable defined on Dopt
N,T (P) such that |X(JP)−X(J ′

P)| ≤ c holds
where JP and J ′

P are instances of Dopt
N,T (P) that only differ by a switching, then

Pr
JP∼Dopt

N,T (P)
[|X(JP) − E[X(JP)]| ≥ t] ≤ 2 exp

(
− t2

TNc2

)
for all t > 0.

13

Lemma 6.2. For every ϵ, there is a T > 0 satisfying the following. Let I = (V,P, w) be a Λ-
CSP instance and J be an instance generated by Dopt

N,T . With probability 1 − o(1), opt(J)/WJ ≤
opt(I)/WI + ϵ.

Proof. Let α : V × [N] → [q] be an assignment to J , and we define xv,a = #{i ∈ [N] | α(v, i) =
a}/N for v ∈ V and a ∈ [q]. Note that xv gives a probability distribution on assignments to a
variable v ∈ V . We also define µP,β =

∏
v∈P xv,βv for P ∈ P and β ∈ [q]V (P).

For each P ∈ P, let JP be the sub-instance of J generated by Dopt
N,T (P). The expectation (over

Dopt
N,T (P)) of the value gained by a constraint P in JP is EβP∼µP

[P (βP)]. Thus, it holds that

E
J∼Dopt

N,T

[val(J , α)] =
∑
P∈P

E
JP∼Dopt

N,T (P)

[val(JP , α|V (P))] = TN
∑
P∈P

wP E
βP∼µP

[P (βP)]

= TN
∑
P∈P

wP E
β∼µ

[P (β|V (P))] = TN E
β∼µ

[
∑
P∈P

wP P (β|V (P))].

Note that E[
∑

P∈P wP P (β|V (P))] is the mean of values attained by several assignments. Thus,

E
J∼Dopt

N,T

[val(J , α)] ≤ TNopt(I). (7)

Note that, for instances JP and J ′
P generated by Dopt

N,T (P) such that they differ by a switching,
val(JP , α|V (P)) and val(J ′

P , α|V (P)) can differ by at most 2wP ≤ 2w. Then, from Lemma 6.1,

Pr
[∣∣val(JP , α|V (P)) − E[val(JP , α|V (P))]

∣∣ ≥ t
]
≤ 2 exp

(
− t2

4TNw2

)
.

Then,

Pr [|val(J , α) − E[val(J , α)]| ≥ tm] ≤ Pr
[
∃P ∈ P, |val(JP , α|V (P)) − E[val(JP , α|V (P))]| ≥ t

]
≤ 2m exp

(
− t2

4TNw2

)
.

The last inequality is from the union bound.
We choose t = ϵTN so that tm = ϵmTN ≤ ϵWJ . We have

Pr
[
|val(J , α) − E[val(J , α)]| ≥ ϵWJ

]
≤ 2m exp

(
−ϵ2TN

4w2

)
. (8)

We combine (7) and (8) with the union bound over all qnN assignments. It holds that

Pr
[
∃α,val(J , α) ≥ TNopt(I) + ϵWJ

]
= Pr

[
∃α,val(J , α)/WJ ≥ opt(I)/WI + ϵ

]
≤ 2m exp

(
−ϵ2TN

4w2

)
qnN .

by choosing T = Θ(w2 log q/ϵ2), we have the desired result. Note that n can be seen as a constant
when N is sufficiently large.

14

Construction of Dlp
N,T : Before stating the construction of Dlp

N,T , again we introduce another

distribution Dlp
N,T (P) for each constraint P ∈ P (see Fig. 2). An instance JP is generated as

follows. The variable set of JP is V (P) × [N] and we regard that it consists of k parts. For each
β ∈ [q]V (P), we take a µ∗

P,β-fraction of variables from each part. We say that a variable of the
form (v, i) ∈ V (P) × [N] in this set of variables is assigned to βv ∈ [q]. In total, we take kµ∗

P,βN
variables from the whole variable set. We split each variable into T copies. Then, we take random
perfect k-partite matchings in such a way that each matching takes one variable from each part.
For each matching {v1, . . . , vk}, we create a copy of P on the variable set {v1, . . . , vk} of weight
wP . Finally, we merge the split variables again. We note that, for fixed v ∈ V (P), an x∗

v,a-fraction
of variables of {(v, i) | i ∈ [N]} is assigned to a. A subtlety here is that µP,βN may not be an
integer. Since we can make this error arbitrarily small by choosing N large enough, we ignore this
issue for simplicity.

We define the distribution Dlp
N,T using Dlp

N,T (P). An instance J of Dlp
N,T is generated as follows.

