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Abstract

A PCP is a proof system for NP in which the proof can be checked by a probabilistic
veri�er. The veri�er is only allowed to read a very small portion of the proof, and in return
is allowed to err with some bounded probability. The probability that the veri�er accepts a
false proof is called the soundness error, and is an important parameter of a PCP system that
one seeks to minimize. Constructing PCPs with sub-constant soundness error and, at the same
time, a minimal number of queries into the proof (namely two) is especially important due to
applications for inapproximability.

In this work we construct such PCP veri�ers, i.e., PCPs that make only two queries and have
sub-constant soundness error. Our construction can be viewed as a combinatorial alternative
to the �manifold vs. point� construction, which is the only construction in the literature for
this parameter range. The �manifold vs. point� PCP is based on a low degree test, while our
construction is based on a direct product test.

Our construction of a PCP is based on extending the derandomized direct product test
of Impagliazzo, Kabanets and Wigderson (STOC 09) to a derandomized parallel repetition
theorem. More accurately, our PCP construction is obtained in two steps. We �rst prove a
derandomized parallel repetition theorem for specially structured PCPs. Then, we show that
any PCP can be transformed into one that has the required structure, by embedding it on a
de-Bruijn graph.
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1 Introduction

The PCP theorem [AS98, ALM+98] says that every language in NP can be veri�ed by a polynomial-
time veri�er that uses O(log n) random bits and queries the proof in a constant number of locations.
The veri�er is guaranteed to always accept a correct proof, and to accept a false proof with bounded
probability (called the soundness error). Following the proof of the PCP theorem, research has been
directed towards strengthening the PCP theorem in terms of the important parameters, such as the
proof length, the number of queries, and the soundness error.

In parallel, there is a line of work attempting to expand the variety of techniques at our disposal
for constructing PCPs. Here the aim is to gain a deeper and more intuitive understanding of why
PCP theorems hold. One of the threads in this direction is replacing algebraic constructions by
combinatorial ones. This is motivated by the intuition that algebra is not an essential component
of PCPs, indeed the de�nition of PCPs involves no algebra at all. Of course, one may also hope
that the discovery of new techniques may lead to new results.

For the �basic� PCP theorem [AS98, ALM+98] there have been alternative combinatorial proofs
[DR06, Din07]. It is still a challenge to match stronger PCP theorems with combinatorial construc-
tions. Such is the work of the second author [Mei09] on PCPs with e�cient veri�ers. In this paper
we seek to do so for PCPs in the small soundness error regime.

In this work we give a new construction of a PCP with sub-constant soundness error and two
queries. This setting is particularly important for inapproximability, as will be discussed shortly
below. Formally, we prove

Theorem 1.1 (Two-query PCP with small soundness). Every language L ∈ NP has a two-query

PCP system with perfect completeness, soundness error 1/poly log n and alphabet size 2poly logn.

Furthermore, the veri�er in this PCP system makes only `projection' queries.

This theorem matches the parameters of the folklore �manifold vs. point� construction which
has been the only construction in the literature for this parameter range. The technical heart of
that construction is a sub-constant error low degree test [RS97, AS03], see full details in [MR08].

Our proof of Theorem 1.1 is based on the elegant derandomized direct product test of [IKW09].
In a nutshell, our construction is based on applying this test to obtain a �derandomized parallel
repetition theorem�. While it is not clear how to do this for an arbitrary PCP, it turns out to be
possible for PCPs with certain structure. We show how to convert any PCP to a PCP with the
required structure, and then prove a �derandomized parallel repetition theorem� for such PCPs,
thereby getting Theorem 1.1. The derandomized parallel repetition theorem relies on a reduction
from the derandomized direct product test of [IKW09].

The Moshkovitz-Raz Construction. Recently, Moshkovitz and Raz [MR08] constructed even
stronger PCPs. Their PCPs have nearly linear proof length, two queries, sub-constant error prob-
ability, and hold for all smaller alphabet sizes. Being able to reduce the alphabet size has strong
consequences for inapproximability, see [MR08] for details. The technique of [MR08] (as evident in
the later simpli�cation of [DH09]) is essentially based on composition of existing PCP constructs.
In fact, their main building block is the �manifold vs. point� construction mentioned above.

Our construction can be extended to yield a so-called decodable PCP [DH09], which is an object
slightly stronger than a PCP. This can be plugged into the scheme of [DH09] to give a new proof of
the main result of [MR08]1 (namely, an analog of Theorem 1.1 that works for all smaller alphabet

1Admittedly, the construction will have polynomial rather than nearly-linear length as in [MR08]. This we leave
for future work.
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sizes). This will give a completely di�erent construction, one that makes no use of low degree
polynomials.

Organization of the introduction In the following sections three sections we outline the back-
ground and main ideas of this work. We start by describing the parallel repetition technique in
general and its relation with direct product tests. We proceed to describe our technique of deran-
domized parallel repetition. We then describe our notion of �PCPs with linear structure�, to which
the derandomized parallel repetition is applied.

After the foregoing outline, we discuss relevant works and possible future directions, and describe
the organization of this work.

Parallel repetition and Direct Products

A natural approach to constructing PCPs with small soundness error is by sequential repetition.
That is, we start with a PCP veri�er that has a (large) constant soundness, and invoke it multiple
times. Obviously, if the veri�er is invoked for k times then the soundness of the resulting PCP system
is exponentially decreasing with k. However, this technique also increases the query complexity of
the PCP by a factor of k, and in particular the resulting PCP can not have query complexity of
2. Since our focus is on constructing PCPs that make only two queries, we can not a�ord using
sequential repetition.

In order to decrease the soundness error while maintaining the query complexity, one may use
parallel repetition. For the rest of this discussion, we consider only PCPs that use only two queries.
Let us brie�y recall what parallel repetition means in this context. As in the case of sequential
repetition, one starts out with a PCP with constant soundness error, and then ampli�es the rejection
probability by repetition of the veri�er. However, in order to save on queries, the prover is expected
to give the k-wise direct product encoding of the original proof. Formally, if π : [n] → Σ describes
the original proof then its direct product encoding, denoted by π⊗k, is the function π⊗k : [n]k → Σk

de�ned by
π⊗k(x1, . . . , xk) = (π(x1), . . . , π(xk)).

The new veri�er will simulate the original veri�er on k independent runs, but will read only two

symbols from the new proof, which together contain answers to k independent runs of the original
veri�er.

The challenge in analyzing the soundness error of this veri�er stems from the fact that the
proof Π is adversarial, and is not guaranteed to be a direct product encoding π⊗k of any underlying
proof π, as intended in the construction. Raz's celebrated parallel repetition theorem [Raz98] states
that the soundness error of this veri�er does go down exponentially with k, and this is clearly the
best possible.

The main di�culty in proving the parallel repetition theorem stems from the fact that the
parallel-repetition proof is not necessarily a legal (direct-product) encoding of another proof. One
may try to simplify the analysis by augmenting the parallel repetition with a direct product test.
That is, making the veri�er test that the given proof Π is a direct product encoding of some string π,
and only then running the original parallel repetition veri�er. This can sometimes be done without
even incurring extra queries. Motivated by this approach Goldreich and Safra [GS00] suggested and
studied the following question:

DP testing: Given a function F : [n]k → Σk test that it is close to f⊗k for some f : [n]→ Σ.
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Let us now describe a two query direct product test. From now on let us make the simplifying
assumption that the function F : [n]k → Σk to be tested is given as a function of k-sized subsets
rather than tuples, meaning that F (x1, . . . , xk) is the same for any permutation of x1, . . . , xk. The

test chooses two random k-subsets B1, B2 ∈
([n]
k

)
that intersect on a subset A = B1 ∩ B2 of a

certain prescribed size and accept if and only if F (B1)|A = F (B2)|A. This test was analyzed in
[GS00, DR06, DG08, IKW09].

Derandomized Direct Product Testing

Recall that our goal is to construct PCPs with sub-constant soundness error. Note, however, that
since the parallel repetition increases the proof length exponentially in k (and the randomness of
the veri�er grows k-fold), one can only a�ord to make a constant number of repetitions if one wishes
to maintain polynomial proof length. On the other hand, obtaining sub-constant soundness error
requires a super-constant number of repretitions.

This leads to the derandomization question, addressed already 15 years ago [FK95]. Can one
recycle randomness of the veri�er in the parallel repetition scheme without losing too much in
soundness error?

Motivated by this question, Impagliazzo, Kabanets, and Wigderson [IKW09] introduced an ex-
cellent method for analyzing the direct product test which allowed them to derandomize it. Namely,
they exhibited a relatively small collection of subsets K ⊂

([n]
k

)
, and considered the restriction of the

direct product encoding f⊗k to this collection. They then showed that this form of derandomized
direct product can be tested using the above test. The collection K is as follows: identify [n] with
a vector space Fm, let k = |F|d for constant d, and let K be the set of all d-dimensional linear
subspaces.

One would like to use the derandomized direct product of [IKW09] to obtain a derandomized
parallel repetition theorem. Recall that the parallel repetition veri�er works by simulating k in-
dependent runs of the original veri�er on π, and querying the (supposed) direct product Π on the
resulting k-tuples of queries. However, in the derandomized setting, the k-tuples of queries generated
by the veri�er may fall outside K. This is the main di�culty that we address in this work.

This is where the structure of the PCP comes to our aid. We show that for PCPs with a
certain linear structure, the k-tuples of queries can be made in a way that is compatible with the
derandomized direct product test of [IKW09]. This allows us to prove a derandomized parallel
repetition theorem for the particular case of PCPs with linear structure. Our main theorem is
proved by constructing PCPs with linear structure (discussed next), and applying the derandomized
parallel repetition theorem.

PCPs with Linear Structure

We turn to discuss PCPs with linear structure. The underlying graph structure of a two-query PCP
is a graph de�ned as follows. The vertices are the proof coordinates, and the edges correspond to all
possible query pairs of the veri�er. (See also Section 2.3). We say that a graph has linear structure
if the vertices can be identi�ed with a vector space Fm and the edges, which clearly can be viewed
as a subset of F2m, form a linear subspace of F2m (see also De�nition 3.1). A two-query PCP has
linear structure if its underlying graph has linear structure.

As mentioned above, an additional contribution to this work is the construction of PCPs with
linear structure. That is, we prove the following result.

Theorem 1.2 (PCPs with linear structure). Every language L ∈ NP has a PCP system with

linear structure, using O(log n) randomness, constant alphabet size, and such that the PCP has
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perfect completeness and soundness error 1− 1/poly log n.

We believe that Theorem 1.2 is interesting in its own right: For known PCPs, the underly-
ing graph structure is quite di�cult to describe, mostly due to the fact that PCP constructions
are invariably based on composition. In principle, however, the fact that a PCP is a �complex�
object need not prevent the underlying graph from being simple. In analogy, certain Ramanujan
expanders [LPS88] are Cayley graphs that are very easy to describe, even if the proof of their expan-
sion is not quite so easy. It is therefore interesting to study whether there exist PCPs with simple
underlying graphs.

Philosophically, the more structured the PCP, the stronger is the implied statement about the
class NP, and the easier it is to exploit for applications. Indeed, the structure of a PCP system has
been used in several previous works. For example, Khot constructs [Kho06] a PCP with pseudo-
random structure in order to establish the hardness of minimum bisection. Dinur [Din07] imposes
an expansion structure on a PCP to obtain ampli�cation.

We prove Theorem 1.2 by embedding a given PCP into the de Bruijn graph and relying on the
algebraic structure of this graph. We remark that the de Bruijn graph has been used in constructions
of PCPs before, e.g. [PS94, BFLS91], in similar contexts. We believe that structured PCPs are
an object worthy of further study. One may view their applicability towards proving Theorem 1.1
as supporting evidence. An interesting question which we leave open is whether Theorem 1.2 can
be strengthened so as to get constant soundness error. By simply plugging such a PCP into our
derandomized parallel repetition theorem one would get a direct proof of the aforementioned result
of [MR08], without using two-query composition.

Related Work and Future directions

Our �nal construction of a two-query PCP has exponential relation between the alphabet size
(which is 2poly logn) and the error probability (which is 1/poly log n). In general, one can hope
for a polynomial relation, and this is the so-called �sliding scale� conjecture of [BGLR93]. Our
approach is inherently limited to an exponential relation both because of a lower bound on direct
product testing from [DG08], and, more generally, because of the following lower bound of Feige and
Kilian [FK95] on parallel repetition of games. Feige and Kilian prove that for every PCP system
and k = O(log n), if one insists on the parallel repetition using only O(log n) random bits, then the
soundness error must be at least 1/poly log n (and not 1/poly(n) as one might hope). Our work
matches the [FK95] lower bound by exhibiting a derandomized parallel repetition theorem, albeit
only for PCPs with linear structure, that achieves a matching upper bound of 1/poly log n on the
soundness error.

Nevertheless, for three queries we are in a completely di�erent ball-game, and no lower bound
is known. It would be interesting to �nd a derandomized direct product test with three queries
with lower soundness error, and to try and adapt it to a PCP. We note that there are �algebraic�
constructions [RS97, DFK+99] that make only three queries and have much better relationship
between the error and the alphabet size.

It has already been mentioned that while our result matches the soundness error and alphabet
size of the [MR08] result, it does not attain nearly linear proof length. Improving our result in this
respect is another interesting direction.

Organization

In Section 2, we give the required preliminaries for this work, including a description of the deran-
domized direct product test of [IKW09]. In Section 3 we prove Theorem 1.1 based on our main
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1. Choose a uniformly distributed d1-subspace B ⊆ Fm.

2. Choose a uniformly distributed d0-subspace A ⊆ B.

3. Accept if and only if Π (B)|A = Π(A).

Figure 1: The P-test

lemmas. The construction of PCPs with linear structure is given in Section 4. In Section 5 we
prove the "derandomized parallel repetition" theorem for PCPs with linear structure, by reducing
it to the analysis of a specialized variant of the test of [IKW09]. Finally, we analyze the specialized
direct product in Section 6.

2 Preliminaries

Let g : U → Σ be an arbitrary function, and let A ⊂ U be a subset. We denote by g|A the restriction

of g (as a function) to A. Given two functions f, g : U → Σ we denote f
α
≈ g (f

α
6≈ g) to mean that

they di�er on at most (more than) α fraction of the elements of U .
We refer to a d-dimensional linear subspace of an underlying vector space simply as a d-subspace.

For two linear subspaces A1 and A2 we denote by A1 +A2 the smallest linear subspace containing
both of them. We say that A1, A2 are disjoint if and only if A1 ∩ A2 = {0}. If A1 and A2 are
disjoint, we use A1 ⊕A2 to denote A1 +A2.

