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Abstract

In earlier work [1], we gave an oracle separating the relational versions of BQP and the
polynomial hierarchy, and showed that an oracle separating the decision versions would follow
from what we called the Generalized Linial-Nisan (GLN) Conjecture: that “almost k-wise in-
dependent” distributions are indistinguishable from the uniform distribution by constant-depth
circuits. The original Linial-Nisan Conjecture was recently proved by Braverman [7]; we offered
a $200 prize for the generalized version. In this paper, we save ourselves $200 by showing that
the GLN Conjecture is false, at least for circuits of depth 3 and higher.

As a byproduct, our counterexample also implies that Πp

2
6⊂ PNP relative to a random oracle

with probability 1. It has been conjectured since the 1980s that PH is infinite relative to a
random oracle, but the best previous result was NP 6= coNP relative to a random oracle.

Finally, our counterexample implies that the famous results of Linial, Mansour, and Nisan
[11], on the structure of AC0 functions, cannot be improved in several interesting respects.

1 Introduction

Proving an oracle separation between BQP and PH is one of the central open problems of quantum
complexity theory. In a recent paper [1], we reported the following progress on the problem:

(1) We constructed an oracle relative to which FBQP 6⊂ FBPPPH, where FBQP and FBPPPH are
the “relational” versions of BQP and PH respectively (that is, the versions where there are
many valid outputs, and an algorithm’s task is to output any one of them).

(2) We proposed a natural decision problem, called Fourier Checking, which is provably in
BQP (as an oracle problem) and which we conjectured was not in PH.

(3) We showed that Fourier Checking has a property called almost k-wise independence, and
that no BPPpath or SZK problem shares that property. This allowed us to give oracles relative
to which BQP was outside those classes, and to reprove all the known oracle separations
between BQP and classical complexity classes in a unified way.

(4) We conjectured that no PH problem has the almost k-wise independence property, and called
that the Generalized Linial-Nisan (GLN) Conjecture. Proving the GLN Conjecture would
imply the existence of an oracle relative to which BQP 6⊂ PH.
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Foundation under Grant No. 0844626. Also supported by a DARPA YFA grant and the Keck Foundation.
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This paper does nothing to modify points (1)-(3) above: the unconditional results in [1] are still
true, and we still conjecture not only that there exists an oracle relative to which BQP 6⊂ PH, but
that Fourier Checking is such an oracle.

However, we will show that the hope of proving Fourier Checking/∈ PH by proving the GLN
Conjecture was unfounded:

The GLN Conjecture is false, at least for Π
p
2 and higher levels of the polynomial hier-

archy.

We prove this by giving an explicit counterexample: a family of depth-three AC0 circuits that
distinguish the uniform distribution over n-bit strings from an Õ (k/n)-almost k-wise independent
distribution, with constant bias.1

Our counterexample was inspired by a recent result of Beame and Machmouchi [3], giving a
Boolean function with quantum query complexity Ω (n/ log n) that is computable by a depth-three
AC0 circuit. This disproved a conjecture, relayed to us earlier by Beame, stating that every AC0

function has quantum query complexity n1−Ω(1). Like the Beame-Machmouchi counterexample,
ours involves inputs X = x1 . . . xN ∈ [M ]N that are lists of positive integers, with the xi’s encoded
in binary to obtain a Boolean problem; as well as a function f : [M ]N → {0, 1} that uses two
alternating quantifiers to express a “global” property of X. In Beame and Machmouchi’s case, the
property in question was that the function x (i) := xi is 2-to-1; in our case, the property is that
x (i) is surjective.2

Our counterexample makes essential use of depth-three circuits, and we find it plausible that
the GLN Conjecture still holds for depth-two circuits (i.e., for DNF formulas).3 As shown in
[1], proving the GLN Conjecture for depth-two circuits would yield an oracle relative to which
BQP 6⊂ AM, which is already a longstanding open problem.

Given that the GLN Conjecture resisted attacks for two years (and indirectly motivated the
beautiful works of Razborov [15] and Braverman [7] on the original LN Conjecture), our coun-
terexample cannot have been quite as obvious as it seems in retrospect! Perhaps Andy Drucker
(personal communication) summarized the situation best: almost k-wise independent distributions
seem to be much better at fooling people than at fooling circuits.

1.1 Further Implications

Besides falsifying the GLN Conjecture, our counterexample has several other interesting implica-
tions for PH and AC0.

Firstly, we are able to use our counterexample to prove that (Πp
2)

A 6⊂ PNPA
with probability 1

relative to a random oracle A. Indeed, we conjecture that our counterexample can even be used
to prove (Πp

2)
A 6⊂ (Σp

2)
A

with probability 1 for a random oracle A. The seminal work of Yao
[17] showed PH infinite relative to some oracle, but it has been an open problem for almost thirty
years to prove PH infinite relative to a random oracle (see the book of H̊astad [16] for discussion).
Motivation for this problem comes from a surprising result of Book [6], which says that if PH

1Note that depth-three AC0 circuits correspond to the second level of PH, depth-four circuits correspond to the
third level, and so on.

