
Optimal Constant-Time Approximation Algorithms and

(Unconditional) Inapproximability Results for Every

Bounded-Degree CSP

Yuichi Yoshida∗

School of Informatics, Kyoto University, and
Preferred Infrastructure, Inc.

yyoshida@lab2.kuis.kyoto-u.ac.jp

Abstract

Raghavendra (STOC 2008) gave an elegant and surprising result: if Khot’s Unique Games
Conjecture (STOC 2002) is true, then for every constraint satisfaction problem (CSP), the best
approximation ratio is attained by a certain simple semidefinite programming and a rounding
scheme for it.

In this paper, we show that similar results hold for constant-time approximation algorithms
in the bounded-degree model. Specifically, we present the followings: (i) For every CSP, we
construct an oracle that serves an access, in constant time, to a nearly optimal solution to a
basic LP relaxation of the CSP. (ii) Using the oracle, we give a constant-time rounding scheme
that achieves an approximation ratio coincident with the integrality gap of the basic LP. (iii)
Finally, we give a generic conversion from integrality gaps of basic LPs to hardness results. All
of those results are unconditional. Therefore, for every bounded-degree CSP, we give the best
constant-time approximation algorithm among all.

A CSP instance is called ϵ-far from satisfiability if we must remove at least an ϵ-fraction of
constraints to make it satisfiable. A CSP is called testable if there is a constant-time algorithm
that distinguishes satisfiable instances from ϵ-far instances with probability at least 2/3. Using
the results above, we also derive, under a technical assumption, an equivalent condition under
which a CSP is testable in the bounded-degree model.

Key words: Constant-time approximation, constraint satisfaction problems, linear program-
mings, rounding schemes, property testing.

∗Supported by MSRA Fellowship 2010. This work was conducted while the author was visiting Rutgers University.

0

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 106 (2010)

1 Introduction

In a constraint satisfaction problem (CSP), the objective is to find an assignment to a set of variables
that satisfies the maximum number of a given set of constraints on them. Formally, a CSP Λ is
specified by a set of predicates over alphabets [q] = {1, . . . , q}. Every instance of Λ consists of a
set of variables V , and a set of constraints P on them. Each constraint consists of a predicate from
Λ applied to a subset of variables. The objective is to find an assignment β ∈ [q]V to the variables
that satisfies the maximum number of constraints. A large number of fundamental optimization
problems, such as Max Cut and Max k-Sat, are examples of CSPs.

Approximation algorithms for CSPs have been intensively studied. Goemans and Williamson [9]
first exploited semidefinite programmings (SDP) to Max Cut and Max 2SAT achieving the approx-
imation ratio ≈ 0.878. After this breakthrough, plethora of approximation algorithms using SDPs
have been developed [15, 21]. For inapproximability side, tight hardness results have been success-
fully obtained for some important optimization problems such as Max 3SAT [14]. However, the
approximability of many interesting CSPs such as Max Cut and Max 2SAT remains open. Towards
tightening this gap, Khot [16] introduced the Unique Games Conjecture (UGC). Assuming the
UGC, tight hardness have been shown for Max Cut [17], Max 2SAT [4], and Max k-CSP [5, 27].
Finally, Raghavendra [25] succeeded to unify and generalize those approximation and inapproxima-
bility results for every CSP. Specifically, Raghavendra showed that, assuming the UGC, for every
CSP, a certain SDP combined with a certain rounding scheme attains the best approximation ra-
tio among all polynomial-time approximation algorithms. The ingenious technique in the proof is
giving a generic conversion from integrality gaps of SDPs to hardness results via the UGC.

In this paper, we are concerned with constant-time approximation algorithms CSPs. That is,
algorithms are supposed to run in time independent of sizes of instances. We use the bounded-degree
model, which was originally introduced for graphs [11]. In this model, the number of alphabets,
the maximum arity (the number of inputs to a predicate), the maximum degree (the number of
constraints where a variable appears), and the maximum weight of constraints are bounded by
constants. Let I be a Λ-CSP instance. Since a constant-time algorithm cannot read the whole I,
we assume the existence of an oracle OI with which we can get information of I. By specifying a
variable v and an index i, OI returns a constraint P where P is the i-th constraint where v appears.
The efficiency of an algorithm is measured by the number of accesses to OI , which is called query
complexity.

In this paper, we show an analogous result to Raghavendra’s result: for every CSP, a certain
linear programming (LP) combined with a certain rounding scheme attains the best approximation
ratio among all constant-time approximation algorithms. Furthermore, our results are uncondi-
tional. To give the statements precisely, we need to define several notions. For a Λ-CSP instance I
with the variable set V and the constraint set P, there is a natural generic LP relaxation which we
call BasicLP (see Section 2). Let lp(I) denote the objective value of an optimal solution to BasicLP
for I, opt(I) denote the value of an optimal solution of I, and val(I, β) denote the value obtained
by an assignment β ∈ [q]V . We define wI as the sum of weights of constraints in I. Then, we
define lp(I) = lp(I)/wI ,opt(I) = opt(I)/wI and val(I, β) = val(I, β)/wI . The integrality gap
curve SΛ(c) and the integrality gap αΛ of a CSP Λ is defined as

SΛ(c) = inf
I∈Λ,lp(I)≥c

opt(I), αΛ = inf
I∈Λ

opt(I)/lp(I).

The first result of this paper gives a tight approximation algorithm for every CSP.

Theorem 1.1. In the bounded-degree model, for every CSP Λ and ϵ > 0, there exists an algorithm
that, given a Λ-CSP instance I with n variables and lp(I) = c ∈ (0, 1], with probability at least

1

2/3, outputs a value x such that SΛ(c− ϵ)wI − ϵn ≤ x ≤ opt(I). Also, for some fixed assignment
β such that SΛ(c − ϵ)wI − ϵn ≤ val(I, β) ≤ opt(I), given a variable v in I, it computes βv in
constant time.

The algorithm computes βv by rounding an LP solution to BasicLP for I. Note that, for an
instance I with lp(I) = c, SΛ(c)wI is the best value we can hope for from the definition of SΛ(c).
Thus, in this sense, we will give a optimal rounding scheme for BasicLP.

We mention that the additive error ϵn cannot be removed. To see this, suppose an instance
I consisting of n variables and only one constraint. Then, we have to see this constraint to
approximate opt(I) if we do not allow the additive error. However, it obviously takes Ω(n) queries.

For hardness side, we show the following.

Theorem 1.2. In the bounded-degree model, for every CSP Λ, c ∈ [0, 1] and ϵ > 0, there exists a
δ > 0 such that any algorithm that, given an instance I with n variables and opt(I) = c ∈ [0, 1],
with probability at least 2/3, outputs a value x such that (SΛ(c) + ϵ)wI − δn ≤ x ≤ opt(I) requires
Ω(

√
n) queries.

Note that, using the algorithm in Theorem 1.1, given an instance I, we can distinguish the
case opt(I) ≥ cwI from the case opt(I) ≤ SΛ(c − ϵ)wI − ϵn (Technically, we need that SΛ(c)
is non-decreasing, but this is obvious from the definition). On the contrary, Theorem 1.2 asserts
that we cannot distinguish the case opt(I) ≥ cwI from the case opt(I) ≤ (SΛ(c) + ϵ)wI − δn.
Thus, the algorithm given in Theorem 1.1 is not just the best among constant-time approximation
algorithm using BasicLP, but the best among all constant-time approximation algorithms.

A value x is called an (α, β)-approximation to a value x∗ if it satisfies αx∗ − β ≤ x ≤ x∗. An
algorithm is called an (α, β)-approximation algorithm for a CSP Λ if, given a Λ-CSP instance I, it
computes an (α, β)-approximation to opt(I) with probability at least 2/3 [23, 24]. The following
is an immediate corollary achieved by Theorems 1.1 and 1.2.

Corollary 1.3. In the bounded-degree model, for every CSP Λ and ϵ > 0, there exists a constant-
time (αΛ − ϵ, ϵn)-approximation algorithm for the CSP Λ. On the other hand, for every CSP Λ
and ϵ > 0, there exists a δ > 0 such that any (αΛ + ϵ, δn)-approximation algorithm for the CSP Λ
requires Ω(

√
n) queries.

Theorem 1.2 has much implication to property testing. A Λ-CSP instance I is called satisfiable
if there is an assignment to variables that satisfies all the constraints. Also, I is called ϵ-far from
satisfiability if we must remove at least ϵtwn constraints to make it satisfiable, where t, w, n is the
maximum degree, the maximum weight, and the number of variables, respectively. An algorithm is
called a testing algorithm for (the satisfiability of) a CSP Λ if, given a Λ-CSP instance, it accepts
with probability at least 2/3 if the instance is satisfiable, and rejects with probability at least 2/3 if
the instance is ϵ-far from satisfiability. Unlike the hardness result given in [25], Theorem 1.2 holds
also for c = 1, i.e., satisfiable instances. Using this observation, we have the following theorem.

Theorem 1.4. In the bounded-degree model, the following holds for a CSP Λ. If SΛ(1) < 1, then
any testing algorithm for the CSP Λ requires Ω(

√
n) queries. If SΛ(1) = 1 and SΛ(c) is continuous

at c = 1, then there exists a constant-time testing algorithm for the CSP Λ.