Let G = (V,E) be a directed graph. For each edge e ∈ E we denote by left (e) and right (e) the
left and right endpoints of e respectively. That is, if we view the edge e ∈ E as a pair in V × V ,
then left (e) and right (e) are the �rst and second elements of the pair e respectively. Given a set of
edges E0 ⊆ E, we denote by left (E0) and right(E0) the set of left endpoints and right endpoints of
the edges in E0 respectively.

2.1 Direct product testing [IKW09]

Let us brie�y describe the setting in which we use the derandomized direct product test of [IKW09].
In [IKW09] the main derandomized direct product test is a so-called �V-test�. We consider a
variation of this test that appears in [IKW09, Section 6.3] to which we refer as the �P-test� (P for
projection).

Given a string π ∈ Σ`, we de�ne its (derandomized) P-direct product Π as follows: We identify
[`] with Fm, where F is a �nite �eld and m ∈ N, and think of π as an assignment that maps the
points in Fm to Σ. We also �x d0 < d1 ∈ N. Now, we de�ne to be Π the assignment that assigns
each d0- and d1-subspace W of Fm to the function π|W : W → Σ (recall that π|W is the restriction
of π to W ).

We now consider the task of testing whether a given assignment Π is the P-direct product of
some string π : Fm → Σ. In those settings, we are given an assignment to subspaces, i.e. a function
Π that on input a d0-subspace A ⊂ Fm (respectively d1-subspace B ⊂ Fm), answers with a function
a : A → Σ (respectively, b : Fm → Σ). We wish to test whether Π is a P-direct product of some
π : Fm → Σ, and to this end we invoke the P-test, described in Figure 1.

It is easy to see that if Π is a P-direct product then the P-test always accepts. Furthermore,
it can be shown that if Π is �far� from being a P-direct product, then the P-test rejects with high
probability. Formally, we have the following result.
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Theorem 2.1 ([IKW09]). There exists a universal constant h ∈ N such that the following holds:

Let ε ≥ h · d0 · |F|−d0/h, α
def= h · d0 · |F|−d0/h. Assume that d1 ≥ h · d0, m ≥ h · d1. Suppose that an

assignment Π passes the P-test with probability at least ε. Then, there exists an assignment π such

that

Pr
[
Π (B)|A = Π (A) and Π (B)

α
≈ π|B and Π (A)

α
≈ π|A

]
= Ω(ε4) (1)

where the probability is over A,B chosen as in the P-test.

Theorem 2.1 can be proved using the techniques of [IKW09]. For completeness, the proof is
given in Appendix A.

Working with randomized assignments. As noticed by [IKW09], Theorem 2.1 works in even
stronger settings. Suppose that Π is a randomized function, i.e., a function of both its input and
some additional randomness. Then, Theorem 2.1 still holds for Π, where the probability in (1) is
over both the choice of A and B, and over the internal randomness of Π. We will rely on this fact
in a crucial way in this work.

2.2 Sampling tools

The following is a standard de�nition, in graph terms, see e.g. [IJKW08].

De�nition 2.2 (Sampler Graph). A bipartite graph G = (L,R,E) is said to be an (ε, δ)-sampler
if, for every function f : L→ [0, 1], there are at most δ |R| vertices u ∈ R for which∣∣Ev∈N(u)[f(v)]− Ev∈L[f(v)]

∣∣ > ε.

Observe that if G is an (ε, δ)-sampler, and if F ⊂ L, then by considering the function f ≡ 1F we
get that there are at most δ |R| vertices u ∈ R for which∣∣∣∣ Pr

v∈N(u)
[v ∈ F ]− Pr

v∈L
[v ∈ F ]

∣∣∣∣ > ε.

We have the following result

Lemma 2.3 (Subspace-point sampler [IJKW08]). Let d′ < d be natural numbers, let V be a linear

space over a �nite �eld F, and let W be a �xed d′-dimensional of V . Let G be the bipartite graph

whose left vertices are all points V and whose right vertices are all d-subspaces of V that contain W .

We place an edge between a d-subspace X and x ∈ V i� x ∈ X. Then G is an (τ+ 1

|F|d−d′
, 1

|F|d−d′−2·τ2
)-

sampler for every τ > 0.

Proof Fix a function f : V → [0, 1]. We show that for a uniformly distributed d-subspace X ⊆ V
that contains W it holds with probability at least 1− 1

|F|d−d′−2·τ2
that

|Ex∈X [f(x)]− Ev∈V [f(v)]| ≤ τ +
1

|F|d−d′

Let W be a �xed subspace of V for which V = W ⊕W . Let fW : W → [0, 1] be the function
that maps each vector w of W to Ev∈w+W [f(v)], and observe that Ev∈V [f(v)] = Ew∈W [fW (w)].
Furthermore, observe that every d-subspace X that containsW can be written as X = W⊕U where
U is a (d− d′)-subspace of W , and moreover that Ex∈X [f(x)] = Eu∈U [fW (u)]. Thus, it su�ces to
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prove that for a uniformly distributed (d− d′)-subspace U of W it holds with probability at least
1− 1

|F|d−d′−2·τ2
that ∣∣Eu∈U [fW (u)]− Ew∈W [fW (w)]

∣∣ ≤ τ +
1

|F|d−d′
(2)

To that end, let U be a uniformly distributed (d− d′)-subspace ofW . Let S1 be a set ofQ = |F|d−d
′
−1

|F|−1

vectors of U such that every two vectors in S1 are linearly independent (it is easy to construct such
a set). For every α ∈ F∗ let Sα be the set obtained by multiplying every vector in S1 by α. Observe
that all the sets Sα have the property that every two vectors in Sα are linearly independent, and
that the sets Sα form a partition of U\ {0}. We will show that for every α ∈ F∗ it holds with
probability at least 1− 1

|F|d−d′−1·τ2
that

∣∣Eu∈Sα [fW (u)]− Ew∈W [fW (w)]
∣∣ ≤ τ

and the required result will follow by taking the union bound over all α ∈ F∗, and by noting that
the vector 0 contributes at most 1

|F|d−d′
to the di�erence in Inequality 2.

Fix α ∈ F∗, and let s1, . . . , sQ be the vectors in Sα. It is a known fact that s1, . . . , sQ are pair-wise
independent and uniformly distributed vectors ofW (over the random choice of U). This implies that
fW (s1), . . . , fW (sQ) are pair-wise independent random variables with expectation Ew∈W [fW (w)],
and therefore by the Chebyshev inequality it follows that

Pr

[∣∣∣∣∣ 1
Q

Q∑
i=1

fW (si)− Ew∈W [fW (w)]

∣∣∣∣∣ > τ

]
≤ 1
Q · τ2

≤ 1

|F|d−d′−1 · τ2

as required. �

2.3 Constraint graphs and PCPs

As discussed in the introduction, the focus of this work is on claims that can be veri�ed by reading
a small number of symbols of the proof. A PCP system for a language L is an oracle machine M ,
called a veri�er, that has oracle access to a proof π over an alphabet Σ. The veri�er M reads the
input x, tosses r coins, makes at most q �oracle� queries into π, and then accepts or rejects. If x is
in the language then it is required that M accepts with probability 1 for some π, and otherwise it
is required that M accepts with probabiltiy at most ε for every π. More formally:

De�nition 2.4. Let r, q : N→ N, and let Σ be a function that maps the natural numbers to �nite
alphabets. A (r, q)Σ-PCP veri�er M is a probabilistic polynomial time oracle machine that when
given input x ∈ {0, 1}∗, tosses at most r(|x|) coins, makes at most q (|x|) non-adaptive queries to
an oracle that is a string over Σ(|x|), and outputs either �accept� or �reject�. We refer to r, q, and
Σ as the randomness complexity, query complexity, and proof alphabet of the veri�er respectively.

Remark 2.5. Note that for an (r, q)Σ-PCP veri�er M and an input x, we can assume without loss
of generality that the oracle is a string of length at most 2r(|x|) · q(|x|), since this is the maximal
number of di�erent queries that M can make.

De�nition 2.6. Let r, q and Σ be as in De�nition 2.4, let L ⊆ {0, 1}∗ and let ε : N → [0, 1).
We say that L ∈ PCPε,Σ [r, q] if there exists an (r, q)Σ-PCP veri�er M that satis�es the following
requirements:
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• Completeness: For every x ∈ L, there exists π ∈ Σ (|x|)∗ such that Pr [Mπ(x) accepts] = 1.

• Soundness: For every x /∈ L and for every π ∈ Σ (|x|)∗ it holds that Pr [Mπ(x) accepts] ≤ ε.

One possible formulation of the the PCP theorem is as follows.

Theorem 2.7 (PCP Theorem [AS98, ALM+98]). There exist universal constant ε ∈ (0, 1) and a

�nite alphabet Σ such that NP ⊆ PCPε,Σ [O(log n), 2].

PCPs that have query complexity 2 correspond to graphs in a natural way: Consider the action

of an (r, 2)Σ-veri�er M on some �xed string x, and let r
def= r(|x|),Σ def= Σ(|x|). The veri�er M is

given access to some proof string π of length `, and may make 2r possible tests on this string, where
each such test consists of making two queries to π and deciding according to the answers. We now
view the action of M as a graph in the following way. We consider the graph G whose vertices are
the coordinates in [`], and that has an edge for each possible test of the veri�erM . The endpoints of
an edge e of G are the coordinates that are queried by M in the test that corresponds to e. We also
associate an edge e with a constraint ce ∈ Σ×Σ, which contains all the pairs of answers that make
M accept when performing the test that corresponds to e. We think of π as an assignment that
assigns the vertices of G values in Σ, and say that π satis�es an edge (u, v) if (π(u), π(v)) ∈ c(u,v).
If x ∈ L, then it is required that there exists some assignment π that satis�es all the edges of G,
and otherwise it is required that every assignment satis�es at most ε fraction of the edges. This
correspondence is called the FGLSS correspondence [FGL+96]. We turn to state it formally:

De�nition 2.8 (Constraint graph). A (directed) constraint graph is a directed graph G = (V,E)
together with an alphabet Σ, and, for each edge (u, v) ∈ E, a binary constraint cu,v ⊆ Σ × Σ.
The size of G is the number of edges of G. The graph is said to have projection constraints if
every constraint cu,v has an associated function fu,v : Σ → Σ such that cu,v is satis�ed by (a, b) i�
fu,v(a) = b.
Given an assignment π : V → Σ, we de�ne

SAT(G, π) = Pr
(u,v)∈E

[(π(u), π(v)) ∈ cu,v] and SAT(G) = max
π

(SAT(G, π)).

We also denote UNSAT(G, π) = 1− SAT(G, π) and similarly UNSAT(G) = 1− SAT(G).

Remark 2.9. Note that De�nition 2.8 uses directed graphs, while the common de�nition of con-
straint graphs refers to undirected graphs.

Remark 2.10. Note that if the graph G is bipartite and all edges are directed from, say, left to
right, then this is simply a label cover instance with projection constraints [AL96].

Proposition 2.11 (FGLSS correspondence [FGL+96]). The following two statements are equiva-

lent:

• L ∈ PCPε,Σ [r, 2].
• There exists a polynomial-time transformation that transforms strings x ∈ {0, 1}∗ to constraint
graphs Gx of size 2r(|x|) with alphabet Σ (|x|) such that: (1) if x ∈ L then SAT(Gx) = 1, and
(2) if x 6∈ L then SAT(Gx) ≤ ε.

Given a PCP system for L, we refer to the corresponding family of graphs {Gx} where x ranges over

all possible instances as its underlying graph family. If the graphs {Gx} have projection constraints

then we say that the PCP system has the projection property.
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Using the [FGL+96] correspondence, we can rephrase the PCP theorem in the terminology of
constraint graphs:

Theorem 2.12 (PCP Theorem for constraint graphs). There exist universal constant ε ∈ (0, 1)
and a �nite alphabet Σ such that for every language L ∈ NP the following holds: There exists a

polynomial time reduction that on input x ∈ {0, 1}∗, outputs a constraint graph Gx such that if

x ∈ L then SAT(Gx) = 1 and otherwise SAT(Gx) ≤ ε.

2.4 Basic facts about random subspaces

In this section we present two useful propositions about random subspaces. The following propo-
sition says that a uniformly distributed subspace is disjoint from every �xed subspace with high
probability.

Proposition 2.13. Let d, d′ ∈ N such that d > 2d′, and let V be a d-dimensional space. Let W1 be

a uniformly distributed d′-subspace of V , and let W2 be a �xed d′-subspace of V . Then,

Pr[W1 ∩W2 = {0}] ≥ 1− 2 · d′/ |F|d−2·d′ .

Proof Suppose that W1 is chosen by choosing random basis vectors v1, . . . , vd′ one after the other.
It is easy to see that W1 ∩ W2 6= {0} only if vi ∈ span (W2 ∪ {v1, . . . , vi−1}) for some i ∈ [d′].
For each �xed i, the vector vi is uniformly distributed in V \span {v1, . . . , vi−1}, and therefore the
probability that vi ∈ span (W2 ∪ {v1, . . . , vi−1}) for a �xed i is at most

|span (W2 ∪ {v1, . . . , vi−1})|
|V \span {v1, . . . , vi−1}|

=
|F|d

′+i−1

|F|d − |F|i−1

≤ 2 · |F|d
′+i−1

|F|d
(3)

≤ 2 · |F|2·d
′−1

|F|d

≤ 2

|F|d−2·d′

where Inequality 3 can be observed by noting that |F|i−1 ≤ |F|d−1 ≤ 1
2 · |F|

d. By the union bound,

the probability that this event occurs for some i ∈ [d′] is at most 2·d′
|F|d−2·d′ . It follows that the

probability that W1 ∩W2 6= {0} is at most 2·d′
|F|d−2·d′ as required. �

The following proposition says that the span of d′ uniformly distributed vectors is with high
probability a uniformly distributed d′-subspace.

Proposition 2.14. Let V be a d-dimensional space over a �nite �eld F, let w1, . . . , wd′ be indepen-
dent and uniformly distributed vectors of V , and let W = span {w1, . . . , wd′}. Then, with probability

at least 1− d′/ |F|d−d
′
it holds that dimW = d′. Furthermore, conditioned on the latter event, W is

a uniformly distributed d′-subspace of V .

Proof The fact that dimW = d′ with probability at least 1−d′/ |F|d−d
′
can be proved in essentially

the same way as Proposition 2.13. To see that conditioned on the latter event it holds that the
subspaceW is uniformly distributed, observe that since w1, . . . , wd′ were originally chosen to be uni-
formly distributed, all the possible d′-sets of linearly independent vectors have the same probability
to occur. �
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Finally, the following proposition shows the equivalence of two di�erent ways of choosing sub-
spaces A1, A2 ⊆ B where A1 and A2 are disjoint.