2Beame and Machmouchi [3] also mention the surjectivity property, in Corollary 6 of their paper.
3Indeed, we originally formulated the conjecture for depth-two circuits only, before (rashly) extending it to arbi-

trary depths.
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collapses relative to a random oracle, then it also collapses in the unrelativized world. Our result,
while simple, appears to represent the first “progress” toward separating PH by random oracles
since the original result of Bennett and Gill [5] that P 6= NP 6= coNP relative to a random oracle
with probability 1.4

Secondly, our counterexample shows that the celebrated results of Linial, Mansour, and Nisan
[11], on the Fourier spectrum of AC0 functions, cannot be improved in several important respects.
In particular, Linial et al. showed that every Boolean function f : {0, 1}n → {0, 1} in AC0 has
average sensitivity O (polylog (n)). However, we observe that this result fails completely if we
consider a closely-related measure, the average block-sensitivity. Indeed, there exists a reasonably-
balanced Boolean function f ∈ AC0 such that every 1-input can be modified in Ω (n/ log n) disjoint
ways to produce a 0-input, and almost every 0-input can be modified in Ω (n/ log n) disjoint ways
to produce a 1-input. What makes this behavior interesting is that one normally associates it with
(say) Parity, the canonical function not in AC0!

Linial et al. [11] also showed that every Boolean function f ∈ AC0 has a low-degree approximating
polynomial : that is, a real polynomial p : {0, 1}n → R, of degree O (polylog (n)), such that

E
X∈{0,1}n

[
(p (X)− f (X))2

]
= o (1) .

However, using our counterexample, we will show that such a polynomial p cannot generally be
written as a linear combination of terms, p =

∑
C αCC, where the coefficients satisfy the following

bound: ∑

C

|αC | 2−|C| = no(1).

In other words, such a polynomial cannot be “low-fat” in the sense defined by Aaronson [1]. but
must instead involve “massive cancellations” between positive and negative terms. This gives
the first example of a Boolean function f that can be approximated in L2-norm by a low-degree
polynomial, but not by a low-degree low-fat polynomial—thereby answering another one of the
open questions from [1].

1.2 The Future of BQP and PH

While this paper rules out the GLN approach, at least three plausible avenues remain for proving
an oracle separation between BQP and PH.

(1) Our original idea for proving Fourier Checking/∈ PH was to use a direct random restriction
argument—and while we were unable to make such an argument work, we have also found
nothing to rule it out.

(2) Besides almost k-wise independence, the other “obvious” property of Fourier Checking

that might be useful for lower bounds is its close connection with the Majority function.
Indeed, given as input the truth table of a Boolean function f : {0, 1}n → {−1, 1}, estimating a
single Fourier coefficient f̂ (s) := 1

2n/2

∑
x (−1)x·s f (x) is easily seen to be equivalent to solving

Majority, which is known to be hard for AC0. Thus, in proving Fourier Checking/∈ PH,
the difficulty is “merely” to show that checking the answers to 2n overlapping Majority

4Though “working from the opposite direction,” Cai [8] showed that PH 6= PSPACE relative to a random oracle
with probability 1. Note that any relativized world where PH is infinite must also satisfy PH 6= PSPACE.
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instances is not significantly easier for an AC0 circuit than checking the answer to one instance.
While the usual hybrid argument fails in this case, one could hope for some other reduction—
possibly a non-black-box reduction—showing that if Fourier Checking is in AC0, then
Majority is as well.

(3) Recently, Fefferman and Umans [9] proposed a beautiful alternative approach to the rela-
tivized BQP versus PH question. Like approach (2) above, their approach is based on a
hoped-for reduction from Majority. However, they replace Fourier Checking by a dif-
ferent candidate problem, which involves Nisan-Wigderson combinatorial designs [14] rather
than the Fourier transform. They show that their candidate problem is in BQP, and also
show that it is not in PH, assuming (roughly speaking) that the analysis of the NW generator
can be improved in a direction that people have wanted to improve it in for independent
reasons. Fefferman and Umans’ conjecture follows from the GLN Conjecture,5 but is much
more tailored to a specific pseudorandom generator.

1.3 Organization

The rest of the paper is organized as follows. Section 2 provides background on AC0, (almost)
k-wise independence, and the (Generalized) Linial-Nisan Conjecture; then Section 3 presents our
counterexample. Section 4 uses the counterexample to prove that Π

p
2 6⊂ PNP relative to a ran-

dom oracle, and Section 5 gives implications of the counterexample for the noise sensitivity and
approximate degree of AC0 functions. Section 6 concludes with some discussion and open problems.

2 Background

We refer the reader to [1] for details on the original and generalized Linial-Nisan Conjectures, as
well as their relationship to BQP and PH. In this section, we give a brief recap of the definitions,
conjectures, and results that are relevant to our counterexample.

By AC0, we mean the class of Boolean function families {fn}n≥1 such that each fn : {0, 1}n →
{0, 1} is computable by a circuit of AND, OR, and NOT gates with constant depth, unbounded
fanin, and size nO(1). Here depth means the number of alternating layers of AND and OR gates;
NOT gates are not counted. Abusing notation, we will often use phrases like “AC0 circuit of size
2n

o(1)
,” which means the size is now superpolynomial but the depth is still O (1). We will also

generally drop the subscript of n.
Throughout the paper we abbreviate probability expressions such as PrX∼D [f (X)] by PrD [f ].