We mention that Theorem 1.4 gives an “if and only if” condition of the testability of CSPs
when their integrality gap curves are continuous at the point one while we are not aware of any
CSP for which the curve is not continuous at that point.

We give two direct applications of Theorem 1.4. An instance of 2-SAT is a CNF formula where
each constraint consists of at most two literals. It is known that SMax 2-SAT(1) = 1/2, and it follows

2

that we need Ω(
√
n) queries to test 2-SAT. On the contrary, 2-SAT is known to be testable with

Õ(
√
n) queries [10]. This fact implies that the lower bound in Theorem 1.2 is almost tight. An

instance of Horn Sat is a CNF formula where each constraint has at most one positive literal,
From [31], it is easy to derive that SMax Horn SAT(1) = 1 and SMax Horn SAT(c) is continuous at c = 1.
Thus, Horn SAT is testable in constant time.

Related Work: Subsequent to Raghavendra’s work [25], under the UGC, certain SDPs and LPs
are shown to be the best approximation algorithms for several classes of problems, such as graph
labeling problems (including k-Way Cut, 0-Extension, and Metric Labeling) [22], kernel clustering
problems [18], ordering CSPs (including Maximum Acyclic Subgraph) [13], and strict monotone CSPs
(including Minimum Vertex Cover) [20].

There have been many studies on constant-time approximation algorithms in the bounded-
degree model. For algorithmic side, mainly graph problems have been studied, e.g., Minimum Span-
ning Tree [7], Minimum Vertex Cover [23, 24, 30], Maximum Matching [23, 30], Maximum Independent
Set [1], and Minimum Dominating Set [23, 30]. For inapproximability results of graph problems,
Minimum Dominating Set [1] and Maximum Independent Set [1, 29] have been considered. For CSPs,
it is known that, for every ϵ > 0, there exists δ > 0 such that any (1/2 + ϵ, δn)-approximation
algorithm for Max E2LIN2 and (7/8+ ϵ, δn)-approximation algorithm for Max E3SAT require linear
number of queries [6].

We can compute the optimal value of a CSP instance within an additive errorO(ϵns) by sampling
poly(1/ϵ) variables and by solving the induced problem, where n is the number of variables and s
is the maximum arity [2, 3]. Thus, it is easy to approximate the solution of a dense instance in
constant time. Hence, we are concerned with the bounded-degree model in this paper.

Proof Overview: We describe a proof sketch of Theorem 1.1. Let OI be the oracle access to a
Λ-CSP instance I. First, we construct an oracle access Olp to a nearly optimal solution to BasicLP
for I, Namely, if we specify a variable in BasicLP, Olp outputs its value by accessing OI constant
number of times. To this end, we use a distributed algorithm for packing/covering LP given in [19].
In the distributed setting, a linear programing is bound to a graph G = (V,E). Each primal
variable xi and each dual variable yj is associated with a vertex vpi ∈ V and vdj ∈ V , respectively.
There are edges between primal and dual vertices wherever the respective variables occur in the
corresponding inequality. Thus, (vpi , v

d
j) ∈ E if and only if xi occurs in the j-th inequality of the

primal. Let Gv,k denote the graph induced by vertices whose distance from v is at most k. Then,
a distributed algorithm in k rounds works in such a way that each vertex outputs a value of the
corresponding variable based on Gv,k. In [19], it is shown that if the matrix in the LP is “sparse,”
then there is a distributed algorithm that computes a nearly optimal solution to the LP in k rounds,
where k is an integer determined by the sparsity of the LP. Suppose that the degree of the graph
is bounded by ∆. Then, given a variable, we can compute the value of it by performing ∆k queries
to OI by simulating the process of the distributed algorithm. With this method, we achieve Olp.
Though BasicLP is not a packing/covering LP, after applying several number of transformations,
we get a packing LP that has essentially the same behavior under approximation. Technically, we
need to show that BasicLP is robust in the sense that even if we violate each constraint by small
amount, the optimal value does not significantly increase. We finally mention that, a predicate can
return values in [−1, 1] in [25] while it can only return 0 or 1 in this paper. This restriction comes
from that we cannot transform BasicLP to a packing LP anymore if we allow negative values.

Next, we exhibit a solution to the original instance by rounding the LP solution given by Olp.
In [26], Raghavendra and Steurer considered a certain SDP relaxation, which we call BasicSDP, and
showed an optimal rounding scheme for it. That is, it achieves an approximation ratio coincident
with the integrality gap of BasicSDP. Our proof is based on their work. First, from an instance I

3

and its LP solution, we create another instance I ′ by merging variables of I that are close in the
LP solution so that the number of variables in I ′ become constant. Though we cannot explicitly
construct the whole I ′ since the number of constraints is not constant, we can enumerate variables
in I ′. Then, we perform brute force search on I ′. Specifically, we estimate the value obtained by
each assignment to variables in I ′ by accessing the oracle Olp. Let β′∗ be the assignment for I ′

that takes the maximum among them. Note that β′∗ can be unfolded to an assignment β∗ for I.
Then, with high probability, we have SΛ(c− ϵ)− ϵn ≤ val(I, β∗) ≤ opt(I). Since, from a variable
v in I, we can get the corresponding variable in I ′ in constant time, we can compute β∗

v in constant
time. The crucial fact used here is that the LP optimum does not change significantly after merging
variables.

Now, we describe a proof sketch of Theorem 1.2. Let I be a Λ-CSP instance such that lp(I) =
cwI while opt(I) is arbitrarily close to SΛ(c)wI . Also, let (x

∗,µ∗) be the optimal LP solution to
BasicLP for I. First, we create a distribution of instances Dopt by blowing up variables of BasicLP.
With high probability, an instance J generated by Dopt satisfies that opt(J) ≤ opt(I)+ϵ where ϵ
is an arbitrarily small constant. Next, using the LP solution (x∗,µ∗), we create another distribution
of instances Dlp, which has the property that for all J generated by Dlp, opt(J) ≥ lp(I). From
Yao’s minimax principle, by showing that any deterministic algorithm that distinguishes Dopt from
Dlp with high probability requires Ω(

√
n) queries, we have the desired result.

Organization: In Section 2, we give notations and basic technical tools used in this paper. In
Section 3, we present an oracle access Olp to a (nearly) optimal solution to BasicLP. Section 4 is
devoted to describe how to round the LP solution optimally and to prove Theorem 1.1. We give
proofs of Theorems 1.2 and 1.4 in Section 5 and Appendix E, respectively.

2 Preliminaries

2.1 Definitions

For an integer k, [k] denotes the set {1, . . . , k}. The arity of a predicate P : [q]k → {0, 1} is the
number of inputs to P , i.e., k here. The degree of a variable is the number of constraints where the
variable appears. For a constraint P in a CSP instance, V (P) denotes the set of variables in P . Let
β be a vector or a set indexed by elements of a set V . For a subset S ⊆ V , we define β|S = {βv}v∈S .

Definition 2.1. A bounded-degree constraint satisfaction problem Λ is specified by Λ = ([q], s, t, w,P),
where [q] is a finite domain, s is the maximum arity of predicates, t is the maximum degree of vari-
ables, w is the maximum weight of predicates, and P = {P : [q]k → {0, 1} | k ≤ s} is a set of
predicates.

Definition 2.2. An instance I of a CSP Λ = ([q], s, t, w,P) is given by I = (V,P,w), where

• V = {v1, . . . , vn} is a set of variables taking values over [q],

• P is a set of constraints, consisting of predicates P ∈ P applied to sequences S of variables V of
size at most s. More precisely, when a predicate P is applied to a sequence S = {i1, . . . , ik} ⊆
[n]k, P takes variables V|S = {vi1 , . . . , vik} as the input.

• w is a set of weights {wP }P∈P assigned to each constraint P ∈ P, where 1 ≤ wP ≤ w.

The objective is to find an assignment to variables β ∈ [q]V that maximizes the total weight of
satisfied constraints, i.e.,

∑
P∈P wPP (β).

4

Definition 2.3 (Bounded-degree Model). In the bounded-degree model, an algorithm is given a
CSP Λ = ([q], s, t, w,P) and the set of variables V beforehand. A Λ-CSP instance I = (V,P,w) is
represented by an oracle OI such that OI , on two numbers v ∈ V, i ∈ [t], returns P ∈ P where P is
the i-th constraint where v appears. If no such constraint exists, it returns a special character ⊥.
The query complexity of an algorithm is the number of accesses to OI .

In this paper, when there is no ambiguity, symbols q, s, t and w are used to denote the parameters
of a considered CSP. Also, symbols n,OI ,wI are used to denote the number of variables, the oracle
access, and the total weight of an input instance I, respectively.

We consider an LP relaxation for a CSP Λ as follows, which we call BasicLP.

max
∑
P∈P

wP
∑

β∈[q]V (P)

P (β)µP,β

s.t.
∑
a∈[q]

xv,a = 1 ∀v ∈ V∑
β∈[q]V (P),βv=a

µP,β = xv,a ∀P ∈ P, v ∈ V (P), a ∈ [q]

xv,a ≥ 0 ∀v ∈ V, a ∈ [q]

µP,β ≥ 0 ∀P ∈ P, β ∈ [q]V (P).

