
Derandomized Parallel Repetition via Structured PCPs

Irit Dinur∗ Or Meir†

March 15, 2014

Abstract

A PCP is a proof system for NP in which the proof can be checked by a probabilistic verifier.
The verifier is only allowed to read a very small portion of the proof, and in return is allowed
to err with some bounded probability. The probability that the verifier accepts a proof of a
false claim is called the soundness error, and is an important parameter of a PCP system that
one seeks to minimize. Constructing PCPs with sub-constant soundness error and, at the same
time, a minimal number of queries into the proof (namely two) is especially important due to
applications for inapproximability.

In this work we construct such PCP verifiers, i.e., PCPs that make only two queries and have
sub-constant soundness error. Our construction can be viewed as a combinatorial alternative
to the “manifold vs. point” construction, which is the basis for all the constructions in the
literature for this parameter range. The “manifold vs. point” PCP is based on a low degree
test, while our construction is based on a direct product test. We also extend our construction
to yield a decodable PCP (dPCP) with the same parameters. By plugging in this dPCP into
the scheme of Dinur and Harsha (FOCS 2009) one gets an alternative construction of the result
of Moshkovitz and Raz (FOCS 2008), namely: a construction of two-query PCPs with small
soundness error and small alphabet size.

Our construction of a PCP is based on extending the derandomized direct product test
of Impagliazzo, Kabanets and Wigderson (STOC 09) to a derandomized parallel repetition
theorem. More accurately, our PCP construction is obtained in two steps. We first prove a
derandomized parallel repetition theorem for specially structured PCPs. Then, we show that
any PCP can be transformed into one that has the required structure, by embedding it on a
de-Bruijn graph.

∗Weizmann Institute of Science, ISRAEL. Email: irit.dinur@weizmann.ac.il. Research supported in part by
the Israel Science Foundation and by the Binational Science Foundation and by an ERC grant.
†Weizmann Institute of Science, ISRAEL. Research supported in part by the Israel Science Foundation (grant

No. 1041/08) and by the Adams Fellowship Program of the Israel Academy of Sciences and Humanities. Email:
or.meir@weizmann.ac.il.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 107 (2010)

Contents

1 Introduction 4

2 Preliminaries 9
2.1 Direct product testing [IKW09] . 10
2.2 Sampling tools . 11
2.3 Constraint graphs and PCPs . 12
2.4 Basic facts about random subspaces . 14
2.5 Similarity of distributions . 15
2.6 Expanders . 16

3 Main theorem 16

4 PCPs with Linear Structure 19
4.1 de Bruijn graphs as routing networks . 20
4.2 Proof overview . 20
4.3 Detailed proof . 21

5 Derandomized Parallel Repetition of Constraint Graphs with Linear Structure 23
5.1 The construction of G′ . 24
5.2 The specialized direct product test . 25
5.3 The soundness of the derandomized parallel repetition 26

5.3.1 Proof of Proposition 5.6 . 27
5.3.2 Proof of Proposition 5.7 . 28

6 Decodable PCPs 29
6.1 Recalling the definition of PCPPs . 31
6.2 The definition of decodable PCPs . 32

6.2.1 Recalling the definition of [DH09] . 32
6.2.2 Uniquely-decodable PCPs . 33

6.3 Decoding graphs . 35
6.3.1 The definition of decoding graphs . 35
6.3.2 Additional properties of decoding graphs . 37
6.3.3 General udPCPs and decoding graphs . 38

6.4 Our construction of dPCPs, Theorem 1.6 . 38
6.5 Proof of the result of [MR08], Theorem 1.2 . 40

7 Decoding PCPs with Linear Structure 42
7.1 Auxiliary propositions . 42
7.2 Embedding decoding graphs on de Bruijn graphs . 44

8 Derandomized Parallel Repetition of Decoding Graphs with Linear Structure 46
8.1 The construction of G′ and its parameters . 48
8.2 The soundness of G′ . 48

8.2.1 Proof of Proposition 8.2 . 50
8.2.2 Proof of Proposition 8.4 . 52

2

9 The Analysis of the Specialized Direct Product Test 53
9.1 The P 2-test . 53

9.1.1 The proof of Lemma 9.2 . 55
9.1.2 Proofs of Auxiliary Claim . 57

9.2 The proof of Theorems 5.4 and 8.5 . 58

A Proof of Theorem 2.2, soundness of the P-test 63

B Routing on de Bruijn graphs 68

C Proof of Claim 5.8 69

D Proof of Proposition 6.24 70

E Proof of Proposition 7.4 72

3

1 Introduction

The PCP theorem [AS98, ALM+98] says that every language in NP can be verified by a polynomial-
time verifier that queries proof of polynomial length in a constant number of locations. The verifier
is guaranteed to always accept a correct proof, and to accept a proof of a false claim with bounded
probability (called the soundness error). Following the proof of the PCP theorem, research has
been directed towards strengthening the PCP theorem in terms of the important parameters, such
as the proof length, the number of queries, the soundness error, and the randomness complexity of
the verifier.

In parallel, there is a line of work attempting to expand the variety of techniques at our disposal
for constructing PCPs. Here the aim is to gain a deeper and more intuitive understanding of why
PCP theorems hold. One of the threads in this direction is replacing algebraic constructions by
combinatorial ones. This is motivated by the intuition that algebra is not an essential component
of PCPs, indeed the definition of PCPs involves no algebra at all. Of course, one may also hope
that the discovery of new techniques may lead to new results.

For the “basic” PCP theorem [AS98, ALM+98] there have been alternative combinatorial proofs
[DR06, Din07]. It is still a challenge to match stronger PCP theorems with combinatorial construc-
tions. Such is the work of the second author [Mei09] on PCPs with efficient verifiers. In this paper
we seek to do so for PCPs in the small soundness error regime.

In this work we give a new construction of a PCP with sub-constant soundness error and two
queries. This setting is particularly important for inapproximability, as will be discussed shortly
below. In addition, our PCP maintains the polynomial proof length and logarithmic randomness
complexity of the original PCP theorem of [AS98, ALM+98]. Formally, we prove

Theorem 1.1 (Two-query PCP with small soundness). There exists a constant κ > 0 such that
for every function ε : N → (0, 1) satisfying 1/nκ ≤ ε(n) ≤ 1/poly log n the following holds: Ev-
ery language L ∈ NP has a two-query PCP system with perfect completeness, soundness error
1/poly log n, alphabet size 21/poly(ε), proof length poly (n), and randomness complexity O(log n).
Furthermore, the verifier in this PCP system makes only ‘projection’ queries.

This theorem matches the parameters of the folklore “manifold vs. point” construction which
has been the only construction in the literature for this parameter range. The technical heart of
that construction is a sub-constant error low degree test [RS97, AS03], see full details in [MR08].

Our proof of Theorem 1.1 is based on the elegant derandomized direct product test of [IKW09].
In a nutshell, our construction is based on applying this test to obtain a “derandomized parallel
repetition theorem”. While it is not clear how to do this for an arbitrary PCP, it turns out to be
possible for PCPs with certain structure. We show how to convert any PCP to a PCP with the
required structure, and then prove a “derandomized parallel repetition theorem” for such PCPs,
thereby getting Theorem 1.1. The derandomized parallel repetition theorem relies on a reduction
from the derandomized direct product test of [IKW09].

The Moshkovitz-Raz Construction. Recently, Moshkovitz and Raz [MR08] constructed even
stronger PCPs. Specifically, they managed to remove the limitation ε(n) ≤ 1/poly log n from Theo-
rem 1.1, thus allowing any function ε(n) ≥ 1/nκ. This allows constructing PCPs with sub-constant
error and any alphabet size smaller than 2poly logn, at the expense of a suitable increase in the
soundness error. Being able to reduce the alphabet size has strong consequences for inapproxima-
bility, see [MR08] for details. The technique of [MR08] (as explained in the later simplification of
[DH09]) is essentially based on the composition of certain PCP constructions. In fact, their main
building block is the “manifold vs. point” construction mentioned above.

4

Our construction can be extended to yield a so-called decodable PCP [DH09], which is an
object slightly stronger than a PCP. This can be plugged into the scheme of [DH09] to give a
nearly1 combinatorial proof of the following result of [MR08]. Namely,

Theorem 1.2 ([MR08]). There exists a constant κ > 0 such that for every function ε(n) ≥ 1/nκ the
following holds: Every language L ∈ NP has a two-query PCP system with perfect completeness,
soundness error ε, alphabet size at most 21/poly(ε), proof length poly (n), and randomness complexity
O(log n). Furthermore, the verifier in this PCP system makes only ‘projection’ queries.

We note that the result of [MR08] is in fact even stronger than claimed above since their
verifier has almost-linear proof length (specifically n1+o(1)), and has randomness complexity of only
(1 + o(1)) log n random bits, see also Remark 6.27.

Organization of the introduction. In the following four sections we outline the background
and main ideas of this work. We start by describing the parallel repetition technique in general
and its relation with direct product tests. We proceed to describe our technique of derandomized
parallel repetition. We then describe our notion of “PCPs with linear structure”, to which the
derandomized parallel repetition is applied.

After the foregoing outline, we discuss relevant works and possible future directions, and describe
the organization of this work.

Parallel repetition and Direct Products

A natural approach to reducing the soundness error of a PCP verifier is by running it several times
independently, and accepting only if all runs accept. This is called sequential repetition. Obviously,
if the verifier is invoked k times the soundness error drops exponentially in k. However, the total
number of queries made into the proof grows k-fold, and in particular, it is greater than 2. Since our
focus is on constructing PCPs that make only two queries, we can not afford sequential repetition.

In order to decrease the soundness error while maintaining the query complexity, one may
use parallel repetition. For the rest of this discussion, we consider only PCPs that use only two
queries. Let us briefly recall what parallel repetition means in this context. As in the case of
sequential repetition, one starts out with a PCP with constant soundness error, and then amplifies
the rejection probability by repetition of the verifier. However, in order to save on queries, the
prover is expected to give the k-wise direct product encoding of the original proof. Formally, if
π : [n] → Σ describes the original proof then its direct product encoding, denoted by π⊗k, is the
function π⊗k : [n]k → Σk defined by

π⊗k(x1, . . . , xk) = (π(x1), . . . , π(xk)).

The new verifier will simulate the original verifier on k independent runs, but will read only two
symbols from the new proof, which together contain answers to k independent runs of the original
verifier.

Of course, there is no a priori guarantee that the given proof is a direct product encoding π⊗k

of any underlying proof π, as intended in the construction. This is the main difficulty in proving
the celebrated parallel repetition due to Raz [Raz98] that shows that the the soundness error does
go down exponentially with k.

1It is debatable whether our use of “linear structure” disqualifies the result from being considered purely combi-
natorial.

5

One may try to circumvent the difficulty in analyzing the parallel repetition theorem by aug-
menting it with a direct product test. That is, making the verifier test that the given proof Π is
a direct product encoding of some string π, and only then running the original parallel repetition
verifier. This can sometimes be done without even incurring extra queries. Motivated by this
approach Goldreich and Safra [GS00] suggested and studied the following question:

DP testing: Given a function F : [n]k → Σk test that it is close to f⊗k for some f : [n]→ Σ.

Let us now describe a two query direct product test. From now on let us make the simplifying
assumption that the function F : [n]k → Σk to be tested is given as a function of k-sized subsets
rather than tuples, meaning that F (x1, . . . , xk) is the same for any permutation of x1, . . . , xk. The
test chooses two random k-subsets B1, B2 ∈

([n]
k

)
that intersect on a subset A = B1∩B2 of a certain

prescribed size and accept if and only if F (B1)|A = F (B2)|A. This test was analyzed further in
several works, see [GS00, DR06, DG08, IKW09].

Remark 1.3. An expert reader may note that the above direct product test is not a projection
test, while we need a projection test for Theorem 1.1. Indeed, in our actual proof we use a variant
of the above direct product test which is a projection test (see Section 2.1 for details).

Derandomized Direct Product Testing

Recall that our goal is to construct PCPs with sub-constant soundness error. Note, however, that
since the parallel repetition increases the proof length exponentially in k (and the randomness of
the verifier grows k-fold), one can only afford to make a constant number of repetitions if one wishes
to maintain polynomial proof length and logarithmic randomness complexity. On the other hand,
obtaining sub-constant soundness error requires a super-constant number of repetitions.

This leads to the derandomization question, addressed already 15 years ago [FK95]. Can one
recycle randomness of the verifier in the parallel repetition scheme without losing too much in
soundness error?

Motivated by this question, Impagliazzo, Kabanets, and Wigderson [IKW09] introduced a
method for analyzing the direct product test which allowed them to derandomize it. Namely,
they exhibited a relatively small collection of subsets K ⊂

([n]
k

)
, and considered the restriction of

the direct product encoding f⊗k to this collection. They then showed that this form of derandom-
ized direct product can be tested using the above test. The collection K is as follows: identify [n]
with a vector space Fm, let k = |F|d for constant d, and let K be the set of all d-dimensional linear
subspaces.

A natural next step is to use the derandomized direct product of [IKW09] to obtain a deran-
domized parallel repetition theorem. Recall that the parallel repetition verifier works by simulating
k independent invocations of the original verifier on π, and querying the (supposed) direct product
Π on the resulting k-tuples of queries. However, in the derandomized setting, the k-tuples of queries
generated by the verifier may fall outside K. This is the main difficulty that we address in this
work.

This is where the structure of the PCP comes to our aid. We show that for PCPs with a
certain linear structure, the k-tuples of queries can be made in a way that is compatible with the
derandomized direct product test of [IKW09]. More specifically, the k-tuples of queries always
belong to the collection K, and are distributed like queries of the derandomized direct product test.
This allows us to prove a derandomized parallel repetition theorem for the particular case of PCPs
with linear structure. Our main theorem is proved by constructing PCPs with linear structure
(discussed next), and applying the derandomized parallel repetition theorem.

6

PCPs with Linear Structure

We turn to discuss PCPs with linear structure. The underlying graph structure of a two-query PCP
is a graph defined as follows. The vertices are the proof coordinates, and the edges correspond to all
possible query pairs of the verifier. (See also Section 2.3). We say that a graph has linear structure
if the vertices can be identified with a vector space Fm and the edges, which clearly can be viewed
as a subset of F2m, form a linear subspace of F2m (see also Definition 3.1). A two-query PCP has
linear structure if its underlying graph has linear structure.

As mentioned above, an additional contribution of this work is the construction of PCPs with
linear structure. That is, we prove the following result.

Theorem 1.4 (PCPs with linear structure). Every language L ∈ NP has a two-query PCP system
with a linear structure which has perfect completeness, soundness error 1 − 1/poly log n, constant
alphabet size, proof length poly (n), and randomness complexity O(log n).

We believe that Theorem 1.4 is interesting in its own right: For known PCPs, the underly-
ing graph structure is quite difficult to describe, mostly due to the fact that PCP constructions
are invariably based on composition. In principle, however, the fact that a PCP is a “complex”
object need not prevent the underlying graph from being simple. In analogy, certain Ramanujan
expanders [LPS88] are Cayley graphs that are very easy to describe, even if the proof of their
expansion is not quite so easy. It is therefore interesting to study whether there exist PCPs with
simple underlying graphs.

Philosophically, the more structured the PCP, the stronger is the implied statement about the
class NP, and the easier it is to exploit for applications. Indeed, the structure of a PCP system
has been used in several previous works. For example, Khot constructs [Kho06] a PCP with quasi-
random structure in order to establish the hardness of minimum bisection. Dinur [Din07] imposes
an expansion structure on a PCP to obtain amplification.

We prove Theorem 1.4 by embedding a given PCP into the de Bruijn graph and relying on the
algebraic structure of this graph. We remark that the de Bruijn graph has been used in constructions
of PCPs before, e.g. [PS94, BFLS91], in similar contexts. We believe that structured PCPs are
an object worthy of further study. One may view their applicability towards proving Theorem 1.1
as supporting evidence. An interesting question which we leave open is whether Theorem 1.4 can
be strengthened so as to get constant soundness error. By simply plugging such a PCP into our
derandomized parallel repetition theorem one would get a direct proof of the aforementioned result
of [MR08], without using two-query composition.

Remark 1.5. Our notion of PCPs with linear structure should not be confused with the notion
of “linear PCPPs” that appeared in the literature before (see [BHLM09], and the related “linear
inner verifier” of [GS00]). A linear PCPP is, roughly, a PCP system for checking the membership
of a vector in a given linear subspace, in which the proof is required to be a linear function of the
aforementioned vector. This requirement is unrelated to our definition, which does not restrict the
claim to be verified or the proof, and on the other hand restricts the query structure of the PCP
verifier.

Decodable PCPs

We extend our results to also yield a new construction of decodable PCPs (dPCPs). A dPCP gives
a way to encode NP witnesses so that a verifier (called a decoder in this context) is able to both
locally test their validity as well as to locally decode bits from the encoded NP witness. Decodable

7

PCPs2 were introduced in [DH09] towards simplifying and modularizing the work of [MR08] on
two-query PCPs with small soundness. In [DH09] the result of [MR08] was reproved assuming the
existence of two building blocks, a PCP and a dPCP, which were used as a black box. Until this
work there has been only one known construction of a dPCP, based on the manifold vs. point
construction. In this work we give a new construction of a dPCP which is obtained by applying
derandomized parallel repetition in an analogous way to Theorem 1.1. We prove

Theorem 1.6 (dPCP, informal version). There exists a two-query PCP decoder with perfect com-
pleteness, soundness error 1/poly log n, list size poly log n, proof alphabet 2poly logn, proof length
poly (n), and randomness complexity O(log n).

The notion of dPCPs is described in detail in Section 6, and in particular in Section 6.2.
Theorem 1.6 is stated and proved in Section 6.4 based on two main lemmas, which are proved in
Sections 7 and 8.

In order to prove this theorem we generalize each of the steps of the proof of Theorem 1.1.
First, we construct a dPCP with linear structure but with relatively high soundness error in an
analogous way to our proof of Theorem 1.4 (PCPs with linear structure). Next, we apply deran-
domized parallel repetition to get the desired dPCP. The two steps are described in Sections 7
and 8 respectively.

An additional contribution of this work is an extension of the definitions of [DH09], of dPCPs
that work with low soundness error, to one that works with high soundness error. This is necessary
because plugging in a higher value for the soundness error parameter into the existing definition
of [DH09] turns out to be useless. Instead, we give a variant which we call uniquely decodable
PCPs (udPCPs). We show that udPCPs are in fact equivalent to PCPs of Proximity (PCPPs).
This allows us to rely on known constructions of PCPPs [BGH+06, DR06] as our starting point.
For more details see Section 6.2.

Together, Theorem 1.1 and Theorem 1.6 imply Theorem 1.2 (the [MR08] result). This is
sketched in Section 6.5.

Remark 1.7. In fact, Theorem 1.6 can be proved for any soundness error ε(n) satisfying 1/nκ ≤
ε(n) ≤ 1/poly log n (for some constant κ > 0. As in Theorem 1.1, the alphabet size in such case is
21/poly(ε), and furthermore the list size becomes 1/poly (ε). However, in this paper we only prove
Theorem 1.6 for ε(n) = 1/poly log n, since this is all we need to in order to prove Theorem 1.2 (the
[MR08] result).

Related Work and Future directions

Our final construction of a two-query PCP has exponential relation between the alphabet size and
the error probability (that is, |Σ| = 21/poly(ε)). In general, one can hope for a polynomial relation,
and this is the so-called “sliding scale” conjecture of [BGLR93]. Our approach is inherently limited
to an exponential relation both because of a lower bound on direct product testing from [DG08],
and, more generally, because of the following lower bound of Feige and Kilian [FK95] on parallel
repetition of games. Feige and Kilian prove that for every PCP system and k = O(log n) invocations
of the original verifier, if one insists on the parallel repetition using only O(log n) random bits, then
the soundness error must be at least 1/poly log n (and not 1/poly(n) as one might hope). For the
choice of k = O(log n), our work matches the [FK95] lower bound by exhibiting a derandomized

2Decodable PCPs generalize the notion of “locally decode/reject codes” of [MR08] and the even earlier notion of
“LDF readers” of [DFK+99].

8

parallel repetition theorem, albeit only for PCPs with linear structure, that achieves a matching
upper bound of 1/poly log n on the soundness error.

Nevertheless, for three queries we are in a completely different ball-game, and no lower bound
is known. It would be interesting to find a derandomized direct product test with three queries
with lower soundness error, and to try and adapt it to a PCP. We note that there are “algebraic”
constructions [RS97, DFK+99] that make only three queries and have much better relationship
between the error and the alphabet size.

It has already been mentioned that while our result matches the soundness error and alphabet
size of the [MR08] result, it does not attain nearly linear proof length. Improving our result in this
respect is another interesting direction.

Structure of the paper

The paper has two main parts, the first part is concerned with proving the main result for PCPs,
and the second part generalizes this result to dPCPs.

• Part 1. The structure of the proof is “top to bottom”. Our main theorem for PCPs is
based on two main steps: (i) embedding a PCP into a PCP with linear structure, and (ii) a
derandomized parallel repetition theorem for such PCPs. We begin, in Section 3, by stating
the two main lemmas corresponding to the two steps above, and then proving the main
theorem, assuming correctness of the lemmas. We then proceed to prove each main lemma.
In Section 4 we show how to embed a PCP into one with linear structure (by routing it on a de
Bruijn like graph). In Section 5 we prove the “derandomized parallel repetition” theorem for
PCPs with linear structure. This is done by reduction to the derandomized direct product
test of [IKW09]. More accurately, our analysis relies on a specialized variant of this test
which we call an S-test, which is analyzed in Section 9.

• Part 2. The second part of the paper adapts our PCP construction to a dPCP. In Section 6
we discuss and define dPCPs, and prove Theorem 1.6. We also show how to use this theorem
to derive the [MR08] result (Theorem 1.2) as a corollary. The two main steps in the proof of
Theorem 1.6 are described in Sections 7 and 8 and are analogous to the two main steps of
proving Theorem 1.1.

• Finally, we analyze the specialized direct product test (called the S-test) in Section 9, based
on the work of [IKW09].

2 Preliminaries

Let g : U → Σ be an arbitrary function, and let A ⊂ U be a subset. We denote by g|A the restriction
of g (as a function) to A. We also use the following convention.

Notation 2.1. Given two functions f, g : U → Σ, we denote f
α
≈ g (f

α
6≈ g) to mean that they

differ on at most (more than) α fraction of the elements of U .

We refer to a d-dimensional linear subspace of an underlying vector space simply as a d-subspace.
For two linear subspaces A1 and A2, the standard notation A1 + A2 denotes the smallest linear
subspace containing both of them. We say that A1, A2 are independent if and only if A1∩A2 = {0}.
If A1 and A2 are disjoint, the standard notation A1 ⊕A2 is used to denotes A1 +A2.

Let G = (V,E) be a directed graph. For each edge e ∈ E we denote by left (e) and right (e) the
left and right endpoints of e respectively. That is, if we view the edge e ∈ E as a pair in V × V ,

9

1. Choose a uniformly distributed d1-subspace B ⊆ Fm.

2. Choose a uniformly distributed d0-subspace A ⊆ B.

3. Accept if and only if Π (B)|A = Π(A).

Figure 1: The P-test

then left (e) and right (e) are the first and second elements of the pair e respectively. Given a set
of edges E0 ⊆ E, we denote by left (E0) and right(E0) the set of left endpoints and right endpoints
of the edges in E0 respectively.

2.1 Direct product testing [IKW09]

Let us briefly describe the setting in which we use the derandomized direct product test of [IKW09].
In [IKW09] the main derandomized direct product test is a so-called “V-test”. We consider a
variation of this test that appears in [IKW09, Section 6.3] to which we refer as the “P-test” (P for
projection).

Given a string π ∈ Σ`, we define its (derandomized) P-direct product Π as follows: We identify
[`] with Fm, where F is a finite field and m ∈ N, and think of π as an assignment that maps the
points in Fm to Σ. We also fix d0 < d1 ∈ N. Now, we define Π to be the assignment that assigns
each d0- and d1-subspace W of Fm to the function π|W : W → Σ (recall that π|W is the restriction
of π to W).

We now consider the task of testing whether a given assignment Π is the P-direct product of
some string π : Fm → Σ. In those settings, we are given an assignment to subspaces, i.e. a function
Π that on input a d0-subspace A ⊂ Fm (respectively d1-subspace B ⊂ Fm), answers with a function
a : A → Σ (respectively, b : Fm → Σ). We wish to test whether Π is a P-direct product of some
π : Fm → Σ, and to this end we invoke the P-test, described in Figure 1.

It is easy to see that if Π is a P-direct product then the P-test always accepts. Furthermore,
it can be shown that if Π is “far” from being a P-direct product, then the P-test rejects with high
probability. Formally, we have the following result.

Theorem 2.2 (Soundness of the P-test[IKW09]). There exists a universal constant h ∈ N such
that the following holds: Let ε ≥ h · d0 · |F|−d0/h, α def= h · d0 · |F|−d0/h. Assume that d1 ≥ h · d0,
m ≥ h · d1. Suppose that an assignment Π passes the P-test with probability at least ε. Then, there
exists an assignment π such that

Pr
[
Π (B)|A = Π (A) and Π (B)

α
≈ π|B and Π (A)

α
≈ π|A

]
= Ω(ε4), (1)

where the probability is over A,B chosen as in the P-test.

Theorem 2.2 can be proved by adapting the analysis of [IKW09] (in particular, Sections 3.4
and 4) to the setting of the P -test, while relying on a lemma of [IKW09]. For completeness, the
proof is given in Appendix A.

Working with randomized assignments. As observed by [IKW09], Theorem 2.2 works in
even stronger settings. Suppose that Π is a randomized function, i.e., a function of both its input
and some additional randomness. Then, Theorem 2.2 still holds for Π, where the probability in (1)
is over both the choice of A and B, and over the internal randomness of Π. We will rely on this
fact in a crucial way in this work.

10

2.2 Sampling tools

The following is the standard definition of a sampler, stated in the terminology of graphs, see e.g.
[IJKW08].

Definition 2.3 (Sampler Graph). A bipartite graph G = (L,R,E) is said to be an (ε, δ)-sampler
if, for every function f : L→ [0, 1], there are at most δ |R| vertices u ∈ R for which∣∣Ev∈N(u)[f(v)]− Ev∈L[f(v)]

∣∣ > ε.

Observe that if G is an (ε, δ)-sampler, and if F ⊂ L, then by considering the function f ≡ 1F we
get that there are at most δ |R| vertices u ∈ R for which∣∣∣∣ Pr

v∈N(u)
[v ∈ F]− Pr

v∈L
[v ∈ F]

∣∣∣∣ > ε.

The following lemma is stated in [IKW09, Lemma 2.2] and is proved implicitly in [IJKW08, Lemma
2.9]. For completeness, we include its proof.

Lemma 2.4 (Subspace-point sampler [IJKW08]). Let d′ < d be natural numbers, let V be a linear
space over a finite field F, and let W be a fixed d′-subspace of V . Let G be the bipartite graph
whose left vertices are all points of V and whose right vertices are all d-subspaces of V that contain
W . We place an edge between a d-subspace X and x ∈ V if and only if x ∈ X. Then G is an
(τ + 1

|F|d−d′
, 1

|F|d−d′−2·τ2
)-sampler for every τ > 0.

Proof. Fix a function f : V → [0, 1]. We show that for a uniformly distributed d-subspace X ⊆ V
that contains W it holds with probability at least 1− 1

|F|d−d′−2·τ2
that

|Ex∈X [f(x)]− Ev∈V [f(v)]| ≤ τ +
1

|F|d−d′
.

Let W be a fixed subspace of V for which V = W ⊕W . Let fW : W → [0, 1] be the function
that maps each vector w of W to Ev∈w+W [f(v)], and observe that Ev∈V [f(v)] = Ew∈W [fW (w)].
Furthermore, observe that every d-subspace X that contains W can be written as X = W ⊕ U
where U is a (d− d′)-subspace of W , and moreover that Ex∈X [f(x)] = Eu∈U [fW (u)]. Thus, it
suffices to prove that for a uniformly distributed (d− d′)-subspace U of W it holds with probability
at least 1− 1

|F|d−d′−2·τ2
that

∣∣Eu∈U [fW (u)]− Ew∈W [fW (w)]
∣∣ ≤ τ +

1

|F|d−d′
. (2)

To that end, let U be a uniformly distributed (d− d′)-subspace of W . Let S1 be a uniformly

distributed set of Q def= |F|d−d
′
−1

|F|−1 vectors of U such that every two vectors in S1 are linearly indepen-
dent3. For every α ∈ F∗ let Sα be the set obtained by multiplying every vector in S1 by α. Observe
that all the sets Sα have the property that every two vectors in Sα are linearly independent, and

3Such a set can be sampled, for example, by iteratively choosing a uniformly distributed vector of U that is linearly
independent from each of the previously chosen vectors individually. It is not hard to see that such a process will

halt after choosing Q
def
= |F|d−d′−1

|F|−1
vectors.