Let U be the uniform distribution over n-bit strings, so that PrU [X] = 1/2n for all X ∈ {0, 1}n.
A distribution D over {0, 1}n is called k-wise independent (for k ≤ n) if D is uniform on every
subset of at most k bits. A central question in pseudorandomness and cryptography is what
computational resources are needed to distinguish such a “pretend-uniform” distribution from the
“truly-uniform” one. In 1990, Linial and Nisan [12] famously conjectured that nε-wise independence
fools AC0 circuits:

Conjecture 1 (Linial-Nisan or LN Conjecture) Let D be any nΩ(1)-wise independent distri-

bution over {0, 1}n, and let f : {0, 1}n → {0, 1} be computed by an AC0 circuit of size 2n
o(1)

.

5As, indeed, anything follows from the GLN Conjecture.
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Then ∣∣∣∣PrD [f ]− Pr
U
[f ]

∣∣∣∣ = o (1) .

(The actual parameters in the LN Conjecture are considerably stronger than the above, but
also more complicated to state. We chose weaker parameters that suffice for our discussion.)

After seventeen years of almost no progress, Bazzi [2] finally proved Conjecture 1 for the special
case of depth-2 circuits. Shortly afterward, Razborov [15] gave a dramatically simpler proof of
Bazzi’s theorem, and shortly after that, Braverman [7] proved the full Conjecture 1:

Theorem 2 (Braverman’s Theorem [7]) Let f : {0, 1}n → {0, 1} be computed by an AC0 cir-

cuit of size S and depth d, and let D be a
(
log S

ε

)7d2
-wise independent distribution over {0, 1}n.

Then for all sufficiently large S, ∣∣∣∣PrD [f ]− Pr
U
[f ]

∣∣∣∣ ≤ ε.

Even before the work of Razborov [15] and Braverman [7], we had proposed a deceptively
modest-seeming generalization of Conjecture 1, motivated by the application to the BQP versus
PH question mentioned previously. To state the generalization, we need some more terminology.
Let X = x1 . . . xn ∈ {0, 1}n be a string. Then a literal is an expression of the form xi or 1 − xi,
and a k-term is a product of k literals (each involving a different xi), which is 1 if the literals all
take on prescribed values and 0 otherwise.

Definition 3 (almost k-wise independence) Given a distribution D over {0, 1}n and a k-term
C, we say that C is ε-fooled by D if

1− ε ≤ PrD [C]

PrU [C]
≤ 1 + ε.

(Note that PrU [C] is just 2−k.) Then D is ε-almost k-wise independent if every k-term C is
ε-fooled by D.

In other words, there should be no assignment to any k bits, such that conditioning on that
assignment gives us much information about whether X was drawn from D or from U . We can
now state the conjecture that we falsify.

Conjecture 4 (Generalized Linial-Nisan or GLN Conjecture) Let D be a 1/nΩ(1)-almost
nΩ(1)-wise independent distribution over {0, 1}n, and let f : {0, 1}n → {0, 1} be computed by an

AC0 circuit of size 2n
o(1)

. Then ∣∣∣∣PrD [f ]− Pr
U
[f ]

∣∣∣∣ = o (1) .

Note that, for Conjecture 4 not to be ruled out immediately, it is essential that our definition
of ε-fooling was multiplicative rather than additive. For suppose we had merely required that, on
every subset of indices S ⊆ [n] with |S| ≤ k, the marginal distribution DS was ε-close in variation
distance to the uniform distribution. Then it would be easy to construct almost k-wise distributions
D that were distinguishable from the uniform distribution even by DNF formulas. For example,
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the uniform distribution over all sequences X = x1 . . . xN ∈ [N ]N that are permutations (with the
xi’s appropriately coded in binary) is one such D.

This paper shows that, even with the more careful multiplicative definition of ε-fooling, there
is still a counterexample to Conjecture 4—although we have to work harder and use higher-depth
circuits to construct it. The failure of Conjecture 4 means that Braverman’s Theorem is “essentially
optimal,” in the sense that one cannot relax the k-wise independence condition to almost k-wise
independence. This demonstrates a striking contrast between k-wise independence and almost
k-wise independence in terms of their implications for pseudorandomness.

3 The Counterexample

Fix a positive integer m, and let M := 2m. Then it will be useful think of the input X = x1 . . . xN
as belonging to the set [M ]N , where N := ⌈Mm ln 2⌉. However, to make contact with the original
statement of the GLN Conjecture, we can easily encode such anX as an n-bit string where n := Nm,
by writing out each xi in binary. Abusing notation, we will speak interchangeably about X as an
element of {0, 1}n or of [M ]N .

Let the image of X, or ImX := {x1, . . . , xN}, be the set of integers that appear in X. Then
define the surjectivity function, fSurj : {0, 1}n → {0, 1} by fSurj (X) = 1 if ImX = [M ] and
fSurj (X) = 0 otherwise. A first easy observation is that fSurj ∈ AC0.

Lemma 5 fSurj is computable by an AC0 circuit of depth 3 and size O (NMm).

Proof. For all i ∈ [N ] and y ∈ [M ], let ∆ (xi, y) denote the m-term that evaluates to 1 if xi = y
and to 0 otherwise. Then

fSurj (X) =
∧

y∈[M ]

∨

i∈[N ]

∆(xi, y) .

Now let U be the uniform distribution over [M ]N , so that PrU [X] = 1/MN for all X ∈ [M ]N .
Also, given an input X ∈ [M ]N , we define a distribution D (X) over “perturbed” versions of X via
the following procedure:

(1) Choose y uniformly at random from [M ].

(2) For each i ∈ [N ] such that xi = y, change xi to a uniform, independent sample from [M ]� {y}.