Here, xv = {xv,a}a∈[q] (resp., µP = {µP,β}β∈[q]V (P)) can be seen as a distribution over assignments
to a variable v ∈ V (resp., a constraint P ∈ P), and we often identify them as distributions.
For an LP solution (x,µ), we define val(I,x,µ) as the value of the objective function of BasicLP
obtained by (x,µ). We call an LP solution (x,µ) ϵ-infeasible if it satisfies constraints of the form
xv,a ≥ 0 and µP,β ≥ 0 and violates other constraints by at most ϵ. We call a solution to an LP
(α, β)-approximate if the objective value obtained by the solution is an (α, β)-approximation to the
optimal value of the LP.

2.2 Basic Tools

As a simple application of Hoeffding’s inequality, we obtain the following.

Lemma 2.4. Suppose that we have an oracle access to a function f : [n] → [0, w]. That is, by

specifying x ∈ [n] as a query, we can see the value of f(x). Then, by querying O(w
2

ϵ2
log 1

δ) times,
with probability at least 1− δ, we can compute a (1, ϵn)-approximation to

∑
i f(i).

Let I be a Λ-CSP instance. Not surprisingly, we cannot compute the optimal solution (x∗,µ∗)
of BasicLP for I in constant time. Even worse, it is also hard to obtain a feasible solution in constant
time. Instead, we will compute a feasible (nearly) optimal solution (x,µ) of an LP obtained by
relaxing equality constraints. Though this is an infeasible solution in the original LP, The following
lemma states that val(I,x,µ) is close to lp(I). The proof, which needs Fourier analysis, is given
in Appendix A.

Lemma 2.5 (Robustness of BasicLP). Let I be a Λ-CSP instance. Suppose that (x,µ) is an
ϵ-infeasible LP solution for I of value cwI . Then, it holds that

lp(I) ≥ c− ϵ · poly(qs).

3 A (1− ϵ, ϵn)-approximation algorithm for BasicLP

In this section, we show the following theorem.

5

Theorem 3.1. In the bounded-degree model, given a Λ-CSP instance I, for any ϵ > 0, we can con-
struct an oracle Olp that gives an access to an ϵ-feasible (1− ϵ, ϵn)-approximate solution to BasicLP
for I. For each query, the number of queries performed to OI is at most exp(exp(poly(qstw/ϵ))).

A packing LP is a problem of maximizing bTz subject to ATz ≤ c and z ≥ 0, where A ∈ Rm×n
+ is

a non-negative matrix and b, c ∈ Rn
+ are non-negative vectors. There is a constant-round distributed

algorithm to compute a nearly optimal solution to the packing LP (see Appendix B for a formal
statement). When a variable xv,a or µP,β is specified as a query, we locally simulate the distributed
algorithm and output the value for it. The only issue is that BasicLP is not a packing LP. In
this section, we transform BasicLP to a packing LP, and we will show that we can restore a good
approximation to BasicLP from an approximation to the resulting packing LP. First, we substitute
xv,a by 1− xv,a and relax each equality constraint by ϵ. Then, we obtain the following LP.

max
∑
P∈P

wP
∑

β∈[q]V (P)

P (β)µP,β

s.t. |
∑
a∈[q]

xv,a − (q − 1)| ≤ ϵ ∀v ∈ V

|xv,a +
∑

β∈[q]V (P),βv=a

µP,β − 1| ≤ ϵ ∀P ∈ P, v ∈ V (P), a ∈ [q]

xv,a ≥ 0 ∀v ∈ V, a ∈ [q]

µP,β ≥ 0 ∀P ∈ P, β ∈ [q]V (P).

(1)

Lemma 3.2. Let I be a Λ-CSP instance and (x,µ) be an ϵ-infeasible solution to LP (1) of value
cwI . Then, lp(I) ≥ c− ϵ · poly(qs) holds.

Proof. Clearly, (1 − x,µ) is an 2ϵ-infeasible solution to BasicLP of value cwI . From Lemma 2.5,
the lemma holds.

Next, to make the directions of the inequalities the same, we introduce a complement variable
for each variable, i.e., we define xv,a = 1 − xv,a and µP,β = 1 − µP,β. However, such equality
constraints cannot be used in a packing LP. Thus, we relax those equality constraints again. That
is, we introduce constraints of the form xv,a+xv,a ≤ 1 and µP,β +µP,β ≤ 1. Instead, to discourage
them to become much smaller than one, we add additional terms to the objective function. By
letting C = (C,C, . . . , C) where C = qO(s)poly(tw)/ϵ2 is a large constant, we get the following LP.

max
∑
P∈P

wP
∑

β∈[q]V (P)

P (β)µP,β +CT (x+ x) +CT (µ+ µ),

s.t.
∑
a∈[q]

xv,a ≤ q − 1 + ϵ ∀v ∈ V∑
a∈[q]

xv,a ≤ 1 + ϵ ∀v ∈ V

xv,a +
∑

β∈[q]V (P),βv=a

µP,β ≤ 1 + ϵ ∀P ∈ P, v ∈ V (P), a ∈ [q]

xv,a +
∑

x∈[q]V (P),βv=a

µP,β ≤ q|V (P)|−1 + ϵ ∀P ∈ P, v ∈ V (P), a ∈ [q]

xv,a + xv,a ≤ 1, xv,a ≥ 0, xv,a ≥ 0 ∀v ∈ V, a ∈ [q]

µP,β + µP,β ≤ 1, µP,β ≥ 0, µP,β ≥ 0 ∀P ∈ P, β ∈ [q]V (P).

(2)

Fortunately, the optimal solutions to LP (2) and LP (1) are essentially the same.

Lemma 3.3 (Theorem 7 of [8], in a special form). Let I be a Λ-CSP instance and (x∗,x∗,µ∗,µ∗)
be the optimal solution to LP (2) with value cwI + CN where N is the number of variables in
LP (2). Then, x∗ +x∗ = 1 and µ∗ +µ∗ = 1 hold. Also, (x∗,µ∗) is the optimal solution to LP (1)
with value cwI .

6

Now, using the distributed algorithm given by [19], we have the following lemma. The analysis
of the query complexity is tedious and the proof is given in Appendix B.

Lemma 3.4. In the bounded-degree model, given a Λ-CSP instance I, for any ϵ > 0, we can con-
struct an oracle that serves an access to (x,x,µ,µ), which is a feasible (1− ϵ, 0)-approximate solu-
tion to LP (2). For each query, the number of queries performed to OI is at most exp(poly(qstw/ϵ)).

Proof of Theorem 3.1. Let (x,x,µ,µ) be a feasible (1 − ϵ′, 0)-approximate solution obtained by
Lemma 3.4, where ϵ′ is a constant determined later. For notational simplicity, we write the objective
function as wTµ + CT (z + z) where z = (x,µ). Let (z∗, z∗) be the optimal solution to LP (2).
From Lemma 3.3, z∗ + z∗ = 1. Also, let N ≤ qn+ qs · tn = (q + tqs)n be the number of variables
in LP (2). Then, we have

wTµ+CT (z + z) ≥ (1− ϵ′)(wTµ∗ +CT (z∗ + z∗)) = (1− ϵ′)(wTµ∗ + CN).

Thus,

CT (z + z) ≥ (1− ϵ′)CN + (1− ϵ′)wTµ∗ −wTµ ≥ (1− ϵ′)CN −wI ≥ (1− ϵ′ − w/C)CN,

wTµ ≥ (1− ϵ′)wTµ∗ + (1− ϵ′)(CN −CT (z + z))− ϵ′CT (z + z) ≥ (1− ϵ′)wTµ∗ − ϵ′CN.

In the former inequality, we used the fact that wI ≤ wN . In the latter inequality, we used the fact
that CN ≥ CT (z + z).

From the former inequality, we have

1T (1− z − z) ≤ (ϵ′ + w/C)N.

Let S be the set of variables zi (= xv,a or µP,β) such that (1 − zi − zi) ≥ ϵ′′ where ϵ′′ is a
constant determined later. From Markov’s inequality, we have |S| ≤ (ϵ′ + w/C)/ϵ′′ · N . Let
Sx = S ∩ {xv,a}v∈V,a∈[q] and Sµ = S ∩ {µP,β}P∈P,β∈[q]V (P) . The variables in Sx and Sµ are
problematic since constraints in LP (2) involving them are far from being satisfied. Thus, in what
follows, we modify these variables and obtain nearly feasible solution to LP (2).

First, we construct variables {x′
v,a}v∈V,a∈[q] by setting x′

v,a = xv,a if none of {xv,a′}a′∈[q] is in
Sx and x′

v,a = 1/q if otherwise. Then, we construct variables {µ′
P,β}P∈V (P),β∈[q]V (P) as follows. If

none of {xv,a}v∈V (P),a∈[q] was modified in the previous step, we set µ′
P,β = µP,β . If otherwise, we

set the values of {µ′
P,β}β∈[q]V (P) in such a way that the distribution µ′

P becomes consistent with
the product distribution determined by {x′

v}v∈P . Note that each modification to x in the previous
step involves at most 2tqs modifications to µ.