Proposition. Let V be a linear space over a �nite �eld F, and let d0, d1 ∈ N be such that d0 <
d1 < dimV . The following two distributions over d0-subspaces A1, A2 and a d1-subspace B are the

same:

1. Choose B to be a uniformly distributed d1-subspace of V , and then choose A1 and A2 to be

two uniformly distributed and disjoint d0-subspaces of B.

2. Choose A1 and A2 to be two uniformly distributed and disjoint d0-subspaces of V , and then

choose B to be a uniformly distributed d1-subspace of V that contains A1 and A2.

Proof Observe that choosing A1, A2, B under the �rst distribution amounts to choosing d1 uni-
formly distributed and linearly independent vectors in V (those vectors will serve as the basis of
B), and then choosing two disjoint subsets of those vectors to serve as the basis of A1 and as the
basis of A2. On the other hand, choosing A1, A2 and B under the second distribution amounts to
choosing d0 uniformly distributed and linearly independent vectors in V to serve as the basis of A1,
then choosing another d0 uniformly distributed and linearly independent vectors in V to serve as
the basis of A2 while making sure that this basis is also linearly independent from the basis of A1,
and then completing the basis of A1 and the basis of A2 to a basis of B. It is easy to see that those
two distributions over a set of d1 vectors and its two disjoint subsets are identical. �

3 Main theorem

In this section we prove the main theorem (Theorem 1.1). To that end, we use the PCP theorem for
graphs (Theorem 2.12) to reduce the problem of deciding membership of a string x in the language
L to the problem of checking the satis�ability of a constraint graph with constant soundness error.
We then show that every constraint graph can be transformed into one that has �linear structure�,
de�ned shortly below. This is done in Lemma 3.2, which directly proves Theorem 1.2. Finally, in
Lemma 3.3 we prove a derandomized parallel repetition theorem for constraint graphs with linear
structure. Theorem 1.1 follows by combining the two lemmas. We begin by de�ning the notion of
a graph with linear structure.

De�nition 3.1. We say that a directed graph G has a linear structure if it satis�es the following

conditions:

1. The vertices of G can be identi�ed with the linear space Fm, where F is a �nite �eld and

m ∈ N.

2. We identify the set of pairs of vertices (Fm)2 with the linear space F2m. Using this identi�ca-

tion, the edges E of G are required to form a linear subspace of F2m.

3. We require that left (E) = right (E) = Fm. In other words, this means that every vertex of G
is both the left endpoint of some edge and the right point of some edge.

The following lemmas are proved in Sections 4 and 5 respectively.

Lemma 3.2 (PCP with Linear Structure). There exists a polynomial time procedure that satis�es

the following requirements:

• Input:
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� A constraint graph G of size n over alphabet Σ.

� A �nite �eld F of size q.

• Output: A constraint graph G′ = (Fm, E′) such that the following holds:

� G′ has a linear structure.

� The size of G′ is at most O
(
q2 · n

)
.

� G′ has alphabet ΣO(logq(n)).

� If G is satis�able then G′ is satis�able.

� If UNSAT (G) ≥ ρ then UNSAT (G′) ≥ Ω
(

1
q·logq(n) · ρ

)
.

Lemma 3.3 (Derandomized Parallel Repetition). There exist a universal constant h and a polyno-

mial time procedure that satisfy the following requirements:

• Input:

� A �nite �eld F of size q

� A constraint graph G = (Fm, E) over alphabet Σ that has a linear structure.

� A parameter d0 ∈ N such that d0 < m/h2.

� A parameter ρ ∈ (0, 1) such that ρ ≥ h · d0 · q−d0/h.

• Output: A constraint graph G′ such that the following holds:

� G′ has size nO(d0).

� G′ has alphabet ΣqO(d0)
.

� If G is satis�able then G′ is satis�able.

� If SAT (G) < 1− ρ then SAT (G′) < h · d0 · q−d0/h.
� G′ has the projection property

We turn to prove the main theorem from the above lemmas.

Theorem (1.1, restated). Every language L ∈ NP has a two-query PCP system with perfect com-

pleteness, soundness error 1/poly log n and alphabet size 2poly logn. Furthermore, the veri�er in this

PCP system makes only `projection' queries.

Proof Fix L ∈ NP and let c ∈ N be a constant to be chosen later. We show that L has a two-
query PCP system with perfect completeness, soundness error 1/ log n and alphabet size 2poly logn,
which has the projection property. By the [FGL+96] correspondence (Proposition 2.11), it su�ces
to show a polynomial time procedure that on input x ∈ {0, 1}∗, outputs a constraint graph G′ of
size poly (n) such that the following holds: If x ∈ L then G′ is satis�able (i.e. SAT(G′) = 1), and
if x 6∈ L then SAT(G′) ≤ O(1/ log |x|). The procedure begins by transforming x, using the PCP
theorem for constraint graphs (Theorem 2.12), to a constraint graph G of size n = poly |x| such
that if x ∈ L then SAT (G) = 1 and if x 6∈ L then SAT (G) ≤ ε, where ε ∈ [0, 1) is a universal
constant that does not depend on x. Let n = poly (|x|) be the size of G, and let ρ = 1− ε.

Next, the procedure sets q to be the least power of 2 that is at least logc (n), and sets F be the
�nite �eld of size q. Note that q = O(logc n). The procedure now invokes Lemma 3.2 on input G
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and F, thus obtaining a new constraint graph G1. Note that by Lemma 3.2 if UNSAT (G) ≥ ρ, then
ρ1

def= UNSAT (G1) ≥ Ω
(

1
q·logq(n) · ρ

)
.

Finally, the procedure sets d0 to be an arbitrary constant such that ρ1 ≥ h·d0 ·q−d0/h . Note that
this is indeed possible, since logq (1/ρ1) is a constant that depends only on ρ. Finally, the procedure
invokes Lemma 3.3 on input G1, F, ρ1, and d0, and outputs the resulting constraint graph G′.

It remains to analyze the parameters of G′. By de�ning p(k) = kO(c·d0), we get that G′ has size at

most p(n) and alphabet ΣqO(d0)
= Σp(logn). Furthermore, if UNSAT (G) ≥ ρ, then UNSAT (G1) ≥

ρ1. Therefore, by Lemma 3.3 and by the choice of d0 , it holds that SAT(G′) ≤ O(1/qΩ(1)). Since
O(1/qΩ(1)) = O(1/ logΩ(c) n) = O(1/ logΩ(c) |x|), we make G′ have soundness of O (1/ log n) by
choosing c to be su�ciently large. �

Remark 3.4. Recall that [MR08] prove a stronger version of the main theorem, saying that for every
soundness error s > 1/poly log n it holds that NP has a PCP system with soundness s and alphabet
size exp (poly (1/s)). If one could prove a stronger version of Lemma 3.2 in which the soundness

of G′ is ρ/poly (q) and the alphabet size is |Σ|poly(q) then the desired stronger version would follow
using the same proof as above, without using a composition technique as in [MR08, DH09].

The reduction described in Theorem 1.1 is polynomial but not nearly-linear size. In fact, the
construction of graphs with linear structure (Lemma 3.2) is nearly linear size (taking an instance of
size n to an instance of size q2 ·n). The part that incurs a polynomial and not nearly-linear blow-up
is the reduction in Lemma 3.3 that relies on the derandomized direct product. It is possible that a
more e�cient derandomized direct product may lead to a nearly-linear size construction in total.

4 PCPs with Linear Structure

In this section we prove Lemma 3.2, which implies Theorem 1.2 by combining it with the PCP
theorem (Theorem 2.12). The lemma which says that every constraint graph can be transformed
into one that has linear structure. To this end, we use a family of structured graphs called de-Bruijn
graphs. We show that de-Bruijn graphs have linear structure, and that every constraint graph can be
embedded in some sense on a de-Bruijn graph. This embedding technique is a variant of a technique
introduced by Babai et. al. [BFLS91] and Polishchuk and Spielman [PS94] for embedding circuits
on de-Bruijn graphs. We begin by de�ning de-Bruijn graphs.

De�nition 4.1. Let Λ be a �nite alphabet and let m ∈ N. The de Bruijn graph DBΛ,m is the
directed graph whose vertices set is Λm such that each vertex (α1, . . . , αt) ∈ Λm has outgoing edges
to all the vertices of the form (α2, . . . , αt, β) for every β ∈ Λ.

Remark 4.2. We note that previous works used the special case of De�nition 4.1 for Λ = {0, 1}.
In this work we use the more general de�nition.

Lemma 3.2 follows easily from the following two propositions. Proposition 4.3 says that any
constraint graph can be embedded on a de Bruijn graph, and is proved in Section 4.1. Proposition 4.4
says that de Bruijn graphs have linear structure.

Proposition 4.3. There exists a polynomial time procedure that satis�es the following requirements:

• Input:

� A constraint graph G of size n over alphabet Σ.
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� A �nite alphabet Λ whose size is a power of 2.

� A natural number m such that |Λ|m ≥ 2 · n

• Output: A constraint graph G′ such that the following holds:

� The underlying graph of G′ is the augmented wrapped de Bruijn graph DBΛ,m.

� The size of G′ is |Λ|m+1.

� G′ has alphabet ΣO(1).

� If G is satis�able then G′ is satis�able.

� If UNSAT (G) ≥ ρ then UNSAT (G′) ≥ Ω
(

n
|Λ|m+1·l · ρ

)
.

Proposition 4.4. Let F be a �nite �eld and let m ∈ N. Then, the de Bruijn graph DBF,m has

linear structure.

Proof Items 1 and 3 of the de�nition of linear structure (De�nition 3.1) follow immediately from
the de�nition of de Bruijn graphs. To see that Item 2 holds, observe that in order for a tuple in
F2m to be an edge of DBF,m, it only needs to satisfy equality constraints, which are in turn linear
constraints. Thus, the set of edges of DBF,m form a linear subspace of F2m. �

Lemma 3.2 is obtained by invoking Proposition 4.3 with Λ = F,m =
⌈
logq (2 · n)

⌉
and combining

it with Proposition 4.4.

4.1 Embedding constraint graphs on de Bruijn graphs

In this section we prove Proposition 4.3. The section is organized as follows: In Section 4.1.1 we
give the required background on the routing properties of de Bruijn graphs. Then, in Section 4.1.2,
we give an outline of the proof of Proposition 4.1.2. Finally, we give the full proof in Section 4.1.3.

4.1.1 de Bruijn graphs as routing networks

The crucial property of de Bruijn graphs that we use is that de Bruijn graph is a permutation

routing network. To explain the intuition that underlies this notion, let us think of the vertices
of the de Bruijn graph as computes in a network, such that two computers can communicate if
and only if they are connected by an edge. Furthermore, sending a message from a computer to
its neighbor takes one unit of time. Suppose that each computer in the network wishes to send a
message to some other computer in the network, and furthermore each computer needs to receive a
message from exactly one computer (that is, the mapping from source computer to target computer
is a permutation). Then, the routing property of the de Bruijn network says that we can �nd paths
in the network that have the following properties:

1. Each path corresponds to a message that needs to be sent. The path starts at the computer
that wishes to send the message and ends at the computer to which the message is sent.

2. If all the messages are sent simultaneously along their corresponding paths, then at each unit
of time, every computer needs to deal with exactly one message.

3. The paths are of length exactly 2 ·m. This means that if all the messages are sent simultane-
ously along their corresponding paths, then after 2 ·m units of time all the packets will reach
their destination.
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Formally, this property can be stated as follows.

Fact 4.5 (). Let DBΛ,m be a de-Brujin graph. Then, given a permutation µ on the vertices of

DBΛ,m one can �nd a set of undirected paths of length l = 2 ·m that connect each vertex v to µ(v)
and that have the following property: For every j ∈ [l], each vertex v is the j-th vertex of exactly one

path. Furthermore, �nding the paths can be done in time that is polynomial in the size of DBΛ,m.

Remark 4.6. Fact 4.5 is proved in [Lei92] for the special case of Λ = {0, 1}. The proof of the
general case essentially follows the original proof, and replaces the looping algorithm of Benes with
the fact that the edges of d-regular bipartite graphs can be decomposed into d perfect matchings.
For completeness, we give the proof to the general case in Appendix B.

Remark 4.7. Note that the paths mentioned in Fact 4.5 are undirected. That is, if a vertex u
appears immediately after a vertex v in path, then either (u, v) or (v, u) are edges of DBΛ,m.

4.1.2 Proof overview

In this section we give an overview of the proof of Proposition 4.3. Suppose we are given as input a
constraint graph G which we want to embed on DB = DBΛ,m. Recall that the size of G is at most
|Λ|m, so we may identify the vertices of G with some of the vertices of DB.

Handling maximal degree 1 As a warm up, assume that G has maximal degree 1, i.e., G is a
matching. In this case, we set the alphabet of the constraint graph G′ to Σl for l = 2m. Fix any
assignment π to G. We begin by describing how to construct a corresponding assignment π′ to G′.
We think of the vertices of G as computers, such that each vertex v wants to send the value π(v)
as a message to its unique neighbor in G. Using the routing property of the de Bruijn graph, we
�nd paths for routing those messages along the edges of G′. Recall that if all the messages are sent
simultaneously along those paths, then every computer has to deal with one packet at each unit of
time, for l units of time. We now de�ne the assignment π′ to assign each vertex v of G′ a tuple in
Σl whose i-th element is the message with which v deals at the i-th unit of time.

The constraints of G′ are de�ned to check that the routing is done correctly. That is, if the
computer u is supposed to send a message to a vertex v between the j-th unit of time and the (j + 1)-
th unit of time, then the constraint of the edge betwen u and v will check that π′ (u)j = π′(v)j+1.
Furthermore, for each edge (u, v) of G, the constraints of G′ check that the values π′ (v)l and π

′ (v)1

satisfy the edge (u, v). This condition should hold because if π′ was constructed correctly according
to π then π′ (v)l = π(u) and π′ (v)1 = π(v). It should be clear that the constraints of G′ �simulate�
the the constraints of G.