11

that the sets Sα form a partition of U\ {0}. We will show that for every α ∈ F∗ it holds with
probability at least 1− 1

|F|d−d′−1·τ2
that

∣∣Eu∈Sα [fW (u)]− Ew∈W [fW (w)]
∣∣ ≤ τ,

and the required result will follow by taking the union bound over all α ∈ F∗, and by noting that
the vector 0 contributes at most 1

|F|d−d′
to the difference in Inequality 2.

Fix α ∈ F∗, and let s1, . . . , sQ be the vectors in Sα. It is a known fact that s1, . . . , sQ are
pair-wise independent and uniformly distributed vectors of W (over the random choice of U).
This implies that fW (s1), . . . , fW (sQ) are pair-wise independent random variables with expectation
Ew∈W [fW (w)], and therefore by the Chebyshev inequality it follows that

Pr

[∣∣∣∣∣ 1
Q

Q∑
i=1

fW (si)− Ew∈W [fW (w)]

∣∣∣∣∣ > τ

]
≤ 1
Q · τ2

≤ 1

|F|d−d′−1 · τ2
,

as required. �

2.3 Constraint graphs and PCPs

As discussed in the introduction, the focus of this work is on claims that can be verified by reading
a small number of symbols of the proof. A PCP system for a language L is an oracle machine M ,
called a verifier, that has oracle access to a proof π over an alphabet Σ. The verifier M reads the
input x, tosses r coins, makes at most q “oracle” queries into π, and then accepts or rejects. If x
is in the language then it is required that M accepts with probability 1 for some π, and otherwise
it is required that M accepts with probability at most ε for every π. More formally:

Definition 2.5. Let r, q : N→ N, and let Σ be a function that maps the natural numbers to finite
alphabets. A (r, q)Σ-PCP verifier M is a probabilistic polynomial time oracle machine that when
given input x ∈ {0, 1}∗, tosses at most r(|x|) coins, makes at most q (|x|) non-adaptive queries to
an oracle that is a string over Σ(|x|), and outputs either “accept” or “reject”. We refer to r, q, and
Σ as the randomness complexity, query complexity, and proof alphabet of the verifier respectively.

Remark 2.6. Note that for an (r, q)Σ-PCP verifier M and an input x, we can assume without loss
of generality that the oracle is a string of length at most 2r(|x|) · q(|x|), since this is the maximal
number of different queries that M can make. Hence, it is unnecessary to keep track of the proof
length of the verifier.

Definition 2.7. Let r, q and Σ be as in Definition 2.5, let L ⊆ {0, 1}∗ and let ε : N → [0, 1).
We say that L ∈ PCPε,Σ [r, q] if there exists an (r, q)Σ-PCP verifier M that satisfies the following
requirements:

• Completeness: For every x ∈ L, there exists π ∈ Σ (|x|)∗ such that Pr [Mπ(x) accepts] = 1.

• Soundness: For every x /∈ L and for every π ∈ Σ (|x|)∗ it holds that Pr [Mπ(x) accepts] ≤ ε (|x|).

One possible formulation of the PCP theorem is as follows.

Theorem 2.8 (PCP Theorem [AS98, ALM+98]). There exist universal constant ε ∈ (0, 1) and a
finite alphabet Σ such that NP ⊆ PCPε,Σ [O(log n), 2].

12

PCPs that have query complexity 2 correspond to graphs in a natural way: Consider the action
of an (r, 2)Σ-verifier M on some fixed string x, and let r def= r(|x|),Σ def= Σ(|x|). The verifier M
is given access to some proof string π of length `, and may make 2r possible tests on this string,
where each such test consists of making two queries to π and deciding according to the answers.
We now view the action of M as a graph in the following way. We consider the graph G whose
vertices are the coordinates in [`], and that has an edge for each possible test of the verifier M . The
endpoints of an edge e of G are the coordinates that are queried by M in the test that corresponds
to e. We also associate an edge e with a constraint ce ∈ Σ × Σ, which contains all the pairs of
answers that make M accept when performing the test that corresponds to e. We think of π as
an assignment that assigns the vertices of G values in Σ, and say that π satisfies an edge (u, v) if
(π(u), π(v)) ∈ c(u,v). If x ∈ L, then it is required that there exists some assignment π that satisfies
all the edges of G, and otherwise it is required that every assignment satisfies at most ε fraction of
the edges. This correspondence is called the FGLSS correspondence [FGL+96]. We turn to state
it formally:

Definition 2.9 (Constraint graph). A (directed) constraint graph is a directed graph G = (V,E)
together with an alphabet Σ, and, for each edge (u, v) ∈ E, a binary constraint cu,v ⊆ Σ × Σ.
The size of G is the number of edges of G. The graph is said to have projection constraints if it
is bipartite with all the edges directed from the left to the right, and every constraint cu,v has an
associated function fu,v : Σ→ Σ such that cu,v is satisfied by (a, b) if and only if fu,v(a) = b.
Given an assignment π : V → Σ, we define

SAT(G, π) = Pr
(u,v)∈E

[(π(u), π(v)) ∈ cu,v] and SAT(G) = max
π

(SAT(G, π)).

We also denote UNSAT(G, π) = 1− SAT(G, π) and similarly UNSAT(G) = 1− SAT(G).

Remark 2.10. Note that Definition 2.9 uses directed graphs, while the common definition of
constraint graphs refers to undirected graphs.

Remark 2.11. Note that if the graph G has projection constraints, then this is simply a label
cover instance with projection constraints [AL96].

Proposition 2.12 (FGLSS correspondence [FGL+96]). The following two statements are equiva-
lent:

• L ∈ PCPε,Σ [r, 2].

• There exists a polynomial-time algorithm that transforms strings x ∈ {0, 1}∗ to constraint
graphs Gx of size 2r(|x|) with alphabet Σ (|x|) such that: (1) if x ∈ L then SAT(Gx) = 1, and
(2) if x 6∈ L then SAT(Gx) ≤ ε.

Given a PCP system for L, we refer to the corresponding family of graphs {Gx} where x ranges over
all possible instances as its underlying graph family. If the graphs {Gx} have projection constraints
then we say that the PCP system has the projection property.

Using the [FGL+96] correspondence, we can rephrase the PCP theorem in the terminology of
constraint graphs:

Theorem 2.13 (PCP Theorem for constraint graphs). There exist universal constant ε ∈ (0, 1)
and a finite alphabet Σ such that for every language L ∈ NP the following holds: There exists a
polynomial time reduction that on input x ∈ {0, 1}∗, outputs a constraint graph Gx such that if
x ∈ L then SAT(Gx) = 1 and otherwise SAT(Gx) ≤ ε.

13

Remark 2.14. The connection between PCPs and approximation problems (such as Proposi-
tion 2.12) was discovered by [FGL+96]. However, the precise correspondence between PCPs and
constraint graphs that is given in Proposition 2.12 was only stated for the first time by [ALM+98].
Still, in the rest of this paper we refer to Proposition 2.12 as the [FGL+96] correspondence.

Remark 2.15. Note the tight relationship between the randomness complexity of the PCP and
the size of the corresponding constraint graphs. In particular, observe that PCP verifiers with ran-
domness complexity O(log n) correspond to constraint graphs of polynomial size. This relationship
is one of the main reasons for the study of the randomness complexity of PCP verifiers.

Moreover, recall that the work of [MR08] constructs PCPs that are very randomness efficient,
i.e., have randomness complexity (1 + o(1)) log n (see also Remark 6.27). This randomness efficiency
is translated into constraints graphs of almost-linear size, namely n1+o(1).

2.4 Basic facts about random subspaces

In this section we present two useful propositions about random subspaces. The following proposi-
tion says that a uniformly distributed subspace is independent from every fixed subspace with high
probability.

Proposition 2.16. Let d, d′ ∈ N such that d > 2d′, and let V be a d-dimensional space. Let W1

be a uniformly distributed d′-subspace of V , and let W2 be a fixed d′-subspace of V . Then,

Pr[W1 ∩W2 = {0}] ≥ 1− 2 · d′/ |F|d−2·d′ .

Proof. Suppose that W1 is chosen by choosing random basis vectors v1, . . . , vd′ one after the other.
It is easy to see that W1∩W2 6= {0} only if vi ∈ span (W2 ∪ {v1, . . . , vi−1}) for some i ∈ [d′]. For each
fixed i, the vector vi is uniformly distributed in V \span {v1, . . . , vi−1}, and therefore the probability
that vi ∈ span (W2 ∪ {v1, . . . , vi−1}) for a fixed i is at most

|span (W2 ∪ {v1, . . . , vi−1})|
|V \span {v1, . . . , vi−1}|

=
|F|d

′+i−1

|F|d − |F|i−1

≤ 2 · |F|d
′+i−1

|F|d
(3)

≤ 2 · |F|2·d
′−1

|F|d

≤ 2

|F|d−2·d′ ,

where Inequality 3 can be observed by noting that |F|i−1 ≤ |F|d−1 ≤ 1
2 · |F|

d. By the union bound,
the probability that this event occurs for some i ∈ [d′] is at most 2·d′

|F|d−2·d′ . It follows that the

probability that W1 ∩W2 6= {0} is at most 2·d′
|F|d−2·d′ as required. �

The following proposition says that the span of d′ uniformly distributed vectors is with high
probability a uniformly distributed d′-subspace.

Proposition 2.17. Let V be a d-dimensional space over a finite field F, let w1, . . . , wd′ be indepen-
dent and uniformly distributed vectors of V , and let W = span {w1, . . . , wd′}. Then, with probability
at least 1 − d′/ |F|d−d

′
it holds that dimW = d′. Furthermore, conditioned on the latter event, W

is a uniformly distributed d′-subspace of V .

14

Proof. The fact that dimW = d′ with probability at least 1−d′/ |F|d−d
′
can be proved in essentially

the same way as Proposition 2.16. To see that conditioned on the latter event it holds that
the subspace W is uniformly distributed, observe that since w1, . . . , wd′ were originally chosen to
be uniformly distributed, all the possible d′-sets of linearly independent vectors have the same
probability to occur. �

Finally, the following proposition shows the equivalence of two different ways of choosing sub-
spaces A1, A2 ⊆ B where A1 and A2 are independent.

Proposition. Let V be a linear space over a finite field F, and let d0, d1 ∈ N be such that d0 <
d1 < dimV . The following two distributions over d0-subspaces A1, A2 and a d1-subspace B are the
same:

1. Choose B to be a uniformly distributed d1-subspace of V , and then choose A1 and A2 to be
two uniformly distributed and independent d0-subspaces of B.

2. Choose A1 and A2 to be two uniformly distributed and independent d0-subspaces of V , and
then choose B to be a uniformly distributed d1-subspace of V that contains A1 and A2.

Proof. Observe that choosing A1, A2, B under the first distribution amounts to choosing d1

uniformly distributed and linearly independent vectors in V (those vectors will serve as the basis
of B), and then choosing two disjoint subsets of those vectors to serve as the basis of A1 and as
the basis of A2. On the other hand, choosing A1, A2 and B under the second distribution amounts
to choosing d0 uniformly distributed and linearly independent vectors in V to serve as the basis of
A1, then choosing another d0 uniformly distributed and linearly independent vectors in V to serve
as the basis of A2 while making sure that this basis is also linearly independent from the basis of
A1, and then completing the basis of A1 and the basis of A2 to a basis of B. It is easy to see that
those two distributions over a set of d1 vectors and its two disjoint subsets are identical. �

2.5 Similarity of distributions

In this section we introduce a notion of “similarity of distributions”, which we will use in the second
part of the paper. Let X1 and X2 be two random variables that take values from a set X , and let
γ ∈ (0, 1]. We say that X1 and X2 are γ-similar if for every x ∈ X it holds that

γ · Pr [X1 = x] ≤ Pr [X2 = x] ≤ 1
γ
· Pr [X1 = x] .

Note that if X1 and X2 are γ-similar then actually it holds for every S ⊆ X that

γ · Pr [X1 ∈ S] ≤ Pr [X2 ∈ S] ≤ 1
γ
· Pr [X1 ∈ S] ,

The following claim says roughly that if f is a randomized function, then the random variable
f(X1) is γ-similar to f(X2).

Claim 2.18. Let X1 and X2 be two random variables that take values from a set X that are γ-
similar. Let Y1 and Y2 be two random variables that take values from a set Y such that for every
x ∈ X , y ∈ Y it holds that

Pr [Y1 = y|X1 = x] = Pr [Y2 = y|X2 = x] .

Then, the variables Y1, Y2 are γ-similar.

15

Proof. It holds that

Pr [Y1 = y] =
∑
x∈X

Pr [Y1 = y|X1 = x] · Pr [X1 = x]

=
∑
x∈X

Pr [Y2 = y|X2 = x] · Pr [X1 = x]

≥
∑
x∈X

Pr [Y2 = y|X2 = x] · γ · Pr [X2 = x]

= γ · Pr [Y2 = y] .

Similarly it can be proved that Pr [Y1 = y] ≤ 1
γ · Pr [Y2 = y]. �

2.6 Expanders

Expanders are graphs with certain properties that make them extremely useful for many appli-
cations in theoretical computer science. Below we give a definition of expanders that suits our
needs.

Definition 2.19. Let G = (V,E) be a d-regular graph. Let E
(
S, S

)
be the set of edges from a

subset S ⊆ V to its complement. We say that G has edge expansion h if for every S ⊆ V such that
|S| ≤ |V | /2 it holds that ∣∣E(S, S)

∣∣ ≥ h · d0 · |S| .

A useful fact is that there exist constant degree expanders over any number of vertices:

Fact 2.20. There exist d0 ∈ N and h0 > 0 such that there exists a polynomial-time constructable
family {Gn}n∈N of d0-regular graphs Gn on n vertices that have edge expansion h0 (such graphs are
called expanders).

3 Main theorem

In this section we prove our main PCP theorem (Theorem 1.1), which asserts the existence of two-
query PCPs with soundness error ε(n) for any function 1/nκ ≤ ε(n) ≤ 1/poly log n. To that end,
we use the PCP theorem for graphs (Theorem 2.13) to reduce the problem of deciding membership
of a string x in the language L to the problem of checking the satisfiability of a constraint graph
with constant soundness error. We then show that every constraint graph can be transformed into
one that has “linear structure”, defined shortly below. This is done in Lemma 3.3, which directly
proves Theorem 1.4 (the existence of PCPs with linear structure). Finally, in Lemma 3.4 we prove a
derandomized parallel repetition theorem for constraint graphs with linear structure. Theorem 1.1
follows by combining the two lemmas. We begin by defining the notion of a graph with linear
structure.

Definition 3.1 (Linear Structure). We say that a directed graph G has a linear structure if it
satisfies the following conditions:

1. The vertices of G can be identified with the linear space Fm, where F is a finite field and
m ∈ N.

2. We identify the set of pairs of vertices (Fm)2 with the linear space F2m. Using this identifi-
cation, the edges E of G are required to form a linear subspace of F2m.

16

3. We require that left (E) = right (E) = Fm. In other words, this means that every vertex of G
is both the left endpoint of some edge and the right point of some edge.

Remark 3.2. We mention that although it is not required by Definition 3.1, a graph with linear
structure must be regular, i.e., all the vertices in the graph have the same in-degree and out-degree.
This is a straightforward corollary of Items 2 and 3 of the definition.

The following lemmas are proved in Sections 4 and 5 respectively.

Lemma 3.3 (Linear Structure Embedding). There exists a polynomial time procedure that satisfies
the following requirements:

• Input:

– A constraint graph G of size n over alphabet Σ.

– A finite field F of size q.

• Output: A constraint graph G′ = (Fm, E′) such that the following holds:

– G′ has a linear structure.

– The size of G′ is at most O
(
q2 · n

)
.

– G′ has alphabet ΣO(logq(n)).

– If G is satisfiable then G′ is satisfiable.

– If UNSAT (G) ≥ ρ then UNSAT (G′) ≥ Ω
(

1
q·logq(n) · ρ

)
.

Lemma 3.4 (Derandomized Parallel Repetition). There exist a universal constant h and a poly-
nomial time procedure that satisfy the following requirements:

• Input:

– A finite field F of size q

– A constraint graph G = (Fm, E) over alphabet Σ that has a linear structure.

– A parameter d0 ∈ N such that d0 < m/h2. This parameter will determine the dimension
of linear subspaces used in the derandomized parallel repetition, and thus together with
q will determine the number of repetitions used in the derandomized parallel repetition.

– A parameter ρ ∈ (0, 1) such that ρ ≥ h · d0 · q−d0/h. Intuitively, the parameter ρ should
be chosen such that 1− ρ is an upper bound on the soundness error of G.

• Output: A constraint graph G′ such that the following holds:

– G′ has size nO(d0).

– G′ has alphabet ΣqO(d0)
.

– If G is satisfiable then G′ is satisfiable.

– If SAT (G) < 1− ρ then SAT (G′) < h · d0 · q−d0/h.

– G′ has the projection property.

We turn to prove the main theorem from the above lemmas.

17

Theorem (1.1, restated). There exists a constant κ > 0 such that for every function ε : N→ (0, 1)
satisfying 1/nκ ≤ ε(n) ≤ 1/poly log n the following holds: Every language L ∈ NP has a two-query
PCP system with perfect completeness, soundness error 1/poly log n, alphabet size 21/poly(ε), proof
length poly (n), and randomness complexity O(log n). Furthermore, the verifier in this PCP system
makes only ‘projection’ queries.

Proof. Let κ > 0 be a constant to be chosen later, and let ε : N → (0, 1) be a function satisfying
1/nκ ≤ ε(n) ≤ 1/poly log n. Fix a language L ∈ NP. We show that L has a two-query PCP
system with perfect completeness, soundness error ε(n) and alphabet size 21/poly(ε), which has the
projection property. By the [FGL+96] correspondence (Proposition 2.12), it suffices to show a
polynomial time procedure that on input x ∈ {0, 1}∗, outputs a constraint graph G′ of size poly (n)
such that the following holds: If x ∈ L then G′ is satisfiable (i.e. SAT(G′) = 1), and if x 6∈ L then
SAT(G′) ≤ ε(n). The procedure begins by transforming x, using the PCP theorem for constraint
graphs (Theorem 2.13), to a constraint graph G of size n = poly |x| such that if x ∈ L then
SAT (G) = 1 and if x 6∈ L then SAT (G) ≤ ε0, where ε0 ∈ (0, 1) is a universal constant that does
not depend on x. Let n = poly (|x|) be the size of G, and let ρ0 = 1− ε0.

Next, the procedure sets F to be the smallest field of size at least 1/ (ε(n))c for some constant
c > 1 to be determined later, and sets q = |F|. Note that q ≥ poly log n. The procedure now invokes
Lemma 3.3 (linear structure embedding) on input G and F, thus obtaining a new constraint graph
G1. Note that by Lemma 3.3 if UNSAT (G) ≥ ρ0, then ρ1

def= UNSAT (G1) ≥ Ω
(

1
q·logq(n) · ρ0

)
.

Finally, the procedure sets d0 to be an arbitrary constant such that ρ1 ≥ h · d0 · q−d0/h . Note
that this is indeed possible, since logq (1/ρ1) is a constant that depends only on ρ (here we use
the fact that q ≥ poly log n). Finally, the procedure invokes Lemma 3.4 (derandomized parallel
repetition) on input G1, F, ρ1, and d0, and outputs the resulting constraint graph G′. We note
that we use here the assumption that ε(n) ≥ nκ, and choose κ to be sufficiently small, in order to
guarantee that G1 satisfies the requirements of Lemma 3.4.

It remains to analyze the parameters of G′. It is not hard to see that G′ has size nO(d0) and
alphabet ΣqO(d0)

= Σ1/poly(ε). Furthermore, if UNSAT (G) ≥ ρ, then UNSAT (G1) ≥ ρ1. Therefore,
by Lemma 3.4 and by the choice of d0, it holds that SAT(G′) ≤ O(1/qΩ(1)). Since q = 1/ (ε(n))c,
it holds for sufficiently large c that SAT(G′) ≤ ε(n), as required. �

Remark 3.5. Recall that [MR08] prove a stronger version of the main theorem, saying that for
every soundness error ε(n) > nκ, not necessarily upper bounded by 1/poly log n, it holds that NP
has a PCP system with soundness ε and alphabet size exp (1/poly(ε)) (Theorem 1.2). If one could
prove a stronger version of Lemma 3.3 (Linear Structure Embedding) in which the soundness of G′

is ρ/poly (q) and the alphabet size is |Σ|poly(q) then the stronger Theorem 1.2 would follow using
the same proof as above, without using a composition technique as in [MR08, DH09], by choosing
q to be sufficiently small.

Remark 3.6. The reduction described in Theorem 1.1 yields graphs of polynomial size, but not
of nearly-linear size as in [MR08] (see Remark 2.6). In fact, the construction of graphs with linear
structure (Lemma 3.3) is nearly linear size (taking an instance of size n to an instance of size
q2 · n). The part that incurs a polynomial and not nearly-linear blow-up is the derandomized
parallel repetition (Lemma 3.4) that relies on the derandomized direct product. It is possible that
a more efficient derandomized direct product may lead to a nearly-linear size construction in total.

18

4 PCPs with Linear Structure

In this section we prove Lemma 3.3 (linear structure embedding), which implies Theorem 1.4 (the
existence of PCPs with linear structure) by combining it with the PCP theorem (Theorem 2.13).
The lemma which says that every constraint graph can be transformed into one that has linear
structure. To this end, we use a family of structured graphs called de-Bruijn graphs. We show that
de-Bruijn graphs have linear structure, and that every constraint graph can be embedded in some
sense on a de-Bruijn graph. This embedding technique is a variant of a technique introduced by
Babai et. al. [BFLS91] and Polishchuk and Spielman [PS94] for embedding circuits on de-Bruijn
graphs. We begin by defining de-Bruijn graphs.

Definition 4.1. Let Λ be a finite alphabet and let m ∈ N. The de Bruijn graph DBΛ,m is the
directed graph whose vertices set is Λm such that each vertex (α1, . . . , αm) ∈ Λm has outgoing
edges to all the vertices of the form (α2, . . . , αm, β) for β ∈ Λ.

Remark 4.2. We note that previous works used a slightly different notion, the “wrapped de Bruijn
graph”, which is a layered graph in which the edges between layers are connected as in the de Bruijn
graph. Also, we note that previous works fixed Λ to be the binary alphabet, while we we use a
general alphabet.

Lemma 3.3 follows easily from the following two propositions. Proposition 4.3 says that
de Bruijn graphs have linear structure. Proposition 4.4 says that any constraint graph can be
embedded on a de Bruijn graph.

Proposition 4.3. Let F be a finite field and let m ∈ N. Then, the de Bruijn graph DBF,m has
linear structure.

Proof. Items 1 and 3 of the definition of linear structure (Definition 3.1) follow immediately from
the definition of de Bruijn graphs. To see that Item 2 holds, observe that in order for a tuple in
F2m to be an edge of DBF,m, it only needs to satisfy equality constraints, which are in turn linear
constraints. Thus, the set of edges of DBF,m form a linear subspace of F2m. �

Proposition 4.4 (Embedding on de-Bruijn graphs). There exists a polynomial time procedure that
satisfies the following requirements:

• Input:

– A constraint graph G of size n over alphabet Σ.

– A finite alphabet Λ.

– A natural number m such that |Λ|m ≥ 2 · n

• Output: A constraint graph G′ such that the following holds:

– The underlying graph of G′ is the de Bruijn graph DBΛ,m.

– The size of G′ is |Λ|m+1.

– G′ has alphabet ΣO(m).

– If G is satisfiable then G′ is satisfiable.

– If UNSAT (G) ≥ ρ then UNSAT (G′) ≥ Ω
(

n
|Λ|m+1·m · ρ

)
.

19

Lemma 3.3 (linear structure embedding) is obtained by invoking Proposition 4.4 with Λ = F,
m =

⌈
logq (2 · n)

⌉
and combining it with Proposition 4.3. The rest of this section is devoted to

proving Proposition 4.4, and is organized as follows: In Section 4.1 we give the required background
on the routing properties of de Bruijn graphs. Then, in Section 4.2, we give an outline of the proof
of Proposition 4.4. Finally, we give the full proof of the proposition in Section 4.3.

4.1 de Bruijn graphs as routing networks

The crucial property of the de Bruijn graphs that we use is that the de Bruijn graph is a permutation
routing network. To explain the intuition that underlies this notion, let us think of the vertices of the
de Bruijn graph as computers in a network, such that two computers can communicate if and only
if they are connected by an edge. Furthermore, sending a message from a computer to its neighbor
takes one unit of time. Suppose that each computer in the network wishes to send a message to
some other computer in the network, and furthermore each computer needs to receive a message
from exactly one computer (that is, the mapping from source computers to target computers is a
permutation). Then, the routing property of the de Bruijn network says that we can find paths in
the network that have the following properties:

1. Each path corresponds to a message that needs to be sent, and goes from the message’s source
computer to its target computer.

2. If all the messages are sent simultaneously along their corresponding paths, then at each unit
of time, each computer processes exactly one message. By “processing” we mean that the
computer receives the message from one of its neighbors and sends it to one of its neighbors.

3. The paths are of length exactly 2 ·m. This means that if all the messages are sent simulta-
neously along their corresponding paths, then after 2 ·m units of time all the messages will
reach their destination.

Formally, this property can be stated as follows.

Fact 4.5. Let DBΛ,m be a de-Brujin graph. Then, given a permutation µ on the vertices of DBΛ,m

one can find a set of undirected paths of length l = 2m which connect each vertex v to µ(v) and
which have the following property: For every j ∈ [l], each vertex v is the j-th vertex of exactly one
path. Furthermore, finding the paths can be done in time that is polynomial in the size of DBΛ,m.

Fact 4.5 is proved in [Lei92] for the special case of Λ = {0, 1}. The proof of the general case
essentially follows the original proof, except that the looping algorithm of Beneš is replaced with
the decomposition of d-regular graphs to d perfect matchings. For completeness, we give the proof
of the general case in Appendix B.

Remark 4.6. Note that the paths mentioned in Fact 4.5 are undirected. That is, if a vertex u
appears immediately after a vertex v in path, then either (u, v) or (v, u) are edges of DBΛ,m.

4.2 Proof overview

Suppose we are given as input a constraint graph G which we want to embed on DB = DBΛ,m.
Recall that the size of G is at most |Λ|m, so we may identify the vertices of G with some of the
vertices of DB.

20

Handling degree 1 As a warm up, assume that G has degree 1, i.e., G is a perfect matching.
In this case, we construct G′ as follows. We choose the alphabet of G′ to be Σl for l def= 2m. Fix
any assignment π to G. We describe how to construct a corresponding assignment π′ to G′. We
think of the vertices of G as computers, such that each vertex v wants to send the value π(v) as a
message to its unique neighbor in G. Using the routing property of the de Bruijn graph, we find
paths for routing those messages along the edges of G′. Recall that if all the messages are sent
simultaneously along those paths, then every computer has to deal with one packet at each unit of
time, for l units of time. We now define the assignment π′ to assign each vertex v of G′ a tuple in
Σl whose j-th element is the message with which v deals at the j-th unit of time.

We define the constraints of G′ such that they verify that the routing is done correctly. That
is, if the computer u is supposed to send a message to a vertex v between the j-th unit of time
and the (j + 1)-th unit of time, then the constraint of the edge between u and v checks that
π′ (u)j = π′(v)j+1. Furthermore, for each edge (u, v) of G, the constraints of G′ check that the
values π′ (v)l and π′ (v)1 satisfy the edge (u, v). This condition should hold because if π′ was
constructed correctly according to π then π′ (v)l = π(u) and π′ (v)1 = π(v). It should be clear
that the constraints of G′ “simulate” the constraints of G. We discuss the exact behavior of the
soundness error in the detailed proof.

Handling arbitrary degree graphs Using the expander replacement technique of Papadim-
itriou and Yannakakis [PY91], we may assume that G is d-regular for some universal constant d.
The d-regularity of G implies that the edges of G can be partitioned to d disjoint perfect matchings
µ1, . . . , µd in polynomial time (see, e.g., [Cam98, Proposition 18.1.2]). Now, we set the alphabet
of G′ to be

(
Σl
)d, and handle each of the matchings µi as before, each time using a “different

part” of the alphabet symbols. In other words, the alphabet of G′ consists of d-tuples of Σl, and
so the constraints used to handle each matching µi will refer to the i-th coordinates in those tu-
ples. Finally, for vertex v, its constraints will also check that the message it sends in each of the d
paths is the same. In other words, if π′ (v) = (σ1, . . . , σd) ∈

(
Σl
)d then the constraints will check

that (σ1)1 = . . . = (σd)1. As before, the constraints of resulting graph G′ “simulate” the constraints
of the original graph G.