We calculate the decrease of the objective function. The decrease caused by the modification
to xv,a is at most

∑
P∋v wP ≤ tw, and the decrease caused by the modification to µP,β is at most

wP ≤ w. Thus, the total decrease is at most tw|S|+ 2twqs|S| ≤ (ϵ′ + w/C)/ϵ′′ · (1 + 2qs)twN .
Note that for each unmodified variable zi (= xv,a or µP,β), z

′
i + z′

i ≥ 1 − ϵ′′ holds. Thus,
(x′,x′,µ′,µ′) is an ϵ′′-infeasible solution with value at least

wTµ′ ≥ (1− ϵ′)wTµ∗ − ϵ′CN − (ϵ′ + w/C)/ϵ′′ · (1 + 2qs)twN

≥ (1− ϵ′)wTµ∗ − (ϵ′C + (ϵ′ + w/C)/ϵ′′ · (1 + 2qs)tw)(q + tqs)n.

Thus, (x′,µ′) is an ϵ′′-infeasible (1− ϵ′, (ϵ′C + (ϵ′ +w/C)/ϵ′′ · (1 + 2qs)tw)(q + tqs)n)-approximate
solution. By choosing ϵ′ = ϵ3/(qO(s)poly(tw)) and ϵ′′ = ϵ, we have an ϵ-infeasible (1 − ϵ, ϵn)-
approximate solution.

We need to look at q variables {xv,a}a∈[q] to decide the value of x′
v,a, and we need to look at

at most qs variables {xv,a}v∈V (P),a∈[q] to decide the value of µ′
P,β. Thus, the number of queries

performed to OI is at most max(q, qs) exp(poly(qstw/ϵ′)) = exp(exp(poly(qstw/ϵ))).

7

4 Optimal Rounding of BasicLP

In this section, using Olp, we give an algorithm described in Theorem 1.1. Let I = (V,P,w) be a
Λ-CSP instance. For a mapping ϕ : V → V ′, we define a new Λ-CSP instance I/ϕ = (V ′,P ′,w′)
on the variable set V ′ by identifying variables of I that get mapped to the same variable in V ′. For
each constraint P ∈ P on the variable set {v1, . . . , vk} with weight wP , we have a constraint P ′ ∈ P ′

on the variable set {ϕ(v1), . . . , ϕ(vk)} with weight wP . For x ∈ [0, 1], we define xϵ = (k+1)ϵ where
k is the positive integer such that kϵ < x ≤ (k+1)ϵ. We define xϵ = 0 when x = 0. In what follows,
we assume that 1/ϵ is an integer. If not, we slightly decrease ϵ until 1/ϵ become an integer. Let
(x,µ) be an LP solution for I. We identify variables v of I that have the same values {xϵ

v,a}a∈[q].
Formally, we consider another Λ-CSP instance I/ϕx where ϕx : V → {0, . . . , 1/ϵ}q is defined as
ϕx(v) = (xϵ

v,1, . . . ,x
ϵ
v,q). We have following two lemmas, the proofs of which are in Appendix C.

Lemma 4.1. Let I be a Λ-CSP instance and (x,µ) be an ϵ-infeasible LP solution for I. Then,
(xϵ,µ) is a (q + 1)ϵ-infeasible LP solution for I.

Lemma 4.2. Let I be a Λ-CSP instance and (x,µ) be an ϵ-infeasible (1 − ϵ, ϵ)-approximate LP
solution for I, where ϵ > 0 is a small constant. Then, the variable folding I/ϕx satisfies that

• lp(I/ϕx) ≥ lp(I)− ϵ · poly(qstw)n,
• The variable set of I/ϕx has a cardinality exp(poly(q/ϵ)).

Proof of Theorem 1.1. Let ϵ′ be a constant determined later and (x,µ) be an ϵ′-infeasible (1−ϵ′, ϵ′)-
approximate solution for I. Consider a folded instance I ′ = I/ϕx on the variable set V ′ :=
{0, . . . , 1/ϵ}q. Since there are at most exp(poly(q/ϵ′)) variables in V ′, there are at most N :=
exp(exp(poly(q/ϵ′))) assignments to V ′. For each assignment β′ ∈ [q]V

′
, we estimate the value

val(I ′, β′) as follows. First, we note that β′ can be unfolded to an assignment β ∈ [q]V to I with
the same value. Then, for each variable v ∈ V , we associate a value fv =

∑
P∋v P (β)/|P |. It is

clear that 0 ≤ fv ≤ tw and
∑

v∈V fv = val(I, β) = val(I ′, β′). Also, we can calculate the value
fv by querying Olp at most qst times. Thus, using the algorithm given in Lemma 2.4, we get a
(1, ϵn/2)-approximation to val(I ′, β′) with probability at least 1− 1/3N by querying Olp at most
poly(qstw/ϵ)O(logN) times.

By the union bound, with probability at least 2/3, we obtain a (1, ϵn/2)-approximation to
val(I ′, β′) for every assignment β′. Let β′∗ ∈ [q]V

′
be the assignment that takes the maximum

value among those assignments. Then, val(I ′, β′∗) is a (1, ϵn/2)-approximation to opt(I ′). The
number of queries performed to Olp is at most poly(qstw/ϵ)O(N logN).

Let β∗ ∈ [q]V be the unfolded assignment of β′∗. We can safely assume that wI′ = wI ≥ ϵn. If
not, val(I, β∗) is indeed a (1, ϵn)-approximation to opt(I). When wI′ = wI ≥ ϵn, it holds that

val(I, β∗) ≥ opt(I ′)− ϵn

2
≥ SΛ(lp(I ′))wI − ϵn

2

≥ SΛ

(
lp(I)− ϵ′ · poly(qstw)n

wI

)
wI − ϵn

2
(using Lemma 4.2)

≥ SΛ

(
lp(I)− ϵ′ · poly(qstw)

ϵ

)
wI − ϵn

2
(using wI ≥ ϵn)

We are done by setting ϵ′ = ϵ2/poly(qstw). The number of queries performed to OI is at most
poly(qstw/ϵ)O(N logN) · exp(exp(poly(qstw/ϵ′))) = exp(exp(poly(qstw/ϵ))). Once we have fixed
β∗, given a variable v ∈ V , we can compute β∗

v by accessing Olp q times. The query complexity is
at most exp(exp(poly(qstw/ϵ))).

8

v

u

Figure 1: Construction of Dopt
N,T (P) and Dlp

N,T (P). Here, the alphabet size q = 2, and we choose
N = 5 and T = 1. Also, µ∗

P,00 = 0.4, µ∗
P,01 = 0.2, µ∗

P,10 = 0.4, and µ∗
P,11 = 0. It follows that

x∗
u,0 = 0.6, x∗

u,1 = 0.4, x∗
v,0 = 0.8, and x∗

v,1 = 0.2. White (resp., black) variables in Dlp
N,T (P)

indicate that they are assigned to 0 (resp., 1).

5 Lower Bounds

In this section, we prove Theorem 1.2. As we described in the introduction, we utilize Yao’s minimax
principle. That is, we construct two distributions of instances such that they have much different
optimal values and also it is hard to distinguish them in constant time. We fix a Λ-CSP instance
I = (V,P,w) with the optimal LP solution (x∗,µ∗) throughout this section. To convert the LP

integrality gap opt(I)/lp(I) of I to hardness results, we construct two distributions Dopt
N,T and Dlp

N,T

using I and (x∗,µ∗). Here, N and T will determine the number of variables and the maximum

degree of instances generated by Dopt
N,T and Dlp

N,T , respectively. We show that, by taking T as a large

constant (independent of N), almost all instances J in Dopt
N,T satisfy that opt(J) ≤ opt(I) + ϵ.

Also, we show that all instances J in Dlp
N,T satisfy that opt(J) ≥ lp(I). Finally, we define D⋆

N,T

as the distribution that chooses Dopt
N,T or Dlp

N,T randomly and outputs an instance generated by
the chosen distribution. Then, given an oracle access OJ to an instance J generated by D⋆

N,T , a

deterministic algorithm is supposed to guess the original distribution (Dopt
N,T or Dlp

N,T) of J with

probability at least 2/3. By showing that such an algorithm requires Ω(
√
N) queries, we conclude

that any randomized algorithm that, given an instance J , distinguishes the case opt(J) ≥ lp(I)
from the case opt(J) ≤ opt(I) + ϵ requires Ω(

√
N) queries. By choosing as I an instance with

the worst integrality gap, we have the desired result.

Construction of Dopt
N,T : Before stating the construction of Dopt

N,T , we introduce a distribution

Dopt
N,T (P) for a constraint P ∈ P applied to a sequence of variables {v1, . . . , vk} (see Fig. 1). An

instance JP of Dopt
N,T (P) is generated as follows. The variable set of JP is {v1, . . . , vk} × [N]. We

naturally regard that the set of variables Vi = {(vi, j) | j ∈ [N]} corresponds to a variable vi. Next,
we create TN constraints among those variables. To this end, after splitting each variable of JP

into T copies, we take random perfect k-partite matching in such a way that each matching takes
one variable from each Vi. For each such matching {u1, . . . , uk} where ui is of the form (vi, ji), we
create a constraint P (u1, . . . , uk) of weight wP . Finally, we merge the split variables.

We define the distribution Dopt
N,T using Dopt

N,T (P). An instance J of Dopt
N,T is generated as follows.