Handling arbitrary degree graphs Using the expander replacement technique of Papadimitriou
and Yannakakis [PY91], we may assume that G is d-regular for some universal constant d. The d-
regularity of G implies that the edges of G can be partitioned to d disjoint matchings G1, . . . , Gd in

polynomial time(see, e.g., [Cam98, Proposition 18.1.2]). Now, we set the alphabet of G′ to be
(
Σl
)d
,

and handle each of the matchings Gi as before, each time using a �di�erent part� of the alphabet
symbols. In other words, the alphabet of G′ consists of d-tuples of Σl, and so the constraints used to
handle each matching Gi will refer to the i-th coordinates in those tuples. Finally, for vertex v, its
constraints will also check that the message it sends in each of the d routings is the same. In other

words, if π′ (v) = (σ1, . . . , σd) ∈
(
Σl
)d

then the constraints will check that (σ1)1 = . . . = (σd)1. As
before, the constraints of resulting graph G′ �simulate� the constraints of the original graph G.
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Remark 4.8. Observe that the foregoing proof used only the routing property of de Bruijn graphs,
and will work for any graph satisfying this property. In other words, Proposition 4.3 holds for any
graph for which Fact 4.5 holds.

4.1.3 Detailed proof

We turn to present the full proof of Proposition 4.3. We use the following version of the expander-
replacement technique of [PY91].

Lemma 4.9 ([Din07, Lemma 3.2]). There exist universal constants c, d ∈ N and a polynomial time

procedure that when given as input a constraint graph G of size n outputs a constraint graph G′ of
size 2 · d · n over alphabet Σ such that the following holds:

• G′ has 2 · n vertices and is d-regular.

• If G is satis�able then so is G′.

• If UNSAT (G) ≥ ρ then UNSAT (G′) ≥ ρ/c.

We turn to proving Proposition 4.3. When given as input a constraint graph G, a �nite alphabet
Λ and a natural number m such that |Λm| ≥ 2 · n, the procedure of Proposition 4.3 acts as follows.
Let l = 2 ·m. The procedure begins by invoking Lemma 4.9 on G, resulting in a d-regular constraint
graph G1 over 2 · n vertices. Then, the vertices of G1 are identi�ed with a subset of the vertices of
the �rst layer of DB = DBΛ,m (note that this is possible since |Λm| ≥ 2 · n).

Next, the procedure partitions the edges of G1 to d disjoint matchings, and extends those match-
ings to permutations µ1, . . . , µd on the vertices of DB in the following way: Given a vertex v of DB,
if v is identi�ed with a vertex of G1 then µi maps v to its unique neighbor via the i-th matchning,
and otherwise µi maps v to v. The procedure then applies Fact 4.5 to each permutation µi resulting
in a set of paths Pi of length l. Let P =

⋃
Pi.

Finally, the procedure constructs G′ by associating the edges of DB′ with constraints in the

following way. We set the alphabet of G′ to be Σl·d, viewed as
(
Σl
)d
. If σ ∈

(
Σl
)d
, and we denote

σ = (σ1, . . . , σd), then we denote by σi,j the element (σi)j ∈ Σ. To de�ne the constraints, let
us consider their action on an assignment π′ of G′. An edge (u, v) of DB′ is associated with the
constraint that accepts unless one of the following conditions holds:

1. There exists i ∈ [d] such that the values
(
π′ (µi(u))i,l , π

′ (µi(u))i,1
)
do not satisfy the edge

(u, µi(u)) of G.

2. It either does not hold that π′ (u)1,1 = . . . = π′ (u)d,1 or that π′ (v)1,1 = . . . = π′ (v)d,1.

3. There exists i ∈ [d] and j ∈ [l] such that u and v are the j-th and (j + 1)-th vertices of a path
in p ∈ Pi respectively, but π′ (u)i,j 6= π′ (v)i,i+1.

4. Same as Condition 3, but when v is the j-th vertex of p and u is its (j + 1)-th vertex.

The size of G′ is indeed |Λ|t+1: The graph is |Λ|-regular and contains |Λ|t vertices.. Furthermore, if
G is satis�able, then so is G′: The satis�ability of G implies the satis�ability of G1, so there exists
a satisfying assignment π1 for G1. We construct a satisfying assignment π′ from π1 by assigning
each vertex v of G′ a value π′ (v), such that for each i ∈ [d], if v is the j-th vertex of a path p ∈ Pi
that connects the vertices u and µi(u), then we set π′ (v)i,j = π(u). Note that this is well de�ned,
since every vertex is the j-th vertex of exactly one path in Pi.
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It remains to analyze the soundness of G′. Suppose that UNSAT (G) ≥ ρ. Then, by Lemma 4.9
it holds that UNSAT (G1) ≥ ρ/c. Let π′ be an assignment to G′ that minimizes the fraction of
violated edges of G′. Without loss of generality, we may assume that for every vertex v of the DB
it holds that π′ (v)1,1 = . . . = π′ (v)d,1: If there is a vertex v that does not match this condition, all
of the edges attached to v are violated and therefore we can modify the value assigned to v by π′ to
match this condition without increasing the fraction of violated edges of π′. De�ne an assignment
π1 to G1 by setting π1(v) = π′ (v)1,1 (when v is viewed as a vertex of DB).

Since UNSAT (G1) ≥ ρ/c, it holds that π1 violates at least ρ/c fraction of the edges of G1, or
in other words π1 violates at least ρ · 2 · n · d/c edges of G1. Thus, there must exist a permutation
µi such that π1 violates at least ρ · 2 · n/c edges of G1 of the form (u, µi(u)). Fix such an edge
(u, µi(u)) and consider the corresponding path p ∈ Pi. Observe that π′ must violate at least one
of the edges of p: To see it, note that if π′ would satisfy all the edges on p, then it would imply
that π′ (µi(u))i,l = π1(u) and that π′ (µi(u))i,1 = π1(µi(u)), but the last two values violate the edge
(u, µi(u)) of G1, and therefore π′ must violate the last edge of p - contradiction. It follows that for
each of the ρ · 2 · n/c edges of µi that are violated by π1 it holds that π′ violates at least one edge
of their corresponding path, and thus by averaging there must exist j ∈ [l] such that for at least
ρ · 2 · n/c · l edges of µi it holds that π′ violates the j-th edge of their corresponding path.

Now, by the de�nition of the paths in Pi, no edge of G′ can be the j-th edge of two distinct
paths in Pi, and therefore it follows that there at least ρ · 2 · n/c · l edges of G′ are violated by π′.
Finally, there are |Λ|m+1 edges in G′, and this implies that π′ violates a fraction of the edges of G′

that is at least
ρ · 2 · n/c · l
|Λ|m+1 = Ω

(
n

|Λ|m+1 · l
· ρ
)

as required.

4.2 De Bruijn graphs have linear structure

In this section we prove Proposition 4.4.

Proposition 4.10 (4.4, restated). Let F be a �nite �eld of size q and let t be a natural number.

Then, the augmented de Bruijn graph DB′F,m has linear structure.

Let m = t+1. We begin by identifying the vertices of DB′ = DB′F,m with the vectors of a vector
space Fm as follows. Let γ denote the generator of the multiplicative group of F, and note that this
group is of size q − 1. Recall that the vertices in each layer of DB′ are identi�ed with Ft. Now, for
each i ∈ [q − 1], we identify the vertices of the (non-dummy) i-th layer with vectors of Fm using the
mapping (α1, . . . , αt) ∈ Ft →

(
γi, α1, . . . , αt

)
∈ Fm. We identify the vertices of the dummy layer

with vectors of Fm using the mapping (α1, . . . , αt) ∈ Ft → (0, α1, . . . , αt) ∈ Fm.
Next, let E denote the edges of DB′ and view E as a subset of F2m as in De�nition 3.1. Observe

that E is indeed a linear subspace of F2m. To see it, note that a vector v ∈ F2m is in E if and only if v
is either of the form

(
γi, α1, . . . , αt, γ

i+1, α2, . . . , αt, β
)
or of the form

(
0, α1, . . . , α

t, 0, α2, . . . , αt, β
)
.

In other words, v is in E if and only if (i) vm+1 = γ · v1, and (ii) for each i = 1, . . . , t− 1, it holds
that v1+i = v(m+1)+(i−1). Since those are linear conditions, it follows that the edges form a linear
subspace. It is easy to see that left (E) = right (E) = Fm, and this concludes the proof.

Remark 4.11. The only reason for including the dummy layer in the graph DB′ is in order to be
able to identify the vectors of the form (0, α1, . . . , αt) ∈ Fm with vertices of DB′.

Remark 4.12. Note that the assumption that q − 1 equals the number of layers l is not essential
to the foregoing construction, and we could in fact work with any �eld size. To see it, observe that
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we only used this assumption in order to have an element γ ∈ F whose order equals l, so we can
use powers of γ to represent the index of a layer. However, if q was smaller than l, we could have
taken some square matrix over F whose order equals l, and use powers of A to represent the index
of a layer.

5 Derandomized Parallel Repetition of Constraint Graphs with Lin-

ear Structure

In this section we prove Lemma 3.3, restated below, by implementing a form of derandomized
parallel repetition on graphs that have linear structure.

Lemma 5.1 (3.3, restated). There exist a universal constant h and a polynomial time procedure

that satisfy the following requirements:

• Input:

� A �nite �eld F of size q

� A constraint graph G = (Fm, E) over alphabet Σ that has a linear structure.

� A parameter d0 ∈ N such that d0 < m/h2.

� A parameter ρ ∈ (0, 1) such that ρ ≥ h · d0 · q−d0/h.

• Output: A constraint graph G′ such that the following holds:

� G′ has size nO(d0).

� G′ has alphabet ΣqO(d0)
.

� If G is satis�able then G′ is satis�able.

� If SAT (G) < 1− ρ then SAT (G′) < h · d0 · q−d0/h.
� G′ has the projection property

We begin by describing the construction of G′. Let G = (Fm, E) be the given constraint graph,
let d0 be the parameter from Lemma 3.3, and let d1 = O(d0) be chosen later. The graph G′ is
bipartite. The right vertices of G′ are identi�ed with all the 2d0-subspaces of Fm (the vertex-space
of G). The left vertices of G′ are identi�ed with all the 2d1-subspaces of the edge space E of G. If
a satisfying assignment π for G exists, then one can extend it to a satisfying assignment Π for G′ as
follows: Π labels each 2d0-subspace A with π|A, and each 2d1-subspace E0 of edges with the values
assigned by π to the endpoints of all the edges in F .

The edges of G′ are constructed such that they simulate the action of the �E-test� described in
Figure 2.

The rest of this section is organized as follows. In Section 5.1 we introduce a specialized direct
product test that we use in order to analyze the E-test. Then, in Section 5.2 we analyze the
completeness, size, and alphabet of G′. Finally, in Section 5.3, we analyze the soundness of G′.
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1. Let FL and FR to be random d1-subspaces of E, and let

BL
def= left (FL) , BR

def= right (FR) , F
def= FL + FR.

FL and FR are chosen to be uniformly and independently distributed d1-subspaces of
E conditioned on dim(F ) = 2d1, dim (BL) = d1, dim (BR) = d1, and BL ∩BR = {0}.

2. Let AL and AR be uniformly distributed d0-subspaces of BL and BR respectively, and
let

A
def= AL +AR.

3. Accept if and only if Π (F )|(AL,AR) = Π (A)|(AL,AR) and the assignment Π (F ) satis�es
the edges in F .

Figure 2: The E-test

1. Choose two uniformly distributed and disjoint d1-subspaces B1, B2 of Fm.

2. Choose two uniformly distributed d0-subspaces A1 ⊆ B1, A2 ⊆ B2.

3. Accept if and only if Π (B1, B2)|(A1,A2) = Π (A1 +A2)|(A1,A2).

Figure 3: The S-test

5.1 The specialized direct product test

In order to analyze the E-test, we introduce a variant of the direct product test of [IKW09] that is
specialized to our needs. We refer to this variant as the specialized direct product test, abbreviated
the �S-test�.

We begin with some notation: Given two functions f : U → Σ, g : V → Σ and two subsets
S ⊆ U , T ⊆ V we denote by (f, g)|(S,T ) the pair

(
f|S , g|T

)
, and abbreviate f|(S,T ) = (f, f)|(S,T ).

Given two pairs of functions f1, f2 : U → Σ and g1, g2 : V → Σ, we denote by (f1, g1)
α
≈ (f2, g2) the

fact that both f1
α
≈ f2 and g1

α
≈ g2, and otherwise we denote (f1, g1)

α
6≈ (f2, g2).

Now, given an string π : Fm → Σ, we de�ne its S-direct product Π (with respect to d0, d1 ∈ N)
as follows: Π assigns each 2d0-subspace A ⊆ Fm the function π|A, and assigns each pair of disjoint
d1-subspaces (B1, B2) the pair of functions (π|B1

, π|B2
).

We turn to consider the task of testing whether a given assignment Π is the S-direct product
of some string π : Fm → Σ. In our settings, we are given an assignment Π that assigns each 2d0-
subspace A to a function a : A → Σ and each pair of disjoint d1-subspaces (B1, B2) to a pair of
functions b1 : B1 → Σ, b2 : B2 → Σ. We wish to check whether Π is a S-direct product of some
π : Fm → Σ, and to this end we invoke the S-test, described in Figure 3.

It is easy to see that if Π is a S-direct product then the S-test always accepts. Furthermore,
it can be shown that if Π is �far� from being a S-direct product, then the S-test rejects with high
probability. As in the P-test, this holds even if Π is a randomized assignment. Formally, we have
the following result.

Theorem 5.2. There exist universal constant h′, c ∈ N such that the following holds: Let ε ≥
h′ · d0 · q−d0/h

′
, α

def= h′ · d0 · q−d0/h
′
. For every d0 ∈ N, d1 ≥ h′ · d0, and m ≥ h′ · d1, suppose

that a (possibly randomized) assignment Π passes the S-test with probability at least ε. Then there
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exists an assignment π : Fm → Σ for which the following holds. Let B1, B2 be uniformly distributed

and disjoint d1-subspaces of Fm, let A1 and A2 be uniformly distributed d0-subspaces of B1 and B2

respectively, and denote A = A1 +A2. Then:

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2) and Π (B1, B2)

α
≈ π|(B1,B2)

]
= Ω (εc)

We defer the proof of Theorem 5.2 to Section 6.

5.2 The completeness, size, and alphabet of G′

Completeness is immediate: if G is satis�able then so is G′.
Let us verify the size and alphabet-size of G′. We choose d1 = h · d0, where h is the universal

constant from Lemma 3.3 to be chosen later. The size of G′ is at most the number of 2d1-subspaces
of E multiplied by the number of 2d0-subspaces of Fm, which is |E|2d1 ·|Fm|2d0 . It holds that d0 < d1,
and furthemore the linear structure of G′ implies that dimE ≥ m (by Item 3 of De�nition 3.1), so
it follows that |Fm|2d0 ≤ |E|2d1 and thus |E|2d1 · |Fm|2d0 ≤ |E|4d1 . Finally, observe that the size of
G is n = |E|, so it follows that the size of G′ is at most n4d1 = nO(d0), as required.