Remark 4.7. Observe that the foregoing proof used only the routing property of de Bruijn graphs,
and will work for any graph that satisfies this property. In other words, Proposition 4.4 (embedding
on de-Bruijn graphs) holds for any graph for which Fact 4.5 holds.

4.3 Detailed proof

We use the following version of the expander-replacement technique of [PY91].

Lemma 4.8 ([Din07, Lemma 3.2]). There exist universal constants c, d ∈ N and a polynomial time
procedure that when given as input a constraint graph G of size n outputs a constraint graph G′ of
size 2 · d · n over alphabet Σ such that the following holds:

• G′ has 2 · n vertices and is d-regular.

• If G is satisfiable then so is G′.

• If UNSAT (G) ≥ ρ then UNSAT (G′) ≥ ρ/c.

We turn to proving Proposition 4.4 (embedding on de-Bruijn graphs). When given as input
a constraint graph G, a finite alphabet Λ and a natural number m such that |Λm| ≥ 2 · n, the

21

procedure of Proposition 4.4 acts as follows. The procedure begins by invoking Lemma 4.8 on G,
resulting in a d-regular constraint graph G1 over 2·n vertices. Then, the vertices of G1 are identified
with a subset of the vertices of DB = DBΛ,m (note that this is possible since |Λm| ≥ 2 · n).

Next, the procedure partitions the edges of G1 to d disjoint perfect matchings, and views those
matchings as permutations µ1, . . . , µd on the vertices of DB in the following way: Given a vertex
v of DB, if v is identified with a vertex of G1 then µi maps v to its unique neighbor in G via
the i-th matching, and otherwise µi maps v to itself. The procedure then applies Fact 4.5 to each
permutation µi resulting in a set of paths Pi of length l

def= 2m. Let P =
⋃
Pi.

Finally, the procedure constructs G′ in the following way. We set the alphabet of G′ to be Σl·d,
viewed as

(
Σl
)d. If σ ∈

(
Σl
)d, and we denote σ = (σ1, . . . , σd), then we denote by σi,j the element

(σi)j ∈ Σ. To define the constraints of G′, let us consider their action on an assignment π′ of G′.
An edge (u, v) of DB′ is associated with the constraint that accepts if and only if all the following
conditions hold:

1. For every i ∈ [d], the values
(
π′ (u)i,l , π

′ (u)i,1
)

satisfy the edge
(
µ−1
i (u), u

)
of G.

2. It holds that π′ (u)1,1 = . . . = π′ (u)d,1 and that π′ (v)1,1 = . . . = π′ (v)d,1.

3. For every i ∈ [d] and j ∈ [l − 1] such that u and v are the j-th and (j + 1)-th vertices of a
path in p ∈ Pi respectively, it holds that π′ (u)i,j 6= π′ (v)i,j+1.

4. Same as Condition 3, but when v is the j-th vertex of p and u is its (j + 1)-th vertex.

The size of G′ is indeed |Λ|m+1, since the graph is |Λ|-regular and contains |Λ|m vertices. Further-
more, if G is satisfiable, then so is G′: The satisfiability of G implies the satisfiability of G1, so
there exists a satisfying assignment π1 for G1. We construct a satisfying assignment π′ from π1 by
assigning each vertex v of G′ a value π′ (v), such that for each i ∈ [d], if v is the j-th vertex of a
path p ∈ Pi that connects the vertices u and µi(u), then we set π′ (v)i,j = π1(u). Note that this is
well defined, since every vertex is the j-th vertex of exactly one path in Pi.

It remains to analyze the soundness of G′. Suppose that UNSAT (G) ≥ ρ. Then, by Lemma 4.8
it holds that UNSAT (G1) ≥ ρ/c. Let π′ be an assignment to G′ that minimizes the fraction of
violated edges of G′. Without loss of generality, we may assume that for every vertex v of the DB
it holds that π′ (v)1,1 = . . . = π′ (v)d,1: If there is a vertex v that does not match this condition,
all of the edges attached to v are violated and therefore we can modify the π′(v) to match this
condition without increasing the fraction of violated edges of π′. Define an assignment π1 to G1 by
setting π1(v) = π′ (v)1,1 (when v is viewed as a vertex of DB).

Since UNSAT (G1) ≥ ρ/c, it holds that π1 violates at least ρ/c fraction of the edges of G1, or in
other words π1 violates at least ρ · 2 · n · d/c edges of G1. Thus, there must exist a permutation µi
such that π1 violates at least ρ · 2 · n/c edges of G1 of the form (u, µi(u)). Fix such an edge
(u, µi(u)) and consider the corresponding path p ∈ Pi. Observe that π′ must violate at least one
of the edges of p: To see it, note that if π′ would satisfy all the edges on p, then it would imply
that π′ (µi(u))i,l = π1(u) and that π′ (µi(u))i,1 = π1(µi(u)), but the last two values violate the edge
(u, µi(u)) of G1, and therefore π′ must violate the last edge of p - contradiction. It follows that for
each of the ρ ·2 ·n/c edges of the matching µi that are violated by π1 it holds that π′ violates at least
one edge of their corresponding path. By averaging there must exist j ∈ [l] such that for at least
ρ · 2 · n/c · l edges of the matching µi it holds that π′ violates the j-th edge of their corresponding
path.

Now, by the definition of the paths in Pi, no edge of G′ can be the j-th edge of two distinct
paths in Pi, and therefore it follows that there at least ρ · 2 · n/c · l edges of G′ are violated by π′.

22

Finally, there are |Λ|m+1 edges in G′, and this implies that π′ violates a fraction of the edges of G′

that is at least
ρ · 2 · n/c · l
|Λ|m+1 = Ω

(
n

|Λ|m+1 · l
· ρ
)
,

as required. �

5 Derandomized Parallel Repetition of Constraint Graphs with
Linear Structure

In this section we prove Lemma 3.4, restated below, by implementing a form of derandomized
parallel repetition on graphs that have linear structure.

Lemma 5.1 (3.4, restated). There exist a universal constant h and a polynomial time procedure
that satisfy the following requirements:

• Input:

– A finite field F of size q

– A constraint graph G = (Fm, E) over alphabet Σ that has a linear structure.

– A parameter d0 ∈ N such that d0 < m/h2. This parameter will determine the dimension
of linear subspaces used in the derandomized parallel repetition, and thus together with
q will determine the number of repetitions used in the derandomized parallel repetition.

– A parameter ρ ∈ (0, 1) such that ρ ≥ h · d0 · q−d0/h. Intuitively, the parameter ρ should
be chosen such that 1− ρ is an upper bound on the soundness error of G.

• Output: A constraint graph G′ such that the following holds:

– G′ has size nO(d0).

– G′ has alphabet ΣqO(d0)
.

– If G is satisfiable then G′ is satisfiable.

– If SAT (G) < 1− ρ then SAT (G′) < h · d0 · q−d0/h.

– G′ has the projection property

The basic idea of the proof is as follows. G′ contains two kinds of vertices: the first kind
corresponds to small subspaces of the vertices space Fm, and of the other kind corresponds to small
subspaces of the edges space E, where in both cases “small subspaces” means O (d0)-dimensional
subspaces. A satisfying assignment Π to G′ is expected to be constructed in the following way:
Take a satisfying assignment π to G. For each vertex of G′ which is a subspace A of vertices, the
assignment Π should assign A to π|A. For each vertex of G′ which is a subspace F of edges, the
assignment Π should assign F to π|left(F)∪right(F).

The edges of G′ are constructed so as to simulate a test on Π to which we refer as the “E-test”,
and acts roughly as follows (see Figure 2 for the actual test): Choose a random subspace F of edges
and a random subspace A of endpoints of F , and accept if and only if the labeling of the endpoints
of the edges in F by Π (F) satisfies the edges and is consistent with the labeling of the vertices of
A by Π (A).

The intuition that underlies the soundness analysis of G′ is the following: The E-test performs
some form of a “derandomized direct product test” on Π - if we compare it to the P -test (Figure 1),

23

then the pair (A,F) here is analogous to the pair (A,B) there. Therefore, if Π (F) is consistent
with Π (A), the labeling Π (F) should be roughly consistent with some assignment π to G. There-
fore, by checking that the labeling Π (F) satisfies the edges in F , the E-test checks that π satisfies
many edges of π in parallel. In this sense, the E-test can be thought as a form of “derandomized
parallel repetition”.

The rest of this section is organized as follows. In Section 5.1 we provide a formal description
of the construction of G′ and analyze all its parameters except for the soundness. In order to
analyze the soundness of G′, we introduce in Section 5.2 a specialized direct product test. Finally,
in Section 5.3, we analyze the soundness of G′ by reducing it to the analysis of the specialized direct
product test.

Notation 5.2. Given a function f : U → Σ and two subsets S, T ⊆ U we denote by f|(S,T) the
pair of functions

(
f|S , f|T

)
.

Notation 5.3. Recall that in Notation 2.1 we denoted the notation f
α
≈ g (f

α
6≈ g) to mean

that f and g differ on at most (more than) α fraction of the elements of U . We now extend this
notation to pairs of functions. Given two pairs of functions f1, f2 : U → Σ and g1, g2 : V → Σ,
we denote by (f1, g1)

α
≈ (f2, g2) the fact that both f1

α
≈ f2 and g1

α
≈ g2, and otherwise we denote

(f1, g1)
α
6≈ (f2, g2).

5.1 The construction of G′

We begin by describing the construction of G′. Let G = (Fm, E) be the given constraint graph, let
d0 be the parameter from Lemma 3.4, and let d1 = h · d0 where h is the universal constant from
Lemma 3.4 to be chosen later. The graph G′ is bipartite. The right vertices of G′ are identified
with all the 2d0-subspaces of Fm (the vertex space of G). The left vertices of G′ are identified
with all the 2d1-subspaces of the edge space E of G. An assignment Π to G′ should label each
2d0-subspace A of Fm with a function from A to Σ, and each 2d1-subspace F of E with a function
that maps the endpoints of the edges in F to Σ. The edges of G′ are constructed such that they
simulate the action of the “E-test” described in Figure 2.

1. Let FL and FR be random d1-subspaces of E, and let

BL
def= left (FL) , BR

def= right (FR) , F
def= FL + FR.

FL and FR are chosen to be uniformly and independently distributed d1-subspaces of E
conditioned on dim(F) = 2d1, dim (BL) = d1, dim (BR) = d1, and BL ∩BR = {0}.

2. Let AL and AR be uniformly distributed d0-subspaces of BL and BR respectively, and
let

A
def= AL +AR.

3. Accept if and only if Π (F)|(AL,AR) = Π (A)|(AL,AR) and the assignment Π (F) satisfies
the edges in F .

Figure 2: The E-test

The completeness of G′ is clear. It is also clear that G′ has projection constraints. Let us
verify the size and alphabet-size of G′. The size of G′ is at most the number of 2d1-subspaces of E

24

1. Choose uniformly distributed pair of independent d1-subspaces B1, B2 of Fm.

2. Choose uniformly distributed pair of d0-subspaces A1 ⊆ B1, A2 ⊆ B2.

3. Accept if and only if Π (B1, B2)|(A1,A2) = Π (A1 +A2)|(A1,A2).

Figure 3: The S-test

multiplied by the number of 2d0-subspaces of Fm, which is |E|2d1 · |Fm|2d0 . It holds that d0 < d1,
and furthermore the linear structure of G′ implies that dimE ≥ m (by Item 3 of Definition 3.1),
so it follows that |Fm|2d0 ≤ |E|2d1 and thus |E|2d1 · |Fm|2d0 ≤ |E|4d1 . Finally, observe that the size
of G is n = |E|, so it follows that the size of G′ is at most n4d1 = nO(d0), as required.

For the alphabet size, recall that an edges subspace F is labeled by a function that maps the
endpoints of the edges to Σ. Such a function can be represented by a string in Σ2·q2·d1 , since each
2d1-subspace F contains q2d1 edges and each has two endpoints. It can be observed similarly that
the labels assigned by Π to 2d0-subspaces A of Fm can be represented by strings in Σ2·q2·d1 . The
alphabet of G′ is therefore Σ2·q2·d1 = ΣqO(d0)

, as required.

5.2 The specialized direct product test

In order to analyze the soundness of the E-test, we introduce a variant of the direct product test
of [IKW09] that is specialized to our needs. We refer to this variant as the specialized direct product
test, abbreviated the “S-test”.

Given an string π : Fm → Σ, we define its S-direct product Π (with respect to d0, d1 ∈ N) as
follows: Π assigns each 2d0-subspace A ⊆ Fm the function π|A, and assigns each pair of independent
d1-subspaces (B1, B2) the pair of functions π|(B1,B2).

We turn to consider the task of testing whether a given assignment Π is the S-direct product
of some string π : Fm → Σ. In our settings, we are given an assignment Π that assigns each
2d0-subspace A to a function a : A → Σ and each pair of independent d1-subspaces (B1, B2) to a
pair of functions b1 : B1 → Σ, b2 : B2 → Σ. We wish to check whether Π is a S-direct product of
some π : Fm → Σ. To this end we invoke the S-test, described in Figure 3.

It is easy to see that if Π is a S-direct product then the S-test always accepts. Furthermore,
it can be shown that if Π is “far” from being a S-direct product, then the S-test rejects with high
probability. As in the P-test, this holds even if Π is a randomized assignment. Formally, we have
the following result.

Theorem 5.4 (the soundness of the S-test). There exist universal constants h′, c ∈ N such that
the following holds: Let d0 ∈ N, d1 ≥ h′ · d0, and m ≥ h′ · d1, and let ε ≥ h′ · d0 · q−d0/h

′
,

α
def= h′ · d0 · q−d0/h

′
. Suppose that a (possibly randomized) assignment Π passes the S-test with

probability at least ε. Then there exists an assignment π : Fm → Σ for which the following holds.
Let B1, B2 be uniformly distributed and independent d1-subspaces of Fm, let A1 and A2 be uniformly
distributed d0-subspaces of B1 and B2 respectively, and denote A = A1 +A2. Then:

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2) and Π (B1, B2)

α
≈ π|(B1,B2)

]
= Ω (εc) . (4)

We defer the proof of Theorem 5.4 to Section 9.

Remark 5.5. Note that Equation 4 only says that Π is close to the S-direct product of π on pairs
(B1, B2), and not necessarily on 2d0-subspaces A. In fact, it could be also proved that Π is close
to the S-direct product of π on the 2d0-subspaces, but this is unnecessary for our purposes.

25

5.3 The soundness of the derandomized parallel repetition

In this section we prove the soundness of G′: namely, that if SAT (G) < 1− ρ, then

SAT(G′) ≤ ε def= h · d0 · q−d0/h,

where h is the universal constant from Lemma 3.4 (derandomized parallel repetition). We will
choose h to be sufficiently large such that the various inequalities in the following proof will hold.
To this end, we note that throughout all the following proof, increasing the choice of h does not
break any of our assumptions on h, so we can always choose a larger h to satisfy the required
inequalities.

Let h′ and c be the universal constants whose existence is guaranteed by Theorem 5.4 (the
soundness of the S-test), and let α denote the corresponding value from Theorem 5.4. We will
choose the constant h to be at least h′.

Let Π be an assignment to G′. Let us denote by T the event in which the E-test accepts Π.
With a slight abuse of notation, for a subspace F ⊆ E and an assignment π : Fm → Σ, we denote
by Π (F)

α
≈ π the claim that for at least 1 − α fraction of the edges e of F it holds that Π (F) is

consistent with π on both the endpoints of e, and otherwise we denote Π (F)
α
6≈ π. Our proof is

based on two steps:

• We will show (in Proposition 5.6 below) that if the test accepts with probability ε, then it
is “because” Π is consistent with some underlying assignment π : Fm → Σ. This is done
essentially by observing that the E-test “contains” an S-test, and reducing to the analysis of
the S-test.

• On the other hand, we will show (in Proposition 5.7 below) that for every assignment
π : Fm → Σ the probability that the test accepts while being consistent with π is negli-
gible. This is done roughly as follows: Any fixed assignment π is rejected by at least ρ
fraction of G’s edges. Furthermore, the subspace F queried by the test is approximately a
uniformly distributed subspace of E, and hence a good sampler of E. It follows F must
contain ≈ ρ fraction of edges of G that reject π, and therefore Π (F) must be inconsistent
with π.

The conclusions of each of the foregoing two steps clearly contradict each other, we therefore con-
clude that the E-test accepts with probability less than ε. We now state the two said propositions,
which formalize the foregoing two steps, and which are proved in Sections 5.3.1 and 5.3.2 respec-
tively.

Proposition 5.6. There exists ε0 = Ω (εc) such that the following holds: If Pr [T] ≥ ε, then there

exists an assignment π : Fm → Σ such that Pr
[
T and Π (F)

4·α
≈ π

]
≥ ε0.

Proposition 5.7. Let ε be as in Proposition 5.6. Then, for every assignment π : Fm → Σ it holds

that Pr
[
T and Π (F)

4·α
≈ π

]
< ε0.

Clearly, the two propositions together imply that Pr[T] ≤ ε, as required.

Before turning to the proofs of Propositions 5.6 and 5.7 let us state a useful claim that says
that if we take a random d-subspace of edges and project it to its left endpoints (respectively, right
endpoints), we get a random d-subspace of vertices with high probability.

26

Claim 5.8. Let d ∈ N and let Ea be a uniformly distributed d-subspace of E. Then, Pr [dim (left (Ea)) = d] ≥
1−d/qm−d, and conditioned on dim (left (Ea)) = d, it holds that left (Ea) is a uniformly distributed
d-subspace of Fm. The same holds for right (Ea).

More generally, let Eb be a fixed subspace of E such that dim (Eb) > d and dim (left (Eb)) =
D > d. Let Ea be a uniformly distributed d-subspace of Eb. Then, Pr [dim (left (Ea)) = d] ≥ 1 −
d/qD−d, and conditioned on dim (left (Ea)) = d, it holds that left (Ea) is a uniformly distributed
d-subspace of left (Eb). Again, the same holds for right (Ea).

We defer the proof of to Appendix C

5.3.1 Proof of Proposition 5.6

Suppose that Pr [T] ≥ ε. We prove Proposition 5.6 by arguing that the E-test contains an “implicit
S-test” and applying Theorem 5.4 (the soundness of the S-test).

Observe that, without loss of generality, we may assume that for every edge-subspace F such
that Π (F) violates one of the edges in F , it holds that Π (F)(AL,AR) 6= Π (A)(AL,AR) for any choice
of AL and AR. The reason is that for every such F , we can modify Π (F) such that it assigns
symbols outside of the alphabet Σ of G, so Π (F) will always disagree with Π (A). Note that this
modification indeed does not change the acceptance probability of Π. This assumption that we make
on Π implies in particular that the event T is equivalent to the event Π (F)(AL,AR) 6= Π (A)(AL,AR),
and this equivalence is used in the following analysis.

We turn back to the proof of Proposition 5.6. We begin the proof by extending Π to pairs
of independent d1-subspaces of Fm in a randomized manner as follows: Given a pair of inde-
pendent d1-subspaces B1 and B2, we choose F1 and F2 to be uniformly distributed and inde-
pendent d1-subspaces of E such that left (F1) = B1 and right (F2) = B2, and set Π (B1, B2) =
Π (F1 + F2)|(B1,B2).

Now, observe that the probability that the E-test accepts equals to the probability that the
S-test accepts the extended Π. The reason is that the subspaces BL, BR, AL, AR of the E-test are
distributed like the subspaces B1, B2, A1, A2 of the S-test. It thus follows the E-test performs in
a way an S-test on the extended assignment Π.

Next, we note that by choosing h to be sufficiently large, the foregoing “implicit S-test” matches
the requirements of Theorem 5.4 (the soundness of the S-test), and we can thus apply this theorem.
It follows that there exists an assignment π : Fm → Σ such that

Pr
[
Π (BL, BR)(AL,AR) = Π (A)|(AL,AR) and Π (BL, BR)

α
≈ π(BL,BR)

]
≥ Ω (εc) . (5)

By using the equivalence between the event T and the event Π (F)(AL,AR) 6= Π (A)(AL,AR), it follows
that Inequality 5 is equivalent to the inequality

Pr
[
T and Π (F)|(BL,BR)

α
≈ π|(BL,BR)

]
≥ Ω (εc) . (6)

We turn to show that

Pr
[
T and Π (F)

4α
≈ π

]
≥ Ω (εc) .

We will prove that if F is such that Π (F)
4α
6≈ π, then for a random choice of BL, BR conditioned

on F , it is highly unlikely that Inequality 6 still holds. Formally, we will prove the following.

Claim 5.9. For every fixed 2d0-subspace F0 of E such that Π (F0)
4α
6≈ π, it holds that

Pr
[

Π (F)|(BL,BR)

α
≈ π|(BL,BR)

∣∣∣F = F0

]
≤ 1/

(
qd1−2 · α2

)
.

27

We defer the proof of Claim 5.9 to the end of this section. Claim 5.9 immediately implies the
following.

Corollary 5.10. It holds that

Pr
[

Π (F)|(BL,BR)

α
≈ π|(BL,BR)

∣∣∣Π (F)
4α
6≈ π

]
≤ 1/

(
qd1−2 · (α/2)2

)
.

By combining Corollary 5.10 with Inequality 6, and by choosing h to be sufficiently large, it follows
that

Pr
[
T and Π (F)|(BL,BR)

α
≈ π|(BL,BR) and Π (F)

4α
≈ π

]
≥ Ω (εc) .

This implies that

Pr
[
T and Π (F)

4α
≈ π

]
≥ Ω (εc) .

Setting ε0 to be the latter lower bound finishes the proof. �

Proof of Claim 5.9. Observe that the assumption Π (F0)
4α
6≈ π implies that one of the following

holds

Π (F0)|left(F0)

2α
6≈ π|left(F0),

Π (F0)|right(F0)

2α
6≈ π|right(F0).

Without loss of generality, assume that the first holds. Now, when conditioning on F = F0, it
holds that FL is a uniformly distributed d1-subspace of F0 satisfying dim (left (FL)) = d1. By
Claim 5.8 (with Eb = F0 and Ea = FL), under the conditioning on dim (left (FL)) = d1, it holds
that BL

def= left (FL) is a uniformly distributed d1-subspace of left (F0). Therefore, by Lemma 2.4

(subspace-point sampler), the event Π (F)|BL
α
6≈ π|BL occurs with probability at least

1− 1/
(
qd1−2 ·

(
α− q−d1

)2
)
≥ 1− 1/

(
qd1−2 · (α/2)2

)
,

as required. �

5.3.2 Proof of Proposition 5.7

Fix an assignment π : Fm → Σ. By assumption it holds that SAT (G) < 1−ρ, and therefore π must
violate a set E∗ of edges of G of density at least ρ. Below we will show that at least ρ/2 fraction
of the edges in F are in E∗ with probability greater than 1− ε0. Now, observe that Π (F) cannot
satisfy the edges of F and at the same time be consistent with π on the edges in E∗, and hence

whenever the latter event occurs it either holds that the E-test fails or that Π (F)
ρ/2

6≈ π. However,
for sufficiently large choice of h, it holds that ρ/2 > 4 · α, and therefore the probability that the

E-test passes and at the same time it holds that Π (F)
4·α
≈ π is less than ε0, as required.

It remains to show that

Pr
[
|F ∩ E∗|
|F |

≥ ρ/2
]
> 1− ε0.

We prove the above inequality by showing that F is close to being a uniformly distributed 2d1-
subspace of E, and then applying Lemma 2.4 (subspace-point sampler). To this end, let F ′L and F ′R

28

be uniformly distributed d1-subspaces of F , and let F ′ = F ′L + F ′R. Let us denote by E1 the event
in which dim (F ′) = 2d1, and by E2 the event in which left (F ′L) and right (F ′R) are independent and
are of dimension d1. Observe that conditioned on E1 and E2 the subspace F ′ is distributed exactly
like the subspace F . It therefore holds that

Pr
[
|F ∩ E∗|
|F |

≥ ρ/2
]

= Pr
[
|F ′ ∩ E∗|
|F ′|

≥ ρ/2
∣∣∣∣ E1 and E2

]
≥ Pr

[
|F ′ ∩ E∗|
|F ′|

≥ ρ/2 and E2

∣∣∣∣ E1

]
≥ Pr

[
|F ′ ∩ E∗|
|F ′|

≥ ρ/2
∣∣∣∣ E1

]
− Pr [¬E2|E1]

≥ Pr
[
|F ′ ∩ E∗|
|F ′|

≥ ρ/2
∣∣∣∣ E1

]
− Pr [¬E2]

Pr [E1]
.

Now, observe that conditioned on E1, the subspace F ′ is a uniformly distributed 2d1-subspace of
E. Thus, by Lemma 2.4 (subspace-point sampler) it holds that

Pr
[
|F ′ ∩ E∗|
|F ′|

≥ ρ/2
∣∣∣∣ E1

]
≥ 1− 1/q2d1−2 ·

(
ρ/2− q−2d1

)2
≥ 1− 1/q2d1−2 · (ρ/3)2 .

Moreover, by Proposition 2.16 it holds that

Pr [E1] ≥ 1− 2d1/q
dimE−2d1

≥ 1− 2d1/q
m−2d1

≥ 1
2
,

Finally, we upper bound Pr [¬E2] by showing that Pr [E2] ≥ 1−4d1/q
m−2·d1 . By Claim 5.8 (with

Eb = E and Ea = F ′L, F
′
R) it holds that dim (left (F ′L)) = dim (right (F ′R)) = d1 with probability

at least 1 − 2 · d1/q
m−d1 . Furthermore, conditioned on the latter event, it holds that left (F ′L)

and right (F ′R) are uniformly distributed d1-subspaces of Fm, and it is also easy to see that those
subspaces are independent. By Proposition 2.16, this implies that conditioned on dim (left (F ′L)) =
dim (right (F ′R)) = d1 the subspaces left (F ′L) and right (F ′R) are independent with probability at
least 1− 2d1/q

m−2·d1 , and hence Pr [E2] ≥ 1− 4d1/q
m−2·d1 as required.

We conclude that that

Pr
[
|F ∩ E∗|
|F |

≥ ρ/2
]
≥ Pr

[
|F ′ ∩ E∗|
|F ′|

≥ ρ/2
∣∣∣∣ E1

]
− Pr [¬E2]

Pr [E1]

≥ 1− 1/q2·d1−2 · (ρ/3)2 − 4 · d1/q
m−2·d1

1/2

= 1− 1/q2·d1−2 · (ρ/3)2 − 8 · d1/q
m−2·d1

> 1− ε0,

where the last inequality holds for sufficiently large choice of h. This concludes the proof. �

6 Decodable PCPs

The PCP theorem says that CircuitSat has a proof system in which the (randomized) verifier
reads only O(1) bits from the proof. In known constructions this proof is invariably an encoding of a

29

satisfying assignment to the input circuit. Although this is not stipulated by the classical definition
of a PCP, the fact that a PCP is really an encoding of a ‘standard’ NP witness is sometimes useful.
Various attempts to capture this behavior gave rise to such objects as PCPs of Proximity (PCPPs)
[BGH+06] or assignment testers [DR06], and more recently to decodable PCPs (dPCPs) [DH09].

Application: alphabet reduction through composition. The notion of dPCPs is useful
for reducing the alphabet size of PCPs with small soundness error via composition. They were
introduced in [DH09] in an attempt to simplify and modularize the construction of [MR08]. Indeed
this notion is a refinement of [MR08]’s so-called “locally decode or reject codes (LDRCs)” which
allowed [DH09] prove a generic two-query composition theorem. This theorem allows one to improve
parameters of a PCP using any dPCP. The only known construction of a dPCP (until this work)
is the so-called “manifold vs. point” construction. In the next sections we give a new construction
of a dPCP by adapting the work of the previous sections to a dPCP. Our dPCP can then be
plugged into the composition scheme of [DH09] to reprove the result of [MR08]. We sketch this in
Section 6.5.