Then we let D := D (U) be the distribution over inputs Z obtained by first drawing an X from
U , and then sampling Z from D (X). Notice that ImZ 6= [M ] and hence f (Z) = 0 for all Z in the
support of D.

Here is an observation that will be helpful later. Given a sample Z = z1 . . . zN from D, we can
define a distribution Dinv (Z) over perturbed versions of Z via the following “inverse” procedure:

(1) Choose y uniformly at random from [M ]� ImZ .

(2) For each i ∈ [N ], change zi to y with independent probability 1/M .

We claim that Dinv is indeed the inverse of D.
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Claim 6 Dinv (D (U)) = U .

Proof. Let Dy (X) be the variant of D (X) where we fix the element y ∈ [M ] in step (1), so that
D (X) = Ey∈[M ]Dy (X). Similarly, let Dinv

y (Z) be the variant of Dinv (Z) where we fix the element

y ∈ [M ]� ImZ . Then it is easy to see that, for every fixed y ∈ [M ], we have Dinv
y (Dy (U)) = U .

For choosing each xi uniformly at random, then changing it randomly if equals y, then changing
it back to y with probability 1/M , is just a more complicated way of choosing xi uniformly at
random.

Now let Hist (X) be the histogram of X: that is, the multiset {h1, . . . , hM} where hy :=
|{i : xi = y}|. Then we can conclude from the above that, for every y ∈ [M ],

Hist
(
Dinv (D (U))

)
= Hist

(
Dinv (Dy (U))

)

= Hist
(
Dinv

y (Dy (U))
)

= Hist (U)

Call a distribution A over [M ]N symmetric if PrA [X] depends only on Hist (X). Notice that U is
symmetric, and that if A is symmetric, then D (A) and Dinv (A) are both symmetric also. This
means that from Hist

(
Dinv (D (U))

)
= Hist (U), we can conclude that Dinv (D (U)) = U as well.

We now show that the function fSurj distinguishes D from U with constant bias.

Lemma 7 EU [fSurj]− ED [fSurj] ≥ 1/e− o (1) .

Proof. By construction, we have ED [fSurj] = 0. On the other hand,

E
U
[fSurj] = Pr

U
[|ImX | = M ] .

Think of N = M lnM + O (1) balls, which are thrown uniformly and independently into M bins.
Then |ImX | is just the number of bins that receive at least one ball. Using the Poisson approxi-
mation, we have

lim
M→∞

Pr
U
[|ImX | = M ] =

1

e
,

and therefore EU [fSurj] ≥ 1/e − o (1).
To show that the distribution D is almost k-wise independent, we first need a technical claim,

to the effect that almost k-wise independence behaves well with respect to restrictions. Given a
k-term C, let V (C) be the set of variables that occur in C. Also, given a set S of variables that
contains V (C), let US (C) be the set of all 2|S|−k terms B such that V (B) = S and B =⇒ C.

Claim 8 Given a k-term C and a set S containing V (C), suppose every term B ∈ US (C) is
ε-fooled by D. Then C is ε-fooled by D.

Proof. It suffices to check the claim in the case |S| = k+ 1, since we can then use induction on k.
Let S = V (C) ∪ {x} for some variable x /∈ V (C). Then US (C) contains two terms: C0 := C ∧ x
and C1 := C ∧ x. By the law of total probability, we have PrD [C] = PrD [C0] + PrD [C1] and
PrU [C] = PrU [C0] + PrU [C1]. Hence

min

{
PrD [C0]

PrU [C0]
,
PrD [C1]

PrU [C1]

}
≤ PrD [C]

PrU [C]
≤ max

{
PrD [C0]

PrU [C0]
,
PrD [C1]

PrU [C1]

}
.
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So if C0 and C1 are both ε-fooled by D, then C is ε-fooled as well.
Given an input X = x1 . . . xN , recall that ∆ (xi, y) denotes a term that evaluates to 1 if xi = y,

and to 0 if xi 6= y. Then let a proper k-term C be a product of the form ∆ (xi1 , y1) · · · · ·∆(xik , yk),
where 1 ≤ i1 < · · · < ik ≤ N and y1, . . . , yk ∈ [M ].

We now prove the central fact, that D is almost k-wise independent.

Lemma 9 D is 2k/M -almost k-wise independent for all k ≤ M/2.

Proof. Notice that a Boolean k-term can involve bits from at most k different xi’s. So by Claim
8, to show that any Boolean k-term is ε-fooled by D, it suffices to show that any proper k-term

C = ∆(xi1 , y1) · · · · ·∆(xik , yk)

is ε-fooled by D.
We first upper-bound PrD [C]. Recall that to sample an input Z from the distribution D, we

first sample an X from U , and then sample Z from D (X). Suppose C (X) = 1. Then the only
way we can get C (Z) = 0 is if, when we perturb the input X to obtain D (X), some ∆

(
xij , yj

)

changes from TRUE to FALSE. But for each j ∈ [k], this can happen only if y = yj, which occurs
with probability 1/M . So by the union bound,

Pr
D

[C] ≥ Pr
U
[C] ·

(
1− k

M

)
.

We can similarly upper-bound PrU [C]. By Claim 6, to sample an input X from U , we can first
sample a Z from D, and then sample X from Dinv (Z). Suppose C (Z) = 1. Then we can only
get C (X) = 0 if, when we perturb Z to Dinv (Z), some ∆

(
zij , yj

)
changes from TRUE to FALSE.