It su�ces to set the alphabet of G′ to Σ2·q2·d1 , since each 2d1-subspace F ⊆ E contains q2d1

edges and each has two endpoints. Furthermore, the labels assigned by Π to 2d0-subspaces A of Fm
do not require a larger alphabet. The alphabet of G′ is therefore Σ2·q2·d1 = ΣqO(d0)

, as required.

5.3 The soundness of the derandomized parallel repetition

In this section we prove the soundness of G′: namely, that if SAT (G) < 1−ρ, then SAT(G′) ≤ ε def=
h ·d0 · q−d0/h, where h is the universal constant from Lemma 3.3. We will choose h to be su�ciently
large such that the various inequalities in the following proof will hold. To this end, we note that
throughout all the following proof, increasing the choice of h does not break any of our assumptions
on h, so we can always choose a larger h to satisfy the required inequalities.

Let h′ and c be the universal constants whose existence is guaranteed by Theorem 5.2, and let
α denote the corresponding value from Theorem 5.2. We will choose the constant h to be at least
h′.

Let Π be an assignment to G′ that maximizes the acceptance probability of the E-test. Without
loss of generality, we may assume that for every d1-subspace F ⊆ E it holds that the assignment
Π (F ) satis�es the edges in F , since we can always modify Π to an assignment that satis�es this
property and has at least the same acceptance probability.

Notation 5.3. Let us denote by T the event in which the E-test accepts Π. By our assumption
on Π, the event T is equivalent to the event Π (F )|(AL,AR) = Π (A)|(AL,AR). With a slight abuse of

notation, for a subspace F ⊆ E and an assignment π : Fm → Σ, we denote by Π (F )
α
≈ π the claim

that for at least 1− α fraction of the edges e of F it holds that Π (F ) is consistent with π on both

the endpoints of e, and otherwise we denote Π (F )
α
6≈ π.

Our proof is based on two steps:

• We will show (in Proposition 5.4 below) that if the test accepts with probability ε, then it
is �because� Π is consistent with some underlying assignment π : Fm → Σ. This is done
essentially by observing that the E-test �contains� an S-test, and reducing to the analysis of
the S-test.
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• On the other hand, we will show (in Proposition 5.5 below) that for every assignment π :
Fm → Σ the probability that the test accepts while being consistent with π is negligible. This is
showed roughly as follows: Any �xed assignment π is rejected by at least ρ fraction ofG's edges.
Furthermore, the subspace F queried by the test is approximately a uniformly distributed
subspace of E, and hence a good sampler of E. It follows F must contain ≈ ρ fraction of
edges of G that reject π, and therefore Π (F ) must be inconsistent with π.

We have reached a contradiction and therefore conclude that the E-test accepts with probability
less than ε. We now state two said propositions.

Proposition 5.4. There exists ε0 = Ω (εc) such that the following holds: If Pr [T ] ≥ ε, then there

exists an assignment π : Fm → Σ such that Pr
[
T and Π (F )

4·α
≈ π

]
≥ ε0.

Proposition 5.5. Let ε be as in Lemma 5.4. Then, for every assignment π : Fm → Σ it holds that

Pr
[
T and Π (F )

4·α
≈ π

]
< ε0.

Clearly the two propositions together imply that Pr[T ] ≤ ε, as required.
Before turning to the proofs of Propositionss 5.4 and 5.5 let us state a useful claim that says

that if we take a random d-subspace of edges and project it to its left endpoints (respectively, right
endpoints), we get a random d-subspace of vertices with high probability.

Claim 5.6. Let d ∈ N and let Ea be a uniformly distributed d-subspace of E. Then, Pr [dim (left (Ea)) = d] ≥
1− d/qm−d, and conditioned on dim (left (Ea)) = d, it holds that left (Ea) is a uniformly distributed

d-subspace of Fm. The same holds for right (Ea).
More generally, let Eb be a �xed subspace of E such that dim (Eb) > d and dim (left (Eb)) >

d. Let Ea be a uniformly distributed d-subspace of Eb. Then, Pr [dim (left (Ea)) = d] ≥ 1 −
d/qdim(left(Eb))−d, and conditioned on dim (left (Ea)) = d, it holds that left (Ea) is a uniformly dis-

tributed d-subspace of left (Eb). Again, the same holds for right (Ea).

We defer the proof of to Appendix C

5.3.1 Proof of Proposition 5.4

Suppose that Pr [T ] ≥ ε. We prove Proposition 5.4 by arguing that the E-test contains an �implicit
S-test� and applying Theorem 5.2.

The implicit S-test We extend Π to pairs of disjoint d1-subspaces of Fm in a randomized manner
as follows: Given a pair of disjoint d1-subspaces B1 and B2, we choose F1 and F2 to be uniformly
distributed and disjoint d1-subspaces of E such that left (F1) = B1 and right (F2) = B2, and set
Π (B1, B2) = Π (F1 + F2)|(B1,B2). Now, observe that

Pr [T ] = Pr
[
Π (B1, B2)|(A1,A2) = Π (A1 +A2)|(A1,A2)

]
for uniformly distributed and disjoint d1-subspacesB1 andB2 and unifromly distributed d0-subspaces
A1 and A2 of B1 and B2 respectively. The reason is that the subspaces BL and BR of the E-test are
distributed like a pair of disjoint uniformly distributed d1-subspaces of Fm, and that conditioned
on a speci�c choice of BL and BR, the subspaces FL and FR are distributed like disjoint uniformly
distributed d1-subspaces of E for which left (FL) = BL and right (FR) = BR. It thus follows the
E-test performs in a way an S-test on the extended assignment Π.
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Next, we note that by choosing h to be su�ciently large, the foregoing �implicit S-test� matches
the requirements of Theorem 5.2, and we can thus apply this theorem. It follows that there exists
an assignment π : Fm → Σ such that

Pr
[
Π (BL, BR)(AL,AR) = Π (A)|(AL,AR) and Π (BL, BR)

α
≈ π(BL,BR)

]
≥ Ω (εc)

or in other words
Pr
[
T and Π (F )|(BL,BR)

α
≈ π|(BL,BR)

]
≥ Ω (εc) (4)

We turn to show that

Pr
[
T and Π (F )

4α
≈ π

]
≥ Ω (εc) .

We will prove that if F is such that Π (F )
4α
6≈ π, then for a random choice of BL, BR conditioned on

F , it is highly unlikely that Inequality 4 still holds. Formally, we will prove the following.

Claim 5.7. For every �xed 2d0-subspace F0 of E such that Π (F0)
4α
6≈ πi, it holds that

Pr
[

Π (F )|(BL,BR)

α
≈ π|(BL,BR)

∣∣∣F = F0

]
≤ 1/

(
qd1−2 · α2

)
We defer the proof of Claim 5.7 to the end of this section. Claim 5.7 immediately implies the

following.

Corollary 5.8. It holds that

Pr
[

Π (F )|(BL,BR)

α
≈ π|(BL,BR)

∣∣∣Π (F )
4α
6≈ π

]
≤ 1/

(
qd1−2 · (α/2)2

)
By combining Corollary 5.8 with Inequality 4, and by choosing h to be su�ciently large, it

follows that

Pr
[
T and Π (F )|(BL,BR)

α
≈ π|(BL,BR) and Π (F )

4α
≈ π

]
≥ Ω (εc) ,

This implies that

Pr
[
T and Π (F )

4α
≈ π

]
≥ Ω (εc)

Setting ε0 to be the latter lower bound �nishes the proof.

Proof of Claim 5.7 Observe that the assumption Π (F0)
4α
6≈ π implies that one of the following

holds

Π (F0)|left(F0)

2α
6≈ π|left(F0)

Π (F0)|right(F0)

2α
6≈ π|right(F0)

Without loss of generality, assume that the �rst holds. Now, when conditioning on F = F0, it
holds that FL is a uniformly distributed d1-subspace of F0 satisfying dim (left (FL)) = d1. By
Claim 5.6 (with Eb = F0 and Ea = FL), under the conditioning on dim (left (FL)) = d1, it holds

that BL
def= left (FL) is a uniformly distributed d1-subspace of left (F0). Therefore, by Lemma 2.3,

the event Π (F )|BL
α
6≈ π|BL occurs with probability at least

1− 1/
(
qd1−2 ·

(
α− q−d1

)2
)
≥ 1− 1/

(
qd1−2 · (α/2)2

)
as required. �
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5.3.2 Proof of Proposition 5.5

Fix an assignment π : Fm → Σ. By assumption it holds that SAT (G) < 1−ρ, and therefore π must
violate a set E∗ of edges of G of density at least ρ. Below we will show that at least ρ/2 fraction
of the edges in F are in E∗ with probability greater than 1 − ε0. Now, observe that Π (F ) cannot
be consistent with π on the edges in E∗, and hence whenever the latter event occurs it holds that

Π (F )
ρ/2

6≈ π. However, for su�ciently large choice of h, it holds that ρ/2 > 4 · α and therefore the

probability that Π (F )
4·α
≈ π is less than ε0, as required.

It remains to show that

Pr
[
|F ∩ E∗|
|F |

≥ ρ/2
]
> 1− ε0

We prove the above inequality by showing that F is close to being a uniformly distribured 2d1-
subspace of E, and then applying Lemma 2.3. To this end, let F ′L and F ′R be uniformly distributed
d1-subspaces of F , and let F

′ = F ′L+F ′R. Let us denote by E1 the event in which dim (F ′) = 2d1, and
by E2 the event in which left (F ′L) and right (F ′R) are disjoint and are of dimension d1. Observe that
conditioned on E1 and E2 the subspace F ′ is distributed exactly like the subspace F . It therefore
holds that

Pr
[
|F ∩ E∗|
|F |

≥ ρ/2
]

= Pr
[
|F ′ ∩ E∗|
|F ′|

≥ ρ/2
∣∣∣∣ E1 and E2

]
≥ Pr

[
|F ′ ∩ E∗|
|F ′|

≥ ρ/2 and E2

∣∣∣∣ E1

]
≥ Pr

[
|F ′ ∩ E∗|
|F ′|

≥ ρ/2
∣∣∣∣ E1

]
− Pr [¬E2|E1]

≥ Pr
[
|F ′ ∩ E∗|
|F ′|

≥ ρ/2
∣∣∣∣ E1

]
− Pr [¬E2]

Pr [E1]

Now, observe that conditioned on E1, the subspace F
′ is a uniformly distributed 2d1-subspace of E.

Thus, by Lemma 2.3 it holds that

Pr
[
|F ′ ∩ E∗|
|F ′|

≥ ρ/2
∣∣∣∣ E1

]
≥ 1− 1/q2d1−2 ·

(
ρ/2− q−2d1

)2
≥ 1− 1/q2d1−2 · (ρ/3)2

Moreover, by Proposition 2.13 it holds that

Pr [E1] ≥ 1− 2d1/q
dimE−2d1

≥ 1− 2d1/q
m−2d1

≥ 1
2

Finally, we upper bound Pr [E2]. By Claim 5.6 (with Eb = E and Ea = F ′L, F
′
R) it holds that

dim (left (F ′L)) = dim (right (F ′R)) = d1 with probability at least 1 − 2 · d1/q
m−d1 . Furthermore,

conditioned on the latter event, it holds that left (F ′L) and right (F ′R) are uniformly distributed d1-
subspaces of Fm, and it is also easy to see that those subspaces are independent. By Proposition 2.13,
this implies that conditioned on dim (left (F ′L)) = dim (right (F ′R)) = d1 the subspaces left (F ′L) and
right (F ′R) are disjoint with probability at least 1−2d1/q

m−2·d1 , and hence Pr [E2] ≥ 1−4d1/q
m−2·d1

as required.
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1. Choose two uniformly distributed d1-subspaces B1, B2 of Fm.

2. Choose two uniformly distributed d0-subspaces A1 ⊆ B1, A2 ⊆ B2.

3. Accept if and only if Π (B1, B2)|(A1,A2) = Π (A1, A2).

Figure 4: The P 2-test

We conclude that that

Pr
[
|F ∩ E∗|
|F |

≥ ρ/2
]
≥ Pr

[
|F ′ ∩ E∗|
|F ′|

≥ ρ/2
∣∣∣∣ E1

]
− Pr [¬E2]

Pr [E1]

≥ 1− 1/q2·d1−2 · (ρ/3)2 − 4 · d1/q
m−2·d1

1/2

= 1− 1/q2·d1−2 · (ρ/3)2 − 8 · d1/q
m−2·d1

> 1− ε0

where the last inequality holds for su�ciently large choice of h. This concludes the proof.

6 The Analysis of the Specialized Direct Product Test

In this section we provide the analysis of the S-test and prove Theorem 5.2. The proof proceeds in
two steps. First, in Section 6.1, we de�ne and analyze an intermediate direct product test, which
we call the P 2-test. Then, in Section 6.2, we reduce the analysis of the S-test to the P 2-test.

In the rest of this section, we let F be a �nite �eld of size q and let d0, d1 ∈ N.

6.1 The P 2-test

In this section we de�ne and analyze the P 2-test. Infornally, the P 2-test consists of two P-tests
that are performed simultaneously. Details follow.

Given two strings π1, π2 : Fm → Σ, we de�ne their P 2-direct product Π (with respect to d0, d1 ∈
N) as follows: Π assigns each pair of d0-subspaces (A1, A2) the pair of functions (π1|A1

, π2|A2
),

and assigns each pair of d1-subspaces (B1, B2) to the pair of functions (π1|B1
, π2|B2

). We consider
the task of testing whether a given assignment Π is the P 2-direct product of some pair of strings
π1, π2 : Fm → Σ. That is, we are given an assignment Π , and in order to check whether Π is a
P 2-direct product, we invoke the P 2-test, described in Figure 4.

It is easy to see that if Π is a P 2-direct product then the P 2-test always accepts. Again, it
can be shown that if Π is �far� from being a P 2-direct product, then the P 2-test rejects with high
probability, and that this holds even if Π is a randomized assignment. Formally, we have the
following result.