Decodable PCPs and PCPs of Proximity (PCPPs). We can define dPCPs for any NP
language but we focus on the language CircuitSat since it suffices for our purposes. A dPCP
system for CircuitSat is a proof system in which the satisfying assignments of the input circuit
are encoded into a special “dPCP” format. These encodings can then be both locally verified and
locally decoded in a probabilistic manner. In other words, the verifier is given an input circuit as
well as oracle access to a proof string, and is able to simultaneously check that the given string is a
valid encoding of a satisfying assignment, as well as to decode a random symbol in that assignment.
The formal definition is given below in Section 6.2.

dPCPs are closely related to PCPs of proximity [BGH+06] or assignment testers [DR06] (to
be defined shortly below). In fact dPCPs were first defined in the context of low soundness error
to overcome inherent limitations of PCPPs in this parameter range. In this work we extend the
definition of a dPCP also to the high soundness error range (i.e. matching the parameter range of
PCPPs). We call these uniquely decodable PCPs (udPCPs) as opposed to list decodable dPCPs.
It is natural to consider such an object in our context since our approach is to reduce the error
by parallel repetition. Thus we start with a dPCP with relatively high error and then reduce the
error. Uniquely decodable PCPs turn out to be roughly equivalent to PCPPs in the sense that
any PCPP can be used to construct a udPCP and vice versa. In retrospect, we find the notion
of udPCPs (and dPCPs) just as natural as that of PCPPs. In fact, many known constructions of
PCPPs work by implicitly constructing a udPCP and then adding comparison checks.

As mentioned above, our main goal in Sections 6, 7, and 8 is to give a new construction of
dPCPs with low soundness error (Theorem 1.6). Our construction of dPCPs with low soundness
error follows the same steps as our construction of PCPs with low soundness error: In the first
step, we construct a dPCP with high soundness error (that is, a udPCP). In the second step, we
apply derandomized parallel repetition to the foregoing udPCP to reduce its soundness error to a
sub-constant function.

In the following subsections we recall the definitions of PCPPs (Section 6.1) and define udPCPs
(Section 6.2). We then prove the equivalence of PCPPs and udPCPs. Next we state two lemmas
that capture the two main steps in constructing dPCPs. This is followed by a proof of Theorem 1.6
(construction of dPCPs). Finally, we sketch a proof of Theorem 1.2 (the [MR08] result) based on
Theorem 1.6.

30

6.1 Recalling the definition of PCPPs

PCPs of Proximity (PCPPs) were defined simultaneously in [BGH+06] and in [DR06] under the
name assignment testers. PCPPs allow the verifier to check not only that a given circuit is sat-
isfiable, but also that a given assignment is (close to being) satisfying. They were introduced for
various motivations, and in particular, they facilitate composition of PCPs which is important for
constructing PCPs with reasonable parameters.

Intuitively, a PCP verifier for CircuitSat is an oracle machine V that is given as input a
circuit ϕ : {0, 1}t → {0, 1}, and is also given oracle access to an assignment x to ϕ and a proof π.
The verifier V is required to verify that x is close to a satisfying assignment of ϕ, and to do so by
making only few queries to x and π. For technical reasons, it is often preferable to define V in a
different way. In this definition, instead of requiring that V makes few queries to its a oracle and
decides according to the answers it gets, we require that V outputs explicitly the queries it intends
to make and the predicate ψ it intends to apply to the answers it gets. The advantage of this
definition is that it allows us to measure the complexity of the predicate ψ. The formal definitions
of PCPP are given below.

Definition 6.1 (PCPP verifier). A PCPP verifier for CircuitSat is a probabilistic polynomial-
time algorithm V that on input circuit ϕ : {0, 1}t → {0, 1} of size n tosses r(n) coins and generates

1. q = q(n) queries I = (i1, . . . , iq) in [t+ `] (where ` = ` (n) and the queries are viewed as
coordinates of a string in {0, 1}t+`).

2. A circuit ψ : {0, 1}q → {0, 1} of size at most s(n).

We shall refer to r(n), q(n), `(n), and s(n) as the randomness complexity, query complexity,
proof length, and decision complexity respectively.

Definition 6.2 (PCPPs). Let V , r(n), q(n), `(n), and s(n), be as in Definition 6.1, and let
ρ : N→ (0, 1]. We say that V is a PCPP system for CircuitSat{0,1} with rejection ratio ρ if the
following holds for every circuit ϕ : {0, 1}t → {0, 1} of size n:

• Completeness: For every satisfying assignment x for ϕ there exists a proof string πx ∈
{0, 1}` such that

Pr
I,ψ

[
ψ
(

(x ◦ πx)|I
)

= 1
]

= 1,

where I and ψ are the (random) output of V (ϕ).

• Soundness: For every x ∈ {0, 1}t that is ε-far from a satisfying assignment to ϕ and every
proof string π ∈ {0, 1}` the following holds:

Pr
I,ψ

[
ψ
(

(x ◦ π)|I
)

= 0
]
≥ ρ · ε.

The starting point for our construction of a dPCP is the fact that NP has PCPPs with reasonable
parameters:

Theorem 6.3 ([BGH+06, DR06]). CircuitSat{0,1} has a PCPP system with randomness complex-
ity O(log n), query complexity O(1), proof length poly(n), decision complexity O(1), and rejection
ratio Ω(1).

31

Remark 6.4. The PCPPs described in Definition 6.2 are known in the literature as “strong
PCPPs”. Here, the term “strong” means that the rejection probability is linearly related to to
the distance ε of x from a satisfying assignment. In particular, this implies that even if ε is small
(but non-zero), then the PCPP rejects with non-zero probability.

An alternative definition of PCPPs, known as “weak PCPPs”, requires only that every assign-
ment x ∈ {0, 1}t that is very far from a satisfying assignment will be rejected with high probability,
while x’s that are close to a satisfying assignment may be accepted with probability 1.

6.2 The definition of decodable PCPs

Decodable PCPs (dPCPs) were defined in the work of [DH09] in order to overcome certain limita-
tions of PCPPs4. As mentioned above, the definition of [DH09] is only useful if the soundness error
is indeed very low. Below, we recall the definition of [DH09] and suggest an alternative definition
for the case where the soundness error is high. This alternative definition will be useful later in the
construction of decodable PCPs with low soundness error.

6.2.1 Recalling the definition of [DH09]

Intuitively, a PCP decoder for CircuitSat is an oracle machine D that is given as input a circuit
ϕ, and is also given oracle access to a “proof” π that is supposed to be the encoding of some
satisfying assignment x to ϕ. The PCP decoder D is required to decode a uniformly distributed
coordinate k of the assignment x by making only few queries to π. It could also be the case that
the proof π is too corrupted for the decoding to be possible, in which case D is allowed to output a
special failure symbol ⊥. Thus, we say that D has made an error only if it outputs a symbol other
than xk and ⊥. We refer to the probability of the latter event as the “decoding error of D”, and
would like it to be minimal. We do note, however, that if π is not corrupted, then D is not allowed
to output ⊥.

It turns out that if we wish the decoding error of D to be very small, we need to relax the
foregoing definition, and allow the PCP decoder D to perform “list decoding”. That is, instead of
requiring that there would be a single assignment x that is decoded by D, we only require that
there exists a short list of assignments x1, . . . , xL such that the decoder outputs either ⊥ or one of
the symbols x1

k, . . . , x
L
k with very high probability. Of course, this is meaningless if the assignments

are binary strings, and therefore we extend the definition of CircuitSat to circuits whose inputs
are symbols from some large alphabet Γ.

We turn to give the formal definitions of (list-)decodable PCPs. As in the case of PCPPs,
instead of letting the decoder make the queries and process the answers directly, we require the
decoder to output the queries and a circuit ψ that given the answers to the queries outputs the
decoded value.

Notation 6.5. Let Σ and Γ be finite alphabets, and let f : Γk → Σn be a function. We say that a
circuit C computes f if it takes as input a binary string of length k · dlog |Γ|e and outputs a binary
string of length n · dlog |Σ|e that represent the input in Γk and the output in Γn in the natural
way. We will usually omit the function f and simply refer to the circuit C : Γk → Σn. We will also
view the circuit C as taking as input k symbols in Γ and outputs n symbols in Σ. Given a circuit
ϕ : Γt → {0, 1}, an assignment x ∈ Γt for ϕ is said to satisfy ϕ if ϕ(x), and otherwise it is said to
be unsatisfying.

4In particular, using arguments in the spirit of [BHLM09], it is easy to prove that a PCPP that has low soundness
error must make at least three queries. Hence, PCPPs can not be used to construct two-query PCPs with low
soundness error.

32

Definition 6.6 (PCP decoders, similar to [DH09, Definition 3.1]). Let r, q, s, ` : N → N, and let
Γ, Σ be functions that map each n ∈ N to some finite alphabet. A PCP decoder for CircuitSatΓ

over proof alphabet Σ is a probabilistic polynomial-time algorithm D that for every n ∈ N acts as
follows. Let Γ = Γ(n), Σ = Σ(n), ` = `(n). When given as input an input circuit ϕ : Γt → {0, 1}
of size n and an index k ∈ [t], the PCP decoder D tosses r(n) coins and generates

1. A sequence of queries I =
(
i1, . . . , iq(n)

)
in [`] (where the queries are viewed as coordinates of

a proof string in Γ`).

2. A circuit ψ : Σq(n) → Γ ∪ {⊥} of size at most s(n).

We shall refer to the functions r(n), q(n), `(n), and s(n) as the randomness complexity, query
complexity, proof length, and decoding complexity respectively. Without loss of generality we have
` (n) = 2r(n) · q(n) · t.

Definition 6.7 (List Decodable PCPs, similar to [DH09, Definition 3.2]). Let D, Γ, Σ, and ` be
as in Definition 6.6, and L : N → N and ε : N → [0, 1]. We say that a PCP decoder D with the
foregoing parameters is a (list) decodable PCP system for CircuitSatΓ (abbreviated ldPCP) with
list size L = L(n), soundness error ε = ε(n) if the following holds for every circuit ϕ : Γt → {0, 1}
of size n:

• Completeness: For every x ∈ Γt such that ϕ(x) = 1 there exists a proof string πx ∈ Σ` such
that

Pr
k;I,ψ

[
ψ
(
πx|I

)
= xk

]
= 1,

where k is uniformly distributed in [t] and I and ψ are the (random) output of D (ϕ, k).

• Soundness: For every proof string π ∈ Σ`, there exist a (possibly empty) list of satisfying
assignments x1, . . . , xL ∈ Γt for ϕ such that

Pr
k;I,ψ

[
ψ
(
π|I
)
/∈
{
x1
k, . . . , x

L
k ,⊥

}]
≤ ε,

where k, I, ψ are as before.

6.2.2 Uniquely-decodable PCPs

We turn to discuss our suggested definition for dPCPs for the case of high soundness error. If
the soundness error is high, then we can actually require the PCP decoder to decode a unique
assignment, instead of decoding a list of assignments. Thus, we refer to dPCPs with high soundness
error as “uniquely decodable PCPs” (udPCPs).

The straightforward definition for udPCPs would be to take the foregoing definition of ldPCPs,
and set ε to be large and L to be 1. However, this definition turns out to be useless for our
purposes. To see why, recall that our ultimate goal is to construct dPCPs with low error by first
constructing dPCPs with high error and then decreasing their error using derandomized parallel
repetition. However, if we define udPCPs using the above straightforward definition, then it is not
even clear that sequential repetition decreases their error5.

We therefore use the following alternative definition for udPCP. We now require that if the
proof π is such that the PCP decoder D errs with high probability, then D detects that there is an

5The problem in performing sequential repetition for such definition of udPCPs is that we must invoke the PCP
decoder on a uniformly distributed and independent index k in each invocation, and it is not clear how to use
invocations for different indices k in order to decrease the error.

33

error with at least proportional probability. In other words, we require that the probability that D
outputs ⊥ is related to the probability that D errs. Observe that such PCP decoders can indeed
be improved by sequential repetition: If the proof π is erroneous and we invoke the PCP decoder
D many times, then the probability that D detects the error and outputs ⊥ improves. Below we
give the formal definition.

Definition 6.8. Let D, Γ, Σ, and ` be as in Definition 6.6. Let ϕ : Γt → {0, 1} be a circuit of size
n, let x be an assignment to ϕ, and let π ∈ Σ`(n) be a proof for D. We define the decoding error of
D on π with respect to x as the probability

Pr
k;I,ψ

[
ψ
(
π|I
)
/∈ {xk,⊥}

]
,

where k, I, ψ are as in Definition 6.7. We define the decoding error of D on π as the minimal
decoding error of D on π with respect to an assignment x′ for ϕ, over all possible assignments x′

to ϕ.

Definition 6.9 (Uniquely Decodable PCPs). Let D, Γ, Σ, and ` be as in Definition 6.6, and
let ρ : N → [0, 1]. We say that the PCP decoder D is a (uniquely) decodable PCP system for
CircuitSatΓ (abbreviated udPCP) with rejection ratio ρ if for every circuit ϕ : Γt → {0, 1} of size
n the PCP decoder D satisfies the completeness requirement of Definition 6.7, and furthermore
satisfies the following requirement:

• Soundness: For every proof string π ∈ Σ`, if D has decoding error ε on π then

Pr
k;I,ψ

[
ψ
(
π|I
)

= ⊥
]
≥ ρ(n) · ε,

where k, I, ψ are as in Definition 6.7.

Remark 6.10. We could have also defined the decoding error of D on π with respect to x as the
probability Prk;I,ψ

[
ψ
(
π|I
)
6= xk

]
. This definition may be more natural, but it is more convenient

to work with the current definition.

Remark 6.11. Note that the soundness requirement in our definition of udPCPs is similar to the
soundness requirement of PCPPs, and in particular to definition of soundness of strong PCPPs (see
Remark 6.4). We could also use a definition that is analogous to the definition of a weak PCPP.
Specifically, we could have required only that when the decoding error is very large, the decoder
rejects with high probability. However, our definition is stronger, and since we can satisfy it, we
prefer to work with it. It is also more convenient to work with this definition throughout this work.

We next argue that every PCPP implies a udPCP.

Proposition 6.12. Let V be a PCPP system for CircuitSat{0,1} with randomness complexity
r(n), query complexity q(n), proof length `(n), decision complexity s(n), and rejection ratio ρ(n).
Then, for every u : N → N there exists a udPCP for CircuitSat{0,1}u(n) with proof alphabet
{0, 1}, randomness complexity r(n), query complexity q(n) + u(n), proof length n+ `(n), decoding
complexity s(n) +O (u(n)), and rejection ratio ρ(n)/u(n).

Proof. Let u : N→ N and denote u = u(n). For every circuit ϕ : ({0, 1}u)t → {0, 1} of size n and
satisfying assignment x for ϕ, we define the corresponding proof string for D to be x ◦ πx, where
πx is the proof string of V for x when x is treated as a binary string.

34

Fix a circuit ϕ : ({0, 1}u)t → {0, 1} and k ∈ [t], and let x′ ∈ {0, 1}u·t, π ∈ {0, 1}`. On input
(ϕ, k) and oracle access to a proof x′ ◦ π, the decoder D first emulates the verifier V on ϕ with
oracle access to x′ ◦ πx. If V rejects, then D outputs ⊥. Otherwise, D queries the coordinates

u · (k − 1) + 1, . . . , u · k

of x and outputs the tuple of answers as the symbol in {0, 1}u that it is ought to decode.
It should be clear that D satisfies the completeness requirement, and has the correct randomness

complexity, query complexity, proof length, and decoding complexity.
It remains to analyze the rejection ratio of D. Let π′ be a proof string for D and assume that

π′ = x ◦ π where x ∈ {0, 1}u·t and π ∈ {0, 1}`. Let x0 be the satisfying assignment of ϕ that is
nearest to x when viewed as a binary string. Let ε be the relative distance between x and x0 when
viewed as strings over the alphabet {0, 1}u. Clearly, the decoding error of D on x ◦ π with respect
to x0 is ε, and is an upper bound on the decoding error of D. Furthermore, the relative distance
between x and x0 as binary strings is at least ε/u. Thus, the emulation of V rejects x ◦ π with
probability at least ρ(n) · ε/u, and this is also the rejection probability of D, as required. �

Remark 6.13. One could also prove Proposition 6.12 without a loss of a factor of u in the rejection
ratio ρ using error correcting codes.

Remark 6.14. It is not hard to see that the converse of Proposition 6.12 also holds. Namely, given
a udPCP it is easy to construct from it a PCPP. Roughly, given a udPCP D, construct a PCPP
verifier that when given oracle access to x ◦ π, invokes D with oracle access to π on a uniformly
distributed k, and verifies that the output of D equals xk.

Remark 6.15. Our definition of udPCPs (Definition 6.9) bears some similarities to the notion of
relaxed locally decodable codes [BGH+06], which are also constructed using PCPPs. However, the
notions are fundamentally different. The most important difference between the notions is that
while the decoder of a relaxed LDC should decode any possible message, the decoder of a udPCP is
required to decode only satisfying assignments of a given circuit. This makes udPCPs significantly
more powerful, and in fact makes them equivalent to PCPPs. A secondary difference is that when
a udPCP is given oracle access to a corrupted oracle then it can output ⊥ with any probability,
while a relaxed LDC is required to output xk (instead of ⊥) with some given probability.

6.3 Decoding graphs

6.3.1 The definition of decoding graphs

Recall that in the first part of the paper, we often found it more convenient to work with constraint
graphs instead of working with PCPs. We now define the notion of “decoding graphs”, which will
serve as the graph analogue of decoding PCPs just as constraint graphs serve as the graph analogue
of PCPs.

Definition 6.16 (Decoding graphs). A (directed) decoding graph is a directed graph G = (V,E)
that is augmented with the following objects:

1. A circuit ϕ : Γt → {0, 1}, to which we refer as the input circuit. Here Γ denotes some finite
alphabet.

2. A finite alphabet Σ, to which we refer as the alphabet of G.

35

3. For each edge e ∈ E, an index ke ∈ [t], and a circuit ψe : Σ×Σ→ Γ ∪ {⊥}. We say that e is
associated with ke and ψe. For k ∈ [t], we denote by Ek the set of edges associated with k.

The size of G is the number of edges of G. We say that G has decoding complexity s if all the
circuits are of size at most s. It is required that G satisfies the following property:

• Completeness: For every satisfying assignment x ∈ Γt to ϕ, there exists an assignment
πx : V → Σ to G such that the following holds. For every edge (u, v) that is associated with
an index k = k(u,v) and a circuit ψ = ψ(u,v), it holds that ψ (π(u), π(v)) = xk.

Notation 6.17. We will use the following terminology regarding constraint graphs: Let G = (V,E)
be a decoding graph with input circuit ϕ : Γt → {0, 1} alphabet Σ.

1. Let (u, v) ∈ E and ψ = ψ(u,v) be and edge its associated circuit, and let π : V → Σ be an
assignment to G. If ψ outputs ⊥ on input (π(u), π(v)) then we say that (u, v) rejects π (or
that π violates (u, v)), and otherwise we say that (u, v) accepts π (or that π satisfies (u, v)).

2. Let (u, v), ψ, and π be as before, let k = k(u,v) be the index associated with (u, v), and let
x be an assignment to ϕ. We say that (u, v) fails to decode x if ψ (π(u), π(v)) /∈ {xk,⊥}.
When x is clear from the context we will omit it, and we will also say that (u, v) errs, or that
(u, v) decodes correctly (if (u, v) does not err). Note that outputting ⊥ is not considered to
be failure.

3. We say that G has the projection property if for every circuit ψ(u,v) has an associated function
f(u,v) : Σ→ Σ such that ψ(u,v) (a, b) 6= ⊥ if and only if f(u,v)(a) = b.

4. We refer to the quantity log
(
maxk∈[t] |Ek|

)
as the randomness complexity of G, since it upper

bounds the number of bits required to choose a uniformly distributed edge that is associated
with a particular index.

We turn to define soundness properties of decoding graphs. As in the case of decodable PCPs,
we have two definitions, one for the case of high soundness error (unique decoding) and one for the
case of low soundness error (list decoding).

Definition 6.18. Let G = (V,E), Σ, Γ, ϕ be as before, and let π : V → Σ be an assignment to G.

• Unique decoding soundness: For every satisfying assignment x ∈ Γt to ϕ, we define the
decoding error of G on π with respect to x as the probability

Pr
k∈[t],(u,v)∈Ek

[
ψ(u,v) (π (u) , π (v)) /∈ {xk,⊥}

]
,

where k is uniformly distributed in [t] and (u, v) is uniformly distributed in Ek. Note that
the edge (u, v) is chosen according to the decoding distribution of G.
We define the decoding error of G on π as the minimal decoding error of G on π with respect
to any satisfying assignment of ϕ. Now, we say that G has rejection ratio ρ if for every
assignment π to G, if G has decoding error ε on π then it holds that

Pr
k∈[t],(u,v)∈Ek

[
ψ(u,v) (π (u) , π (v)) = ⊥

]
≥ ρ · ε,

where k and (u, v) are chosen as before.

36

• List decoding soundness: We say that G is list-decoding with list size L and soundness
error ε if for every assignment π to G there exists a (possibly empty) list of satisfying assign-
ments x1, . . . , xL ∈ Γk for ϕ such that

Pr
k∈[t],(u,v)∈Ek

[
ψ(u,v) (π (u) , π (v)) /∈

{
x1
k, . . . , x

L
k ,⊥

}]
≤ ε,

where k and (u, v) are chosen as before

The following proposition gives the correspondence between decoding PCPs and decoding
graphs, in analogy to the correspondence between PCPs and constraint graphs.

Proposition 6.19. Let r, s, `, ρ,Γ,Σ be as in Definition 6.9. The following two statements are
equivalent:

• CircuitSatΓ has a udPCP with query complexity 2, randomness complexity r, decoding
complexity s, proof length `, proof alphabet Σ, and rejection ratio ρ.

• There exists a polynomial-time transformation that transforms a circuit ϕ : Γt → {0, 1} of size
n to a decoding graph G = (V,E) with `(n) vertices, randomness complexity r(n), decoding
complexity s(n), proof alphabet Σ (n), and rejection ratio ρ(n).

A similar equivalence holds for ldPCPs and list-decoding graphs.

6.3.2 Additional properties of decoding graphs

Recall that when discussing constraint graphs, we were interested in the probability that a uniformly
distributed edge of the graph is satisfied by a given assignment. As can be seen in Definition 6.18,
when discussing decoding graphs we are interested in a different distribution over the edges, defined
below.

Definition 6.20. The decoding distribution DG of a decoding graph G = (V,E) is the distribution
over the edges of G that is corresponds to the following way for picking a random edge of G: Choose
k ∈ [t] uniformly at random, and then choose an edge uniformly at random from Ek.

It is usually inconvenient to analyze the decoding distribution of the graphs we work with.
However, we will work only with graphs whose decoding distribution is similar to the uniform
distribution over the edges (where similarity is defined as in Section 2.5). The following definition
aims to capture this property, which allows us to analyze the uniform distribution instead of the
decoding distribution.

Definition 6.21. We say that a decoding graph G = (V,E) has smoothness γ if its decoding
distribution is γ-similar to the uniform distribution over E.

The following proposition gives a comfortable way for calculating the smoothness of a decoding
graph. Intuitively, observe that if all the sets Ek are of the same size then the decoding distribution
is identical to the uniform distribution. We now observe that if the sizes of the sets Ek are close to
each other then the decoding distribution is similar to the uniform distribution.

Proposition 6.22 (Smoothness criterion). A decoding graph G with edge-set E has smoothness γ
if and only if for every k ∈ [t], the number of edges that are associated with k is between γ · |E|t and
1
γ ·
|E|
t .

37

Proof. Observe that if there are mk edges associated with k ∈ [t] then the probability for such
an edge to be chosen under the decoding distribution is 1

t ·
1
mk

while the corresponding probability
under the uniform distribution is 1

|E| . Now apply the definition of similarity of distributions. �

We will often want our decoding graphs to be regular, or at least have bounded degree. The
precise definition follows.

Definition 6.23. We say that a decoding graph G has degree bound d ∈ N if all the in-degrees and
all out-degrees of the vertices in G are bounded by d. We say that it is d-regular if every vertex
has exactly d incoming edges and exactly d outgoing edges.

6.3.3 General udPCPs and decoding graphs

Proposition 6.19 gave us only a correspondence between decoding graphs and udPCPs that makes
exactly two queries. The next proposition shows that in fact any udPCP, even if it uses more
than two queries, gives rise to a procedure that transforms circuits to decoding graphs with related
parameters and unique decoding soundness. A nice property of this procedure is that it generates
decoding graphs that are regular and have smoothness 1, which will be useful later in this work.

Proposition 6.24. Let Γ, Σ, r(n), q(n), `(n), s(n), and ρ(n) be as in Definition 6.9, and let
h0 and d0 be the constants from Fact 2.20. If there exists a udPCP D for CircuitSatΓ with
the foregoing parameters, then there exists a polynomial time procedure that acts as follows. When
given a circuit ϕ : Γt → {0, 1} of size n, the procedure outputs a corresponding vertex-decoding graph
G = (V,E) with randomness complexity r(n) + log (d0 · q(n)), alphabet Σq(n), decoding complexity
s(n) + poly log |Σ(n)|, and rejection ratio Ω

(
ρ(n)/ (q(n))2

)
. Furthermore, G is (q(n) · d0)-regular,

and has t · 2r(n) vertices and smoothness 1.

Proof sketch The proof is a variant of a well known technique for reducing the query complexity
of a PCP verifier to 2, and its full details are provided in Appendix D. The graph G is constructed
roughly as follows: The graph G has a vertex for every possible invocation of the decoder D. Each
such vertex v is expected to be labeled with the answers that D receives to its queries on the
corresponding invocation, and the edges that are connected to v check that those answers are not
rejected by D. The edges of G also verify that the labels of the different vertices are consistent with
each other, and in order to save in the number of edges we choose the consistency checks according
to an expander.

Observe that since a vertex should be labeled with all the answers that D gets to its queries on
this particular invocation, we can use those labels to perform decoding. In particular, given that
an edge (u, v) accepts, the value that it decodes can be decided based only on the label of u. This
property will be useful in Section 7 (see Definition 7.1 for details). �

6.4 Our construction of dPCPs, Theorem 1.6

In this section we state and prove Theorem 1.6.

Theorem (1.6, dPCP, restated formally). For every function Γ that maps natural numbers to
finite alphabets such that |Γ(n)| ≤ 2poly logn the following holds. There exists an ldPCP D for
CircuitSatΓwith query complexity 2, proof alphabet 2poly logn, randomness complexity O(log n),
soundness error 1/ logΩ(1) n, and list size poly log n. Furthermore, D has the projection property
(see Notation 6.17, Item 3).

38

We prove this theorem analogously to the proof of Theorem 1.1, which asserts the existence of
two-query PCPs with soundness error 1/poly log n. Our starting point is a known construction of
a PCPP, stated here as Theorem 6.3 which is then reduced to a transformation mapping circuits
to decoding graphs. We then have two main steps. The first is to equip the decoding graphs
with linear structure, as formulated in Lemma 6.25. The second step is to reduce the error by
derandomized parallel repetition, as stated in Lemma 6.26. Theorem 1.6 follows by combining the
two lemmas which we state next,

Lemma 6.25 (Linear Structure Embedding for udPCPs). There exists a polynomial time procedure
that satisfies the following requirements:

• Input:

– A decoding graph G of size n for input circuit ϕ : Γt → {0, 1} with alphabet Σ, rejection
ratio ρ, decoding complexity s, and smoothness γ.

– A finite field F of size q such that q ≥ 4 · d2
0, where d0 is the constant from Fact 2.20.

• Output: A decoding graph G′ = (Fm, E′) for ϕ such that the following holds:

– G′ has a linear structure.

– The size of G′ is at most O (q · n/γ).

– G′ has alphabet ΣO(logq(n/γ)).

– G′ has rejection ratio Ω
(
ρ/q2 · logq(n/γ)

)
– G′ has decision complexity s+ poly

(
logq (n/γ) , log |Γ|

)
– G′ has smoothness Ω (1/q).

Lemma 6.26 (Derandomized Parallel Repetition for dPCPs). There exist a universal constant h
and a polynomial time procedure that satisfy the following requirements:

• Input:

– A finite field F of size q.

– A decoding graph G = (Fm, E) of size n for input circuit ϕ : Γt → {0, 1} with linear
structure, alphabet Σ, rejection ratio ρ, decision complexity s, and smoothness γ.

– The rejection ratio ρ of G.

– A parameter d0 ∈ N such that d0 < m/h2 and ρ ≥ h · d0 · q−d0/h/γ.

• Output: A decoding graph G′ for ϕ such that the following holds:

– G′ has size nO(d0).

– G′ has alphabet ΣqO(d0)
.

– G′ is list-decoding with soundness error ε def= h · d0 · q−d0/h/γ and list size L def= qO(d0).

– G′ has the projection property.

– G′ has decoding complexity qO(d0) · (s+ poly log |Σ|).

We now turn to prove Theorem 1.6.