For each P ∈ P, we create an instance JP according to the distribution Dlp
N,T (P). Then, J is

a union of {JP }P∈P obtained by merging variable sets as follows. Let P1, . . . , Pk ∈ P be the set
of constraints containing a variable v ∈ V . We let Vi,a(1 ≤ i ≤ k, a ∈ [q]) denote the set of
variables in JPi that are corresponding to v and assigned to a. Then, we take random perfect
k-partite matchings among V1,a, . . . , Vk,a and we merge vertices in each matching. We repeat the
same process for every v ∈ V and a ∈ [q]. We note that the variable set of J is V × [N] and the
number of constraints is |P|TN . To decide the indices of constraints, we use the same rule as Dopt

N,T .
Finally, the labels of vertices are randomly permuted.

Lemma 6.3. Let I = (V,P, w) be an Λ-CSP instance and J be an instance generated by Dlp
N,T .

Then, opt(J)/WJ ≥ lp(I)/WI holds.

Proof. Let α : V × [N] → [q] be the natural assignment to variables in J . From the construction,

val(J , α) =
∑
P∈P

val(JP , α|V (P)) = TN
∑
P∈P

wP E
βP∼µ∗

P

[P (βP)] = TN lp(I).

Lemma 6.4. Let I = (V,P, w) be a Λ-CSP instance. Any deterministic algorithm that, given
an oracle access to OJ generated by DN,T , correctly guesses the original distribution of J with
probability of at least 2/3 requires at least Ω(

√
N) queries.

Proof. It is convenient to think that labels of variables are determined on the fly. Thus, DN,T

decides labels of variables at the time that the variable appears for the first time in the interaction
between an algorithm and DN,T . The distribution never change by this modification. Also, we can
think that the sequence of labels is determined beforehand, and for each time that a new variable
appears, a new label for the variable is taken from the front of the sequence. Let DN,T,ℓ be the
resulting distribution by fixing the sequence to ℓ in DN,T . It is clear that DN,T coincides with
the distribution that takes ℓ uniformly at random and uses DN,T,ℓ. Thus, by showing that any
deterministic algorithm for DN,T,ℓ requires Ω(

√
N) queries, we have the desired result.

A deterministic algorithm A with query complexity τ can be expressed as a decision tree of
depth at most τ . We transform A to a non-adaptive algorithm with τ queries. Recall that, from the
rule of indices, if we fix an index, the oracle always returns a constraint that uses some particular
predicate. Also, since we have fix the sequence of labels ℓ, at each node in the decision tree, there
is just one branch corresponding to the case that A finds a constraint such that any variable in

15

the constraint is not seen by A before. We define the transcript as the set of variables appeared in
the queries or the answers for them. We assume that A can output the correct answer for other
branches, i.e., when the oracle returns a constraint containing a variable in the transcript at that
time. This only improves the ability of A. Ignoring branches for which A outputs an answer,
the decision tree has the property that the number of children of each node is one. Thus, A is
essentially a non-adaptive algorithm. Without loss of generality, we assume that A outputs that
the instance is generated by Dopt

N,T if A arrives at the leaf of the decision tree.
We assume that τ = o(N). In the ith query, the probability that a constraint containing a

variable in the transcript is returned is at most is2T/(TN − isT) (the algorithm has seen at most
is variables and they may touch isT constraints). By the union bound, the probability that A
outputs the correct answer is at most

τ∑
i=1

is2T

TN − isT
+

1
2
≤ τ2s2

N
+

1
2
.

To make this probability at least 2/3, we have to choose τ = Ω(
√

N).

Proof of Theorem 1.2. Let us fix c ∈ [0, 1] and s = cαΛ(c). Then, there exists a Λ-CSP instance
I such that lp(I) = cWI and opt(I) = sWI . Suppose that there exists an (αΛ(c) + ϵ, δn)-
approximation algorithm A with query complexity o(

√
n), where δ > 0 is a constant determined

later. Let T be a constant given by Lemma 6.2 substituting ϵ = ϵopt where ϵopt < ϵ/2 is a constant.
We define nJ as the number of variables in an instance generated by DN,T . Note that WJ ≤ wTnJ .

Let J be an instance generated by Dopt
N,T . Then, from Lemma 6.2, with probability of at least

(1−o(1))·2/3, the output x by A given J satisfies that x/WJ ≤ opt(J)/WJ ≤ opt(I)/WI+ϵopt ≤
s + ϵopt.