Theorem 6.1. There exist universal constants h, c ∈ N such that the following holds: Let ε ≥
h · d0 · q−d0/h, α

def= h · d0 · q−d0/h. Assume that d1 ≥ h · d0, m ≥ h · d1. Suppose that an assignment

Π passes the P 2-test with probability at least ε. Then, there exist two assignments π1 and π2 to Fm
such that for uniformly distributed B1, B2, A1, A2 as in the P 2-test it holds that

Pr
[
Π (B1, B2)|(A1,A2) = Π (A1, A2) and Π (A1, A2)

α
≈
(
π1|A1

, π2|A2

)
and Π (B1, B2)

α
≈
(
π1|B1

, π2|B2

)]
is at least Ω (εc).
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In the rest of this section we prove Theorem 6.1. We denote by P the event in which the P 2-test
accepts, that is, that Π (B1, B2)|(A1,A2) = Π (A1, A2). The core of the proof is the following lemma:

Lemma 6.2. There exist universal constants h′, c′ ∈ N such that the following holds: Let ε ≥
h′ · d0 · q−d0/h

′
, α′

def= h′ · d0 · q−d0/h
′
. Assume that d1 ≥ h′ · d0, m ≥ h′ · d1. If Π passes the P 2-test

with probability at least ε then there exists an assignment π2 : Fm → Σ such that

Pr
[
P and Π (A1, A2)|A2

α′

≈ π2|A2
and (B1, B2)|B2

α′

≈ π2|B2

]
≥ Ω(εc

′
)

and symmetrically, there exists a function π1 : Fm → Σ such that

Pr
[
P and Π (A1, A2)|A1

α′

≈ π1|A1
and (B1, B2)|B1

α′

≈ π1|B1

]
≥ Ω(εc

′
)

We prove Lemma 6.2 in Section 6.1.1. We turn to derive Theorem 6.1 from Lemma 6.2.

Proof of Theorem 6.1 We will choose h to be larger than the constant h′ of Lemma 6.2, so we
can apply this lemma. Let π2 : Fm → Σ be the assignment guaranteed by Lemma 6.2, and let Π′

be an assignment that is obtained from Π as follows:

1. For every pair (A1, A2) for which Π (A1, A2)|A2

α′

≈ π2|A2
, set Π′ (A1, A2) = Π (A1, A2).

2. For every other pair (A1, A2), set Π′ (A1, A2) = ⊥, where ⊥ is some special value on which
the test never accepts.

3. Set the pairs (B1, B2) similarly.

The probability ε′ that the assignment Π′ passes the P 2-test is at least Ω(εc
′
) by the de�nition of

π2. By choosing h to be su�ciently larger than the corresponding constants of Lemma 6.2, we can
make sure that ε′ satis�es the requirements of Lemma 6.2. Therefore, we can deduce by Lemma 6.2
that there exists an assignment π1 : Fm → Σ such that

Pr
[
P and Π′ (A1, A2)|A1

α′

≈ π1|A1
and Π′ (B1, B2)|B1

α′

≈ π1|B1

]
≥ Ω(

(
ε′
)c′) = Ω(ε(c′)2).

We now choose c = (c′)2. Since the test never accepts when Π′ answers ⊥, we deduce that

Pr
[
P and Π(A1, A2)

α′

≈
(
π1|A1

, π2|A2

)
and Π (B1, B2)

α′

≈
(
π1|B1

, π2|B2

)]
≥ Ω(εc)

Choosing h such that α ≥ α′ completes the proof. �

Remark 6.3. If Π is randomized, then the de�nition of Π′ in the foregoing proof should be slightly
changed to consider the internal randomness of Π. That is, we de�ne Π′ to be a randomized
assignment, and obtain it from Π as follows. For every pair (A1, A2) and every internal randomness
ω of Π, let us denote by (a1, a2) the output of Π on (A1, A2) and randomness ω. We de�ne the

output of Π′ on (A1, A2) and randomness ω to be (a1, a2) if a2
α′

≈ π2|A2
, and de�ne it to be ⊥

otherwise. The de�nition for pairs (B1, B2) is again similar.
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6.1.1 The proof of Lemma 6.2

We prove Lemma 6.2 only for the assignment π2, and the conclusion π1 can be proved analogously.
The proof proceeds in three steps. First, we rely on Theorem 2.1 to �nd for each pair of A1, B1

a direct product function that agrees (on average) with a good fraction of Π(A1, ·) and Π(B1, ·).
Then, we show that for each A1 separately, the number of distinct such functions is bounded.
Next, we show that there is a single function π such that the probability that the test accepts and
Π (A1, A2)|A2

≈ π|A2
is non-negligible (Apriory there could have been a di�erent π for each A1).

Finally, we extend the latter result for d1-subspaces B1, B2. Let h1 be the universal constant whose
existence is guaranteed in Theorem 2.1, and let α1 be the corresponding value from Theorem 2.1.

Step 1. Consider the bipartite graph corresponding to the P -test, that is, the graph whose left
vertices are d0-subspaces and whose right vertices are d1-subspaces, and such that a d0-subspace A1

is connected to a d1-subspace B1 by an edge if and only if A1 ⊆ B1. . We label an edge (A1, B1)
by π : Fm → Σ if

Pr
A2,B2

[
P and Π (B1, B2)|B2

α1≈ π|B2
and Π (A1, A2)|A2

α1≈ π|A2

]
≥ Ω

(
ε4
)

If no such π exists then do not label the edge.
Fix A1, B1. We will choose the universal constant h′ to be at least 2 · h1. If the probability of

passing the P 2-test conditioned on A1, B1 is at least ε/2, then we claim that the edge is labeled.
Indeed, de�ne an assignment Π(A1,B1) by

Π(A1,B1)(A2) = Π (A1, A2)|A2
and Π(A1,B1)(B2) = Π (B1, B2)|B2

If Π(A1,B1) passes the P -test with probability at least ε/2, then by Theorem 2.1 there is an assign-
ment π as needed (since h′ ≥ 2 · h1).

Furthermore, observe that by averaging at least ε/2 of the edges (A1, B1) have conditional
success at least ε/2, so (A1, B1) is labeled.

Step 2. Fix B1 and let L(B1) be the labels on edges touching B1. Consider the following �pruning�
process: arbitrarily choose a label π ∈ L(B1) and remove all elements in L(B1) that are within
relative Hamming distance 3α1 of π. Repeat until no more labels can be removed. Let L′(B1)
denote the remaining set of labels. The set L′(B1) has the following properties

• Every pair of labels in L′(B1) are at least 3α1 apart, and

• Every f ∈ L(B1) is 3α1-close to some label in L′(B1).

We prove that |L′(B1)| ≤ O(1/ε4), using an argument in the spirit of the Johnson bound: Suppose
L′(B1) = {π1, π2, . . .} is non-empty. For every πi 6= πj ∈ L′(B) let us denote

pi
def= Pr

B2

[
Π (B1, B2)|B2

α1≈ πi|B2

]
pi,j = Pr

B2

[
Π (B1, B2)|B2

α1≈ πi|B2
and Π (B1, B2)|B2

α1≈ πj|B2

]
By the de�nition of the labels πi, we know that for some universal constant η it holds that pi ≥ η ·ε4

for every πi. We upper bound the fractions pi,j : We know that for every πi 6= πj it holds that
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πi
3·α1

6≈ πj . It follows that

pi,j ≤ Pr
B2

[
πi|B2

2·α1≈ πj|B2

]
≤ 1/

(
qd1−2 ·

(
α1 − q−d1

)2
)

≤ 1
2
· η2 · ε8

where the second inequality follows by Lemma 2.3 and the third inequality holds for su�ciently
large choice of h′. Now, by the inclusion-exclusion principle that∑

i

pi −
∑
i 6=j

pi,j ≤ 1

∣∣L′(B1)
∣∣ · (η · ε4

)
− 1

2

∣∣L′(B1)
∣∣2 · (1

2
· η2 · ε8

)
≤ 1

The last inequality immediately implies that |L′(B1)| ≤ 2/
(
η · ε4

)
= O(1/ε4).

We de�ne L(A1) similarly, and prune it to L′(A1). Imagine now choosing a random πA1 ∈ L′(A)
for each A1 and a random πB1 ∈ L′(B1) for each B1. An edge (A1, B1) is called alive if it is labeled
by a function π that is 3α′-close to both πA1 and πB1 . We expect at least 1/ |L′(A)| |L′(B)| = Ω(ε8)
fraction of edges to be alive. Fix a choice of πA1 and πB1 for each A1 and B1 in a way that attains
this expectation.

Step 3. Let D1 be the distribution of choosing a random d1-subspace B1 and two neighbors A1, A
′
1

of it in the graph. Let D2 be the distribution of choosing two d0-spaces A1, A
′
1 independently and

a random B1 that is a common neighbor of them in the graph. The statistical distance between D1

and D2 is small:

Claim 6.4. For every κ ∈ N, if the constant h′ is su�ciently large then the distributions D1 and

D2 are δ-close for δ < ε24/κ.

We defer the proof of this claim to Section 6.1.2. Now choose a random triplet A1, A
′
1, B1

according to D1. We lower bound the probability that both edges (A1, B1) and (A′1, B1) are alive.
This certainly holds if (i) Ω(ε8) fraction of the edges adjacent to B are alive, and (ii) both both
edges (A1, B1) and (A′1, B1) are alive. Part (i) holds with probability Ω(ε8) and conditioned on this,
Part (ii) holds with probability at least Ω(ε16). Altogether

Pr
(B1,A1,A′1)∼D1

[
(A1, B1), (A′1, B1) are both alive

]
= Ω(ε24).

Finally, if we let δ be the statistical distance of D1 and D2, and apply Claim 6.4 with su�ciently
large choices of κ and h′, then we have that

Pr
(B1,A1,A′1)∼D2

[
(A1, B1), (A′1, B1) are both alive

]
≥ Ω(ε24)− δ = Ω(ε24).

Now �x A1 such that the above holds when conditioning on A1. This means that for at least Ω(ε24)
fraction of the d0-subspaces A

′
1 there exists a d1-subspace B1 such that both the edges (A1, B1) and

(A′1, B1) are alive. For each such A′1, it holds that the label of (A′1, B1) is 3α1-close to πB1 , which
in turn is 3α1-close to the label of the edge (A1, B1), which is 3α1-close to πA1 . Thus, the label of
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(A′1, B1) is is 9α1-close to πA1 . Let us denote by π(A′1,B1) the label of the edge (A′1, B1). Recall that
by the de�nition of π(A′1,B1) it holds that

Pr
A2,B2

[
P and Π

(
A′1, A2

)
|A2

α1≈ π(A′1,B1)|A2

]
≥ Ω

(
ε4
)

(5)

Since π(A′1,B1)
9·α1≈ πA it holds by Lemma 2.3 that for a uniformly distributed d0-subspace A2:

Pr
A2

[
π(A′1,B1)|A2

10·α1

6≈ πA1|A2

]
≤ 1

qd0−2 · (α1 − q−d0)2

The latter expression can be made smaller than any constant times ε4 by choosing h′ to be su�ciently
large. By substracting that expression from Inequality 5, we obtain that

Pr
A2,B2

[
P and Π

(
A′1, A2

)
|A2

α1≈ π(A′1,B1)|A2
and π(A′1,B1)|A2

10·α1≈ πA1|A2

]
≥ Ω

(
ε4
)

By letting π2 = πA1 and choosing c′ = 28, we have by the triangle inequality

Pr
A′1,A2

[
P and Π

(
A′1, A2

)
|A2

11·α1≈ π2|A2

]
≥ Ω(ε24) · Ω

(
ε4
)

= Ω(εc
′
) (6)

Step 4 It remains to show that the assignment Π agrees with both π1 and π2 on a non-negligible
fraction of the B's. To this end, we observe that

Pr
[
P and Π (A1, A2)|A2

11·α1≈ π2|A2

∣∣∣∣Π (B1, B2)|B2

12·α1

6≈ π2|B2

]
≤ 1
qd0−2 · (α1/2)2 (7)

To see it, note that it su�ces to prove that

Pr
[

Π (B1, B2)|A2

11·α1≈ π2|A2

∣∣∣∣Π (B1, B2)|B2

12·α1

6≈ π2|B2

]
≤ 1

qd0−2 · (α1 − q−d0)2 ≤
1

qd0−2 · (α1/2)2

The latter inequality is an immediate corollary of Lemma 2.3.
Now, by choosing h′ to be su�ciently large so that the upper bound in Inequality 7 is su�ciently

smaller than εc
′
, and by combining Inequality 6 with Inequality 7, we obtain that

Pr
[
P and Π (A1, A2)|A2

11·α1≈ π2|A2
and Π (B1, B2)|B2

12·α1≈ π2|B2

]
≥ Ω(εc

′
)

By setting h′ such that α′ ≥ 12 · α1 this concludes the proof of Lemma 6.2.

6.1.2 Proofs of Auxiliary Claim

Proof of Claim 6.4 Fix κ ∈ N. In order to prove the claim, consider the event J which holds if
and only if A and A′ are disjoint. We argue that

D1

δ/2
≈ D1|J = D2|J

δ/2
≈ D2.

The fact that D1|J = D2|J is exactly Proposition 2.4. We show that D1

δ/2
≈ D1|J and D2

δ/2
≈

D2|J . The statistical distance between D1 and D1|J (respectively, D2 and D2|J) is exactly the
probability that the event J does not occur under D1 (respectively D2). It follows immediately from
Proposition 2.13 that PrD1 [¬J ] ≤ 2 · d0/q

d1−2·d0 and PrD2 [¬J ] ≤ 2 · d0/q
m−2·d0 . Both the latter

expressions can indeed be made smaller than ε24/κ by choosing su�ciently large h′, as required. �
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6.2 The proof of Theorem 5.2

In the rest of this section we prove Theorem 5.2, restated below.

Theorem (5.2, restated). There exists a universal constants h, c ∈ N such that the following holds:

Let ε ≥ h·d0 ·q−d0/h, α
def= h·d0 ·q−d0/h. Assume that d1 ≥ h·d0, m ≥ h·d1. Suppose that a (possible

randomized) assignment Π passes the S-test with probability at least ε. There exists an assignment

π : Fm → Σ for which the following holds. Let B1, B2 be uniformly distributed and disjoint d1-

subspaces of Fm, let A1 and A2 be uniformly distributed d0-subspaces of B1 and B2 respectively, and

denote A = A1 +A2. Then:

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2) and Π (B1, B2)

α
≈ π|(B1,B2)

]
= Ω (εc)

Remark 6.5. Note that in the foregoing restatement of Theorem 5.2 we denote the �rst universal
constant by h, while in its original statement it was denoted by h′.

The intuition that undelies the proof is the following. Consider an adversary the chooses the
proof Π. Since the S-test essentially contains a P 2-test, the adversary must choose the assignment
Π such that for random d0-subspaces A1 and A2, the assignment Π (A1 +A2)|(A1,A2) is consistent
with two assignments π1, π2 on A1, A2 respectively. On the other hand, given the sum A1 + A2,
the adversary can not deduce the choices of A1 and A2, and therefore he must label both of A1 and
A2 with the same assignment in order to make the S-test accept. We conclude that π1 and π2 must
be essentially the same. Details follow.