39

Proof. Let V be a PCPP verifier for CircuitSat as in Theorem 6.3. By Proposition 6.12 this
implies a udPCP for CircuitSat with similar parameters. Next, by Proposition 6.24 we get a
polynomial time transformation taking a circuit ϕ : {0, 1}n → {0, 1} into a vertex-decoding graph.
The graph G has the following parameters. The randomness complexity is r(n) = O(log n), the
decoding complexity, rejection ratio, and constant proof alphabet are constant, and the smoothness
is 1.

We choose F to be the smallest finite field of size at least log n, and set F to be the finite field
of size q. We now invoke Lemma 6.25 (linear structure embedding for udPCPs) on input G and F,
and obtain a new vertex-decoding graph G1 with linear structure and parameters:

• The size of G1 is at most O(q · n).

• G1 has alphabet size 2O(logq(n)).

• G1 has rejection ratio ρ1
def= Ω

(
ρ/q2 · logq(n)

)
• G1 has decision complexity poly(logq n)

• G1 has smoothness γ1 = Ω
(

1
q

)
.

Finally, we set d0 to be an arbitrary constant such that ρ1 ≥ h·d0·q−d0/h/γ1 . Note that this is indeed
possible, since logq (1/ρ1) is a constant that depends only on ρ. Finally, we invoke Lemma 6.26
(derandomized parallel repetition for dPCPs) on input G1, F, ρ1, and d0, and denote by G′ the
output decoding graph. The transformation taking the initial input ϕ into G′ (via intermediate
steps G and G1) is equivalent, by Proposition 6.19, to a dPCP with the claimed parameters. �

6.5 Proof of the result of [MR08], Theorem 1.2

Our Theorem 1.1 asserts the existence of a two query PCP with soundness error 1/poly log n and
alphabet size |Σ| = 2poly logn. In this section we will sketch a proof of Theorem 1.2 in which
the alphabet size |Σ| can be any value smaller than 2poly logn while maintaining the relation of
ε ≤ 1/poly(log |Σ|).

Theorem (1.2, restated, [MR08]). For any function ε(n) ≥ 1/poly log n the class NP has a two-
query PCP verifier with perfect completeness, soundness error at most ε over alphabet Σ of size at
most |Σ| ≤ 21/poly(ε).

Our proof of Theorem 1.2 relies on the scheme of [DH09] who showed a generic way to compose
a PCP with a dPCP, and then proved Theorem 1.2 by repeating the composition step, assuming
the existence of two building blocks: a PCP and a dPCP. We plug in our constructions of a PCP
(Theorem 1.1) and of a dPCP (Theorem 1.6) into the composition scheme of [DH09] and obtain a
new construction of the verifier of Theorem 1.2 that does not rely on low degree polynomials.

Remark 6.27. An important feature of the theorem of [MR08] asserts that the verifier is randomness-
efficient, i.e. it uses only (1 + o(1)) log n random bits rather than O(log n) random bits. This is
equivalent to constructing constraint graphs of almost-linear size rather than polynomial size (see
Remark 2.15). Using the composition scheme of [DH09], the outcome will be randomness efficient
as long as the PCP verifier at the outermost level of composition is randomness-efficient. It does
not, for example, depend on whether the dPCP is randomness-efficient.

However, since our PCP verifier from Theorem 1.1 is not randomness-efficient, we can only
get this additional feature by relying at the outermost level on a PCP verifier as in [MR08]. The

40

dPCP can still be based on our Theorem 1.6. Alternatively, if we also base the outermost PCP on
theorem 1.1 we get a polynomial-size construction, but not a “randomness-efficient” one. It is also
conceivable that the construction of Theorem 1.1 can be improved to yield a randomness-efficient
PCP, and we leave this for future work.

In order to state the generic composition theorem of [DH09] let us first define the decision
complexity of a PCP verifier. Roughly speaking, a PCP verifier has decision complexity s(n) if
every constraint in the underlying constraint graph can be computed by a circuit of size at most
s(n)6. This definition is analogous to the definition of the decoding complexity of a PCP decoder.
It is easy to see that the PCP verifier (from Theorem 1.1) has decision complexity poly log n in
the same way that the dPCP decoder (from Theorem 1.6) was shown to have decoding complexity
poly log n.

We turn to state the composition theorem of [DH09]. As in all composition theorems in the
literature, the goal of this theorem is to take an “outer verifier” (in this case, a PCP verifier), which
has a large alphabet, and reduce its alphabet size by composing it with an “inner verifier” (in this
case, a PCP decoder). The gain is obtained from the fact that the inner verifier is invoked on a
claim of size s(n) � n, and thus can have a much smaller alphabet than the outer verifier. The
result of the composition is a verifier that has the alphabet size roughly as of the inner verifier, and
can still be invoked on a claim of size n. However, the composed verifier accumulates soundness
error from the invocations of both the outer verifier and the inner verifier, and thus the composition
does not come “for free”.

Theorem 6.28 (Paraphrasing [DH09]). Let V and D be a PCP verifier and a PCP decoder as
follows:

1. Let V be a two-query PCP verifier for NP with perfect completeness, soundness error ∆(n),
alphabet size |Σ(n)|, and decision complexity s(n). Assume further that the PCP verifier
makes projection queries.

2. Let D be a two-query PCP decoder for CircuitSatΓ for some Γ(n). Assume D has perfect
completeness, soundness error δ(n), list size L(n), and alphabet size |σ(n)|.

If both V and D have the projection property then there is a PCP verifier V ~D with the following
properties. V ~ D invokes D on inputs of length at most s(n). V ~ D has perfect completeness,
soundness error O(δ(s(n))+L(s(n))∆(n)), alphabet size |σ(s(n))|poly(L(s(n))/δ(s(n))), and V ~D has
the projection property.

As discussed above, the main gain from this theorem is that the alphabet size of V ~ D is
much smaller than that of V . Let us see how this is useful. Suppose we take V,D from Theorems
1.1 and 1.6. We have Σ(n) ≤ 2poly logn, s(n) = poly log n, and σ(n) ≤ 2poly logn. Thus, σ(s(n)) =
2poly log log(n). Similarly L(s(n)) ≤ poly log log n and δ(s(n)) = 1/poly log log n. This results in
alphabet size of 2poly log log(n) and soundness error of 1/poly log log n. By composing this verifier
again with D (yielding (V ~ D) ~ D) one can inductively obtain a PCP verifier with soundness
error 1/poly log(i) n for any i and corresponding alphabet size |Σ| = 21/poly(ε). To get any alphabet
size |Σ| one must do careful padding and we do not go into these details.

The composition theorem (Theorem 6.28) is stated here in the two-query terminology (rather
than in the terminology of “robust” PCPs). Let us now give a brief outline of how to obtain this
version from the version of [DH09]:

6More precisely, the verifier should be able to compute this circuit based on its input and its randomness.

41

1. From two-query to robust: Use Lemma 2.5 of [DH09] to deduce existence of a robust PCP
rV and a robust dPCP rD with parameters related to V and D. In particular, the number
of accepting views for rD is bounded by |σ|.

2. Composition: Apply Theorem 4.2 of [DH09] with parameter ε = δ/L ≥ |σ|Ω(1). Deduce a
new robust PCP rV ~rD with parameters as follows. The soundness error is δ+L∆+4Lε =
O(δ + L∆). The number of accepting views is at most |σ|4/ε

4

(this follows from inspecting
the proof, but not directly from the theorem statement).

3. Back to two queries: Again use Lemma 2.5 to move back to a two query PCP. The new alpha-
bet size is at most the number of accepting views of rV ~ rD which is at most |σ(s(n))|4/ε

4

=
|σ|(L/δ)

O(1)

as claimed. �

7 Decoding PCPs with Linear Structure

In this section we prove Lemma 6.25, i.e., that every decoding graph G can be embedded on a graph
that has linear structure. The heart of the proof is very similar to the proof of the corresponding
lemma for constraint graphs (Lemma 3.3) with few adaptations to the setting of decoding graphs.
Two important differences are the following:

1. Recall that we prove Lemma 3.3 by embedding the constraint graph G on a de Bruijn graph
DB, and that this is done by identifying the vertices of G with the vertices of DB. Further-
more, recall that if DB has more vertices than G, then some of the vertices of DB are not
identified with vertices of G, and thus we place only trivial constraints on those vertices.
This construction does not work for decoding graphs. The reason is that in the setting of
decoding graphs every edge needs to be able to decode some index k ∈ [t]. Furthermore,
every edge that fails to decode must contribute to the fraction of rejecting edges. Thus, we
can not have many trivial edges.
In order to resolve this issue, we prove a proposition that allows us to ensure that G has
exactly the same number of vertices as in DB, see Proposition 7.4 below.
We note that Item 1 is not caused by the fact we chose a strong definition of udPCP and not
a weak one (see Remark 6.11). Even if we used a weak definition of udPCP, requiring edges
to reject only if the decoding error is above some threshold, we still could not use dummy
vertices and edges in the embedding, as this would cause the aforementioned threshold to be
too large for our purposes.

2. Recall that in the embedding of constraint graphs on de Bruijn graphs we used the expander-
replacement technique (Lemma 4.8) to make sure that the graph G has small degree. Since
such a lemma was not proved for decoding graphs in previous works, we have to prove it on
our own. This is done in Proposition 7.3 below.

The rest of this section is organized as follows. In Section 7.1 we prove the aforementioned Propo-
sitions 7.3 and 7.4. Then, in Section 7.2, we prove Lemma 6.25.

7.1 Auxiliary propositions

In this section we prove Propositions 7.3 and 7.4 mentioned above. In order to state those two
propositions, we need to define a special kind of decoding graphs, called “vertex-decoding graphs”.

42

The reason is that we only know how to prove Proposition 7.4 for vertex-decoding graphs. Fortu-
nately, we can convert any decoding graph to a vertex-decoding one using Proposition 7.3.

We move to define the notion of vertex-decoding graphs. Intuitively, a decoding graph is vertex-
decoding if the value that an edge (u, v) decodes depends only on the labeling of u, while the labeling
of v only affects on whether the edge accepts or rejects. The formal definition follows.

Definition 7.1 (Vertex-decoding graphs). We say that a decoding graph G is a vertex-decoding
graph if it has the following properties:

1. For every edge (u, v) of G and its associated circuit ψ = ψ(u,v), there exists a function
f : Σ→ Γ that satisfies the following: For every assignment π to the vertices of G for which
ψ (π(u), π(v)) 6= ⊥ it holds that ψ (π(u), π(v)) = f (π(u)).

2. Every vertex has at least one outgoing edge. In other words, every vertex is capable of
decoding at least one index k ∈ [t].

Remark 7.2. While the property of a graph being vertex-decoding is reminiscent of the projection
property, there are two important differences. First, note that Item 1 in Definition 7.1 is weaker
than the projection property, since it only requires that π(u) determines the decoded value, and
not necessarily π(v). Second, note that Item 2 is not required by the projection property, and is
actually violated by the known constructions of graphs that have the projection property.

We turn to prove Propositions 7.3 and 7.4. We begin with Proposition 7.3, which says that
we can always reduce the degree of decoding graphs while paying only a moderate cost in the
parameters. As mentioned above, the proposition also transforms the decoding graph into a vertex-
decoding graph.

Proposition 7.3. Let d0 be the constant from Fact 2.20, and let d = 2d0. There exists a polynomial
time procedure that acts as follows:

• Input: A decoding graph G of size n for input circuit ϕ : Γt → {0, 1} with alphabet Σ,
rejection ratio ρ, decoding complexity s, and smoothness γ.

• Output: A d-regular vertex-decoding graph G′ of size at most d · n/γ for input circuit ϕ,
alphabet Σ2, rejection ratio Ω (ρ), decoding complexity s + poly log |Σ|, and smoothness 1.
Furthermore, G′ has at most n/γ vertices.

Proof sketch We apply the same construction as in the proof of Proposition 6.24. Let ϕ :
Γt → {0, 1} be the input circuit of G. The key observation is that G corresponds to a decoder
D that acts on ϕ such that D has query complexity 2, randomness complexity log (n/t · γ), proof
alphabet Σ, rejection ratio ρ, and decoding complexity s. The reason for the foregoing randomness
complexity is that by the smoothness of G and by the smoothness criterion of Proposition 6.22, it
holds that for every k ∈ [t] there are at most n/t · γ edges that are associated with k, and therefore
choosing a uniformly distributed edge that is associated with G requires log (n/ (t · γ)) uniformly
distributed bits. Now, by applying the construction of the proof of Proposition 6.24 to the decoder
D, we obtain a graph G′ that satisfies the requirements. The fact that G′ is vertex-decoding can
be observed by examining the construction of Proposition 6.24 (see also the second paragraph in
the above proof sketch of Proposition 6.24). �

We next prove Proposition 7.4, which says that we can increases the number of vertices of a
vertex-decoding graph to any size we wish, while paying only a small cost in the parameters. This
proposition will be used to ensure that the number of vertices of a decoding graph G is equal to
the number of vertices of the de Bruijn graph on which we want to embed G.

43

Proposition 7.4. There exists a polynomial time procedure that acts as follows:

• Input:

– A vertex-decoding graph G of size n for input circuit ϕ : Γt → {0, 1} with ` vertices,
alphabet Σ, rejection ratio ρ, decoding complexity s, degree bound d, and smoothness γ.

– A number `′ ∈ N such that `′ ≥ ` (given in unary).

• Output: Let c def=
⌊
`′

`

⌋
and let d0 and h0 be the constants from Fact 2.20. The procedure

outputs a vertex-decoding graph G′ of size at most 2 · (c + 1) · d0 · n for input circuit ϕ
that has exactly `′ vertices and also has alphabet Σ, output size s + poly log |Σ|, rejection
ratio Ω

(
γ2 · ρ/d2

)
, degree bound 2 · d0 · d, and smoothness 1

2 · γ.

Furthermore, if G is d-regular then G′ is (2 · d0 · d)-regular and has rejection ratio Ω
(
γ2 · ρ

)
.

Proof sketch The basic idea of the proof is as follows. Given the graph G, we construct the graph
G′ by replacing each vertex v of G with multiple copies of v, such that the total number of vertices
becomes `′ as required. Each copy of v will be connected to the same edges as the original v. An
assignment to G′ will be required to assign the same value to all the copies of v: Clearly, if an
assignment π′ to G′ assigns the same value to the copies of each vertex v of G, then in a way π′

“behaves” like an assignment to G, and we can use the soundness of G to establish the soundness
of G′ with respect to π′. In order to verify that the copies of a vertex v are assigned the same
value, we will put equality constraints between the copies of v. In order to save edges, the equality
constraints are placed according to the edges of an expander, and the analysis goes exactly as in
the proof of Proposition 6.24. We use the fact that G is vertex decoding in order to allow the
equality constraints to decode values even though they can use only the labeling of a single vertex
of G. The rest of this proof consists of the technical details of this construction, and is provided in
Appendix E. �

7.2 Embedding decoding graphs on de Bruijn graphs

In this section we prove the following proposition, which implies Lemma 6.25 (linear structure
embedding for udPCPs) and is analogous to Proposition 4.4 (embedding of constraint graphs on
de-Bruijn graphs). The proof follows the steps of Proposition 4.4 with the few adaptations to the
setting of decoding graphs. For intuition and a high-level explanation of the proof, we refer the
reader to Section 4 and in particular to Section 4.2.

Proposition 7.5 (Embedding Decoding Graphs on de-Bruijn Graphs). Let d0 be the constant of
Fact 2.20. There exists a polynomial time procedure that satisfies the following requirements:

• Input:

– A decoding graph G of size n for an input circuit ϕ : Γt → {0, 1} with alphabet Σ,
rejection ratio ρ, decoding complexity s, and smoothness γ.

– A finite alphabet Λ such that |Λ| ≥ 4 · d2
0.

– A natural number m such that |Λ|m ≥ 2 · d0 · n/γ.

• Output: A decoding graph G′ for ϕ such that the following holds:

– The underlying graph of G′ is the de Bruijn graph DBΛ,m.

44

– The size of G′ is |Λ|m+1.

– G′ has alphabet ΣO(m).

– G′ has rejection ratio Ω
(
ρ/ |Λ|2 ·m

)
.

– G′ has smoothness at least γ′ def= Ω
(

1
|Λ|

)
.

– G′ has decision complexity s+ poly (m, log |Σ|)

Let G, Λ, and m be as in Proposition 7.5, and let ϕ : Γt → {0, 1} be the input circuit of G.
On input G, Λ, and m, the procedure acts as follows. The procedure first constructs a vertex-
decoding graph G1 by applying to G the procedure of Proposition 7.3, and then applying to the
resulting graph the procedure of Proposition 7.4 with `′ = |Λ|m. It can be verified that G1 is a
vertex-decoding graph for input circuit ϕ with exactly |Λ|m vertices, alphabet Σ1

def= Σ2, rejection
ratio ρ1 = Ω (ρ), decoding complexity s+ poly log |Σ|, and smoothness at least 1

2 . Furthermore, G1

is d-regular for d = 4 · d2
0 ≤ |Λ|, and is of size d · |Λ|m.

Then, the procedure identifies the vertices of G1 with the vertices of DB = DBΛ,m, partitions
the the edges of G1 to d matchings µ1, . . . , µd, and views those matchings as permutations on the
vertices of DB. We apply Fact 4.5 to each permutation µi resulting in a set of paths Pi of length
l

def= 2m. Let P =
⋃
Pi.

Next, the procedure constructs G′ in the following way. The alphabet of G′ is set to be Σl·d
1 ,

viewed as
(
Σl

1

)d. If σ ∈
(
Σl

1

)d, and σ = (σ1, . . . , σd), we denote by σi,j the element (σi)j ∈ Σ1. It
remains to describe how to associate each edge e of G′ with an index ke ∈ [k] and with a circuit
ψe. To this end, we first describe in which cases a circuit ψe accepts, and then describe how the
index ke is chosen and what is the output of ψe when it accepts.

The conditions in which ψe accepts. Fix an edge e′ = (u, v) of G′, and let ψe be the circuit
associated with e. The circuit ψe accepts in exactly the same cases in which the constraint that
corresponds to e in the proof of Proposition 4.4 (for constraint graphs) accepts. That is, the circuit
ψe accepts if and only if all of the following conditions hold:

1. For every i ∈ [d], the values
(
π′ (u)i,l , π

′ (u)i,1
)

satisfy the edge
(
µ−1
i (u), u

)
of G.

2. It holds that π′ (u)1,1 = . . . = π′ (u)d,1 and that π′ (v)1,1 = . . . = π′ (v)d,1.

3. For every i ∈ [d] and j ∈ [l − 1] such that u and v are the j-th and (j + 1)-th vertices of a
path in p ∈ Pi respectively, it holds that π′ (u)i,j 6= π′ (v)i,j+1.

4. Same as Condition 3, but when v is the j-th vertex of p and u is its (j + 1)-th vertex.

The choice of ke and the output of ψe. Fix a vertex u of G′. We describe the way we assign
indices ke to the outgoing edges of u, and the output of the circuits ψe. We begin by associating each
of the |Λ| outgoing edges of u in G′ with one of the d outgoing edges of u in G1. This association is
done in a “balanced” way - that is, each outgoing edge of u in G1 is associated with either b|Λ| /dc
or d|Λ| /de edges of u in G′.

Now, let e′ be an outgoing edge of u in G′, and suppose that it is associated with an outgoing
edge e1 of u in G1, and that e1 belongs to the matching µi. Let ke1 and ψe1 be the index and circuit
associated with e1. Recall that since G1 is vertex-decoding, there exists a function fe1 : Σ1 → Γ

45

such that whenever ψe1 (a, b) 6= ⊥ it holds that ψe1 (a, b) = fe1(a). We associate e′ with the index
ke1 , and with the circuit ψe′ that is defined for every a′, b′ ∈

(
Σl

1

)d for which ψe′ (a, b) 6= ⊥ by

ψe′
(
a′, b′

)
= fe1

((
a′
)

1,1

)
.

Note that ψe′ is indeed well defined, since the cases in which ψe′ outputs ⊥ were defined above.

The parameters of G′. The size and alphabet of G′ are immediate, and the completeness of
G′ can be established in the same way as in Proposition 4.4 (embedding of constraint graphs on
de-Bruijn graphs). It can also be verified that G′ has smoothness at least γ′ = 1

2·|Λ| using the
smoothness criterion (Proposition 6.22) and a straightforward calculation.

It remains to analyze the rejection ratio of G′. Let π′ be an assignment to G′ that minimizes the
ratio between the probability that a random edge of G′ rejects π′ (under the decoding distribution)
to the decoding error of G′ on π′. As in the proof of Proposition 4.4, we may assume that for every
vertex u of DB it holds that π′ (u)1,1 = . . . = π′ (u)d,1, since otherwise we may modify π′ to such
an assignment that satisfies this property without increasing the rejection probability or decreasing
the decoding error. Let π1 be the assignment to G1 defined by π1(u) = π′ (u)1,1. Let ε be the
decoding error of G1 on π1, and let x be the assignment to ϕ that achieves this decoding error. Let
ε′ be the decoding error of G′ on π′ with respect to x. We show that the rejection probability of
G′ on π′ is at least Ω (γ′ · ρ1 · ε′/ |Λ| ·m), and this will yield the required rejection ratio.

Observe that by the smoothness of G1 (resp. G′), the fraction of edges of G1 (resp. G′) that
fail to decode x on π1 (resp. π′) is at least ε0

def= 1
2 · ε (resp. ε′0 = γ′ · ε′). Furthermore, the fraction

of edges of G1 that reject π1 is at least ρ1 · ε0. This implies, using the same argument as in the
proof of Proposition 4.4, that the fraction of edges of G′ that reject π′ is at least Ω (ρ1 · ε0/ |Λ| ·m).

We finish the proof by relating ε′0 with ε0. To this end, observe that for every edge e′ = (u, v) of
G′ and its associated edge e1 of G1, the edge e′ fails to decode x on π′ (i.e. ψe′ (π′ (u)) /∈

{
xke′ ,⊥

}
)

only if e1 fails to decode x on π1 (i.e. ψe1 (π1 (u)) /∈
{
xke1 ,⊥

}
). Furthermore, each edge e1 of

G1 corresponds to either b|Λ| /dc or d|Λ| /de edges in G′. It can be verified by a straightforward
calculation that this implies that ε′0 ≤ 2 · ε0. It now follows that the fraction of edges of G′ that
reject π′ is at least

Ω
(
ρ1 · ε0

|Λ| ·m

)
≥ Ω

(
ρ1 · ε′0
|Λ| ·m

)
≥ Ω

(
ρ1 · γ′

|Λ| ·m
· ε′
)

= Ω
(

ρ

|Λ|2 ·m
· ε′
)
.

The required rejection ratio follows. �

8 Derandomized Parallel Repetition of Decoding Graphs with
Linear Structure

In this section we prove Lemma 6.26 (derandomized parallel repetition for dPCPs), restated below.

Lemma (6.26, restated). There exist a universal constant h and a polynomial time procedure that
satisfy the following requirements:

46

• Input:

– A finite field F of size q.

– A decoding graph G = (Fm, E) of size n for input circuit ϕ : Γt → {0, 1} with linear
structure, alphabet Σ, rejection ratio ρ, decision complexity s, and smoothness γ.

– The rejection ratio ρ of G.

– A parameter d0 ∈ N such that d0 < m/h2 and ρ ≥ h · d0 · q−d0/h/γ.

• Output: A decoding graph G′ for ϕ such that the following holds:

– G′ has size nO(d0).

– G′ has alphabet ΣqO(d0)
.

– G′ is list-decoding with soundness error ε def= h · d0 · q−d0/h/γ and list size L def= qO(d0).

– G′ has the projection property.

– G′ has decoding complexity qO(d0) · (s+ poly log |Σ|).

The proof follows the proof of the corresponding lemma for constraint graphs (Lemma 3.4),
with the following modification: Recall that the proof of Lemma 3.4 described the graph G′ by
describing a verification procedure (the E-test, Figure 2). Moreover, recall that the E-test works
by choosing a random subspace F of edges and verifying that the edges in F are satisfied by the
assignment Π (F).

In order to describe the graph G′ of Lemma 6.26, we describe a decoding procedure (the E-
decoder, see Figure 4 below). The E-decoder is constructed by changing the E-test as follows.
Whenever the E-decoder is required to decode an index k ∈ [t], the E-decoder chooses a random
edge e that is associated with k, and then chooses the subspace F to be a random subspace that
contains e. The E-decoder then checks, as before, that the edges in F are satisfied by the assignment
Π (F). If one of the edges in F is unsatisfied, then the E-decoder rejects. If all the edges in F are
satisfied, then the E-decoder decodes the index k by invoking the circuit ψe associated with e on
input Π (F)|e.

The intuition that underlies the construction of the E-decoder is as follows. Just as in the
proof of Lemma 3.4, we argue that the E-decoder contains an implicit S-test, and therefore the
assignment Π needs to be roughly consistent with some assignment π to G in order to be accepted.
We now consider two cases:

1. If G has high decoding error on π, then by the soundness of G it holds that many of the edges
of G reject π. By the sampling property of F , there are many edges in F that reject π, and
therefore the E-decoder must reject with high probability.

2. If G has low decoding error on π, then due to the sampling property of F , only few of the
edges in F err. In particular, since e is distributed like a random edge of F , it only errs with
low probability. Thus, in this case the E-decoder decodes correctly with high probability.

Thus, in both cases the soundness error of the E-decoder is small.

47

8.1 The construction of G′ and its parameters

The decoding graph G′ is constructed as follows. Let G = (Fm, E) and d0 be as in Lemma 6.26
(derandomized parallel repetition for dPCPs), and let d1 = h · d0 where h is the universal constant
from Lemma 6.26 to be chosen later. As in the proof of the corresponding lemma for constraint
graphs (Lemma 3.4), the graph G′ is bipartite, the right vertices of G′ are the 2d0-subspaces of Fm
(the vertex-space of G), and the left vertices of G′ are the 2d1-subspaces of the edge space E of
G. An assignment Π to G′ should label each 2d0-subspace A of Fm with a function from A to Σ,
and each 2d1-subspace F of E with a function that maps the endpoints of the edges in F to Σ.
The edges of G′ are constructed such that they simulate the action of the “E-decoder” described
in Figure 4.

1. Suppose that we are required to decode an index k ∈ [t]. Let e = (u, v) be a uniformly
distributed edge of G that is associated with k, and let ψe be its associated circuit.

2. Let FL and FR to be random d1-subspaces of E, and let

BL
def= left (FL) , BR

def= right (FR) , F
def= FL + FR.

FL and FR are chosen to be uniformly and independently distributed d1-subspaces
of E conditioned on e ∈ F , dim(F) = 2d1, dim (BL) = d1, dim (BR) = d1, and
BL ∩BR = {0}.

3. Let AL and AR be uniformly distributed d0-subspaces of BL and BR respectively, and
let

A
def= AL +AR.

4. If either Π (F)|(AL,AR) 6= Π (A)|(AL,AR) or the assignment Π (F) is rejected by of the
edges in F , output ⊥.

5. Otherwise, output ,ψe
(

Π (F)|u ,Π (F)|v
)

.

Figure 4: The E-decoder

The completeness, size, and alphabet size of G′ is can be verified in the same way as it was
done in the proof of Lemma 3.4, and so is the fact that G′ has the projection property. It remains
to analyze the soundness of G′, which is done in the following section.

8.2 The soundness of G′

We turn to prove that G′ is list-decoding with ε = h · d0 · q−d0/h/γ and list size L = qO(d0). Let
Π be an assignment to G′. That is, we prove that there exists a (possible empty) list of satisfying
assignments x1, . . . , xL ∈ Γt to the input circuit ϕ such that when given as input a uniformly
distributed index k ∈ [t], the probability that the output of the E-decoder is not in

{
x1
k, . . . , x

L
k ,⊥

}
is at most ε.

Consider the distribution on the edges of G′ that results from letting the edge e of the E-
decoder be chosen according to the uniform distribution on the edges of G instead of the decoding
distribution of G. We will refer to the above distribution as the G-uniform distribution of G′. It
is straightforward to show that the G-uniform distribution and decoding distribution of G′ are γ-
similar, by applying Claim 2.18 with X1 and X2 being the choices of e according the the G-uniform

48

distribution and the decoding distribution, and Y1 and Y2 being the G-uniform distribution and
decoding distribution of G′ respectively. In the following proof, all the probability expressions are
not over the decoding distribution of G′, but rather over the G-uniform distribution of G′. We will
later use the similarity between the distributions to argue that G′ has small soundness error with
respect to its decoding distribution.