But each zi changes with probability at most 1/M . So by the union bound,

Pr
U
[C] ≥ Pr

D
[C] ·

(
1− k

M

)
.

Combining the upper and lower bounds, and using the fact that k ≤ M/2, we have

1− k

M
≤ PrD [C]

PrU [C]
≤ 1 +

2k

M
.

Combining Lemmas 5, 7, and 9, and setting n := Nm, we obtain the following.

Theorem 10 Conjecture 4 (the GLN Conjecture) is false. Indeed, there exists a family of Boolean
functions fSurj : {0, 1}n → {0, 1}, computable by AC0 circuits of size O

(
n2
)
, depth 3, and bot-

tom fanin O (log n), as well as an O
((
k log2 n

)
/n
)
-almost k-wise independent distribution D over

{0, 1}n, such that ED [fSurj]− EU [fSurj] = Ω (1).

4 Random Oracle Separations

In this section, we reuse the function fSurj and almost k-wise independent distribution D from

Section 3 to show that (Πp
2)

A 6⊂ PNPA
with probability 1 relative to a random oracle A. The

central observation here is simply that D has support on a constant fraction of [M ]N—and that
therefore, any algorithm that computes fSurj (X) on a 1− ε fraction of inputs X ∈ [M ]N must also
distinguish D from U with constant bias. The following lemma makes this implication precise.
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Lemma 11 Let B be a random variable such that PrU [B = fSurj] ≥ 0.92. Then PrU [B] −
PrD [B] > 0.022 − o (1).

Proof. For convenience, let us adopt the convention that all probabilities are implicitly the limiting
probabilities as m → ∞, or equivalently, they implicitly have an additive error of o (1). Then
PrU [fSurj] = 1/e, so

Pr
U
[B] ≥ Pr

U
[fSurj]− Pr

U
[B 6= fSurj] ≥

1

e
− 0.08 > 0.287.

It remains to upper-bound PrD [B]. Using the Poisson approximation, for every fixed integer k ≥ 0
we have

Pr
U
[|ImX | = M − k] =

1

e · k! .

By comparison, for every fixed k ≥ 1 we have

Pr
D

[|ImX | = M − k] =
1

e · (k − 1)!
.

Now, once we condition on the value of |ImX |, it is not hard to see that the distributions D and U
are identical. Thus, since

PrD [|ImX | = M − k]

PrU [|ImX | = M − k]
= k

increases with k, the way to maximize PrD [B] is to set B = 1 for those inputs X such that k is as
large as possible (in other words, such that |ImX | is as small as possible). Notice that

Pr
U
[(|ImX | < M) ∧B] ≤ 0.08 <

∞∑

k=3

1

e · k! ,

It follows that

Pr
D

[B] <
∞∑

k=3

1

e · (k − 1)!
< 0.265.

Combining,
Pr
U
[B]− Pr

D
[B] > 0.287 − 0.265 = 0.022.

Recall that Lemma 9 showed the distribution D to be 2k/M -almost k-wise independent. Ex-
amining the proof of Lemma 9, we can actually strengthen the conclusion to the following.

Lemma 12 Let F be a k-DNF formula, with k ≤ M/2. Then

1− k

M
≤ PrD [F ]

PrU [F ]
≤ 1 +

2k

M
.

Proof. Let F = C1 ∨ · · · ∨ Cℓ. Fix an input X ∈ [M ]N , and suppose F (X) = 1. Then there
must be an i ∈ [ℓ] such that Ci (X) = 1. In the proof of Lemma 9, we actually showed that

Pr
D(X)

[Ci] ≥ 1− k

M
.
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It follows that

Pr
D(X)

[F ] ≥ 1− k

M
,

and hence

Pr
D

[F ] ≥ Pr
U
[F ] ·

(
1− k

M

)
.

Similarly,

Pr
U
[F ] ≥ Pr

D
[F ] ·

(
1− k

M

)
.

The lemma now follows, using the assumption k ≤ M/2.
By combining Lemma 12 with the standard diagonalization tricks of Bennett and Gill [5], we

can now prove a random oracle separation between Π
p
2 and PNP.

Theorem 13 (Πp
2)

A 6⊂ PNPA
with probability 1 relative to a random oracle A.

Proof. We will treat the random oracle A as encoding, for each positive integer m, a random
sequence of integers Xm ∈ [M ]N , where M := 2m and N := ⌈Mm ln 2⌉. Let fSurj : [M ]N → {0, 1}
be our usual surjectivity function; i.e. fSurj (Xm) = 1 if and only if ImXm = [M ]. Then let L be

a unary language that contains 0m if and only if fSurj (Xm) = 1. Clearly L ∈ (Πp
2)

A
. It remains

to show that L /∈ PNPA
with probability 1 over A. Fix a PNPA

machine BA, which runs in time
p (m) for some fixed polynomial p. Also, let m1,m2, . . . be a sequence of input lengths that are
exponentially far apart, so that we do not need to worry about BA (0mi) querying Xmj for any
j > i. We will treat Xmj as fixed for all j < i, so that only X := Xm := Xmi itself is a random
variable. Then BA (0m) makes a sequence of at most p (m) adaptive NTIME (p (m)) queries to X,
call them Q1, . . . , Qp(m). For each t ∈ [p (m)], we can write a p (m)-DNF formula Ft (X) which
evaluates to TRUE if and only if Qt (X) accepts. Then by Lemma 12, we have

1− p (m)

M
≤ PrD [Ft]

PrU [Ft]
≤ 1 +

2p (m)

M
.