For each P ∈ P, we create an instance JP according to the distribution Dopt
N,T (P). Then, J is

a union of {JP }P∈P obtained by merging variable sets as follows. Let P1, . . . , Pℓ ∈ P be the set
of constraints containing a variable v ∈ V . We let Vi(i ∈ [ℓ]) denote the set of variables in JPi

corresponding to v. Then, we take random perfect ℓ-partite matching among V1, . . . , Vℓ, and we
merge variables in each matching. We repeat the same process for every v ∈ V . We note that the
variable set of J is V × [N], and the number of constraints in J is |P|TN . Now, we decide the
indices of constraints, which are used as arguments of the oracle access OJ . We use the following
rule. Suppose that P is the i-th constraint where v ∈ P appears (in the sense of I), then for

9

a variable (v, j)(j ∈ [N]), we randomly assign T indices {(T − 1)i + 1, . . . , T i} to designate T
constraints made by JP . Finally, labels of vertices are randomly permuted.

Construction of Dlp
N,T : Before stating the construction of Dlp

N,T , again we introduce another

distribution Dlp
N,T (P) for a constraint P ∈ P applied to a sequence of variables {v1, . . . , vk}. (see

Fig. 1). An instance JP is generated as follows. The variable set of JP is {v1, . . . , vk} × [N]. We
naturally regard that the set of variables Vi = {(vi, j) | j ∈ [N]} corresponds to a variable vi. For
each β ∈ [q]V (P), we take a µ∗

P,β-fraction of variables from each Vi, and let Vi,β ⊆ Vi denote the set
of such variables. Variables in Vi,β are said to be assigned to βvi ∈ [q]. A subtlety here is that µP,βN
may not be an integer. We ignore this issue for simplicity since we can make the error arbitrarily
small by choosing N large enough. Next, we create µP,βTN constraints among V1,β, . . . , Vk,β . To
this end, after splitting each variable into T copies, we take random perfect k-partite matching in
such a way that each matching takes one variable from each Vi,β. For each matching {u1, . . . , uk}
where ui is of the form (vi, ji), we create a constraint P (u1, . . . , uk) of weight wP . Finally, we merge
the split variables again. We note that, for any variable vi ∈ V (P), an x∗

vi,a-fraction of variables of
Vi is assigned to a.

We define the distribution Dlp
N,T using Dlp

N,T (P). An instance J of Dlp
N,T is generated as follows.

For each P ∈ P, we create an instance JP according to the distribution Dlp
N,T (P). Then, J is a

union of {JP }P∈P obtained by merging variable sets as follows. Let P1, . . . , Pℓ ∈ P be the set of
constraints containing a variable v ∈ V . We let Vi,a(i ∈ [ℓ], a ∈ [q]) denote the set of variables in
JPi that correspond to v and are assigned to a. Note that the sizes of Vi,a(i ∈ [ℓ]) are the same

from the construction of Dlp
N,T (Pi). We take random perfect ℓ-partite matching among V1,a, . . . , Vℓ,a

and we merge vertices in each matching. We repeat the same process for every v ∈ V and a ∈ [q].
Note that the variable set of J is V × [N] and the number of constraints in J is |P|TN . To decide
the indices of constraints and labels of vertices, we use the same rule as Dopt

N,T .
We have the following three lemmas, the proofs of which are in Appendix D.

Lemma 5.1. For every ϵ > 0, there is a T > 0 satisfying the following. Let J be a Λ-CSP instance
generated by Dopt

N,T . With probability 1− o(1), opt(J) ≤ opt(I) + ϵ.

Lemma 5.2. Let J be a Λ-CSP instance generated by Dlp
N,T . Then, opt(J) ≥ lp(I) holds.

Lemma 5.3. In the bounded-degree model, any deterministic algorithm that, given an oracle access
to OJ generated by D⋆

N,T , correctly guesses the original distribution of J with probability at least

3/5 requires at least Ω(
√
N) queries.

Proof of Theorem 1.2. Let us fix c ∈ [0, 1] and s = SΛ(c). Then, there exists a Λ-CSP instance I
such that lp(I) = c and opt(I) is arbitrarily close to s. Suppose that there exists a deterministic
algorithm A with query complexity o(

√
n) that, given an instance J of n variables, with probability

at least 2/3, distinguishes the case opt(J) ≥ cwJ from the case opt(J) ≤ (s+ ϵ)wJ − ϵn. Let T
be a constant given by Lemma 5.1 by replacing ϵ with ϵ/2.

Suppose that J is generated by Dopt
N,T . Then, from Lemma 5.1, with probability at least 1−o(1),

it holds that opt(J) ≤ (s+ ϵ/2)wJ = (s+ ϵ)wJ − ϵwJ /2 ≤ (s+ ϵ)wJ − ϵn. In the last inequality,

we use the fact that wJ /2 ≥ wJ /T ≥ n when ϵ is small. Suppose that J is generated by Dlp
N,T .

Then, from Lemma 5.2, it holds that opt(J) ≥ cwJ .
Thus, in total, the algorithm outputs the correct answer with probability at least 1/2 · (1 −

o(1)) · 2/3 + 1/2 · 2/3 = 2/3− o(1). This contradicts Lemma 5.3.

10

References

[1] Noga Alon. On constant time approximation of parameters of bounded degree graphs, 2010.
manuscript.

[2] Noga Alon, Wenceslas Fernandez de la Vega, Ravi Kannan, and Marek Karpinski. Ran-
dom sampling and approximation of MAX-CSPs. Journal of Computer and System Sciences,
67(2):212–243, 2003.

[3] Gunnar Andersson and Lars Engebretsen. Property testers for dense constraint satisfaction
programs on finite domains. Random Struct. Algorithms, 21(1):14–32, 2002.

[4] Per Austrin. Balanced MAX 2-SAT might not be the hardest. In Proc. of STOC 2007, pages
189–197, 2007.

[5] Per Austrin and Elchanan Mossel. Approximation resistant predicates from pairwise indepen-
dence. In Proc. of CCC 2008, pages 249–258, 2008.

[6] Andrej Bogdanov, Kenji Obata, and Luca Trevisan. A lower bound for testing 3-colorability
in bounded-degree graphs. In Proc. of FOCS 2002, pages 93–102, 2002.

[7] Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum span-
ning tree weight in sublinear time. In Proc. of ICALP 2001, pages 190–200, 2001.

[8] Dimitris A. Fotakis and Paul G. Spirakis. Linear programming and fast parallel approxima-
bility, 1997. manuscript.

[9] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–
1145, 1995.

[10] Oded Goldreich and Dana Ron. A sublinear bipartiteness tester for bounded degree graphs.
Combinatorica, 19(3):335–373, 1999.

[11] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2008.

[12] Oded Goldreich and Luca Trevisan. Three theorems regarding testing graph properties. Ran-
dom Struct. Algorithms, 23(1):23–57, 2003.

[13] Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beating the random
ordering is hard: Inapproximability of maximum acyclic subgraph. In Proc. of FOCS 2008,
pages 573–582, 2008.

[14] Johan H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

[15] David Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by semidefi-
nite programming. J. ACM, 45(2):246–265, 1998.

[16] Subhash Khot. On the power of unique 2-prover 1-round games. In Proc. of STOC 2002,
pages 767–775, 2002.

11

[17] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximabil-
ity results for MAX-CUT and other 2-variable CSPs? In Proc. of FOCS 2004, pages 146–154,
2004.

[18] Subhash Khot and Assaf Naor. Sharp kernel clustering algorithms and their associated
grothendieck inequalities. CoRR, abs/0906.4816, 2009.

[19] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being near-sighted.
In Proc. of SODA 2006, pages 980–989, 2006.

[20] Amit Kumar, Rajsekar Manokaran, Madhur Tulsiani, and Nisheeth K. Vishnoi. On the opti-
mality of a class of LP-based algorithms. CoRR, abs/0912.1776, 2009.

[21] Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding techniques for the MAX
2-SAT and MAX DI-CUT problems. In Proc. of IPCO 2002, pages 67–82, 2002.

[22] Rajsekar Manokaran, Joseph (Seffi) Naor, Prasad Raghavendra, and Roy Schwartz. SDP gaps
and UGC hardness for multiway cut, 0-extension, and metric labeling. In Proc. of STOC 2008,
pages 11–20, 2008.

[23] Huy N. Nguyen and Krzysztof Onak. Constant-time approximation algorithms via local im-
provements. In Proc. of FOCS 2008, pages 327–336, 2008.

[24] Michal Parnas and Dana Ron. Approximating the minimum vertex cover in sublinear time
and a connection to distributed algorithms. Theor. Comput. Sci., 381(1-3):183–196, 2007.

[25] Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In
Proc. of STOC 08, pages 245–254, 2008.

[26] Prasad Raghavendra and David Steurer. How to round any CSP. In Proc. of FOCS 2009,
pages 586–594, 2009.

[27] Alex Samorodnitsky and Luca Trevisan. Gowers uniformity, influence of variables, and PCPs.
In Proc. of STOC 2006, pages 11–20. ACM, 2006.

[28] Nick Wormald. Models of random regular graphs. In Surveys in Combinatorics, pages 239–298.
Cambridge University Press, 1999.

[29] Yuichi Yoshida. Lower bounds on query complexity for testing bounded-degree CSPs, 2010.
manuscript.

[30] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-time approximation
algorithm for maximum matchings. In Proc. of STOC 2009, pages 225–234, 2009.

[31] Uri Zwick. Finding almost-satisfying assignments. In Proc. of STOC 1998, pages 551–560,
1998.