In the rest of this section we prove Theorem 5.2. Let h′ be the universal constant whose existence
guaranteed in Theorem 6.1, and let α′ be the corresponding value from Theorem 6.1. We choose
c to be the same constant as in Theorem 6.1, and will choose the universal constant h to be at
least h′.

Fix an assignment Π that passes the S-test with probability at least ε. We de�ne a new as-
signment Π′ that assigns values to pairs of d0-subspaces and to pairs of d1-subspaces of Fm (not
necessarily disjoint) by choosing Π′ (B1, B2) (respectively Π′ (A1, A2)) to be equal to Π (B1, B2)
(respectively Π (A1 +A2)) if B1 and B2 (respectively A1 and A2) are disjoint, and choosing Π′ to
be arbitrary otherwise. Observe that the assignment Π′ passes the P 2-test whenever B1 and B2 are
disjoint and Π passes the S-test. Furthermore, the probability that two uniformly distributed d1-
subspaces B1 and B2 of Fm are not disjoint is at most d1/q

m−2·d1 by Proposition 2.13, and therefore
Π′ passes the P 2-test with probability at least ε − d1/q

m−2·d1 . For a su�ciently large choice of h,
the latter probability is at least Ω (ε), and also matches the requirements of Theorem 6.1, so we can
apply this theorem. It follows that there exist assignments π1, π2 : Fm → Σ such that for uniformly
distributed (not necessarily disjoint) B1, B2, A1 ⊆ B1, A2 ⊆ B2 it holds that

Pr[Π′ (B1, B2)|(A1,A2) = Π′ (A1, A2) (8)

and Π′ (A1, A2)
α′

≈
(
π1|A1

, π2|A2

)
and Π′ (B1, B2)

α′

≈
(
π1|B1

, π2|B2

)
]

= Ω (εc)

The probability that B1 and B2 are not disjoint is at most d1/q
m−2·d1 , and the latter expression

can be made smaller than any constant factor times εc by choosing h to be su�ciently large. Thus,
Inequality 8 also holds for uniformly distributed disjoint B1 and B2. We now argue that

Claim 6.6. For su�ciently large choice of h, it holds that π1
5·α′
≈ π2.
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We defer the proof of Claim 6.6 to the end of this section. We turn to prove the theorem. By
Inequality 8 it holds for uniformly distributed and disjoint d1-subspaces B1 and B2 of Fm that

Pr
[
Π′ (B1, B2)|(A1,A2) = Π′ (A1, A2) and Π (B1, B2)

α′

≈
(
π1|B1

, π2|B2

)]
≥ Ω (εc)

By Claim 6.6 it holds that π1
5·α′
≈ π2. Since B2 is a uniformly distributed d1-subspace of Fm, this

implies by Lemma 2.3 that

Pr
[
π1|B2

6·α′
≈ π2|B2

]
≥ 1− 1

qd1−2 · (α′ − q−d1)2 ≥ 1− 1
qd1−2 · (α′/2)2

We conclude that

Pr
[
Π′ (B1, B2)|(A1,A2) = Π′ (A1, A2) and Π (B1, B2)

7·α′
≈
(
π1|B1

, π1|B2

)]
≥ Pr

[
Π′ (B1, B2)|(A1,A2) = Π′ (A1, A2) and Π (B1, B2)

α′

≈
(
π1|B1

, π2|B2

)
and π1|B2

6·α′
≈ π2|B2

]
= Ω (εc)− 1

qd1−2 · (α′/2)2

= Ω (εc)

where the last equality holds for su�ciently large choice of h. the theorem now follows by de�ning
π = π1 and setting h to be su�ciently large such that α = 7 · α′.

Proof of Claim 6.6 For the sake of contradition, assume that π1

5·α′
6≈ π2. Let A be a uniformly

distributed 2 · d0-subspace A of Fm and let A1 and A2 be uniformly disributed and disjoint d0-
subspaces of A. By Lemma 2.3, it holds that

Pr
[
π1|A

4·α′
6≈ π2|A

]
≥ 1− 1

q2·d0−2 · (α′ − q−2d0)2 ≥ 1− 1
q2·d0−2 · (α′/2)2

If π1|A
4·α′
6≈ π2|A then by the triangle inequality it either holds that Π (A)

2·α′
6≈ π1|A or that Π (A)

2·α′
6≈

π2|A. Since A1 is a uniformly distributed d0-subspace of A, it holds by Lemma 2.3 that

Pr
[

Π (A)|A1

α′

6≈ π1|A1

∣∣∣∣Π (A)
2·α′
6≈ π1|A

]
≥ 1− 1

q2·d0−2 · (α′/2)2

A similar claim can be made for π2 and A2. Now, if either Π (A)|A1

α′

6≈ π1|A1
or Π (A)|A2

α′

6≈ π2|A2

then by de�nition it holds that Π (A)|(A1,A2)

α′

6≈
(
π1|A1

, π2|A2

)
. We conclude that

Pr
[

Π (A)|(A1,A2)

α′

6≈
(
π1|A1

, π2|A2

)∣∣∣∣π1|A
4·α′
6≈ π2|A

]
≥ 1− 1

q2·d0−2 · (α′/2)2

and therefore by lifting the conditioning and substituing A = A1 +A2 we obtain that for a uniformly
distributed and disjoint d0-subspaces A1 and A2 of Fm it holds that

Pr
[
Π (A1 +A2)|(A1,A2)

α′

≈
(
π1|A1

, π2|A2

)]
≤ 2
q2·d0−2 · (α′/2)2
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On the other hand, by the de�nition of Π′, Inequality 8 implies that for uniformly distributed
and disjoint d0-subspaces A1 and A2 of Fm it holds that

Pr
[
Π (A1 +A2)|(A1,A2)

α′

≈
(
π1|A1

, π2|A2

)]
≥ Ω (εc)

By choosing h to be su�ciently large, the latter lower bound can be made larger than 2/
(
q2·d0−2 · (α′)2

)
,

and this is a contradiction. �
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A Proof of Theorem 2.1

In this section we prove Theorem 2.1, restated below. Let F be a �nite �eld of size q, letm, d0, d1 ∈ N,
and consider a (possible randomized) assignment Π that assigns values to d0- and d1-subspaces of
Fm.

Theorem A.1 (2.1, restated). There exists a universal constant h ∈ N such that the following

holds: Let ε ≥ h · d0 · q−d0/h, α
def= h · d0 · q−d0/h. Assume that d1 ≥ h · d0, m ≥ h · d1. Suppose that

an assignment Π passes the P-test with probability at least ε. Then, there exists an assignment π
such that

Pr
[
Π (B)|A = Π (A) and Π (B)

α
≈ π|B and Π (A)

α
≈ π|A

]
= Ω(ε4)

where the probability is over A,B chosen as in the P -test.
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We begin by recalling the required preliminaries from [IKW09], and then turn to prove Theo-
rem 2.1.

De�nition A.2 (Good). Let A be a d0-subspace of Fm and let ε ∈ (0, 1). We say that A is ε-good
(with respect to an assignment Π) if for a uniformly distributed d1-dimensional subspace B that
contains A it holds that

Pr
[
Π (B)|A = Π (A)

]
≥ ε

where the randomness is over the choice of B and over the randomness of Π.

De�nition A.3 (Plurality function). Let A be a d0-subspace of Fm. We denote by πA : Fm → Σ
the plurality function of A (with respect to Π). In other words, for every x ∈ Fm we de�ne πA(x)
to be the value v ∈ Σ that maximizes

Pr
B⊇A

[
Π (B)|x = v

∣∣∣Π (B)|A = Π (A)
]

where B is a uniformly distributed d1-dimensional subspace that contains A.

De�nition A.4 (DP-consistent). Let A be a d0-subspace of Fm and let α, γ ∈ (0, 1). We say that
A is (ε, α, γ)-direct product consistent (abbreviated (ε, α, γ) -DP-consistent) if A is ε-good and it
holds that

Pr
B⊇A

[
Π (B)

α
≈ πA|B

∣∣∣Π (B)|A = Π (A)
]
≥ 1− γ

The following lemma is a direct corollary of the proofs of [IKW09, Lemma 4.2] and [IKW09,
Lemma 4.4].

Lemma A.5. There exists a universal constant h0 ∈ N such that the following holds: Let ε ≥
h0 · q−(d1/h0−d0) and α, γ ∈ (0, 1). The probability that a uniformly distributed A is ε-good but not

(ε, α, γ)-DP-consistent is at most O
(
1/
(
α · γ · ε2 · qd0−2

))
.

Proof of Theorem 2.1

We will choose the universal constant h to be larger than h0 (where h0 is the constant from
Lemma A.5). Assume that the P-test accepts with probability at least ε as in the statement of
the theorem. Let ε1 = 1

3 · ε and γ1 = ε3
1/h . Choose α1 = O

(
1/ε3

1 · γ1 · qd0−2
)
such that the

probability in Lemma A.5 that A is ε1-good but not (ε1, α1, γ1)-DP-consistent is at most ε1, which
is indeed possible for su�ciently large choice of h. We will later choose α = O (α1), by choosing
again h to be su�ciently large.

We consider the following sequence of events. Let A1, A2 denote random d0-subspaces, and let
B denote a random d1-subspace, and de�ne events S1,S2,S3 as follows:

1. S1(A1, A2, B) : A1 and A2 are (ε1, α1, γ1)-DP-consistent and Π (B)|A1
= Π (A1), Π (B)|A2

=
Π (A2).

2. S2(A1, A2, B) : The event S1 (A1, A2, B) occurs and πA1|B
2α1≈ πA2|B (recall that πA1 and πA2

are the plurality assignments of A1 and A2 respectively).

3. S3(A1, A2): A1 and A2 are (ε1, α1, γ1)-DP-consistent and πA1

3α1≈ πA2 .

In the next three claims we choose A1, A2 and B according to the following distribution: choose A1

and A2 to be uniformly distributed and disjoint d0-spaces A1, A2, and a choose B to be a uniformly
distributed d1-subspace that contains them. We show that the probability of events S1,S2,S3 under
this distribution is non-negligible.
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Claim A.6. Pr[S1] ≥ Ω
(
ε3

1

)
.

Proof Let B′ be a uniformly distributed d1-subspace of Fm and let A′ be a d0-uniformly distributed
subspace of B′. We begin by lower bounding the probability

Pr
[
Π
(
B′
)
|A′ = Π

(
A′
)

and A′ is (ε1, α1, γ1) -DP-consistent
]

(9)

To this end, let us denote by P the event that Π (B′)|A′ = Π (A′), by D the event that A′ is

(ε1, α1, γ1)-DP-consistent, and by G the event that A′ is ε1-good. Observe thatPr [P and ¬G] ≤
Pr [P|¬G] ≤ ε1. Furthermore, A′ is a uniformly distributed d0-subspace of Fm and thus by
Lemma A.5 and our choice of α1, it holds that Pr [G and ¬D] ≤ ε1. Finally, it holds that the
probability in (9) is

Pr [P and D] ≥ Pr [P and G and D]
= Pr [P and G]− Pr [P and G and ¬D]
= Pr [P]− Pr [P and ¬G]− Pr [P and G and ¬D]
≥ Pr [P]− Pr [P and ¬G]− Pr [G and ¬D]
≥ ε− ε1 − ε1

≥ ε1

So the probability in (9) is at least ε1. By averaging, this implies that for Ω (ε1) fraction of the
d1-subspaces B

′ it holds that at least Ω (ε1) fraction of the d0-subspaces A
′ of B′ are (ε1, α1, γ1)-

DP-consistent and satisfy Π (B′)|A′ = Π (A′).
Now, observe that by Proposition 2.4, the distribution over A1, A2, B is equivalent to choosing

B to be a uniformly distributed d1-subspace of Fm and then choosing A1 and A2 to be disjoint
uniformly distributed d0-subspaces of B. With probability at least Ω (ε1) it holds for B that at least
Ω (ε1) fraction of the d0-subspaces A of B are (ε1, α1, γ1)-DP-consistent and satisfy Π (B)|A = Π (A).
We condition on the latter event, and claim that under this conditioning the event S1(A1, A2, B)
occurs with probability at least Ω

(
ε2

1

)
. To see it, consider two uniformly distributed (not necessarily

disjoint) d0-subspaces A
′
1 and A

′
2 of B. Then, by our conditioning, it holds that S1(A′1, A

′
2, B) occurs

with probability at least Ω
(
ε2

1

)
. Furthermore, by Proposition 2.13 it holds with probability at least

1− 2 · d0/q
d1−2·d0 that A′1 and A′2 are disjoint. It therefore follows under the foregoing conditioning

on B that

Pr [S1(A1, A2, B)] = Pr
[
S1(A′1, A

′
2, B)

∣∣A′1, A′2 are disjoint
]

≥ Pr
[
S1(A′1, A

′
2, B) and A′1, A

′
2 are disjoint

]
≥ Pr

[
S1(A′1, A

′
2, B)

]
− Pr

[
A′1, A

′
2 are disjoint

]
≥ Ω

(
ε2

1

)
− 2 · d0/q

d1−2·d0

≥ Ω
(
ε2

1

)
where the last inequlaity holds for su�ciently large h. Lifting the conditioning on B, we get that for
a uniformly distributed d1-subspace B of Fm and two disjoint uniformly distributed d0-subspaces
A1 and A2 of B, it holds with probability at least Ω

(
ε3

1

)
that both A1 and A2 are (ε1, α1, γ1)-DP-

consistent and that Π (B)|A1
= Π (A1), Π (B)|A2

= Π (A2), as required. �

Claim A.7. Pr[S2] ≥ Ω
(
ε3

1

)
.
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Proof Let E1 be the event in which A1 is (ε1, α1, γ1)-DP-consistent, Π (B)|A1
= Π (A1) and Π (B)

α1

6≈
πA1|B, and let E2 be the corresponding event for A2. We begin by noting that the probabilities of
both E1 and E2 are upper bounded by γ1. To see it for E1, note that conditioned on A1 being
(ε1, α1, γ1)-DP-consistent and on Π (B)|A1

= Π (A1) it holds that B is a uniformly distributed d1-

subspace satisfying Π (B)|A1
= Π (A1), and therefore it holds that Π (B)

α1

6≈ πA1|B with probability
at most γ1 (by the DP-consistency of A1). The probability of E2 can be upper bounded similarly.