Let J be an instance generated by Dlp
N,T . Then, from Lemma 6.3, with probability of at least

2/3, the output x by A given J satisfies that x/WJ ≥ (αΛ(c) + ϵ)opt(J)/WJ − δnJ /WJ ≥
(αΛ(c) + ϵ)opt(I)/WI − δnJ /WJ ≥ (1 + ϵ)s − δ/wT = s + ϵlp where ϵlp = ϵ − δ/wT . Thus, by
choosing δ small enough, we have ϵlp ≥ ϵ/2. Then, the probability that A correctly guesses the
original distribution of J is at least

1
2
(1 − o(1))

2
3

+
1
2

2
3

=
2
3
− o(1).

By running A constant times and take the majority of outputs, the probability can be increased to
at least 2/3. This contradicts Lemma 6.4.

Acknowledgements

The author is grateful to Hiro Ito and Suguru Tamaki for valuable comments on an earlier draft of
this paper.

16

References

[1] Noga Alon. On constant time approximation of parameters of bounded degree graphs, 2010.
manuscript.

[2] Noga Alon, Wenceslas Fernandez de la Vega, Ravi Kannan, and Marek Karpinski. Ran-
dom sampling and approximation of MAX-CSPs. Journal of Computer and System Sciences,
67(2):212–243, 2003.

[3] Noga Alon and Asaf Shapira. Testing satisfiability. In Proc. of SODA 2002, pages 645–654,
2002.

[4] Gunnar Andersson and Lars Engebretsen. Property testers for dense constraint satisfaction
programs on finite domains. Random Struct. Algorithms, 21(1):14–32, 2002.

[5] Per Austrin. Balanced MAX 2-SAT might not be the hardest. In Proc. of STOC 2007, pages
189–197, 2007.

[6] Per Austrin and Elchanan Mossel. Approximation resistant predicates from pairwise indepen-
dence. In Proc. of CCC 2008, pages 249–258, 2008.

[7] Andrej Bogdanov, Kenji Obata, and Luca Trevisan. A lower bound for testing 3-colorability
in bounded-degree graphs. In Proc. of FOCS 2002, pages 93–102, 2002.

[8] Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum span-
ning tree weight in sublinear time. In Proc. of ICALP 2001, pages 190–200, 2001.

[9] Dimitris A. Fotakis and Paul G. Spirakis. Linear programming and fast parallel approxima-
bility, 1997. manuscript.

[10] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–
1145, 1995.

[11] Oded Goldreich and Dana Ron. A sublinear bipartiteness tester for bounded degree graphs.
Combinatorica, 19(3):335–373, 1999.

[12] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2008.

[13] Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beating the random
ordering is hard: Inapproximability of maximum acyclic subgraph. In Proc. of FOCS 2008,
pages 573–582, 2008.

[14] Johan H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

[15] David Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by semidefi-
nite programming. J. ACM, 45(2):246–265, 1998.

[16] Subhash Khot. On the power of unique 2-prover 1-round games. In Proc. of STOC 2002,
pages 767–775, 2002.

17

[17] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximabil-
ity results for MAX-CUT and other 2-variable CSPs? In Proc. of FOCS 2004, pages 146–154,
2004.

[18] Subhash Khot and Assaf Naor. Sharp kernel clustering algorithms and their associated
grothendieck inequalities. CoRR, abs/0906.4816, 2009.

[19] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being near-sighted.
In Proc. of SODA 2006, pages 980–989, 2006.

[20] Amit Kumar, Rajsekar Manokaran, Madhur Tulsiani, and Nisheeth K. Vishnoi. On the opti-
mality of a class of LP-based algorithms. CoRR, abs/0912.1776, 2009.

[21] Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding techniques for the MAX
2-SAT and MAX DI-CUT problems. In Proc. of IPCO 2002, pages 67–82, 2002.

[22] Rajsekar Manokaran, Joseph (Seffi) Naor, Prasad Raghavendra, and Roy Schwartz. SDP gaps
and UGC hardness for multiway cut, 0-extension, and metric labeling. In Proc. of STOC 2008,
pages 11–20, 2008.

[23] Huy N. Nguyen and Krzysztof Onak. Constant-time approximation algorithms via local im-
provements. In Proc. of FOCS 2008, pages 327–336, 2008.

[24] Michal Parnas and Dana Ron. Approximating the minimum vertex cover in sublinear time
and a connection to distributed algorithms. Theor. Comput. Sci., 381(1-3):183–196, 2007.

[25] Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In
Proc. of STOC 08, pages 245–254, 2008.

[26] Prasad Raghavendra and David Steurer. How to round any CSP. In Proc. of FOCS 2009,
pages 586–594, 2009.

[27] Alex Samorodnitsky and Luca Trevisan. Gowers uniformity, influence of variables, and PCPs.
In Proc. of STOC 2006, pages 11–20. ACM, 2006.