12

Appendix

A Robustness of BasicLP

In this section, we give a proof of Lemma 2.5. Our strategy is transforming (x,µ) to a feasible
solution without decreasing the LP value much. In the first step, we construct x′ from x that
satisfies

∑
a∈[q] x

′
v,a = 1 for every v ∈ V .

Lemma A.1. Let (x,µ) be an ϵ-infeasible LP solution for a Λ-CSP instance I where ϵ > 0 is a
small constant. Then, x can be transformed to x′ so that∑

a∈[q]

x′
v,a = 1 ∀v ∈ V, (3)

|x′
v,a − xv,a| ≤ 2ϵ ∀v ∈ V, a ∈ [q]. (4)

In particular, (x′,µ) is a 3ϵ-infeasible LP solution that satisfies
∑

a∈[q] x
′
v,a = 1 for every v ∈ V .

Proof. We define x′
v,a = xv,a/

∑
a∈[q] xv,a. The condition (3) clearly holds. From the ϵ-infeasibility

of x, |
∑

a∈[q] xv,a − 1| ≤ ϵ holds. It follows that |x′
v,a − xv,a| ≤ ϵ/(1− ϵ) ≤ 2ϵ when ϵ is small.

In the second step, we construct µ′ that satisfies
∑

β∈[q]V (P),βv=aµ
′
P,β = x′

v,a for all P ∈ P, v ∈
V (P).

Lemma A.2. Let (x,µ) be an ϵ-infeasible solution for a Λ-CSP instance I satisfying
∑

a∈[q] xv,a =

1 for every v ∈ V . Then, µ can be transformed to µ′ so that

Pr
β∼µ′

P

[βv = a] = (1− δ)xv,a +
δ

q
∀P ∈ P, v ∈ V (P), a ∈ [q],

||µP − µ′
P ||1 ≤ 2δ ∀P ∈ P.

where δ = kq3ϵ.

Proof. Let us fix a predicate P ∈ P and S = V (P). We may assume S = {1, . . . , k} where k ≤ s.
We can think of µP as a function f : [q]k → R such that f(β) is the probability of the assignment
β under the distribution µP .

Let χ1, . . . , χq be an orthonormal basis of the vector space {f : [q] → R} such that χ1 ≡ 1. Here,
orthonormal means that Ea∈[q][χi(a)χj(a)] = δij for all i, j ∈ [q] where δ is Kronecker’s delta. By

tensoring this basis, we obtain the orthonormal basis {χρ}ρ∈[q]k of the vector space {f : [q]k → R}.
That is, for ρ ∈ [q]k, β ∈ [q]k, we have χρ(β) = χρ1(β1) · · ·χρk(βk). For a function f : [q]k → R,
we define f̂(σ) =

∑
β∈[q]k f(x)χσ(β). Note that f(β) = Eσ∈[q]k [f̂(σ)χσ(β)]. Therefore, if we let f

again be the function corresponding to µP , we have

Pr
β∼µP

[βi = a] =
∑

β∈[q]k,βi=a

E
σ∈[q]k

[
f̂(σ)χσ(β)

]
= E

σ∈[q]

[
f̂i(σ)χσ(a)

]
.

Here, f̂i(s) = f̂(σ) where σi = s and σr = 1 for all r ∈ [k] \ {i}. In the second inequality, we used
that for every σ with σr ̸= 1 for some r ∈ [k] \ {i}, the sum over the values of χσ vanishes.

We let gi : [q] → R be the function gi(a) = xi,a. We define a function f ′ : [q]k → R as follows.

f̂ ′(σ) =

{
ĝi(s) if σi = s and σr = 1 for all r ∈ [k] \ {i},
f̂(σ) otherwise.

13

This is well-defined since for any i ∈ [k], it holds that ĝi(1) =
∑

a∈[q] gi(a) =
∑

a∈[q] xi,a = 1.

Therefore, the function f ′ satisfies
∑

β∈[q]k f
′(β) = f̂(1) = 1, Then, we can define a distribution

µ′
P corresponding to f ′, and we have

Pr
β∼µ′

P

[βi = a] = E
σ∈[q]

[
f̂ ′
i(σ)χσ(a)

]
= xv,a.

Thus, it looks that the µ′
P is the desired distribution. However, in general, the function f ′ might

take negative values. We will show that these values cannot be too negative and that the function
can be made to a proper distribution by smoothing.

Let K be an upper bound on the values of the functions χ1, . . . , χq. From the orthonormality
of the functions, it follows that K ≤ √

q. Let fi(a) = Prβ∼µP
[βi = a]. Since the LP solution (x,µ)

is ϵ-infeasible, we have∣∣∣ĝi(s)− f̂i(s)
∣∣∣ =

∣∣∣∣∣∣
∑
a∈[q]

gi(a)χs(a)−
∑
a∈[q]

fi(a)χs(a)

∣∣∣∣∣∣ ≤ Kqϵ.

Therefore, |f̂ ′(σ)− f̂(σ)| ≤ Kqϵ for all σ ∈ [q]k. Recall that |f̂ ′(σ)− f̂(σ)| = 0 for σ ∈ [q]k if there
are i ̸= j such that σi ̸= 1, σj ̸= 1. Thus,

|f ′(β)− f(β)| =

∣∣∣∣∣ E
σ∈[q]k

[
f̂ ′(σ)χσ(β)− f̂(σ)χσ(β)

]∣∣∣∣∣ ≤ δ/qk, (5)

where δ = K2kq2ϵ. Hence, if we let h = (1 − δ)f ′ + δU , where U : [q]k → R is the uniform
distribution U ≡ 1/qk, then

h(x) = (1− δ)f ′(x) + δ/qk ≥ (1− δ)f(x) ≥ 0.

It follows that h corresponds to another distribution µ′
P over assignments [q]k. Furthermore, it

holds

Pr
β∼µ′

P

[βi = a] = (1− δ)xi,a +
δ

q
.

Finally, let us estimate the statistical distance between the distributions µP and µ′
P .

||f − h||1 = ||(1− δ)(f − f ′) + δ(f − U)||1 ≤ ||f − f ′||1 + δ ≤ 2δ.

The first inequality is from the triangle inequality and the second inequality is from (5).

Proof of Lemma 2.5. Let us consider an ϵ-infeasible LP solution (x,µ) for a Λ-CSP instance I of
value cwI . First, we construct vector x′ as in Lemma A.1. These variables together with the
original local distributions µ form an 3ϵ-infeasible LP solution for I. Next, we construct local
distributions µ′ as in Lemma A.2. Define new variables

x′′
i,a = (1− δ)x′

i,a + δ/q.

It follows that (x′′,µ′) is a feasible LP solution for I. The LP value of this solution is∑
P∈P

wP E
β∼µ′

P

[P (β)] = cwI −
∑
P∈P

wP

∑
β∈[q]V (P)

P (β)
(
µP,β − µ′

P,β

)
≥ cwI −

∑
P∈P

wP ||µP − µ′
P ||1

≥ cwI − ϵ · poly(kq)wI .

We used |P (x)| ≤ 1 for the first inequality, and the second inequality follows from Lemma A.2.

14

B Proof of Lemma 3.4

In this section, we give a proof of Lemma 3.4. We consider a more restricted form of a packing LP:

max 1Tz
s.t. ATz ≤ c

z ≥ 0,
(6)

where A ∈ Rm×n
+ is a non-negative matrix such that aji = 0 or aji ≥ 1 for any j ∈ [m], i ∈ [n], and

c ∈ Rn
+ is a non-negative vector.

Define

cmax = max
i

ci, Γp = max
i

cmax

ci

m∑
j=1

aji, Γd = max
j

n∑
i=1

aji.

Then, there is a distributed algorithm that solves this packing LP.

Lemma B.1 ([19]). For sufficiently small ϵ > 0, there exists a deterministic distributed algorithm
that computes a feasible (1−ϵ, 0)-approximate solution to LP (6) in O(log Γp log Γd/ϵ

4) rounds.

In order to apply Lemma B.1 to LP (2), we transform it to the form LP (6). Note that, in the
objective function, the coefficient of µP,β is wPP (β) + C and the coefficients of xv,a,xv,a,µP,β

are C. Thus, by replacing µP,β with µP,β/(wPP (β) + C) and replacing xv,a,xv,a,µP,β with
xv,a/C,xv,a/C,µP,β/C, respectively, we obtain the following LP.

max 1T (x+ x+ µ+ µ)
s.t.

∑
a∈[q]

xv,a

C ≤ q − 1 + ϵ ∀v ∈ V∑
a∈[q]

xv,a

C ≤ 1 + ϵ ∀v ∈ V

xv,a

C +
∑

β∈[q]V (P),βv=a

µP,β

wPP (β)+C ≤ 1 + ϵ ∀P ∈ P, v ∈ V (P), a ∈ [q]

xv,a

C +
∑

β∈[q]V (P),βv=a

µP,β

C ≤ qV (P)−1 + ϵ ∀P ∈ P, v ∈ V (P), a ∈ [q]

xv,a

C +
xv,a

C ≤ 1, xv,a ≥ 0, xv,a ≥ 0 ∀v ∈ V
µP,β

wPP (β)+C +
µP,β

C ≤ 1, µP,β ≥ 0, µP,β ≥ 0 ∀P ∈ P, β ∈ [q]V (P).