This implies that ∣∣∣∣PrD [Ft]− Pr
U
[Ft]

∣∣∣∣ ≤
2p (m)

M
.

So by the union bound, we have

∣∣∣∣PrD
[
BA (0m)

]
− Pr

U

[
BA (0m)

]∣∣∣∣ ≤
2p (m)2

M
,

even after we take into account the possible adaptivity of the queries. Clearly 2p (m)2 /M < 0.022
for all sufficiently large m. So taking the contrapositive of Lemma 11,

Pr
U

[
BA (0m) = f (X)

]
< 0.92

for all sufficiently large M . So as in the standard random oracle argument of Bennett and Gill [5],
we have

Pr
U

[
BA decides L

]
≤

∞∏

i=1

Pr
U

[
BA (0mi) = f (Xmi)

]
= 0.

10



Then taking the union bound over all PNPA
machines BA,

Pr
A

[
L ∈ PNPA

]
= 0

as well.
It is well-known that PNPA

= BPPNPA

with probability 1 relative to a random oracle A. Thus,

Theorem 13 immediately implies that (Πp
2)

A 6⊂ BPPNPA
relative to a random oracle A as well.

Since the class BPPpath is contained in BPPNP (as shown by Han, Hemaspaandra, and Thierauf

[10]), we also obtain the new result that (Πp
2)

A 6⊂ BPPA
path relative to a random oracle A.

5 Implications for AC
0

In this section, we discuss two implications of our counterexample for AC0 function.

(1) Linial, Mansour, and Nisan [11] famously showed that every AC0 function has average sensitiv-
ity O (polylog n). By contrast, we show in Section 5.1 that there are reasonably-balanced AC0

functions with average block-sensitivity almost linear in n (on both 0-inputs and 1-inputs). In
other words, there exist AC0 functions that counterintuitively behave almost like the Parity
function in terms of block-sensitivity!

(2) Linial et al. [11] also showed that every AC0 function can be approximated in L2-norm by a
low-degree polynomial. By contrast, we show in Section 5.2 that there does not generally
exist such a polynomial that also satisfies a reasonable sparseness condition on the coefficients
(what Aaronson [1] called the “low-fat” condition).

5.1 The Average Block-Sensitivity of AC0

Let us first recall the definition of average sensitivity.

Definition 14 (average sensitivity) Given a string X ∈ {0, 1}n and coordinate i ∈ [n], let Xi

denote X with the ith bit flipped. Then given a Boolean function f : {0, 1}n → {0, 1}, the sensitivity
of f at X, or sX (f), is the number of i’s such that f

(
Xi
)
6= f (X). Then the average sensitivity

of f is
s (f) := E

X∈{0,1}n
[sX (f)] .

Assuming f is non-constant, we can also define the average 0-sensitivity s0 (f) and average 1-
sensitivity s1 (f) respectively, by

sb (f) := E
X∈{0,1}n : f(X)=b

[sX (f)] .

Then Linial, Mansour, and Nisan [11] showed that every AC0 function has low average sensi-
tivity:

Theorem 15 ([11]) Every Boolean function f : {0, 1}n → {0, 1} computed by an AC0 circuit of
depth d satisfies s (f) = O

(
logd n

)
.

11



We now recall the definition of block-sensitivity, a natural generalization of sensitivity defined
by Nisan [13].

Definition 16 (average block-sensitivity) Given a string X ∈ {0, 1}n and a subset of indices
B ⊆ [n] (called a “block”), let XB denote X with the bits in B flipped. Then given a Boolean
function f : {0, 1}n → {0, 1}, the block-sensitivity of f at X, or bsX (f), is the largest k for which
there exist k pairwise-disjoint blocks, B1, . . . , Bk, such that f

(
XBi

)
6= f (X) for all i ∈ [k]. Then

the average block-sensitivity of f is

bs (f) := E
X∈{0,1}n

[bsX (f)] .

Assuming f is non-constant, we can also define the average 0-block-sensitivity bs0 (f) and average
1-block-sensitivity bs1 (f) respectively, by

bsb (f) := E
X∈{0,1}n : f(X)=b

[bsX (f)] .

We consider the following question: does any analogue of Theorem 15 still hold, if we replace
sensitivity by block-sensitivity?

We start with some simple observations. Call a Boolean function f : {0, 1}n → {0, 1}
reasonably-balanced if there exist constants a, b ∈ (0, 1) such that a ≤ E{0,1}n [f ] ≤ b for ev-

ery n. Then if we do not require f to be reasonably-balanced, it is easy to find an f ∈ AC0

such that bs0 (f) and bs1 (f) are both large. For example, the two-level AND-OR tree satisfies
bs0 (f) = Θ (

√
n) and bs1 (f) = Θ (

√
n).