Notation 8.1. We denote by D the random variable that equals to the output of the E-decoder.
As in the proof of Lemma 3.4 (derandomized parallel repetition for constraint graphs), we denote
by T the event in which the E-decoder accepts Π, so T is the event D 6= ⊥. Moreover, as in the
proof of Lemma 3.4, for an assignment π : Fm → Σ, we denote by Π (F)

α
≈ π the claim that for

at least 1 − α fraction of the edges e of F it holds that Π (F) is consistent with π on both the

endpoints of e, and otherwise we denote Π (F)
α
6≈ π.

Our proof proceeds in two steps. We first show that there exists a (possible empty) assignments
π1, . . . , πL : Fm → Σ such that whenever the E-decoder accepts Π, it almost always does so while
being roughly consistent with one of the assignments π1, . . . , πL. We can then choose the assign-
ments x1, . . . , xL to be the assignments that minimize the decoding error of π1, . . . , πL respectively.
Next, we show that whenever Π is roughly consistent with πi, the E-decoder either rejects Π with
high probability (if πi has high decoding error) or decodes xi successfully with high probability (if
πi has low decoding error). Thus, the overall probability that the E-decoder fails is small.

The above strategy is made formal in the following three propositions. Let h′ and c be the
universal constants defined in Theorem 8.5 below, and let α def= h′ · d0 · q−d0/h

′
. Let ε0

def= ε · γ/3 =
h · d0 · q−d0/h/3 and let L = O (1/εc0).

Proposition 8.2. There exists a (possibly empty) list of assignments π1, . . . , πL : Fm → Σ such
that

Pr
[
T and 6 ∃i ∈ [L] s.t. Π (F)

4·α
≈ πi

]
< 2 · ε0.

Proposition 8.3. For every assignment π : Fm → Σ on which G has decoding error at least ε0/2L

it holds that Pr
[
T and Π (F)

4·α
≈ π

]
< ε0/L.

Proposition 8.4. For every assignment π : Fm → Σ on which G has decoding error less than
ε0/2L with respect to a satisfying assignment x to the input circuit ϕ it holds that

Pr
[
D 6= xk and Π (F)

4·α
≈ π

]
< ε0/L,

where k is the index on which the E-decoder is invoked.

Propositions 8.2 and 8.4 are proved in Sections 8.2.1 and 8.2.2 respectively. Proposition 8.3 can
be proved in the same way as Proposition 5.7, by noting that due to the soundness of G, at least
ρ · ε0/2L of the edges of G reject π.

We now prove that G′ is (L, ε)-list decoding using Propositions 8.2, 8.3, and 8.4. Let π1, . . . , πL

be the assignments from Proposition 8.2. For each i ∈ [L], let xi be the assignment to ϕ that
attains the decoding error of πi. The decoding error of G′ on Π under the G-uniform distribution

49

of G′ is as follows.

Pr
[
D /∈

{
x1
k, . . . , x

L
k ,⊥

}]
≤

L∑
i=1

Pr
[
D /∈

{
x1
k, . . . , x

L
k ,⊥

}
and Π (F)

4·α
≈ πi

]
+ Pr

[
D /∈

{
x1
k, . . . , x

L
k ,⊥

}
and 6 ∃i ∈ [L] s.t. Π (F)

4·α
≈ πi

]
≤

L∑
i=1

Pr
[
D /∈

{
xik,⊥

}
and Π (F)

4·α
≈ πi

]
+ Pr

[
T and 6 ∃i ∈ [L] s.t. Π (F)

4·α
≈ πi

]
≤

L∑
i=1

ε0/L+ 2 · ε0 (7)

= 3 · ε0,

where Inequality 7 follows from Propositions 8.2 and 8.4. Finally, since the G-uniform distribution
of G′ and the decoding distribution of G′ are γ-similar, it follows that the decoding error of G′ on
Π under the decoding distribution of G′ is at most 3 · ε0/γ = ε, as required. �

8.2.1 Proof of Proposition 8.2

Recall that in order to analyze the soundness of the E-test in Proposition 5.6, we argued that the
E-test contains an “implicit S-test”, and then relied on a theorem regarding the soundness of the
S-test (Theorem 5.4). The aforementioned theorem said that if the S-test accepts an assignment Π
with some probability, then there exists an assignment π such that with some (smaller) probability,
the S-test accepts Π while being consistent with the S-direct product of π. This can be thought as
a “unique decoding” theorem, that decodes π from Π.

In order to prove Proposition 8.2 for the E-decoder, we use a similar argument, but this time
we use a “list decoding” theorem for the S-test. The following theorem says that there exists a
short list of assignments π1, . . . , πL, such that it is almost always the case that if the S-test accepts
Π, it does so while being consistent with the S-direct product of one of the assignments π1, . . . , πL.

Theorem 8.5 (List-decoding soundness of the S-test). There exist universal constants h′, c ∈ N
such that for every d0 ∈ N, d1 ≥ h′ ·d0, and m ≥ h′ ·d1, the following holds: Let ε ≥ h′ ·d0 · q−d0/h

′
,

α
def= h′ · d0 · q−d0/h

′
. Let Π be a (possibly randomized) assignment to 2d0-subspaces of Fm and to

pairs of d1-subspaces of Fm. Then, there exists a (possibly empty) list of L = O (1/εc) assignments
π1, . . . , πL : Fm → Σ such that

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2) and 6 ∃i ∈ [L] s.t. Π (B1, B2)

α
≈ πi|(B1,B2)

]
< ε.

Theorem 8.5 is proved in Section 9.
We turn to prove Proposition 8.2 based on Theorem 8.5. As in the proof of Proposition 5.6,

we begin by extending Π to pairs of independent d1-subspaces of Fm in a randomized manner as
follows: Given a pair of independent d1-subspaces B1 and B2, we choose F1 and F2 to be uniformly
distributed and independent d1-subspaces of E such that left (F1) = B1 and right (F2) = B2, and
set Π (B1, B2) = Π (F1 + F2)|(B1,B2).

50

Again as in the proof of Proposition 5.6, we observe that the probability that the E-decoder
accepts equals to the probability that the S-test accepts the extended Π. The reason is that the
subspaces BL, BR, AL, AR of the E-decoder are distributed like the subspaces B1, B2, A1, A2 of
the S-test. By choosing h to be at least the constant h′ we can invoke Theorem 8.5 (list-decoding
soundness of the S-test), and conclude that there there exists a list of L = O (1/εc) assignments
π1, . . . , πL : Fm → Σ such that for subspaces B1, B2, A1, A2 as in the S-test it holds that

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2) and 6 ∃i ∈ [L] s.t. Π (B1, B2)

α
≈ πi|(B1,B2)

]
< ε0.

The latter inequality is equivalent to the following inequality:

Pr
[
Π (F)|(BL,BR) = Π (A)|(A1,A2) and 6 ∃i ∈ [L] s.t. Π (F)|(BL,BR)

α
≈ πi|(BL,BR)

]
< ε0,

which in turn implies the inequality

Pr
[
T and 6 ∃i ∈ [L] s.t. Π (F)|(BL,BR)

α
≈ πi|(BL,BR)

]
< ε0. (8)

In the rest of this section we show that this implies that

Pr
[
T and 6 ∃i ∈ [L] s.t. Π (F)

4·α
≈ πi

]
< 2 · ε0 (9)

To this end, we use Claim 5.9, which was proved in Section 5.3.1 and is restated below.

Claim (5.9, restated). For every fixed 2d0-subspace F0 of E such that Π (F0)
4α
6≈ π, it holds that

Pr
[

Π (F)|(BL,BR)

α
≈ π|(BL,BR)

∣∣∣F = F0

]
≤ 1/

(
qd1−2 · α2

)
.

Claim 5.9 implies immediately the following corollary.

Corollary 8.6. For every i ∈ [L] it holds that

Pr
[

Π (F)|(BL,BR)

α
≈ πi|(BL,BR)

∣∣∣ 6 ∃j ∈ [L] s.t. Π (F)
4·α
≈ πj

]
< 1/

(
qd1−2 · α2

)
.

In order to prove Inequality 9, we first show that

Pr
[
T and 6 ∃i ∈ [L] s.t. Π (F)|(BL,BR)

α
≈ πi|(BL,BR)

∣∣∣ 6 ∃i ∈ [L] s.t. Π (F)
4·α
≈ πi

]
≥ 1

2
. (10)

To show it, we prove an upper bound on the complement event, that is, we prove that

Pr
[
T and ∃i ∈ [L] s.t. Π (F)|(BL,BR)

α
≈ πi|(BL,BR)

∣∣∣ 6 ∃i ∈ [L] s.t. Π (F)
4·α
≈ πi

]
≤ 1

2
.

To see the latter inequality, observe that the right end side is upper bounded by∑
i∈[L]

Pr
[

Π (F)|(BL,BR)

α
≈ πi|(BL,BR)

∣∣∣ 6 ∃j ∈ [L] s.t. Π (F)
4·α
≈ πj

]
≤

∑
i∈[L]

1/
(
qd1−2 · α2

)
= L · /

(
qd1−2 · α2

)
= O

(
1/εc0 ·

(
qd1−2 · α2

))
≤ 1

2
.

51

where the first inequality follows from Corollary 8.6, and the second inequality follows for sufficiently
large choice of h. Now, it holds that

Pr
[
T and 6 ∃i ∈ [L] s.t. Π (F)|(BL,BR)

α
≈ πi|(BL,BR) and 6 ∃i ∈ [L] s.t. Π (F)

4·α
≈ πi

]
(11)

is upper bounded by

Pr
[
T and 6 ∃i ∈ [L] s.t. Π (F)|(BL,BR)

α
≈ πi|(BL,BR)

]
< ε0.

On the other hand, by writing the probability in (11) in conditional form and applying Inequality 10,
we obtain that the probability in (11) is at least

1
2
· Pr

[
T and 6 ∃i ∈ [L] s.t. Π (F)

4·α
≈ πi

]
.

By combining the two last bounds, we obtain that

Pr
[
T and 6 ∃i ∈ [L] s.t. Π (F)

4·α
≈ πi

]
< 2 · ε0,

as required. �

8.2.2 Proof of Proposition 8.4

Fix an assignment π : Fm → Σ on which G has decoding error less than ε0/2L with respect to a

satisfying assignment x of the input circuit ϕ. We prove that Pr
[

D 6= xk and Π (F)
4·α
≈ π

]
< ε0/L

Let us denote by E1 the event in which Π (F)
4·α
≈ π and by E2 the event in which F contains less

than ε0/3L fraction of edges on which G fails to decode x on π. We will prove that

Pr [D 6= xk and E1] = Pr
[
D 6= xk and Π (F)

4·α
≈ π

]
< ε0/L.

It holds that

Pr [D 6= xk and E1] = Pr [D 6= xk and E1 and E2] + Pr [ψ(a, b) 6= xk and E1 and ¬E2] .

We upper bound both terms on the right hand side. The second term is clearly upper bounded by
Pr [¬E2]. The latter probability can be shown to be at most O

(
L2/q2·d1−2 · ε2

0 + ·d1/q
m−2·d1

)
, using

the fact that F samples well the edges of G, and more specifically using an argument similar to the
one used in the proof of Proposition 5.7. For sufficiently large choice of h, the latter expression is
upper bounded by ε/3L.

We turn to upper bound the probability Pr [D 6= xj and E1 and E2]. This probability is upper
bounded by the probability Pr [D 6= xj |E1 and E2]. Now, let F0 be any 2d1-subspace of E such that

Π (F0)
4·α
≈ πi and such that the fraction of edges of F0 that fail to decode x on π is at most 2ε0/3L.

Let us consider the probability Pr [D 6= xj |F = F0]. Observe that conditioned on the choice F = F0,
the edge e chosen by the E-test is uniformly distributed among the edges of F . Observe that e fails
to decode x only if one of the endpoints of e is inconsistent with π or if e is one of the edges in F
that fail to decode x on π. The probability of the first case is at most 4 · α ≤ ε0/3L (where the
latter inequality holds for sufficiently large choice of h), and the probability of the second case is
at most ε0/3L. It therefore holds that

Pr [D 6= xk and E1 and E2] ≤ Pr [D 6= xj |F = F0] ≤ ε0/3L+ ε0/3L ≤ 2ε0/3L.

All in all, it holds that Pr [D 6= xk and E1] is at most 2ε0/3L+ 3 · ε0/3L = ε0/L, as required. �

52

1. Choose two uniformly distributed d1-subspaces B1, B2 of Fm.

2. Choose two uniformly distributed d0-subspaces A1 ⊆ B1, A2 ⊆ B2.

3. Accept if and only if Π (B1, B2)|(A1,A2) = Π (A1, A2).

Figure 5: The P 2-test

9 The Analysis of the Specialized Direct Product Test

In this section we provide the analysis of the S-test and prove Theorems 5.4 and 8.5, which are the
theorems on the soundness of the S-test that are used in Sections 5.3.1 and 8.2.1 respectively. The
proof proceeds in two steps. First, in Section 9.1, we define and analyze an intermediate direct
product test, which we call the P 2-test. Then, in Section 9.2, we reduce the analysis of the S-test
to that of the P 2-test.

For the rest of this section, we let F be a finite field of size q and let d0, d1 ∈ N.

9.1 The P 2-test

In this section we define and analyze the P 2-test. Informally, the P 2-test consists of two P-tests
that are performed simultaneously. Details follow.

Given two strings π1, π2 : Fm → Σ, we define their P 2-direct product Π (with respect to d0, d1 ∈
N) as follows: Π assigns each pair of d0-subspaces (A1, A2) the pair of functions (π1|A1

, π2|A2
),

and assigns each pair of d1-subspaces (B1, B2) to the pair of functions (π1|B1
, π2|B2

). We consider
the task of testing whether a given assignment Π is the P 2-direct product of some pair of strings
π1, π2 : Fm → Σ. That is, we are given an assignment Π , and in order to check whether Π is a
P 2-direct product, we invoke the P 2-test, described in Figure 5.

It is easy to see that if Π is a P 2-direct product then the P 2-test always accepts. Again, it
can be shown that if Π is “far” from being a P 2-direct product, then the P 2-test rejects with
high probability, and that this holds even if Π is a randomized assignment. Formally, we have the
following result.

Theorem 9.1 (Soundness of the P 2-test). There exist universal constants h, c ∈ N such that the
following holds: Let ε ≥ h · d0 · q−d0/h, α def= h · d0 · q−d0/h. Assume that d1 ≥ h · d0, m ≥ h · d1.
Suppose that an assignment Π passes the P 2-test with probability at least ε. Then, there exist two
assignments π1 and π2 to Fm such that for B1, B2, A1, A2, distributed as in the P 2-test it holds
that

Pr
[
Π (B1, B2)|(A1,A2) = Π (A1, A2) and Π (A1, A2)

α
≈
(
π1|A1

, π2|A2

)
and Π (B1, B2)

α
≈
(
π1|B1

, π2|B2

)]
is at least Ω (εc).

In the rest of this section we prove Theorem 9.1. We denote by P the event in which the P 2-test
accepts, that is, that Π (B1, B2)|(A1,A2) = Π (A1, A2). The core of the proof is the following lemma:

Lemma 9.2. There exist universal constants h′, c′ ∈ N such that the following holds: Let ε ≥
h′ · d0 · q−d0/h

′
, α′ def= h′ · d0 · q−d0/h

′
. Assume that d1 ≥ h′ · d0, m ≥ h′ · d1. If Π passes the P 2-test

with probability at least ε then there exists an assignment π2 : Fm → Σ such that

Pr
[
P and Π (A1, A2)|A2

α′

≈ π2|A2
and (B1, B2)|B2

α′

≈ π2|B2

]
≥ Ω(εc

′
),

53

and symmetrically, there exists a function π1 : Fm → Σ such that

Pr
[
P and Π (A1, A2)|A1

α′

≈ π1|A1
and (B1, B2)|B1

α′

≈ π1|B1

]
≥ Ω(εc

′
).

We prove Lemma 9.2 in Section 9.1.1. We turn to derive Theorem 9.1 from Lemma 9.2.

Proof of Theorem 9.1. The following proof is for the case where Π is not randomized, but it can
be easily extended to the case where Π is randomized (see Remark 9.4 for details). We will choose
h to be larger than the constant h′ of Lemma 9.2, so we can apply this lemma. Let π2 : Fm → Σ
be the assignment guaranteed by Lemma 9.2, and let Π′ be an assignment that is obtained from Π
as follows:

1. For every pair (A1, A2) for which Π (A1, A2)|A2

α′

≈ π2|A2
, set Π′ (A1, A2) = Π (A1, A2).

2. For every other pair (A1, A2), set Π′ (A1, A2) = ⊥, where ⊥ is some special value on which
the test never accepts.

3. Set the pairs (B1, B2) similarly.

The probability ε′ that the assignment Π′ passes the P 2-test is at least Ω(εc
′
) by the definition of

π2. By choosing h to be sufficiently larger than the corresponding constants of Lemma 9.2, we can
make sure that ε′ satisfies the requirements of Lemma 9.2. Therefore, we can deduce by Lemma 9.2
that there exists an assignment π1 : Fm → Σ such that

Pr
[
P and Π′ (A1, A2)|A1

α′

≈ π1|A1
and Π′ (B1, B2)|B1

α′

≈ π1|B1

]
≥ Ω(

(
ε′
)c′) = Ω(ε(c′)2).

We now choose c = (c′)2. Since the test never accepts when Π′ answers ⊥, we deduce that

Pr
[
P and Π(A1, A2)

α′

≈
(
π1|A1

, π2|A2

)
and Π (B1, B2)

α′

≈
(
π1|B1

, π2|B2

)]
≥ Ω(εc).

Choosing h such that α ≥ α′ completes the proof. �

Remark 9.3. Technically speaking, our use of the special value⊥ requires formal justification, since
when defining the P 2-test and stating Lemma 9.2 we did not allow the use of such a special symbol.
To this end, we observe that the use of ⊥ can be implemented as follows: Let Σ′ = Σ ∪ {⊥A,⊥B},
where ⊥A,⊥B are symbols outside Σ. We first observe that Lemma 9.2 works just as well if we
replace the alphabet Σ with the modified alphabet Σ′, since Lemma 9.2 is oblivious to the choice
of the alphabet. Now, whenever we wish to set Π′ (A1, A2) = ⊥ in the proof of Theorem 9.1,
we actually set Π′ (A1, A2) to be the pair of functions that map all the vectors of A1 and A2

respectively to the symbol ⊥A. We deal with the case of Π′ (B1, B2) = ⊥ similarly, this time using
the symbol ⊥B. It remains to observe that when assigning Π′ (A1, A2) this way, the P 2-test will
always reject Π′ (A1, A2), since the assignment Π′ never assigns pairs (B1, B2) with the symbol ⊥A.
The same holds for the case of Π′ (B1, B2) = ⊥.

Remark 9.4. If Π is randomized, then the definition of Π′ in the foregoing proof should be slightly
changed to consider the internal randomness of Π. That is, we define Π′ to be a randomized
assignment, and obtain it from Π as follows. For every pair (A1, A2) and every internal randomness
ω of Π, let us denote by (a1, a2) the output of Π on (A1, A2) and randomness ω. We define the

output of Π′ on (A1, A2) and randomness ω to be (a1, a2) if a2
α′

≈ π2|A2
, and define it to be ⊥

otherwise. The definition for pairs (B1, B2) is again similar.

54

9.1.1 The proof of Lemma 9.2

We prove Lemma 9.2 only for the assignment π2, and the conclusion π1 can be proved analogously.
The proof proceeds in three steps. First, we rely on Theorem 2.2 (soundness of the P-test) to find
for each pair of A1, B1 a direct product function that agrees (on average) with a good fraction of
Π(A1, ·) and Π(B1, ·). Then, we show that for each A1 separately, the number of distinct such
functions is bounded. Next, we show that there is a single function π such that the probability
that the test accepts and Π (A1, A2)|A2

≈ π|A2
is non-negligible (A priori there could have been a

different π for each A1). Finally, we extend the latter result for d1-subspaces B1, B2. Let h1 be the
universal constant whose existence is guaranteed in Theorem 2.2, and let α1 be the corresponding
value from Theorem 2.2.

Step 1. Consider the bipartite graph corresponding to the P -test, that is, the graph whose left
vertices are d0-subspaces and whose right vertices are d1-subspaces, and such that a d0-subspace
A1 is connected to a d1-subspace B1 by an edge if and only if A1 ⊆ B1. . We label an edge (A1, B1)
by π : Fm → Σ if

Pr
A2,B2

[
P and Π (B1, B2)|B2

α1≈ π|B2
and Π (A1, A2)|A2

α1≈ π|A2

]
≥ Ω

(
ε4
)
.

If no such π exists then do not label the edge.
Fix A1, B1. We will choose the universal constant h′ to be at least 2 · h1. If the probability of

passing the P 2-test conditioned on A1, B1 is at least ε/2, then we claim that the edge is labeled.
Indeed, define an assignment Π(A1,B1) by

Π(A1,B1)(A2) = Π (A1, A2)|A2
and Π(A1,B1)(B2) = Π (B1, B2)|B2

.

If Π(A1,B1) passes the P -test with probability at least ε/2, then by Theorem 2.2 (soundness of the
P-test) there is an assignment π as needed (since h′ ≥ 2 · h1).

Furthermore, observe that by averaging at least ε/2 of the edges (A1, B1) have conditional
success at least ε/2, so (A1, B1) is labeled.

Step 2. Fix B1 and let L(B1) be the labels on edges touching B1. Consider the following “prun-
ing” process: arbitrarily choose a label π ∈ L(B1) and remove all elements in L(B1) that are within
relative Hamming distance 3α1 of π. Repeat until no more labels can be removed. Let L′(B1)
denote the remaining set of labels. The set L′(B1) has the following properties

• Every pair of labels in L′(B1) are at least 3α1 apart, and

• Every f ∈ L(B1) is 3α1-close to some label in L′(B1).

We prove that |L′(B1)| ≤ O(1/ε4), using an argument in the spirit of the Johnson bound: Suppose
L′(B1) = {π1, π2, . . .} is non-empty. For every πi 6= πj ∈ L′(B) let us denote

pi
def= Pr

B2

[
Π (B1, B2)|B2

α1≈ πi|B2

]
pi,j = Pr

B2

[
Π (B1, B2)|B2

α1≈ πi|B2
and Π (B1, B2)|B2

α1≈ πj|B2

]
.

By the definition of the labels πi, we know that for some universal constant η it holds that pi ≥ η ·ε4

for every πi. We upper bound the fractions pi,j : We know that for every πi 6= πj it holds that

55

πi
3·α1

6≈ πj . It follows that

pi,j ≤ Pr
B2

[
πi|B2

2·α1≈ πj|B2

]
≤ 1/

(
qd1−2 ·

(
α1 − q−d1

)2
)

≤ 1
2
· η2 · ε8,

where the second inequality follows by Lemma 2.4 (subspace-point sampler) and the third inequality
holds for sufficiently large choice of h′. Now, by the inclusion-exclusion principle that∑

i

pi −
∑
i 6=j

pi,j ≤ 1

∣∣L′(B1)
∣∣ · (η · ε4

)
− 1

2

∣∣L′(B1)
∣∣2 · (1

2
· η2 · ε8

)
≤ 1.

The last inequality immediately implies that |L′(B1)| ≤ 2/
(
η · ε4

)
= O(1/ε4).

We define L(A1) similarly, and prune it to L′(A1). Imagine now choosing a random πA1 ∈ L′(A)
for each A1 and a random πB1 ∈ L′(B1) for each B1. An edge (A1, B1) is called alive if it is labeled
by a function π that is 3α′-close to both πA1 and πB1 . We expect at least 1/ |L′(A)| |L′(B)| = Ω(ε8)
fraction of edges to be alive. Fix a choice of πA1 and πB1 for each A1 and B1 in a way that attains
this expectation.

Step 3. Let D1 be the distribution of choosing a random d1-subspace B1 and two neighbors A1, A
′
1

of it in the graph. Let D2 be the distribution of choosing two d0-spaces A1, A
′
1 independently and

a random B1 that is a common neighbor of them in the graph. The statistical distance between
D1 and D2 is small:

Claim 9.5. For every κ ∈ N, if the constant h′ is sufficiently large then the distributions D1 and
D2 are δ-close for δ < ε24/κ.

We defer the proof of this claim to Section 9.1.2. Now choose a random triplet A1, A
′
1, B1

according to D1. We lower bound the probability that both edges (A1, B1) and (A′1, B1) are alive.
This certainly holds if (i) Ω(ε8) fraction of the edges adjacent to B are alive, and (ii) both edges
(A1, B1) and (A′1, B1) are alive. Part (i) holds with probability Ω(ε8) and conditioned on this, Part
(ii) holds with probability at least Ω(ε16). Altogether

Pr
(B1,A1,A′1)∼D1

[
(A1, B1), (A′1, B1) are both alive

]
= Ω(ε24).

Finally, if we let δ be the statistical distance of D1 and D2, and apply Claim 9.5 with sufficiently
large choices of κ and h′, then we have that

Pr
(B1,A1,A′1)∼D2

[
(A1, B1), (A′1, B1) are both alive

]
≥ Ω(ε24)− δ = Ω(ε24).

Now fix A1 such that the above holds when conditioning on A1. This means that for at least Ω(ε24)
fraction of the d0-subspaces A′1 there exists a d1-subspace B1 such that both the edges (A1, B1)
and (A′1, B1) are alive. For each such A′1, it holds that the label of (A′1, B1) is 3α1-close to πB1 ,
which in turn is 3α1-close to the label of the edge (A1, B1), which is 3α1-close to πA1 . Thus, the

56

label of (A′1, B1) is is 9α1-close to πA1 . Let us denote by π(A′1,B1) the label of the edge (A′1, B1).
Recall that by the definition of π(A′1,B1) it holds that

Pr
A2,B2

[
P and Π

(
A′1, A2

)
|A2

α1≈ π(A′1,B1)|A2

]
≥ Ω

(
ε4
)
. (12)

Since π(A′1,B1)
9·α1≈ πA it holds by Lemma 2.4 (subspace-point sampler) that for a uniformly dis-

tributed d0-subspace A2:

Pr
A2

[
π(A′1,B1)|A2

10·α1

6≈ πA1|A2

]
≤ 1

qd0−2 · (α1 − q−d0)2 .

The latter expression can be made smaller than any constant times ε4 by choosing h′ to be suffi-
ciently large. By subtracting that expression from Inequality 12, we obtain that

Pr
A2,B2

[
P and Π

(
A′1, A2

)
|A2

α1≈ π(A′1,B1)|A2
and π(A′1,B1)|A2

10·α1≈ πA1|A2

]
≥ Ω

(
ε4
)
.

By letting π2 = πA1 and choosing c′ = 28, we have by the triangle inequality

Pr
A′1,A2

[
P and Π

(
A′1, A2

)
|A2

11·α1≈ π2|A2

]
≥ Ω(ε24) · Ω

(
ε4
)

= Ω(εc
′
). (13)

Step 4. It remains to show that the assignment Π agrees with π2 on a non-negligible fraction of
the B’s. To this end, we observe that

Pr
[
P and Π (A1, A2)|A2

11·α1≈ π2|A2

∣∣∣∣Π (B1, B2)|B2

12·α1

6≈ π2|B2

]
≤ 1
qd0−2 · (α1/2)2 . (14)

To see it, note that it suffices to prove that

Pr
[

Π (B1, B2)|A2

11·α1≈ π2|A2

∣∣∣∣Π (B1, B2)|B2

12·α1

6≈ π2|B2

]
≤ 1

qd0−2 · (α1 − q−d0)2 ≤
1

qd0−2 · (α1/2)2 .

The latter inequality is an immediate corollary of Lemma 2.4 (subspace-point sampler).
Now, by choosing h′ to be sufficiently large so that the upper bound in Inequality 14 is sufficiently

smaller than εc
′
, and by combining Inequality 13 with Inequality 14, we obtain that

Pr
[
P and Π (A1, A2)|A2

11·α1≈ π2|A2
and Π (B1, B2)|B2

12·α1≈ π2|B2

]
≥ Ω(εc

′
).

By setting h′ such that α′ ≥ 12 · α1 this concludes the proof of Lemma 9.2. �

9.1.2 Proofs of Auxiliary Claim

Proof of Claim 9.5. Fix κ ∈ N. In order to prove the claim, consider the event J which holds if
and only if A and A′ are independent. We argue that

D1

δ/2
≈ D1|J = D2|J

δ/2
≈ D2.

The fact that D1|J = D2|J is exactly Proposition 2.4. We show that D1

δ/2
≈ D1|J and D2

δ/2
≈

D2|J . The statistical distance between D1 and D1|J (respectively, D2 and D2|J) is exactly the
probability that the event J does not occur under D1 (respectively D2). It follows immediately
from Proposition 2.16 that PrD1 [¬J] ≤ 2·d0/q

d1−2·d0 and PrD2 [¬J] ≤ 2·d0/q
m−2·d0 . Both the latter

expressions can indeed be made smaller than ε24/κ by choosing sufficiently large h′, as required. �

57

9.2 The proof of Theorems 5.4 and 8.5

In the rest of this section we prove Theorems 5.4 and 8.5.