We multiply each constraint in order to make every coefficient in the LHS at least 1. Then, we
have the following LP.

max 1T (x+ x+ µ+ µ)
s.t.

∑
a∈[q]

xv,a ≤ C(q − 1 + ϵ) ∀v ∈ V∑
a∈[q]

xv,a ≤ C(1 + ϵ) ∀v ∈ V

w+C
C xv,a +

∑
β∈[q]V (P),βv=a

w+C
wPP (β)+1µP,β ≤ (1 + ϵ)(w + C) ∀P ∈ P, v ∈ V (P), a ∈ [q]

xv,a +
∑

β∈[q]V (P),βv=a

µP,β ≤ C(qV (P)−1 + ϵ) ∀P ∈ P, v ∈ V (P), a ∈ [q]

xv,a + xv,a ≤ C, xv,a ≥ 0, xv,a ≥ 0 ∀v ∈ V
w+C

wPP (β)+1µP,β + w+C
C µP,β ≤ w + C, µP,β ≥ 0, µP,β ≥ 0 ∀P ∈ P, β ∈ [q]V (P).

(7)

15

Proof of Lemma 3.4. Note that LP (7) is of the form LP (6). After a calculation, we have

cmax = O(C(w + qs)), Γp = O((s+ t)(w + C) · C(w + qs)), Γd = O((w + C)qs).

We define the degree of a variable in an LP as the number of inequalities where the variable appears.
Let ∆p and ∆d be the maximum degree of primal variables and dual variables, respectively. Here,
we treat LP (7) as a dual formulation. We have

∆p = O(qs), ∆d = O(s+ t).

Applying the algorithm given in Lemma B.1 to LP (7), we obtain a distributed algorithm that
calculates (1− ϵ, 0)-approximate solution. The number of rounds is O(log Γp log Γd/ϵ

4). Note that,
given a variable, we can simulate the computation of the distributed algorithm involved by the
variable with (∆p∆d)

r queries, where r is the number of rounds. Thus, the query complexity
becomes

(∆p∆d)
O(log Γp log Γd/ϵ

4) = exp(poly(qstw/ϵ)).

C Proofs from Section 4

C.1 Proof of Lemma 4.1

Proof. Since we move each xv,a by at most ϵ, each constraint
∑

a∈[q] x
ϵ
v,a = 1 can be at most (q+1)ϵ-

infeasible. Also, each constraint
∑

β∈[q]V (P),βv=a µP,β = xϵ
v,a can be at most 2ϵ-infeasible.

C.2 Proof of Lemma 4.2

Proof. Since the size of the range of ϕx is (1/ϵ)O(q), the second claim is obvious.
Suppose that (x,µ) has an LP value cwI . From the fact that (x,µ) is a (1− ϵ, ϵ)-approximate

solution, we have cwI ≥ (1− ϵ)lp(I)− ϵn. Also, by Lemma 4.1, (xϵ,µ) is a (q + 1)ϵ-infeasible LP
solution. Since only µ affects the value of the objective function, the LP value of (xϵ,µ) equals
cwI . A key observation is that (xϵ,µ) is also an LP solution for the folded instance I/ϕx. Thus,
we see that I/ϕx has a (q+1)ϵ-infeasible solution of value at least cwI . From Lemma 2.5, we have

lp(I/ϕx) ≥ (c− (q + 1)ϵ · poly(qs))wI

≥ (1− ϵ)lp(I)− ϵn− ϵ · poly(qs)wI

≥ lp(I)− ϵ · poly(qstw)n.

In the last inequality, we use the fact that lp(I) ≤ wI ≤ twn.

D Proofs from Section 5

D.1 Proof of Lemma 5.1

Let JP be an instance generated by Dopt
N,T (P). Let Pi(1 ≤ i ≤ 2) be a constraint on a variable

sequence {ui1, . . . , uik} in JP . Note that the arities of Pi are the same since they both are copies
of P . For each j ∈ [k], we choose v1j ∈ {u1j , u2j} arbitrarily and v2j be the remaining one, i.e.,

{u1j , u2j} \ {v1j }. Then, we define a constraint Qi(1 ≤ i ≤ 2) on the variable sequence {vi1, . . . , vik}.

16

We create another instance J ′
P from JP by replacing {P1, P2} by {Q1, Q2}. We call this method

switching. The following concentration bound is obtained by a simple application of Theorem 2.19
in [28].

Lemma D.1. If X is a random variable defined on Dopt
N,T (P) such that |X(JP)−X(J ′

P)| ≤ c holds

where JP and J ′
P are instances of Dopt

N,T (P) that only differ by a switching, then

Pr
JP∼Dopt

N,T (P)
[|X(JP)− E[X(JP)]| ≥ t] ≤ 2 exp

(
− t2

TNc2

)
for all t > 0.

Proof of Lemma 5.1. Let α ∈ [q]V×[N] be an assignment to J . For v ∈ V and a ∈ [q], we define
xv,a = #{i ∈ [N] | α(v,i) = a}/N . Also, for P ∈ P and β ∈ [q]V (P), we define µP,β =

∏
v∈P xv,βv .

Note that xv (resp., µP) gives a probability distribution over assignments to the variable v (resp.,
the variable set V (P)).

Let JP be the sub-instance of J generated by Dopt
N,T (P) for P ∈ P . The expectation (over

Dopt
N,T (P)) of the value gained by a constraint P in JP is EβP∼µP

[P (βP)]. Thus, it holds that

E
J∼Dopt

N,T

[val(J , α)] =
∑
P∈P

E
JP∼Dopt

N,T (P)

[val(JP , α|V (P))] = TN
∑
P∈P

wP E
βP∼µP

[P (βP)]

= TN
∑
P∈P

wP E
β∼µ

[P (β|V (P))] = TN E
β∼µ

[
∑
P∈P

wPP (β|V (P))] = TN E
β∼µ

[val(I, β)]

Thus, it follows that

E
J∼Dopt

N,T

[val(J , α)] ≤ TNopt(I). (8)

Note that, for instances JP and J ′
P generated by Dopt

N,T (P) such that they differ by a switching,
val(JP , α|V (P)) and val(J ′

P , α|V (P)) can differ by at most 2wP ≤ 2w. Then, from Lemma D.1,

Pr
[∣∣val(JP , α|V (P))− E[val(JP , α|V (P))]

∣∣ ≥ t
]
≤ 2 exp

(
− t2

4TNw2

)
.

Then,

Pr [|val(J , α)− E[val(J , α)]| ≥ t|P|] ≤ Pr
[
∃P ∈ P, |val(JP , α|V (P))− E[val(JP , α|V (P))]| ≥ t

]
≤ 2|P| exp

(
− t2

4TNw2

)
.

The last inequality is from the union bound.
We choose t = ϵTN so that t|P| = ϵ|P|TN ≤ ϵwJ . We have

Pr
[
|val(J , α)− E[val(J , α)]| ≥ ϵwJ

]
≤ 2|P| exp

(
−ϵ2TN

4w2

)
. (9)

We combine (8) and (9) with the union bound over all q|V |N assignments. It holds that

Pr
[
∃α,val(J , α) ≥ TNopt(I) + ϵwJ

]
= Pr

[
∃α,val(J , α) ≥ opt(I) + ϵ

]
≤ 2|P| exp

(
−ϵ2TN

4w2

)
q|V |N .

by choosing T = Θ(w2 log q/ϵ2), we have the desired result. Note that |V | and |P| can be seen as
constants when N is sufficiently large.

17

D.2 Proof of Lemma 5.2

Proof. Let α ∈ [q]V×[N] be the natural assignment to variables in J . That is, α(v, i) = a when the

variable (v, i) is assigned to the value a in the construction of Dlp
N,T . Then,

opt(J) ≥ val(J , α) =
∑
P∈P

val(JP , α|V (P)) = TN
∑
P∈P

wP E
βP∼µ∗

P

[P (βP)] = TN lp(I).

D.3 Proof of Lemma 5.3

For notational simplicity, we omit subscripts N and T in this section. We define some notions. At
each step of an algorithm, a variable v is called seen if v is appeared in queries to the oracle or
answers by the oracle so far. Also, an index i of a variable v is called seen if the i-th constraint of
v is already returned by the oracle.

Here, we only show a lower bound for a (randomized) algorithm whose behavior is slightly
restricted. That is, when an algorithms asks for a constraint incident to an unseen variable,
we assume that the algorithm chooses the variable uniformly at random from the set of unseen
variables. We can get rid of this assumption using the technique presented in Section 4 of [12].
Details are deferred to the full version of the paper. In what follows, we regard that the oracle
accepts two types of queries. The first one is same as the original, i.e., when we specify a variable v
and an index i, the oracle returns the i-th constraint of v. The second one simply returns a random
variable from the set of unseen variables without receiving any argument. When an algorithm asks
for a constraint incident to an unseen variable, it uses the second type of queries to get a variable
first, and then it uses the first type of queries to get a constraint incident to the variable.