[28] Nick Wormald. Models of random regular graphs. In Surveys in Combinatorics, pages 239–298.
Cambridge University Press, 1999.

[29] Yuichi Yoshida. Lower bounds on query complexity for testing bounded-degree CSPs, 2010.
manuscript.

[30] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-time approximation
algorithm for maximum matchings. In Proc. of STOC 2009, pages 225–234, 2009.

Appendix

A Proof of Lemma 3.4

In this section, we give a proof of Lemma 3.4. We consider a more restricted form of a packing LP.

max 1T z
s.t. AT z ≤ c

z ≥ 0,
(9)

18

where A ∈ Rm×n
+ is a non-negative matrix such that aji = 0 or aji ≥ 1 for any j ∈ [m], i ∈ [n], and

c ∈ Rn
+ is a non-negative vector.

Define

cmax = max
i

ci, Γp = max
i

cmax

ci

m∑
j=1

aji, Γd = max
j

n∑
i=1

aji.

Then, there is a distributed algorithm that solves this packing LP.

Lemma A.1 ([19]). For sufficiently small ϵ > 0, there exists a deterministic distributed algorithm
that computes a feasible (1−ϵ, 0)-approximate solution of LP (9) in O(log Γp log Γd/ϵ4) rounds.

In order to apply Lemma A.1 to LP (3), we transform it to the form LP (9). Note that, in the
objective function, the coefficient of µP,β is wP P (β) + 1 and the coefficients of xv,a,xv,a, µP,β are
1. Thus, by replacing µP,β with µP,β/(wP P (β) + 1), we obtain the following LP.

max 1T (x + x + µ + µ)
s.t.

∑
a∈[q]

xv,a ≤ q − 1 + ϵ ∀v ∈ V∑
a∈[q]

xv,a ≤ 1 + ϵ ∀v ∈ V

xv,a +
∑

β∈[q]V (P),βv=a

µP,β

wP P (β)+1 ≤ 1 + ϵ ∀P ∈ P, v ∈ V (P), a ∈ [q]

xv,a +
∑

β∈[q]V (P),βv=a

µP,β ≤ qV (P)−1 + ϵ ∀P ∈ P, v ∈ V (P), a ∈ [q]

xv,a + xv,a ≤ 1, xv,a ≥ 0, xv,a ≥ 0 ∀v ∈ V
µP,β

wP P (β)+1 + µP,β ≤ 1, µP,β ≥ 0, µP,β ≥ 0 ∀P ∈ P, β ∈ [q]V (P).

We multiply each constraint in order to make every coefficient in the LHS at least 1. Then, we
have the following LP.

max 1T (x + x + µ + µ)
s.t.

∑
a∈[q]

xv,a ≤ q − 1 + ϵ ∀v ∈ V∑
a∈[q]

xv,a ≤ 1 + ϵ ∀v ∈ V

(w + 1)xv,a +
∑

β∈[q]V (P),βv=a

(w+1)µP,β

wP P (β)+1 ≤ (1 + ϵ)(w + 1) ∀P ∈ P, v ∈ V (P), a ∈ [q]

xv,a +
∑

β∈[q]V (P),βv=a

µP,x ≤ qV (P)−1 + ϵ ∀P ∈ P, v ∈ V (P), a ∈ [q]

xv,a + xv,a ≤ 1, xv,a ≥ 0, xv,a ≥ 0 ∀v ∈ V
(w+1)µP,β

wP P (β)+1 + (w + 1)µP,β ≤ w + 1, µP,β ≥ 0, µP,β ≥ 0 ∀P ∈ P, β ∈ [q]V (P).

(10)

Proof of Lemma 3.4. Note that LP (10) is of the form LP (9). After a calculation, we have

cmax = O(w + qs), Γp = O((s + t)w(w + qs)), Γd = O(wqs).

We define the degree of a variable in an LP as the number of inequalities where the variable appears.
Let ∆p and ∆d be the maximum degree of primal variables and dual variables, respectively. Here,
we treat LP (10) as a dual formulation. We have

∆p = O(qs), ∆d = O(s + t).

19

Applying the algorithm given in Lemma A.1 to LP (10), we obtain a distributed algorithm
that calculates (1 − ϵ, 0)-approximate solution. The number of rounds is O(log Γp log Γd/ϵ4). Note
that, given a variable, we can simulate the computation of the distributed algorithm involved by
the variable with (∆p∆d)r queries, where r is the number of rounds. Thus, the query complexity
becomes

(∆p∆d)O(log Γp log Γd/ϵ4) = exp(poly(qstw/ϵ)).

20

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