Theorem (5.4, the soundness of the S-test, restated). There exists a universal constants h, c ∈ N
such that the following holds: Let ε ≥ h · d0 · q−d0/h, α def= h · d0 · q−d0/h. Assume that d1 ≥ h · d0,
m ≥ h · d1. Suppose that a (possible randomized) assignment Π passes the S-test with probability
at least ε. There exists an assignment π : Fm → Σ for which the following holds. Let B1, B2 be
uniformly distributed and independent d1-subspaces of Fm, let A1 and A2 be uniformly distributed
d0-subspaces of B1 and B2 respectively, and denote A = A1 +A2. Then:

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2) and Π (B1, B2)

α
≈ π|(B1,B2)

]
= Ω (εc) .

Remark 9.6. Note that in the foregoing restatement of Theorem 5.4 we denote the first universal
constant by h, while in its original statement it was denoted by h′.

The intuition that underlies the proof is the following. Consider an adversary the chooses the
proof Π. Since the S-test essentially contains a P 2-test, the adversary must choose the assignment
Π such that for random d0-subspaces A1 and A2, the assignment Π (A1 +A2)|(A1,A2) is consistent
with two assignments π1, π2 on A1, A2 respectively. On the other hand, given the sum A1 + A2,
the adversary can not deduce the choices of A1 and A2, and therefore he must label both of A1

and A2 with the same assignment in order to make the S-test accept. We conclude that π1 and π2

must be essentially the same. Details follow.
Let h′ be the universal constant whose existence guaranteed in Theorem 9.1 (soundness of the

P 2-test), and let α′ be the corresponding value from Theorem 9.1. We choose c to be the same
constant as in Theorem 9.1, and will choose the universal constant h to be at least h′.

Fix an assignment Π that passes the S-test with probability at least ε. We define a new
assignment Π′ that assigns values to pairs of d0-subspaces and to pairs of d1-subspaces of Fm
(not necessarily independent) by choosing Π′ (B1, B2) (respectively Π′ (A1, A2)) to be equal to
Π (B1, B2) (respectively Π (A1 +A2)) if B1 and B2 (respectively A1 and A2) are independent,
and choosing Π′ to be arbitrary otherwise. Observe that the assignment Π′ passes the P 2-test
whenever B1 and B2 are independent and Π passes the S-test. Furthermore, the probability that
two uniformly distributed d1-subspaces B1 and B2 of Fm are not independent is at most d1/q

m−2·d1

by Proposition 2.16, and therefore Π′ passes the P 2-test with probability at least ε − d1/q
m−2·d1 .

For a sufficiently large choice of h, the latter probability is at least Ω (ε), and also matches the
requirements of Theorem 9.1 (soundness of the P 2-test), so we can apply this theorem. It follows
that there exist assignments π1, π2 : Fm → Σ such that for uniformly distributed (not necessarily
independent) B1, B2, A1 ⊆ B1, A2 ⊆ B2 it holds that

Pr[Π′ (B1, B2)|(A1,A2) = Π′ (A1, A2) (15)

and Π′ (A1, A2)
α′

≈
(
π1|A1

, π2|A2

)
and Π′ (B1, B2)

α′

≈
(
π1|B1

, π2|B2

)
]

= Ω (εc) .

The probability that B1 and B2 are not independent is at most d1/q
m−2·d1 , and the latter expression

can be made smaller than any constant factor times εc by choosing h to be sufficiently large. Thus,
Inequality 15 also holds for uniformly distributed independent B1 and B2. We now argue that

58

Claim 9.7. For sufficiently large choice of h, it holds that π1
5·α′
≈ π2.

We defer the proof of Claim 9.7 to the end of this section. We turn to prove the theorem. By
Inequality 15 it holds for uniformly distributed and independent d1-subspaces B1 and B2 of Fm
that

Pr
[
Π′ (B1, B2)|(A1,A2) = Π′ (A1, A2) and Π (B1, B2)

α′

≈
(
π1|B1

, π2|B2

)]
≥ Ω (εc) .

By Claim 9.7 it holds that π1
5·α′
≈ π2. Since B2 is a uniformly distributed d1-subspace of Fm, this

implies by Lemma 2.4 (subspace-point sampler) that

Pr
[
π1|B2

6·α′
≈ π2|B2

]
≥ 1− 1

qd1−2 · (α′ − q−d1)2 ≥ 1− 1
qd1−2 · (α′/2)2 .

We conclude that

Pr
[
Π′ (B1, B2)|(A1,A2) = Π′ (A1, A2) and Π (B1, B2)

7·α′
≈
(
π1|B1

, π1|B2

)]
≥ Pr

[
Π′ (B1, B2)|(A1,A2) = Π′ (A1, A2) and Π (B1, B2)

α′

≈
(
π1|B1

, π2|B2

)
and π1|B2

6·α′
≈ π2|B2

]
= Ω (εc)− 1

qd1−2 · (α′/2)2

= Ω (εc) ,

where the last equality holds for sufficiently large choice of h. the theorem now follows by defining
π = π1 and setting h to be sufficiently large such that α = 7 · α′. �

Proof of Claim 9.7. For the sake of contradiction, assume that π1

5·α′
6≈ π2. Let A be a uniformly

distributed 2 · d0-subspace A of Fm and let A1 and A2 be uniformly distributed and independent
d0-subspaces of A. By Lemma 2.4, it holds that

Pr
[
π1|A

4·α′
6≈ π2|A

]
≥ 1− 1

q2·d0−2 · (α′ − q−2d0)2 ≥ 1− 1
q2·d0−2 · (α′/2)2 .

If π1|A
4·α′
6≈ π2|A then by the triangle inequality it either holds that Π (A)

2·α′
6≈ π1|A or that Π (A)

2·α′
6≈

π2|A. Since A1 is a uniformly distributed d0-subspace of A, it holds by Lemma 2.4 (subspace-point
sampler) that

Pr
[

Π (A)|A1

α′

6≈ π1|A1

∣∣∣∣Π (A)
2·α′
6≈ π1|A

]
≥ 1− 1

q2·d0−2 · (α′/2)2 .

A similar claim can be made for π2 and A2. Now, if either Π (A)|A1

α′

6≈ π1|A1
or Π (A)|A2

α′

6≈ π2|A2

then by definition it holds that Π (A)|(A1,A2)

α′

6≈
(
π1|A1

, π2|A2

)
. We conclude that

Pr
[

Π (A)|(A1,A2)

α′

6≈
(
π1|A1

, π2|A2

)∣∣∣∣π1|A
4·α′
6≈ π2|A

]
≥ 1− 1

q2·d0−2 · (α′/2)2 ,

and therefore by lifting the conditioning and substituting A = A1+A2 we obtain that for a uniformly
distributed and independent d0-subspaces A1 and A2 of Fm it holds that

Pr
[
Π (A1 +A2)|(A1,A2)

α′

≈
(
π1|A1

, π2|A2

)]
≤ 2
q2·d0−2 · (α′/2)2 .

59

On the other hand, by the definition of Π′, Inequality 15 implies that for uniformly distributed
and independent d0-subspaces A1 and A2 of Fm it holds that

Pr
[
Π (A1 +A2)|(A1,A2)

α′

≈
(
π1|A1

, π2|A2

)]
≥ Ω (εc) .

By choosing h to be sufficiently large, the latter lower bound can be made larger than 2/
(
q2·d0−2 · (α′)2

)
,

and this is a contradiction. �

Theorem 9.8 (8.5, list-decoding soundness of the S-test, restated). There exist universal constants
h, c ∈ N such that for every d0 ∈ N, d1 ≥ h · d0, and m ≥ h · d1, the following holds: Let
ε ≥ h ·d0 · q−d0/h, α def= h ·d0 · q−d0/h. Let Π be a (possibly randomized) assignment to 2d0-subspaces
of Fm and to pairs of d1-subspaces of Fm. Then, there exists a (possibly empty) list of L = O (1/εc)
assignments π1, . . . , πL : Fm → Σ such that

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2) and 6 ∃i ∈ [L] s.t. Π (B1, B2)

α
≈ πi|(B1,B2)

]
< ε

Remark 9.9. Note that in the foregoing restatement of Theorem 8.5 we denote the first universal
constant by h, while in its original statement it was denoted by h′.

The basic idea of the proof is as follows. We apply Theorem 5.4 to Π, thus “decoding” from it
an assignment π1. We then remove from Π the places at which it roughly agrees with π1, resulting
in an assignment Π2. If the assignment Π2 is accepted by the S-test with probability less than ε,
then we are finished - the required list of assignments in this case consists only of π1. Otherwise, the
assignment Π2 is accepted by the S-test with probability at least ε, and we can therefore “decode”
a second assignment π2 from Π2. Next, we remove from Π2 the places at which it roughly agrees
with π2, resulting in an assignment Π3. We proceed in this manner, each time obtaining new
assignments Πi and πi, until the conclusion of Theorem 8.5 holds.

We prove Theorem 8.5 only for non-randomized assignments Π, but the proof can easily be
extended to randomized assignments, see Remark 9.11 for details. We choose the constants h and
c to be the same as in Theorem 5.4. If the S-test accepts Π with probability less than ε then the
theorem holds vacuously. We thus assume that the S-test accepts Π with probability at least ε.
We show that for L = O (1/εc) there exist assignments π1, . . . , πL : Fm → Σ such that

Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2)

]
(16)

−Pr
[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2) and ∃i ∈ [L] : Π (B1, B2)

α
≈ πi|(B1,B2)

]
≤ ε.

We construct the assignments π1, . . . , πL as follows. We begin by applying Theorem 5.4 to Π,
obtaining the assignment π1, and set Π1 def= Π. Then, for each i ≥ 1 we define an assignment Πi+1

as follows.

1. For every pair of d1-subspaces B1, B2 such that Πi (B1, B2)
α
≈ πi|(B1,B2), we set Πi+1 (B1, B2) =

⊥, where ⊥ is a special symbol that the test always rejects. This is our formal way of
“removing” Πi (B1, B2).

2. For every pair of d1-subspaces B1, B2 such that Πi (B1, B2)
α
6≈ πi|(B1,B2), we set Πi+1 (B1, B2) =

Πi (B1, B2).

60

3. For every 2d0-subspace A, we set Πi+1 (A) = Πi (A).

Now, observe that

Pr
[
Πi+1 (B1, B2)|(A1,A2) = Πi+1 (A)|(A1,A2)

]
(17)

= Pr
[
Πi (B1, B2)|(A1,A2) = Πi (A)|(A1,A2)

]
−Pr

[
Πi (B1, B2)|(A1,A2) = Πi (A)|(A1,A2) ∧Πi (B1, B2)

α
≈ πi|(B1,B2)

]
,

since we must have Πi+1 (B1, B2)|(A1,A2) 6= Πi+1 (A)|(A1,A2) whenever Πi+1 (B1, B2)|(A1,A2) = ⊥, and

the latter occurs whenever Πi (B1, B2)
α
≈ πi|(B1,B2). If Pr

[
Πi+1 (B1, B2)|(A1,A2) = Πi+1 (A)|(A1,A2)

]
< ε

then we set L = i and finish the construction. Otherwise, we construct πi+1 by applying Theo-
rem 5.4 to the assignment Πi+1 and setting πi+1 to be the resulting assignment.

It is easy to prove by induction that for every i ∈ [L] it holds that

Pr
[
Πi+1 (B1, B2)|(A1,A2) = Πi+1 (A)|(A1,A2)

]
(18)

= Pr
A⊆B

[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2)

]
− Pr
A⊆B

[
Π (B1, B2)|(A1,A2) = Π (A)|(A1,A2) and ∃i ∈ [L] : Πi (B1, B2)

α
≈ πi|(B1,B2)

]
.

The proof of the Equality 18 goes essentially by summing over the probabilities of events of the
form

Πi (B1, B2)|(A1,A2) = Πi (A)|(A1,A2) and Πi (B1, B2)
α
≈ πj|(B1,B2) and 6 ∃j < i s.t. Πj (B1, B2)

α
≈ πj|(B1,B2),

for different values of i.
Finally, by combining Equality 18 with the fact that

Pr
[
ΠL+1 (B1, B2)|(A1,A2) = ΠL+1 (A)|(A1,A2)

]
< ε,

it follows that the assignments π1, . . . , πL satisfy Inequality 16. To see that L = O (1/εc), observe
that for each i we have that

Pr
[
Πi (B1, B2)|(A1,A2) = Πi (A)|(A1,A2) and Πi (B1, B2)

α
≈ πi|(B1,B2)

]
= Ω (εc) .

By Equality 17, this implies that the acceptance probability of Πi+1 is smaller than the acceptance
probability of Πi by at least εc, and therefore that the number of iterations can be at most O (1/εc),
as required.

Remark 9.10. As in the proof of Theorem 9.1 (soundness of the P 2-test), the use of the special
symbol ⊥ requires formal justification. This can be done as explained in Remark 9.3.

Remark 9.11. As in the proof of Theorem 9.1 (soundness of the P 2-test), if Π is randomized, then
for each i the definition of Πi+1 should be slightly changed to consider the internal randomness of
Πi. That is, we define Πi+1 to be a randomized assignment, and obtain it from Π as follows. For
every pair (B1, B2) and every internal randomness ω of Πi, let us denote by (b1, b2) the output of
Πi on (B1, B2) and randomness ω. We define the output of Πi+1 on (B1, B2) and randomness ω to

be ⊥ if (b1, b2)
α′

≈ πi|(B1,B2), and define it to be (b1, b2) otherwise. The definition for 2d0-spaces A
can be changed similarly to include the internal randomness of Πi. �

Acknowledgement. We would like to thank Eli Ben Sasson for a useful discussion, and to anony-
mous referees for comments that improved the presentation of this work.

61

References

[AL96] Sanjeev Arora and Carsten Lund. Hardness of Approximations. PW Publishing, 1996.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and intractability of approximation problems. Journal of ACM,
45(3):501–555, 1998. Preliminary version in FOCS 1992.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checkable proofs: A new characterization
of NP. Journal of ACM volume, 45(1):70–122, 1998. Preliminary version in FOCS 1992.

[AS03] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications.
Combinatorica, 23(3):365–426, 2003.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In STOC, pages 21–31, 1991.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Robust PCPs of proximity, shorter PCPs and applications to coding. SIAM Journal of
Computing, 36(4):120–134, 2006.

[BGLR93] Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russell. Efficient prob-
abilistically checkable proofs and applications to approximations. In STOC, pages 294–
304, 1993.

[BHLM09] Eli Ben-Sasson, Prahladh Harsha, Oded Lachish, and Arie Matsliah. Sound 3-query
PCPPs are long. TOCT, 1(2), 2009.

[Cam98] Peter J. Cameron. Combinatorics: Topics, Techniques, Algorithms. Cambridge Univer-
sity Press, Cambridge CB2 2RU, MA, USA, 1998.

[DFK+99] Irit Dinur, Eldar Fischer, Guy Kindler, Ran Raz, and Shmuel Safra. PCP characteri-
zations of NP: Towards a polynomially-small error-probability. In STOC, pages 29–40,
1999.

[DG08] Irit Dinur and Elazar Goldenberg. Locally testing direct product in the low error range.
In FOCS, pages 613–622, 2008.

[DH09] Irit Dinur and Praladh Harsha. Composition of low-error 2-query PCPs using decodable
PCPs. In FOCS, 2009.

[Din07] Irit Dinur. The PCP theorem by gap amplification. Journal of ACM, 54(3):241–250,
2007. Preliminary version in STOC 2006.

[DR06] Irit Dinur and Omer Reingold. Assignment testers: Towards combinatorial proof of the
PCP theorem. SIAM Journal of Computing, 36(4):155–164, 2006.

[FGL+96] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. In-
teractive proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292,
1996.

[FK95] Uriel Feige and Joe Kilian. Impossibility results for recycling random bits in two-prover
proof systems. In STOC, pages 457–468, 1995.

62

[GS00] Oded Goldreich and Shmuel Safra. A combinatorial consistency lemma with application
to proving the PCP theorem. SIAM J. Comput., 29(4):1132–1154, 2000.

[IJKW08] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. Uniform
direct product theorems: simplified, optimized, and derandomized. In STOC, pages
579–588, 2008.

[IKW09] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. New direct-product
testers and 2-query PCPs. In STOC, pages 131–140, 2009.

[Kho06] Subhash Khot. Ruling out PTAS for graph min-bisection, dense k-subgraph, and bi-
partite clique. SIAM J. Comput., 36(4):1025–1071, 2006.

[Lei92] F. Thomson Leighton. Introduction to parallel algorithms and architectures: array,
trees, hypercubes. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

[LPS88] Alexander Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

[Mei09] Or Meir. Combinatorial PCPs with efficient verifiers. In FOCS, pages 463–471, 2009. To
appear in Computational Complexity. A more elaborated version is available as ECCC
TR11-104.

[MR08] Dana Moshkovitz and Ran Raz. Two query PCP with sub-constant error. In FOCS,
2008. Full version is available as ECCC TR08-071.

[PS94] Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs.
In STOC, pages 194–203, 1994.

[PY91] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and
complexity classes. J. Comput. Syst. Sci., 43(3):425–440, 1991.

[Raz98] Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998.

[RS97] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a
sub-constant error-probability PCP characterization of NP. In STOC, pages 475–484,
1997.

A Proof of Theorem 2.2, soundness of the P-test

In this section we prove Theorem 2.2, restated below, by adapting the analysis of [IKW09] (in
particular, Sections 3.4 and 4) to the setting of the P -test, while relying on a lemma of [IKW09].
Let F be a finite field of size q, let m, d0, d1 ∈ N, and consider a (possible randomized) assignment
Π that assigns values to d0- and d1-subspaces of Fm.

Theorem A.1 (2.2, soundness of the P-test, restated). There exists a universal constant h ∈ N
such that the following holds: Let ε ≥ h · d0 · q−d0/h, α def= h · d0 · q−d0/h. Assume that d1 ≥ h · d0,
m ≥ h · d1. Suppose that an assignment Π passes the P-test with probability at least ε. Then, there
exists an assignment π such that

Pr
[
Π (B)|A = Π (A) and Π (B)

α
≈ π|B and Π (A)

α
≈ π|A

]
= Ω(ε4),

where the probability is over A,B chosen as in the P -test.

63

We begin by recalling the required preliminaries from [IKW09], and then turn to prove Theo-
rem 2.2.

Definition A.2 (Good). Let A be a d0-subspace of Fm and let ε ∈ (0, 1). We say that A is ε-good
(with respect to an assignment Π) if for a uniformly distributed d1-dimensional subspace B that
contains A it holds that

Pr
[
Π (B)|A = Π (A)

]
≥ ε,

where the randomness is over the choice of B and over the randomness of Π.

Definition A.3 (Plurality function). Let A be a d0-subspace of Fm. We denote by πA : Fm → Σ
the plurality function of A (with respect to Π). In other words, for every x ∈ Fm we define πA(x)
to be the value v ∈ Σ that maximizes

Pr
B⊇A

[
Π (B)|x = v

∣∣∣Π (B)|A = Π (A)
]
,

where B is a uniformly distributed d1-dimensional subspace that contains A.

Definition A.4 (DP-consistent). Let A be a d0-subspace of Fm and let α, γ ∈ (0, 1). We say that
A is (ε, α, γ)-direct product consistent (abbreviated (ε, α, γ) -DP-consistent) if A is ε-good and it
holds that

Pr
B⊇A

[
Π (B)

α
≈ πA|B

∣∣∣Π (B)|A = Π (A)
]
≥ 1− γ.

The following lemma is a direct corollary of the proofs of [IKW09, Lemma 4.2] and [IKW09,
Lemma 4.4].

Lemma A.5. There exists a universal constant h0 ∈ N such that the following holds: Let ε ≥
h0 · q−(d1/h0−d0) and α, γ ∈ (0, 1). The probability that a uniformly distributed A is ε-good but not
(ε, α, γ)-DP-consistent is at most O

(
1/
(
α · γ · ε2 · qd0−2

))
.

Proof of Theorem 2.2

We will choose the universal constant h to be larger than h0 (where h0 is the constant from
Lemma A.5). Assume that the P-test accepts with probability at least ε as in the statement of the
theorem. Let ε1 = 1

3 · ε and γ1 = ε3
1/h . Choose α1 = O

(
1/ε3

1 · γ1 · qd0−2
)

such that the probability
in Lemma A.5 that A is ε1-good but not (ε1, α1, γ1)-DP-consistent is at most ε1, which is indeed
possible for sufficiently large choice of h. We will later choose α = O (α1), by choosing again h to
be sufficiently large.

We consider the following sequence of events. Let A1, A2 denote random d0-subspaces, and let
B denote a random d1-subspace, and define events S1,S2,S3 as follows:

1. S1(A1, A2, B) : A1 and A2 are (ε1, α1, γ1)-DP-consistent and Π (B)|A1
= Π (A1), Π (B)|A2

=
Π (A2).

2. S2(A1, A2, B) : The event S1 (A1, A2, B) occurs and πA1|B
2α1≈ πA2|B (recall that πA1 and πA2

are the plurality assignments of A1 and A2 respectively).

3. S3(A1, A2): A1 and A2 are (ε1, α1, γ1)-DP-consistent and πA1

3α1≈ πA2 .

In the next three claims we choose A1, A2 and B according to the following distribution: choose
A1 and A2 to be uniformly distributed and independent d0-spaces A1, A2, and a choose B to be
a uniformly distributed d1-subspace that contains them. We show that the probability of events
S1,S2,S3 under this distribution is non-negligible.

64

Claim A.6. Pr[S1] ≥ Ω
(
ε3

1

)
.

Proof. LetB′ be a uniformly distributed d1-subspace of Fm and let A′ be a d0-uniformly distributed
subspace of B′. We begin by lower bounding the probability

Pr
[
Π
(
B′
)
|A′ = Π

(
A′
)

and A′ is (ε1, α1, γ1) -DP-consistent
]
. (19)

To this end, let us denote by P the event that Π (B′)|A′ = Π (A′), by D the event that A′ is
(ε1, α1, γ1)-DP-consistent, and by G the event that A′ is ε1-good. Observe thatPr [P and ¬G] ≤
Pr [P|¬G] ≤ ε1. Furthermore, A′ is a uniformly distributed d0-subspace of Fm and thus by
Lemma A.5 and our choice of α1, it holds that Pr [G and ¬D] ≤ ε1. Finally, it holds that the
probability in (19) is

Pr [P and D] ≥ Pr [P and G and D]
= Pr [P and G]− Pr [P and G and ¬D]
= Pr [P]− Pr [P and ¬G]− Pr [P and G and ¬D]
≥ Pr [P]− Pr [P and ¬G]− Pr [G and ¬D]
≥ ε− ε1 − ε1

≥ ε1.

So the probability in (19) is at least ε1. By averaging, this implies that for Ω (ε1) fraction of the
d1-subspaces B′ it holds that at least Ω (ε1) fraction of the d0-subspaces A′ of B′ are (ε1, α1, γ1)-
DP-consistent and satisfy Π (B′)|A′ = Π (A′).

Now, observe that by Proposition 2.4, the distribution over A1, A2, B is equivalent to choosing
B to be a uniformly distributed d1-subspace of Fm and then choosing A1 and A2 to be independent
uniformly distributed d0-subspaces of B. With probability at least Ω (ε1) it holds for B that at least
Ω (ε1) fraction of the d0-subspaces A ofB are (ε1, α1, γ1)-DP-consistent and satisfy Π (B)|A = Π (A).
We condition on the latter event, and claim that under this conditioning the event S1(A1, A2, B)
occurs with probability at least Ω

(
ε2

1

)
. To see it, consider two uniformly distributed (not necessarily

independent) d0-subspaces A′1 and A′2 of B. Then, by our conditioning, it holds that S1(A′1, A
′
2, B)

occurs with probability at least Ω
(
ε2

1

)
. Furthermore, by Proposition 2.16 it holds with probability

at least 1− 2 · d0/q
d1−2·d0 that A′1 and A′2 are independent. It therefore follows under the foregoing

conditioning on B that

Pr [S1(A1, A2, B)] = Pr
[
S1(A′1, A

′
2, B)

∣∣A′1, A′2 are disjoint
]

≥ Pr
[
S1(A′1, A

′
2, B) and A′1, A

′
2 are disjoint

]
≥ Pr

[
S1(A′1, A

′
2, B)

]
− Pr

[
A′1, A

′
2 are disjoint

]
≥ Ω

(
ε2

1

)
− 2 · d0/q

d1−2·d0

≥ Ω
(
ε2

1

)
,

where the last inequality holds for sufficiently large h. Lifting the conditioning on B, we get that
for a uniformly distributed d1-subspace B of Fm and two independent uniformly distributed d0-
subspaces A1 and A2 of B, it holds with probability at least Ω

(
ε3

1

)
that both A1 and A2 are

(ε1, α1, γ1)-DP-consistent and that Π (B)|A1
= Π (A1), Π (B)|A2

= Π (A2), as required. �

Claim A.7. Pr[S2] ≥ Ω
(
ε3

1

)
.

65

Proof. Let E1 be the event in which A1 is (ε1, α1, γ1)-DP-consistent, Π (B)|A1
= Π (A1) and

Π (B)
α1

6≈ πA1|B, and let E2 be the corresponding event for A2. We begin by noting that the
probabilities of both E1 and E2 are upper bounded by γ1. To see it for E1, note that conditioned
on A1 being (ε1, α1, γ1)-DP-consistent and on Π (B)|A1

= Π (A1) it holds that B is a uniformly

distributed d1-subspace satisfying Π (B)|A1
= Π (A1), and therefore it holds that Π (B)

α1

6≈ πA1|B
with probability at most γ1 (by the DP-consistency of A1). The probability of E2 can be upper
bounded similarly.

It now follows by Claim A.6 that

Pr [S2] = Pr
[
S1 and πA1|B

2α1≈ πA2|B

]
≥ Pr [S1 and ¬E1 and ¬E2]
≥ Pr [S1]− Pr [E1]− Pr [E2]
≥ Ω

(
ε3

1

)
− 2 · γ1

≥ Ω
(
ε3

1

)
,

where the last inequality holds for sufficiently large choice of h. The required result follows. �

Claim A.8. Pr[S3] ≥ Ω
(
ε3

1

)
.

Proof. Let us say that A1 and A2 are “agree on a random B” if both A1 and A2 are (ε1, α1, γ1)-

DP-consistent and PrB⊃A1,A2

[
πA1|B

2·α1≈ πA2|B

]
≥ Ω

(
ε3

1

)
. By Claim A.7 and by averaging, we

know that with probability at least Ω
(
ε3

1

)
it holds that A1 and A2 agree on a random B. We show

that for every A1 and A2 that are (ε1, α1, γ1)-DP-consistent such that πA1

3·α1

6≈ πA2 it holds that
A1 and A2 do not agree on a random B. This will imply that if A1 and A2 agree on a random B

then it must hold that πA1

3·α1≈ πA2 . Since we know that the probability of A1 and A2 to agree on
a random B is at least Ω

(
ε3

1

)
the required result will follow.

Fix A1 and A2 to be any (ε1, α1, γ1)-DP-consistent independent d0-subspaces such that πA1

3·α1

6≈
πA2 . Now, by Lemma 2.4 (subspace-point sampler) and by sufficiently large choice of h, the
probability that a uniformly distributed d1-subspace B that contains A1 and A2 contains at most
2 ·α1 ≤ 3 ·α1−1/qd0−2−1/qd1−2·d0 fraction of coordinates on which πA1 and πA2 disagree is at most
1/
(
qd1−4·d0−6

)
, and the latter expression can be made smaller than any constant factor times ε3

1.

Thus, it holds that PrB⊃A1,A2

[
πA1|B

2·α1≈ πA2|B

]
can be made sufficiently small such that A1 and

A2 do not agree on a random B, as required. �

We now find a global assignment π and show that it agrees with Π on many B’s, and then on
many A’s.

Claim A.9. There exists an assignment π : Fm → Σ such that PrB[Π(B)
5·α1≈ π|B and Π (B)|A =

Π (A)] ≥ Ω
(
ε4

1

)
.

Proof. By Claim A.8 and by averaging, we get that for at least Ω
(
ε3

1

)
fraction of the d0-subspaces

A1 it holds that A1 is (ε1, α1, γ1)-DP-consistent and

Pr
A2:A2 is disjoint from A1

[
A2 is (ε1, α1, γ1) -DP-consistent and πA1

3·α1≈ πA2

]
≥ Ω

(
ε3

1

)
66

Fix such d0-subspace A1, and set π = πA1 . Consider choosing a uniformly distributed d0-space A2

and a uniformly distributed d1-space B ⊃ A2. We show that Π(B)
5·α1≈ π|B with probability at

least Ω
(
ε4

1

)
.