So let us require f to be reasonably-balanced. Even then, it is easy to find an f ∈ AC0 such
that bs (f) = Ω (n/ log n). Given an input X = x1 . . . xN ∈ [N ]N , define the Tribes function by
fTribes (X) = 1 if there exists an i ∈ [N ] such that xi = 1, and fTribes (X) = 0 otherwise. Then not
only is fTribes in AC0, it has an AC0 circuit of depth 2 (i.e., a DNF formula). On the other hand,
let X be any 0-input of fTribes; then we can change X to a 1-input by setting xi := 1 for any i. So

bsX (fTribes) ≥ N = Ω

(
n

log n

)
,

where n := N log2N is the length of X as a binary string. Hence bs0 (fTribes) = Ω (n/ log n).
Indeed bs (fTribes) = Ω (n/ log n) as well, since

lim
N→∞

Pr
[N ]N

[fTribes (X) = 0] =
1

e
.

By contrast, one can check that bs1 (fTribes) is only Θ (log n). Indeed, any Boolean function f
that can be represented by a k-DNF formula satisfies bs1 (f) ≤ k, since if a particular k-term C is
satisfied, then there are at most k disjoint ways to make it unsatisfied.

The above observations lead us to ask the following question: Does every reasonably-balanced
AC0 function f satisfy either bs0 (f) = O (polylog n) or bs1 (f) = O (polylog n)? The following
theorem shows, alas, that the answer is still no.

Theorem 17 There exists a reasonably-balanced Boolean function f : {0, 1}n → {0, 1}, computable
by a depth-three AC0 circuit, such that bs0 (f) = Ω (n/ log n) and bs1 (f) = Ω (n/ log n).

12



Proof. Let f be the function fSurj from our counterexample. As usual, we can think of an input

X to fSurj as belonging to either or {0, 1}n or [M ]N , where M = 2m, N = ⌈Mm ln 2⌉, and n = Nm.
As in Lemma 7, we have

lim
M→∞

E
[M ]N

[fSurj] =
1

e
,

so fSurj is reasonably-balanced.

To lower-bound bs1 (fSurj), consider an input X = x1 . . . xN ∈ [M ]N such that fSurj (X) = 1 or
equivalently ImX = [M ]. Given y ∈ [M ], let Cy (X) be the set of all i ∈ [N ] such that xi = y.
Then we can change fSurj (X) from 1 to 0, by changing xi to an arbitrary element of [M ] \ {y}
for each i ∈ Cy (X). This implies that bsX (fSurj) ≥ M . Indeed, we can improve the bound to
bsX (fSurj) ≥ Mm, by noticing that it suffices to change a single bit of xi for each i ∈ Cy (X).
Hence

bs1 (fSurj) ≥ Mm = Ω

(
n

log n

)
.

Next consider an inputX = x1 . . . xN ∈ [M ]N such that |ImX | = M−1. Then clearly fSurj (X) = 0.
Let A (X) be the set of indices i ∈ [N ] for which there exists at least one j 6= i such that xi = xj .
Then we have |A (X)| ≥ N − M by the pigeonhole principle. Also, for any i ∈ A (X), let Xi

be identical to X, except that we change xi to the unique element of [M ] \ ImX . Then clearly
ImXi = [M ] and fSurj

(
Xi
)
= 1. Therefore bsX (fSurj) ≥ |A (X)| ≥ N −M . Furthermore, as in

Lemma 11, we have

lim
M→∞

Pr
[M ]N

[|ImX | = M − 1] =
1

e

by the Poisson approximation. It follows that

lim
M→∞

bs0 (fSurj) ≥
1/e

1− 1/e
(N −M) = Ω

(
n

log n

)
.

5.2 The Inapproximability of AC0 by Low-Fat Polynomials

Let us recall another basic result of Linial, Mansour, and Nisan [11].

Theorem 18 ([11]) Let f : {0, 1}n → {0, 1} be computed by an AC0 circuit of depth d. Then for
all ε > 0, there exists a multilinear polynomial p : {0, 1}n → R of degree O

(
logd (n/ε)

)
such that

EU

[
(p− f)2

]
≤ ε.

In this section, we ask whether one can extend Theorem 18 to get an approximating polynomial p
that is not merely low-degree, but also representable using coefficients that are bounded in absolute
value. The specific property that we want was called the “low-fat” property by Aaronson [1]:

Definition 19 (low-fat polynomials) Given a multilinear polynomial p : {0, 1}n → R, define
the fat content of p, or fat (p), to be the minimum of

∑
C |αC | 2−|C| over all representations p =∑

C αCC of p as a linear combination of terms (that is, products of xi’s and (1− xi)’s). Then we
call p low-fat if fat (p) = no(1).
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One motivation for Definition 19 comes from [1], where it was pointed out that the Generalized
Linial-Nisan Conjecture is equivalent (via LP duality) to the following conjecture:

Conjecture 20 (Low-Fat Sandwich Conjecture) Let f : {0, 1}n → {0, 1} be computed by an

AC0 circuit of size 2n
o(1)

. Then there exist low-fat multilinear polynomials pℓ, pu : {0, 1}n → R, of
degree no(1), that “sandwich” f in the following sense:

(i) pℓ (X) ≤ f (X) ≤ pu (X) for all X ∈ {0, 1}n and

(ii) EU [pu − pℓ] = o (1).

Without the adjective “low-fat,” Conjecture 20 would be equivalent to the original Linial-Nisan
Conjecture, as shown by Bazzi [2]. And indeed, Braverman [7] heavily exploited this equivalence
in his proof of the original LN Conjecture.6

Of course, from the fact that the GLN Conjecture is false, we can immediately deduce that
Conjecture 20 must be false as well.