It now follows by Claim A.6 that

Pr [S2] = Pr
[
S1 and πA1|B

2α1≈ πA2|B

]
≥ Pr [S1 and ¬E1 and ¬E2]
≥ Pr [S1]− Pr [E1]− Pr [E2]
≥ Ω

(
ε3

1

)
− 2 · γ1

≥ Ω
(
ε3

1

)
where the last inequality holds for su�ciently large choice of h. The required result follows. �

Claim A.8. Pr[S3] ≥ Ω
(
ε3

1

)
.

Proof Let us say that A1 and A2 are �agree on a random B� if both A1 and A2 are (ε1, α1, γ1)-DP-

consistent and PrB⊃A1,A2

[
πA1|B

2·α1≈ πA2|B

]
≥ Ω

(
ε3

1

)
. By Claim A.7 and by averaging, we know

that with probability at least Ω
(
ε3

1

)
it holds that A1 and A2 agree on a random B. We show that

for every A1 and A2 that are (ε1, α1, γ1)-DP-consistent such that πA1

3·α1

6≈ πA2 it holds that A1 and
A2 do not agree on a random B. This will imply that if A1 and A2 agree on a random B then

it must hold that πA1

3·α1≈ πA2 . Since we know that the probability of A1 and A2 to agree on a
random B is at least Ω

(
ε3

1

)
the required result will follow.

Fix A1 and A2 to be any (ε1, α1, γ1)-DP-consistent disjoint d0-subspaces such that πA1

3·α1

6≈ πA2 .
Now, by Lemma 2.3 and by su�ciently large choice of h, the probability that a uniformly distributed
d1-subspace B that contains A1 and A2 contains at most 2·α1 ≤ 3·α1−1/qd0−2−1/qd1−2·d0 fraction
of coordinates on which πA1 and πA2 disagree is at most 1/

(
qd1−4·d0−6

)
, and the latter expression can

be made smaller than any constant factor times ε3
1. Thus, it holds that PrB⊃A1,A2

[
πA1|B

2·α1≈ πA2|B

]
can be made su�ciently small such that A1 and A2 do not agree on a random B, as required. �

We now �nd a global assignment π and show that it agrees with Π on many B's, and then on
many A's.

Claim A.9. There exists an assignment π : Fm → Σ such that PrB[Π(B)
5·α1≈ π|B and Π (B)|A =

Π (A)] ≥ Ω
(
ε4

1

)
.

Proof By Claim A.8 and by averaging, we get that for at least Ω
(
ε3

1

)
fraction of the d0-subspaces

A1 it holds that A1 is (ε1, α1, γ1)-DP-consistent and

Pr
A2:A2 is disjoint from A1

[
A2 is (ε1, α1, γ1) -DP-consistent and πA1

3·α1≈ πA2

]
≥ Ω

(
ε3

1

)
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Fix such d0-subspace A1, and set π = πA1 . Consider choosing a uniformly distributed d0-space A2

and a uniformly distributed d1-space B ⊃ A2. We show that Π(B)
5·α1≈ π|B with probability at

least Ω
(
ε4

1

)
.

Let us denote by D the event in which A2 is disjoint from A1, by P the event in which Π (B)|A2
=

Π (A2), and by C the event in which A2 is (ε1, α1, γ1)-DP-consistent and πA1

3·α1≈ πA2 .
By Proposition 2.13, it holds that Pr [D] ≥ 1− 2 · d0/q

m−2·d0 ≥ 1
2 (where the second inequality

holds for su�ciently large h). Furthermore, conditioned on D, the subspace A2 is a uniformly
distributed d0-subspace of Fm that is disjoint from A1, and thus by the choice of A1 it holds that
Pr [C|D] ≥ Ω

(
ε3

1

)
. Lifting the conditioning, it follows that Pr [C] ≥ Ω

(
ε3

1

)
. Next, observe that B

is distributed uniformly over the d1-subspaces that contain A2, and thus (since in particular A2 is
ε1-good) Pr [P|C] ≥ ε1. It therefore holds that Pr [C and P] ≥ Ω

(
ε4

1

)
Now, let us condition on the events C and P. By Lemma 2.3 and for su�ciently large h, it

holds with probability at least 1 − 1/
(
qd1−3·d0−6

)
≥ 3

4 that B contains at most 4 · α1 ≥ 3α1 +
1/qd0−2 + 1/qd1−2·d0 fraction of coordinates on which πA1 and πA2 disagree. Furthermore, by the
DP-consistency of A2 and for su�ciently large choice of h, it holds with probability at least 1−γ1 ≥ 3

4

that Π (B)
α1≈ πA2|B. By the union bound and the triangle inequality, it follows that with probability

at least 1
2 it holds that Π (B) disagrees with πA1|B on at most 5 · α1 fraction of the coordinates.

Lifting the conditioning on C and P, we obtain that with probability at least Ω
(
ε4

1

)
it holds that

Π (B)
5·α1≈ πA1|B, and Π (B) = Π (A) as required. �

Finally, we turn to prove the theorem. Let π be the assignment whose existence is guaranteed
by the previous claim. Let us denote by P the event in which Π (B)|A = Π (A) (i.e., the P-test

accepts A and B), by E1 the event in which Π(B)
5·α1≈ π|B, by E2 the event in which Π(A)

6·α1≈ π|A,

and by E3 the event in which Π (B)|A
6·α1≈ π|A. Using this notation, it su�ces to prove that

Pr [P and E1 and E2] = Ω
(
ε4

1

)
By the de�nition of π, it holds that

Pr [P and E1] = Ω
(
ε4

1

)
The subspace A is a uniformly distributed d0-subspace of B, and therefore it holds by Lemma 2.3
that

Pr [¬E3 |E1 ] = O
(

1/qd0/2−2
)

This implies that

Pr [P and E1 and E3] = Pr [P and E1]− Pr [P and E1 and ¬E3]
≥ Pr [P and E1]− Pr [¬E3|E1]

= Ω
(
ε4

1

)
−O

(
1/qd0/2−2

)
= Ω

(
ε4

1

)
where the last inequality holds for su�ciently large h. Now, observe that whenever both the events
P and E3 occur, the event E2 also occurs. It follows that

Pr [P and E1 and E2] ≥ Pr [P and E1 and E3] = Ω
(
ε4

1

)
as required.
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B Routing on de Bruijn graphs

In this section we prove the routing property of de Bruijn graph given in Fact 4.5. Recall the
following.

De�nition (4.1, restated). Let Λ be a �nite alphabet and let m ∈ N. The de Bruijn graph DBΛ,m

is the directed graph whose vertices set is Λm such that each vertex (α1, . . . , αt) ∈ Λm has outgoing
edges to all the vertices of the form (α2, . . . , αt, β) for every β ∈ Λ.

Fact (4.5, restated). Let DBΛ,m be a de-Brujin graph. Then, given a permutation µ on the vertices

of DBΛ,m one can �nd a set of undirected paths of length 2m that connect each vertex v to µ(v) and
that have the following property: For every j ∈ [2m], each vertex v is the j-th vertex of exactly one

path. Furthermore, �nding the paths can be done in time that is polynomial in the size of DBΛ,m.

We actually prove the following slightly stronger result.

Claim B.1. Let DBΛ,m be a de-Brujin graph and let i ∈ [m]. Then, given a permutation µ on

Λi one can �nd a set of undirected paths of length 2 · i that connect each vertex (α1, . . . , αm) of

DBΛ,m to the vertex (α1, . . . , αm−i, µ (αm−i+1, . . . , αm)) and that have the following two properties:

For every j ∈ [l], each vertex v is the j-th vertex of exactly one path. Furthermore, �nding the paths

can be done in time that is polynomial in the size of DBΛ,m.

The proof works by induction on i. For i = 0 the claim is obvious. Assume that the claim holds
for some 0 ≤ i < m. We prove that the claim holds for i + 1. Let DB = DBΛ,m, amd let µ be a
permutation on Λi+1. For convenience, let us de�ne the action of µ on each (α1, . . . , αm) ∈ Fm as
µ (α1, . . . , αm) = (α1, . . . , αm−i−1, µ (αm−i, . . . , αm)). Let G be the directed graph whose vertices
are the set Λm and whose edges are all the pairs of the form (v, µ(v)). Let G′ be the graph that
is obtained from G by contracting each |Λ| vertices of G that agree on their last coordinate to one
vertex. Clearly, every vertex in G′ has in-degree and out-degree exactly |Λ|, and each edge of G′

corresponds to an edge of G. Furthermore, observe that the vertices of G′ can be identi�ed with
the vertices of Λm−1.

The |Λ|-regularity of G implies that the edges of G′ can be partitioned to |Λ| perfect matchings
{G′σ}σ∈Λ in polynomial time (see, e.g., [Cam98, Proposition 18.1.2]). Fix a matching G′σ, and
consider an edge e′ in G′σ. Observe that if e is coming out of a vertex (α1, . . . , αm−1) of G′,
then it must enter a vertex of the form

(
α1, . . . , αm−i, α

′
m−i+1, . . . , α

′
m−1

)
. Thus, we can de�ne

a permutation νσ on Λi that maps (αm−i, . . . , αm−1) to
(
α′m−i, . . . , α

′
m−1

)
for each such edge e′

- since G′σ is a matching, this is well de�ned. We invoke the induction hypothesis on the graph
DB = DBΛ,m to �nd a set of paths Pσ of length 2 · i for each permutation νσ.

We now construct the required paths for µ as follows. Let v = (α1, . . . , αm) ∈ Λm, and suppose
that µ (αm−i, . . . , αm) =

(
α′m−i, . . . , α

′
m

)
. We wish to construct a path p in DB that connects v to

µ (v). The edge (v, µ (v)) corresponds to some edge e′ in G′, so let G′β be the matching to which e′

belongs. We turn to construct the path p. The �rst edge in the path p connects v = (α1, . . . , αm) to
the vertex (β, α1, . . . , αm−1). The next 2·i edges of p will be the edges of the path in Pβ that connects
(β, α1, . . . , αm−1) to

(
β, α1, . . . , αm−i−1, α

′
m−i, . . . , α

′
m−1

)
. Finally, the last edge of p will go from the

vertex
(
β, α1, . . . , αm−i−1, α

′
m−i, . . . , α

′
m−1

)
to the vertex

(
α1, . . . , αm−i−1, α

′
m−i, . . . , α

′
m

)
= µ (v).

Observe that p indeed connects v to µ (v) and is of length 2 · (i+ 1)
It remains to show that for each j ∈ [2i+ 2] it holds that every vertex v is the j-th vertex of

exactly one. The cases of j = 1 and j = 2 · i+ 2 are trivial. We analyze the case of j = 2, and the
rest of the cases will follow from the induction hypothesis. Let u = (β, α1, . . . , αm−1) ∈ Λm. We
show that u is the second vertex of a unique path p by constructing p. Let e′ be the outgoing edge
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of the vertex (α1, . . . , αm−1) that belongs to the matching G′β - observe that there is a unique choice
of such e′. The edge e′ of G′ corresponds to some unique edge (v, µ (v)) of G. Now, by construction,
the only path p such that u is the second vertex of p is the path that connects v to µ (v). The
required result follows.

C Proof of Claim 5.6

In this section, we prove Claim 5.6, restated below. Recall that G = (Fm, E) is a graph with linear
structure and in particular E is a linear supspace of edges.

Claim (5.6, restated). Let d ∈ N and let Ea be a uniformly distributed d-subspace of E. Then,

Pr [dim (left (Ea)) = d] ≥ 1− d/qm−d, and conditioned on dim (left (Ea)) = d, it holds that left (Ea)
is a uniformly distributed d-subspace of Fm. The same holds for right (Ea).

More generally, let Eb be a �xed subspace of E such that dim (Eb) > d and dim (left (Eb)) >
d. Let Ea be a uniformly distributed d-subspace of Eb. Then, Pr [dim (left (Ea)) = d] ≥ 1 −
d/qdim(left(Eb))−d, and conditioned on dim (left (Ea)) = d, it holds that left (Ea) is a uniformly dis-

tributed d-subspace of left (Eb). Again, the same holds for right (Ea).

Proof We prove the proposition only for special case in which Eb = E and only for left (Ea). The
proof of the general case and of the case of for right (Ea) is analogous. Let e1, . . . , ed be independent
and uniformly distributed vectors of E, and let E′a = span {e1, . . . , ed}. We prove Proposition 5.6
by showing that Ea is distributed similarly to E′a, and analyzing the distribution of E′a.

Observe that by Proposition 2.14, it holds that conditioned on dim (E′a) = d, the subspace E′a
is a uniformly distributed d-subspace of E. It therefore holds that

Pr [dim (left (Ea)) = d] = Pr
[
dim

(
left

(
E′a
))

= d|dim
(
E′a
)

= d
]

≥ Pr
[
dim

(
left

(
E′a
))

= d and dim
(
E′a
)

= d
]

= Pr
[
dim

(
left

(
E′a
))

= d
]

where the last equality holds since clearly dim (left (E′a)) = d implies dim (E′a) = d. Now, since
left (·) is a linear function, it holds that left (e1) , . . . left (ed) are independent and uniformly dis-
tributed vectors of left (E) = Fm, and therefore by Proposition 2.14 it holds that Pr [dim (left (E′a)) = d] ≥
1− d/qm−d. It thus follows that Pr [dim (left (Ea)) = d] ≥ 1− d/qm−d, as required.

It remains to show that conditioned on Pr [dim (left (Ea)) = d] it holds that left (Ea) is a uni-
formly distributed d-subspace of Fm. To see it, observe that for every �xed d-subspace D of Fm, it
holds that

Pr [left (Ea) = D| dim (left (Ea)) = d] = Pr
[
left

(
E′a
)

= D| dim
(
E′a
)

= d and dim
(
left
(
E′a
))

= d
]

= Pr
[
left

(
E′a
)

= D| dim
(
left

(
E′a
))

= d
]

where the �rst equality again holds since conditioned on dim (E′a) = d it holds that E′a is a uni-
formly distributed d-subspace, and the second equality again holds since dim (left (E′a)) = d implies
dim (E′a) = d. Now, it holds that left (E′a) is the span of d uniformly distributed vectors of Fm, and
therefore by Proposition 2.14 it holds that conditioned on dim (left (E′a)) = d the subspace left (E′a)
is a uniformly distributed d-subspace of left (Eb). This implies that the probability

Pr
[
left
(
E′a
)

= D|dim
(
left

(
E′a
))

= d
]

is the same for all possible choices of D, and therefore the probability

Pr [left (Ea) = D| dim (left (Ea)) = d]
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is the same for all possible choices of D, as required. �

38

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