Let us denote by D the event in which A2 is independent from A1, by P the event in which

Π (B)|A2
= Π (A2), and by C the event in which A2 is (ε1, α1, γ1)-DP-consistent and πA1

3·α1≈ πA2 .
By Proposition 2.16, it holds that Pr [D] ≥ 1− 2 · d0/q

m−2·d0 ≥ 1
2 (where the second inequality

holds for sufficiently large h). Furthermore, conditioned on D, the subspace A2 is a uniformly
distributed d0-subspace of Fm that is independent from A1, and thus by the choice of A1 it holds
that Pr [C|D] ≥ Ω

(
ε3

1

)
. Lifting the conditioning, it follows that Pr [C] ≥ Ω

(
ε3

1

)
. Next, observe that

B is distributed uniformly over the d1-subspaces that contain A2, and thus (since in particular A2

is ε1-good) Pr [P|C] ≥ ε1. It therefore holds that Pr [C and P] ≥ Ω
(
ε4

1

)
Now, let us condition on the events C and P. By Lemma 2.4 (subspace-point sampler) and for

sufficiently large h, it holds with probability at least 1 − 1/
(
qd1−3·d0−6

)
≥ 3

4 that B contains at
most 4 · α1 ≥ 3α1 + 1/qd0−2 + 1/qd1−2·d0 fraction of coordinates on which πA1 and πA2 disagree.
Furthermore, by the DP-consistency of A2 and for sufficiently large choice of h, it holds with
probability at least 1−γ1 ≥ 3

4 that Π (B)
α1≈ πA2|B. By the union bound and the triangle inequality,

it follows that with probability at least 1
2 it holds that Π (B) disagrees with πA1|B on at most

5 · α1 fraction of the coordinates. Lifting the conditioning on C and P, we obtain that with

probability at least Ω
(
ε4

1

)
it holds that Π (B)

5·α1≈ πA1|B, and Π (B) = Π (A) as required. �

Finally, we turn to prove the theorem. Let π be the assignment whose existence is guaranteed
by the previous claim. Let us denote by P the event in which Π (B)|A = Π (A) (i.e., the P-test

accepts A and B), by E1 the event in which Π(B)
5·α1≈ π|B, by E2 the event in which Π(A)

6·α1≈ π|A,

and by E3 the event in which Π (B)|A
6·α1≈ π|A. Using this notation, it suffices to prove that

Pr [P and E1 and E2] = Ω
(
ε4

1

)
.

By the definition of π, it holds that

Pr [P and E1] = Ω
(
ε4

1

)
.

The subspace A is a uniformly distributed d0-subspace of B, and therefore it holds by Lemma 2.4
(subspace-point sampler) that

Pr [¬E3 |E1] = O
(

1/qd0/2−2
)
.

This implies that

Pr [P and E1 and E3] = Pr [P and E1]− Pr [P and E1 and ¬E3]
≥ Pr [P and E1]− Pr [¬E3|E1]

= Ω
(
ε4

1

)
−O

(
1/qd0/2−2

)
= Ω

(
ε4

1

)
,

where the last inequality holds for sufficiently large h. Now, observe that whenever both the events
P and E3 occur, the event E2 also occurs. It follows that

Pr [P and E1 and E2] ≥ Pr [P and E1 and E3] = Ω
(
ε4

1

)
,

as required. �

67

B Routing on de Bruijn graphs

In this section we prove the routing property of de Bruijn graph given in Fact 4.5. Recall the
following.

Definition (4.1, restated). Let Λ be a finite alphabet and let m ∈ N. The de Bruijn graph DBΛ,m

is the directed graph whose vertices set is Λm such that each vertex (α1, . . . , αt) ∈ Λm has outgoing
edges to all the vertices of the form (α2, . . . , αt, β) for β ∈ Λ.

Fact (4.5, restated). Let DBΛ,m be a de-Bruijn graph. Then, given a permutation µ on the vertices
of DBΛ,m one can find a set of undirected paths of length l = 2m which connect each vertex v to
µ(v) and which have the following property: For every j ∈ [l], each vertex v is the j-th vertex of
exactly one path. Furthermore, finding the paths can be done in time that is polynomial in the size
of DBΛ,m.

We actually prove the following slightly stronger result, which says that if the permutation µ
acts only on the i last coordinates of its input then the routing can be done in only 2i steps.

Claim B.1. Let DBΛ,m be a de-Bruijn graph and let i ∈ [m]. Then, given a permutation µ on
Λi one can find a set of undirected paths of length 2 · i that connect each vertex (α1, . . . , αm) of
DBΛ,m to the vertex (α1, . . . , αm−i, µ (αm−i+1, . . . , αm)) and that have the following two property:
For every j ∈ [l], each vertex v is the j-th vertex of exactly one path. Furthermore, finding the
paths can be done in time that is polynomial in the size of DBΛ,m.

The proof works by induction on i. For i = 0 the claim is obvious. Assume that the claim holds
for some 0 ≤ i < m. We prove that the claim holds for i + 1. Let DB = DBΛ,m, and let µ be a
permutation on Λi+1. For convenience, let us define the action of µ on each (α1, . . . , αm) ∈ Fm as
µ (α1, . . . , αm) = (α1, . . . , αm−i−1, µ (αm−i, . . . , αm)).

Let G be the directed graph whose vertices are the set Λm and whose edges are all the pairs of
the form (v, µ(v)). Let G′ be the graph that is obtained from G by contracting each |Λ| vertices
of G that agree on their last coordinate to one vertex. Clearly, every vertex in G′ has in-degree
and out-degree exactly |Λ|, and each edge of G′ corresponds to an edge of G. Furthermore, observe
that the vertices of G′ can be identified with the vertices of Λm−1.

The |Λ|-regularity of G implies that the edges of G′ can be partitioned to |Λ| perfect matchings
{G′σ}σ∈Λ in polynomial time (see, e.g., [Cam98, Proposition 18.1.2]). Fix a matching G′σ, and
consider an edge e′ in G′σ. Observe that if e is coming out of a vertex (α1, . . . , αm−1) of G′,
then it must enter a vertex of the form

(
α1, . . . , αm−i, α

′
m−i+1, . . . , α

′
m−1

)
. Thus, we can define a

permutation νσ on Λi that maps (αm−i, . . . , αm−1) to
(
α′m−i, . . . , α

′
m−1

)
for each such edge e′(since

G′σ is a perfect matching, this is well defined). We now invoke the induction hypothesis on the
graph DB = DBΛ,m to find a set of paths Pσ of length 2i for each permutation νσ.

We construct the required paths for µ as follows. Let v = (α1, . . . , αm) ∈ Λm, and suppose that
µ (αm−i, . . . , αm) =

(
α′m−i, . . . , α

′
m

)
. We wish to construct a path p in DB that connects v to µ (v).

The edge (v, µ (v)) corresponds to some edge e′ in G′, so let G′β be the matching to which e′ belongs.
We turn to construct the path p: The first edge in the path p connects v = (α1, . . . , αm) to the
vertex (β, α1, . . . , αm−1). The next 2i edges of p will be the edges of the path in Pβ that connects
(β, α1, . . . , αm−1) to

(
β, α1, . . . , αm−i−1, α

′
m−i, . . . , α

′
m−1

)
. Finally, the last edge of p will go from the

vertex
(
β, α1, . . . , αm−i−1, α

′
m−i, . . . , α

′
m−1

)
to the vertex

(
α1, . . . , αm−i−1, α

′
m−i, . . . , α

′
m

)
= µ (v).

Observe that p indeed connects v to µ (v) and is of length 2 · (i+ 1)
It remains to show that for each j ∈ [2i+ 2] it holds that every vertex v is the j-th vertex of

exactly one path. The cases of j = 1 and j = 2 · i+ 2 are trivial. We analyze the case of j = 2, and

68

the rest of the cases will follow from the induction hypothesis. Let u = (β, α1, . . . , αm−1) ∈ Λm.
We show that u is the second vertex of a unique path p by constructing p. Let e′ be the unique
edge of G′ that comes out of the vertex (α1, . . . , αm−1) and that belongs to the matching G′β. The
edge e′ of G′ corresponds to some unique edge (v, µ (v)) of G. Now, by construction, the only path
p such that u is the second vertex of p is the path that connects v to µ (v). The required result
follows. �

C Proof of Claim 5.8

In this section, we prove Claim 5.8, restated below. Recall that G = (Fm, E) is a graph with linear
structure and in particular E is a linear subspace of edges.

Claim (5.8, restated). Let d ∈ N and let Ea be a uniformly distributed d-subspace of E. Then,
Pr [dim (left (Ea)) = d] ≥ 1−d/qm−d, and conditioned on dim (left (Ea)) = d, it holds that left (Ea)
is a uniformly distributed d-subspace of Fm. The same holds for right (Ea).

More generally, let Eb be a fixed subspace of E such that dim (Eb) > d and dim (left (Eb)) >
d. Let Ea be a uniformly distributed d-subspace of Eb. Then, Pr [dim (left (Ea)) = d] ≥ 1 −
d/qdim(left(Eb))−d, and conditioned on dim (left (Ea)) = d, it holds that left (Ea) is a uniformly
distributed d-subspace of left (Eb). Again, the same holds for right (Ea).

Proof. We prove the proposition only for special case in which Eb = E and only for left (Ea). The
proof of the general case and of the case of for right (Ea) is analogous. Let e1, . . . , ed be independent
and uniformly distributed vectors of E, and let E′a = span {e1, . . . , ed}. We prove Proposition 5.8
by showing that Ea is distributed similarly to E′a, and analyzing the distribution of E′a.

Observe that by Proposition 2.17, it holds that conditioned on dim (E′a) = d, the subspace E′a
is a uniformly distributed d-subspace of E. It therefore holds that

Pr [dim (left (Ea)) = d] = Pr
[
dim

(
left
(
E′a
))

= d|dim
(
E′a
)

= d
]

≥ Pr
[
dim

(
left
(
E′a
))

= d and dim
(
E′a
)

= d
]

= Pr
[
dim

(
left
(
E′a
))

= d
]
,

where the last equality holds since clearly dim (left (E′a)) = d implies dim (E′a) = d. Now, since
left (·) is a linear function, it holds that left (e1) , . . . left (ed) are independent and uniformly dis-
tributed vectors of left (E) = Fm, and therefore by Proposition 2.17 it holds that Pr [dim (left (E′a)) = d] ≥
1− d/qm−d. It thus follows that Pr [dim (left (Ea)) = d] ≥ 1− d/qm−d, as required.

It remains to show that conditioned on Pr [dim (left (Ea)) = d] it holds that left (Ea) is a uni-
formly distributed d-subspace of Fm. To see it, observe that for every fixed d-subspace D of Fm, it
holds that

Pr [left (Ea) = D|dim (left (Ea)) = d] = Pr
[
left

(
E′a
)

= D| dim
(
E′a
)

= d and dim
(
left

(
E′a
))

= d
]

= Pr
[
left

(
E′a
)

= D| dim
(
left

(
E′a
))

= d
]
,

where the first equality again holds since conditioned on dim (E′a) = d it holds that E′a is a uni-
formly distributed d-subspace, and the second equality again holds since dim (left (E′a)) = d implies
dim (E′a) = d. Now, it holds that left (E′a) is the span of d uniformly distributed vectors of Fm, and
therefore by Proposition 2.17 it holds that conditioned on dim (left (E′a)) = d the subspace left (E′a)
is a uniformly distributed d-subspace of left (Eb). This implies that the probability

Pr
[
left
(
E′a
)

= D|dim
(
left

(
E′a
))

= d
]

69

is the same for all possible choices of D, and therefore the probability

Pr [left (Ea) = D| dim (left (Ea)) = d]

is the same for all possible choices of D, as required. �

D Proof of Proposition 6.24

In this section we prove Proposition 6.24, restated below.

Proposition (6.24, restated). Let Γ, Σ, r(n), q(n), `(n), s(n), and ρ(n) be as in Definition 6.9,
and let h0 and d0 be the constants from Fact 2.20. If there exists a udPCP D for CircuitSatΓ

with the foregoing parameters, then there exists a polynomial time procedure that acts as follows.
When given a circuit ϕ : Γt → {0, 1} of size n, the procedure outputs a corresponding decoding
graph G = (V,E) q(n) ·d0 · t ·2r(n) with randomness complexity r(n)+log (d0 · q(n)), alphabet Σq(n),
decoding complexity s(n) + poly log |Σ(n)|, and rejection ratio Ω

(
ρ(n)/ (q(n))2

)
. Furthermore, G

is (q(n) · d0)-regular, and has t · 2r(n) vertices and smoothness 1.

Fix n ∈ N and let r = r(n), q = q(n), ` = ` (n), Σ = Σ(n), and s = s(n). We describe the
output of the procedure on fixed circuit ϕ : Γt → {0, 1} of size n. The procedure outputs a decoding
graph G defined as follows:

• The vertices set of G is the set [t] · {0, 1}r, whose elements are identified with all the pairs
(k, ω) where k ∈ [t] is an index to be decoded and ω is a sequence of coin tosses of D on input
(ϕ, k). We denote by I(k,ω) and ψ(k,ω) are the queries tuple and circuit that are output by D
on input (ϕ, k) and coin tosses ω.

• The alphabet of G is Σq.

• The edges of G are constructed as follows. For every i ∈ [`], we let Ci be the set of pairs
(k, ω) such that on I(k,ω) contains i. For each i ∈ [`], we consider the expander G|Ci| over
|Ci| vertices from Fact 2.20, and identify its vertices with the elements of Ci. Now, for each
undirected edge of G|Ci|, we put two directed edges between the corresponding vertices in Ci,
one edge per direction.

• If an edge is coming out from a vertex (k, ω), then it is associated with the index k.

• The circuits ψe associated with the edges are constructed as follows. Let e be an edge going
from (k1, ω1) to (k2, ω2), let ψe be the associated circuit. Suppose that (k1, ω1) and (k2, ω2)
belong to Ci, so there exist j1, j2 ∈ [q] such that (I(k1,ω1))j1 = (I(k2,ω2))j2 = i. Now, the
circuit ψe is given as input two tuples a, b ∈ Σq, outputs ⊥ if aj1 6= bj2 , and otherwise outputs
ψ(k1,ω1)(a).

Let `′ and n′ denote the numbers of vertices and edges of G. It is easy to see that the decoding
graph G has the correct size, randomness complexity, alphabet, decoding complexity, and number
of vertices, and also that it is q ·d0-regular. To see that it has smoothness 1, consider an edge (u, v)
that is chosen under the decoding distribution and observe that

• u is uniformly distributed among the vertices of G.

• Conditioned on the choice of u, the edge (u, v) is uniformly distributed among the edges of u.

70

Combining the two above observations with the regularity of G implies that the decoding distribu-
tion of G is the uniform distribution over the edges.

We turn to show the completeness of G. Let x be a satisfying assignment for ϕ, and let π = πx
be the corresponding proof string for D. We define an assignment Π to the vertices of G by defining
Π(k,ω) to be π|I(k,ω)

. It should be clear that this choice of Π satisfies the requirements.
It remains to analyze the rejection ratio of G. Let Π be an assignment to G. For each vertex

(k, ω), if for some j ∈ [q] it holds that (I(j,ω))j = i, then we refer to
(
Π(k,ω)

)
j

as the opinion of
(k, ω) on i, and also as the j-th opinion of (k, ω). Let π be the proof string for D defined by setting
πi to be the most popular opinion of a vertex of G on i. Suppose that D has decoding error ε
on π and let x be the satisfying assignment to ϕ that achieves this decoding error. Let ε′ be the
decoding error of G on Π with respect to x. We show that at least ρ

q · ε
′ fraction of the edges of G

reject Π, and this will establish the rejection ratio of G.
Let η be the fraction of vertices of G that have an opinion that is inconsistent with π. Clearly,

ε′ ≤ ε+ η: To see it, note that for at least 1− ε− η of the vertices (k, ω) of G it holds that all the
opinions of of (k, ω) are consistent with π and that D does not err on proof string π and on (k, ω)
(i.e. ψ(k,ω)

(
π|I(j,ω)

)
∈ {⊥, xk}). Then, observe that all the outgoing edges of such a vertex (k, ω)

do not err.
Let k be uniformly distributed over [t]. We consider two possible cases. First, consider the case

in which η ≤ ρ · ε/2. By the soundness of D, it holds that D rejects π with probability at least ρ · ε.
Thus, at least ρ · ε fraction of the vertices (k, ω) of G, it holds that D rejects π on (k, ω). This
implies that at least (ρ · ε− η) fraction of the vertices (k, ω) of G, it holds that both D rejects π
on (k, ω) and all the opinions of (k, ω) are consistent with π, in which case all the outgoing edges
of (k, ω) reject Π. It follows that the fraction of edges of G that reject Π is at least

ρ · ε− η ≥ ρ · ε/2 ≥ 1
2
· η +

ρ

4
· ε ≥ ρ

4
(η + ε) ≥ ρ

4
· ε′,

as required.
We turn to consider the case in which η ≥ ρ · ε/2. By averaging, there exists some j ∈ [q] such

that for at least η/q fraction of the vertices (k, ω) of G it holds that the j-th opinion of (k, ω) is
inconsistent with π. For every i ∈ [`], denote by Si the set of vertices of Ci whose j-th opinion is
an opinion on i that is inconsistent with πi, and observe that

1
`′
·
∑̀
i=1

|Si| ≥
η

q
.

Fix i ∈ [`] and denote Si = Ci\Si, and note that since πi is the plurality vote it holds that
|Si| ≤ |Ci| /2. Now, observe that every edge that goes from Si to Si or vice versa must reject Π.
By the edge expansion of G|Ci|, the number of such edges is at least h0 · d0 · |S|. Since this holds
for every i ∈ [`], it follows that the fraction of edges of G that reject Π is at least

1
n′
·
∑̀
i=1

h0 · d0 · |Si| =
1

q · d0 · `′
·
∑̀
i=1

h0 · d0 · |Si|

=
h0

q · `′
·
∑̀
i=1

|Si|

≥ h0

q
· η
q

≥ h0

2 · q2
· ρ · ε,

71

where the first equality follows since G is (q · d0)-regular. The required result follows. �

E Proof of Proposition 7.4

In this section we prove Proposition 7.4, restated below.

Proposition (7.4, restated). There exists a polynomial time procedure that acts as follows:

• Input:

– A vertex-decoding graph G of size n for input circuit ϕ : Γt → {0, 1} with ` vertices,
alphabet Σ, rejection ratio ρ, decoding complexity s, degree bound d, and smoothness γ.

– A number `′ ∈ N such that `′ ≥ ` (given in unary).

• Output: Let c def=
⌊
`′

`

⌋
and let d0 and h0 be the constants from Fact 2.20. The procedure

outputs a vertex-decoding graph G′ of size at most 2 · (c + 1) · d0 · n for input circuit ϕ
that has exactly `′ vertices and also has alphabet Σ, output size s + poly log |Σ|, rejection
ratio Ω

(
γ2 · ρ/d2

)
, degree bound 2 · d0 · d, and smoothness 1

2 · γ.

Furthermore, if G is d-regular then G′ is (2 · d0 · d)-regular and has rejection ratio Ω
(
γ2 · ρ

)
.

Let G = (V,E), ϕ, `, and `′ be as in the proposition and let z = `′ mod `. We construct G′ as
follows. Choose an arbitrary set T ⊆ V of size z. The vertices of G′ consist of a set Cv of vertices
for each v ∈ V , where |Cv| = c+ 1 if v ∈ T and |Cv| = c otherwise. Observe that G′ indeed has `′

vertices. For each v ∈ V let us denote Cv =
{
v1, . . . , v|Cv |

}
. The edges of G′ are defined as follows:

1. For each edge (u, v) of G and for each l ∈ [c], the graph G′ has d0 edges (ul, vl) that are
associated with the same index k(u,v) and circuit ψ(u,v) as the edge (u, v) of G. We call such
edges “G-edges”.

2. For each edge (u, v) for which u ∈ T , the graph G′ contains the following “trivial” edges: Let
jk = k(u,v) and ψ = ψ(u,v) be the index and circuit associated with (u, v). Recall that since
G is vertex-decoding, there exists a function f : Σ→ Γ such that for every a, b ∈ Σ on which
ψ (a, b) 6= ⊥, it holds that ψ (a, b) = f(a). Let ψ′ : Σ2 → Γ ∪ {⊥} be the circuit that for
every input (a, b) ∈ Σ2 outputs f(a). The graph G′ contains d0 edges (uc+1, uc+1) that are
associated with the index k and with the circuit ψ′.

3. For each edge (u, v) of G the graph G′ contains the following edges, which correspond to
“equality constraints”: Let k = k(u,v) and ψ = ψ(u,v) be the index and circuit associated
with (u, v), and let f : Σ → Γ as in Item 2. Let ψ′ be the circuit that on input (a, b) ∈ Σ2

outputs ⊥ if a 6= b and outputs f(a) otherwise. We now identify the vertices of Cu with the
vertices of the expander G|Cu| from Fact 2.20, and for every (undirected) edge of G|Cu| we put
two directed edges between the corresponding vertices of Cu, where the directed edges are
associated with the index k and with the circuit ψ′. We call such edges “consistency edges”
of u.

Let n′ be the size of G′. It is easy to see that G′ has the correct size, alphabet, decoding complexity,
and degree bound, and also that G′ satisfies the completeness requirement. It can also be verified
that G′ has smoothness

(
1− 1

c+1

)
· γ ≥ 1

2 · γ using the smoothness criterion (Proposition 6.22) and
a straightforward calculation.

72

It remains to analyze the rejection ratio of G′. Let π′ be an assignment to the vertices of
G′, and let π be the corresponding plurality assignment to G. That is, π is the assignment that
assigns each vertex v of G the most popular value among the values that π′ assigns to vertices in
Cv. Suppose that G has decoding error ε on π and let x ∈ Γt be an assignment that attains this
decoding error. Let ε′ be the decoding error of G′ on π′ with respect to x. We will show that G′

rejects π′ with probability at least h0·γ2

64 · ρ · ε′ under the decoding distribution, and this clearly
suffices since ε′ is an upper bound on the decoding error of G′. To this end, we will analyze the
decoding error and rejection probability of G′ under the uniform distribution on the edges, and
then use the smoothness of G′ to derive conclusions on the decoding distribution.

By the smoothness of G′, the probability that a uniformly distributed edge of G′ fails to decode
x on π′ is at least ε′1

def= 1
2 · γ · ε

′. Furthermore, a uniformly distributed edge of G fails to decode

x on π with probability at least ε1
def= γ · ε and rejects with probability at least ρ · ε1 = γ · ρ · ε.

Let η be the fraction of vertices of G′ on which π′ is inconsistent with π. We begin the analysis by
expressing ε′1 in terms of ε1 and η.

Let F be the set of edges of G that fail to decode x on π, let F ′ be the set of edges of G′ that fail
to decode x on π′, and let S′ be the set of vertices of G′ on which π′ is inconsistent with plurality
assignment π, so η

def= |S′| /`′. An edge e′ = (u, v) of G′ is in F ′ if and only if e′ corresponds to
some e ∈ F or if u is in S′ (note that since G′ is vertex-decoding, we need not consider the case
where v is in S′). Now, every edge in F has d0 · c corresponding G-edges in G′, and every vertex in
S′ has at most 2 · d0 · d outgoing edges. Thus, it holds that∣∣F ′∣∣ ≤ d0 · c · |F |+ 2 · d0 · d ·

∣∣S′∣∣
Observe that since every vertex of G has at least one outgoing edge (since G is vertex-decoding),
it holds that every vertex in G′ has at least 2 · d0 outgoing edges, and therefore n′ ≥ 2 · d0 · `′ . It
follows that

ε′1 =
|F ′|
n′

(20)

≤ d0 · c · |F |+ 2 · d0 · d · |S′|
n′

≤ d0 · c · |F |
2 · d0 · c · n

+
2 · d0 · d · |S′|

2 · d0 · `′
≤ ε1 + d · η.

Observe that the last inequality implies that if η is small compared to ε′1 then ε1 must be large,
and vice versa. We turn to consider each of the cases separately.

The case where η is small. First, consider the case where η ≤ ρ ·ε′1/16 ·d. In this case, we argue
that π′ is roughly consistent with π, and therefore the action of G′ on π′ is similar to the action of
G on π. In particular, we argue that the fraction of edges of G′ that reject π′ must be related to
the fraction of edges of G that reject π, which is at least ρ · ε1. However, since by Inequality 20 it
holds that ε1 is large compared to ε′1, it will follow that the fraction of edges of G′ that reject π′ is
roughly ρ · ε′1, as required.

More formally, it holds that the fraction of edges touching S′ (both incoming and outgoing) is

73

at most

2 · d0 · d · |S′|
n′

=
2 · d0 · d · η · `′

n′

(Since n′ ≥ 2 · d0 · `′) ≤
2 · d0 · d · η

2 · d0

(By assumption on η) ≤ d0 · d · ρ · ε′1
d0 · 16d

=
ρ · ε′1

16

On the other hand, it holds that the size of F (the set of edges of G that reject π) is at least ρ ·ε1 ·n.
Each such edge has at least d0·c corresponding G-edges in G′, and since n′ ≤ 2·d0·(c+1)·n, it follows
that the fraction of edges of G′ that correspond to edges in F is at least

(
d0·c·|F |

2·d0·(c+1)·n

)
≥ ρ · ε1/4.

Furthermore, it holds that

ε1 ≥ ε′1 − d · η ≥ ε′1 − ρ · ε′1/16 ≥ ε′1/2.

So in fact the fraction of edges in G′ that correspond to edges in F is at least ρ ·ε1/4 ≥ ρ ·ε′1/8. This
implies that the fraction of edges of G′ that both correspond to edges in F and whose endpoints
are consistent with π is at least ρ · ε′1/8− ρ · ε′1/16 ≥ ρ · ε′1/16. Since all of these edges reject π′, it
follows that the fraction of edges of G′ that reject π′ is at least ρ ·ε′1/16 ≥ ρ · 12 ·γ ·ε

′/16 ≥ γ ·ρ ·ε′/32.
This implies that the rejection probability of π′ under the decoding distribution of G′ is at least
Ω
(
γ2 · ρ · ε′

)
. as required.

The case where η is large. We turn to consider the case where η ≥ ρ ·ε′1/16 ·d. In this case, the
assignment π′ is quite inconsistent with π, and we argue that a significant fraction of the consistency
edges reject π′. More formally, using similar considerations as in the proof of Proposition 6.24, every
set Cv contributes at least h0 · d0 · |S′ ∩ Cv| rejecting consistency edges. Thus, there are at least
h0 · d0 · |S′| rejecting edges. This implies that the fraction of rejecting edges is at least

h0 · d0 · |S′|
n′

≥ h0 · d0 · |S′|
2 · d0 · d · `′

=
h0

2 · d
· η

≥ h0

32 · d2
· ρ · ε′1

≥ h0

32 · d2
· ρ · 1

2
· γ · ε′

≥ h0 · γ
64 · d2

· ρ · ε′,

which implies that the rejection probability under the decoding distribution is at least Ω
(
γ2 · ρ · ε′/d2

)
,

as required.

The “furthermore” part. For the “furthermore” part of the lemma, first observe that it is easy
to see from the definition of G′ that if G is d-regular then G′ is (2 · d0 · d)-regular. For the rejection
ratio part, note that in the foregoing analysis we lose a 1/d factor in two places:

74

1. We lose a factor of 1/d in the proof of Inequality 20, where our upper bound on the number of
edges that go out of S is 2 ·d0 ·d · |S| while our lower bound on n′ is only 2 ·d0 · `′. However, if
G is d-regular, then G′ is (2 · d0 · d)-regular, and thus the lower bound on n′ can be improved
to 2 · d0 · d · `′. This implies that Inequality 20 becomes ε′1 ≤ ε1 + η.
As a result, the case of “small η” can be extended to all the cases where η ≤ ρ · ε′1/16, and in
the case of “large η” we can assume that η ≥ ρ · ε′1/16. This saves a factor of 1/d in the case
of “large η”.

2. We lose a factor of 1/d in the case of “large η”, since the lower bound on the number of
rejecting consistency edges for a set Cv is only h0 · d0 · |S ∩ Cv|, while the upper bound on
the number of consistency edges in the graph is d0 · d · n. However, if G is d-regular then the
foregoing lower bound can be improved to h0 ·d0 ·d · |S ∩ Cv|, regaining the factor of 1/d. �

75

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