On the other hand, the notion of low-fat approximating polynomials seems interesting even apart
from Conjecture 20—for the low-fat condition is a kind of “sparseness” condition, which might be
useful (for example) in learning theory. Furthermore, the falsehood of Conjecture 20 does not
directly rule out the possibility of low-fat approximating polynomials for every AC0 function, since
Conjecture 20 talks only about sandwiching polynomials. However, with a bit more work, we now
show the existence of an AC0 function that has no low-fat, low-degree approximating polynomial
of any kind.

Theorem 21 There exists a Boolean function f : {0, 1}n → {0, 1}, computable by a depth-three

AC0 circuit, for which any multilinear polynomial p : {0, 1}n → R that satisfies EU

[
(p− f)2

]
= o (1)

also satisfies deg (p) fat (p) = Ω
(
n/ log2 n

)
.

Proof. Once again we let f = fSurj. Let p be a multilinear polynomial such that EU

[
(p− f)2

]
=

ε. By definition, we can write p as a linear combination of terms, p =
∑

C αCC, such that∑
C |αC |EU [C] = fat (p). Hence

E
U
[p]− E

D
[p] =

∑

C

αC

(
E
U
[C]− E

D
[C]

)

≤
∑

C

|αC |
(
2 |C|
M

E
U
[C]

)

≤ 2 fat (p) deg (p)

M
,

6Technically, Braverman constructed polynomials that satisfied slightly different properties than (i) and (ii) from
Conecture 20. However, we know from Bazzi’s equivalence theorem [2] that it must be possible to satisfy those
properties as well.
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where the second line follows from Lemma 9. Also, let ∆ := p − fSurj. Then as in the proof of
Lemma 11, we have

ε = E
U

[
∆2
]

=
M∑

k=0

Pr
U
[|ImX | = M − k] · E

U

[
∆2 | |ImX | = M − k

]

≥
M∑

k=0

EU

[
∆2 | |ImX | = M − k

]

e · k! − o (1) ,

whereas

E
D

[
∆2
]
=

M∑

k=0

Pr
D

[|ImX | = M − k] · E
D

[
∆2 | |ImX | = M − k

]

≤
M∑

k=0

EU

[
∆2 | |ImX | = M − k

]

e · (k − 1)!
+ o (1) .

Combining, we find that

E
D

[
∆2
]
= O

(
ε log

1

ε

)
+ o (1) .

Hence

E
U
[fSurj]− E

D
[fSurj] =

(
E
U
[p]− E

U
[∆]

)
−
(
E
D
[p]− E

D
[∆]

)

≤
(
E
U
[p]− E

D
[p]

)
+ E

U
[∆] + E

D
[∆]

≤ 2 fat (p) deg (p)

M
+
√

E
U
[∆2] +

√
E
D
[∆2]

≤ 2 fat (p) deg (p)

M
+O

(√
ε log

1

ε

)
+ o (1) ,

where the third line follows from Cauchy-Schwarz. On the other hand, we know from Lemma 7
that

E
U
[fSurj]− E

D
[fSurj] ≥

1

e
− o (1) .

So combining, if ε = o (1), then

fat (p) deg (p) = Ω

(
M

e

)
= Ω

(
n

log2 n

)
.

Since fSurj has a depth-three AC0 circuit, it follows from Theorem 18 that there exists a polyno-

mial p of degree O
(
log3 n

)
such that EU

[
(p− fSurj)

2
]
= o (1). Thus, one corollary of Theorem 21

is a separation between low-degree approximation and low-degree low-fat approximation. In other
words, there exists a Boolean function f (namely fSurj) that can be well-approximated in L2-norm
by a polynomial of degree O (polylog n), but not by a low-fat polynomial of degree O (polylog n).
This answers one of the open problems from [1].
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6 Discussion

As we said before, we remain sanguine about the prospects for proving an oracle separation between
BQP and PH. In our view, the lesson of our counterexample is simply that almost k-wise inde-
pendence is too blunt of an instrument for this problem. Looking at the specific function fSurj in
the counterexample, we find two arguments in support of this position. Firstly, fSurj is extremely
different in character from Fourier Checking, or any of the other candidates for problems in
BQP\PH (such as the ones studied by Fefferman and Umans [9]). Indeed, fSurj is not even in BQP,
as can be seen from the BBBV lower bound [4] for example.7 Secondly, fSurj is trivially in PH by
construction—and for that reason, our counterexample does not really say anything unexpected
about “the power of PH.” To us, the unexpected part is simply the inability of approximate local
statistics to “certify” a problem as outside PH, where exact local statistics succeed in doing so (as
shown by Braverman [7]). But this is a surprise about proof techniques, not about complexity
classes.

The obvious open problems are

(1) to solve the relativized BQP versus PH problem by whatever means, and

(2) to solve the relativized BQP versus AM problem, possibly by proving the depth-two GLN
Conjecture.

We reiterate our offer of a $200 prize for problem (1) and a $100 prize for problem (2).
A third interesting problem is to show that our function fSurj (X) cannot be computed in Σ

p
2,

on a 1− ε fraction of inputs X ∈ [M ]N . This would imply that (Πp
2)

A 6⊂ (Σp
2)

A
with probability 1

relative to a random oracle A. A fourth problem is whether one can say anything nontrivial about
the block-sensitivity of AC0 functions: for example, that every f ∈ AC0 has average block-sensitivity
O (n/ log n).
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