Now, we prove Lemma 5.3. Recall that, from Yao’s minimax principle, it suffices to consider
deterministic algorithms. We basically follow the approach presented in Section 7 of [11]. Let
A be a deterministic algorithm. We introduce a randomized process Popt (resp., P lp), which
interacts with A so that Popt (resp., P lp) answers queries of A to the oracle while constructing
a random instance from Dopt (resp., Dlp). The final distribution of instances generated by Popt

(resp., P lp) coincides with Dopt (resp., Dlp) no matter how A makes queries. The interaction
between A and Popt (resp.,P lp) precisely simulates the interaction between A and OJ where J
is an instance generated by the distribution Dopt (resp., Dlp). The process P⋆, which corresponds
to the distribution D⋆, is simply a process that chooses Popt or P lp randomly and behave as the
chosen process.

A transcript is the part of an instance thatA has seen through the interaction with a randomized
process. Note that, the transcript contains the information about labels of vertices and indices of
constraints. Let Kopt

τ (resp., Klp
τ) be the distribution of transcripts after τ -step interaction between

A and Popt (resp., P lp) (Here, K stands for knowledge). The statistical distance between Kopt
τ

and Klp
τ is defined as follows.

dTV(Kopt
τ ,Klp

τ) =
1

2

∑
K

∣∣∣∣∣ Pr
K′∼Kopt

τ

[K ′ = K]− Pr
K′∼Klp

τ

[K ′ = K]

∣∣∣∣∣
From the argument given in Section 7 of [11], by showing that dTV(Kopt

τ ,Klp
τ) = o(1) when τ =

o(
√
N), we have the desired result.
We can safely assume that A never asks for the same constraint twice or more. Also, we assume

that, if P⋆ returns a constraint containing a variable in the transcript, A can correctly guess the

18

process (Popt or P lp) with which A is interacting. In other words, we are assuming that, when
Popt (resp., P lp) returns a constraint containing a variable in the transcript, it also returns a
certificate stating that the current process is Popt (resp., P lp). This only improves the ability of
A and makes the lower bound smaller.

Now, we define the randomized process Popt. We omit the definition of P lp as it is very similar
to the construction of Popt. The process Popt has two stages. The first stage proceeds as long as
A perform queries. In this stage, Popt chooses an answer for each query. In the second stage, the
process completes the transcript into an instance J .

We identify [n] (resp., [nN]) with the set of variables of I (resp., an instance generated by
Popt). Recall that, in an instance generated by Dopt, the variable set [nN] can be separated into
n sets, each of which corresponds to a variable i ∈ [n]. The process Popt incrementally constructs
this correspondence. A (partial) correspondences is represented by a map ρ : [nN] → [n] ∪ {⊥}.
For a variable i ∈ [n], let Vi = {v ∈ [nN] | ρ(v) = i} and Ni = |Vi|. Also, for each vertex v ∈ [nN]
and an index i ∈ [d], let Di(v) = {j ∈ {(T − 1)i + 1, . . . , T i} | j-th constraint of v is seen} and
di(v) = |Di(v)|.

In the first stage, given a query by an algorithm A, Popt chooses an answer for it as follows.

• When the query asks for a random unseen variable: we choose a random unseen variable
v ∈ [nN], and set ρ(v) = i with probability N−Ni∑

j∈[n](N−Nj)
. Then, we return v to A.

• When the query asks for the p-th constraint of v: Note that ρ(v) ̸= ⊥ from the assumption
that, when A asks for a constraint incident to an unseen variable, it asks for a random unseen
variable beforehand. Let q be such that (T − 1)q+1 ≤ p ≤ Tq, and P be the q-th constraint
of ρ(v) in I, which is applied to a sequence of variables {i1, . . . , ik} in I for which iℓ = ρ(v)
for some ℓ ∈ [k]. Also, let qj be such that P is the qj-th constraint of the variable ij in I.
Note that qℓ = q.

Then, we choose a set of variables {vj}j∈[k]\{ℓ} as follows. For each variable u with ρ(u) = ij ,

we choose u as vj with probability
T−dqj (u)∑

w∈Vij
(T−dqj (w))+(N−Nij

)T . If otherwise, we choose a

random unused variable u as vj ans set ρ(u) = ij .

Let P ′ be a constraint applied to a sequence {v1, . . . , vk} of weight wP . Finally, we determine
indices for each variable vj(j ̸= ℓ). We choose a random index pj from unused indices in
{(T − 1)qj + 1, . . . , T qj + 1}, and set P ′ be as the pj-th constraint of vj . Then, we return P ′

as the answer for the query.

In the second stage of Popt, the process uniformly selects an instance J among all those who are
consistent with the final transcript.

Lemma D.2. For every algorithm A, the randomized process Popt (resp., P lp) when interacting
with A, uniformly generates an instance J in Dopt (resp., Dlp).

Proof. The lemma easily follows by induction on the query complexity of A. The base case is clear
since if no query is made, then the distribution on instances generated by Popt (or, P lp) is clearly
uniform. The induction step follows directly from the definition of the process. In particular, the
distribution on instances resulting from the process switching to the second stage after it answers
the query is exactly the same as the distribution resulting from the process performing the second
stage without answering the query.

Proof of Lemma 5.3. Let A be a deterministic algorithm. It is convenient to think that labels of
variables are determined on the fly. That is, P⋆ decides labels of variables from [nN] at the time

19

when the variable appears for the first time in the interaction between an algorithm and P. The
distribution never change by this modification. Also, we can think that the sequence of labels
is determined beforehand, and for each time when a new variable appears, a new label for the
variable is taken from the front of the sequence. Let P⋆

ℓ be the process obtained from P⋆ by fixing
the sequence to ℓ. It is clear that P⋆ coincides with the process that takes ℓ uniformly at random
and acts as P⋆

ℓ . Let Popt
ℓ (resp., P lp

ℓ) be the process obtained from Popt (resp., P lp) by fixing
the sequence to ℓ. Then, it suffices to bound the statistical distance between the distribution of
transcripts when A interacts with Popt

ℓ and the one when A interacts with P lp
ℓ for any sequence ℓ.

A deterministic algorithm A with query complexity τ can be expressed as a decision tree of
depth at most τ . Here, each node in the decision tree corresponds to a query to the oracle, and
each branch from the node corresponds to the answer by the oracle. Recall that, from the rule
of indices, if we fix an index, the process always returns the same predicate (though the set of
vertices to which the predicate is applied should differ). Also, since we have fixed the sequence
of labels ℓ, at each node in the decision tree, there is just one branch corresponding to the case
that A finds a constraint such that any variable in the constraint (except the queried variable)
is not in the transcript. Ignoring branches for which A outputs an answer, the decision tree has
the property that the number of children of each node is at most one. Thus, A is essentially a
non-adaptive algorithm. Without loss of generality, we assume that A outputs that the current
instance is generated by Dopt after τ steps.

Suppose that the current process is Popt
ℓ and A is asking for a constraint incident to some

variable in the i-th query. Note that A has seen at most is variables. Then, from the construction
of Popt, the probability that Popt

ℓ returns a variable in the transcript is at most isT
(N−is)T ·s = is2

N−is .

Using the same argument, we can show that, in the i-th query, the probability that P lp
ℓ returns a

variable in the transcript is at most is2

µN−is where µ is the minimum of {µP,β}P∈P,β∈[q]V (P) except
0.

Thus, from the union bound, after τ steps, the probability that P⋆
ℓ returns a variable in the

transcript is at most

τ∑
i=1

is2

µN − is
≤ τ2s2

µN − τs
.

Then, the probability that A outputs the correct answer is at most τ2s2

µN−τs + 1
2 . To make this

probability at least 3/5, we have to choose τ = Ω(
√
N). Note that µ is a positive constant

independent of N .

E Proof of Theorem 1.4

Proof. We show the first part of the theorem. Let Λ be a CSP such that SΛ(1) = 1 − γ for some
γ > 0. Suppose that there exists a testing algorithm for the CSP Λ with o(

√
n) queries. Note that a

γ
3 -far instance I satisfies that opt(I) ≤ wI − γtwn

3 ≤ (1− γ
3)wI . Thus, using the testing algorithm,

given an instance I, with probability at least 2/3, we can distinguish the case opt(I) = wI from
the case opt(I) ≤ (1 − γ

3)wI . However, instantiating Theorem 1.2 with ϵ = γ/3, the theorem
asserts that any algorithm that, given an instance I, with probability at least 2/3, distinguishes
the case opt(I) = wI from the case opt(I) ≤ (SΛ(1)+

γ
3)wI = (1− 2γ

3)wI requires Ω(
√
n) queries.

This is a contradiction.
We show the second part of the theorem. Let Λ be a CSP such that SΛ(1) = 1. Since SΛ(c)

is continuous at c = 1, for any ϵ > 0, there exists δ such that SΛ(1 − δ) > 1 − ϵ/2. Consider the

20

algorithm obtained by instantiating Theorem 1.1 replacing ϵ with min(ϵ/2, δ). Suppose that I is
a satisfiable instance. Then, we obtain a value x ≥ SΛ(1 − δ)wI − ϵn/2 > (1 − ϵ/2)wI − ϵn/2.
Suppose that I is an instance ϵ-far from satisfiability. Then, we obtain a value x ≤ opt(I) ≤
wI − ϵtwn ≤ (1− ϵ/2)wI − ϵtwn/2. Thus, we can test the satisfiability of the CSP Λ in constant
time.

Acknowledgements

The author is grateful to Hiro Ito and Suguru Tamaki for valuable comments on an earlier draft of
this paper.

21

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

