
Span programs and quantum query algorithms

Ben W. Reichardt

Abstract

Quantum query complexity measures the number of input bits that must be read by a quantum
algorithm in order to evaluate a function. Høyer et al. (2007) have generalized the adversary semi-
definite program that lower-bounds quantum query complexity. By giving a matching quantum
algorithm, we show that the general adversary lower bound is tight for every boolean function.

The proof is based on span programs, a linear-algebraic computational model without inherent
dynamics. Span programs correspond to solutions to the dual semi-definite program, and to
bipartite graphs. The analysis shows that properties of eigenvalue-zero eigenvectors of the graphs
in fact imply an “effective” spectral gap around zero We thus develop a quantum algorithm
for evaluating span programs. It follows that span programs, measured by witness size, and
quantum algorithms, measured by query complexity, are equivalent computational models, up to
a constant factor.

The result efficiently characterizes the quantum query complexity of a read-once formula
over any finite gate set. It also implies that the quantum query complexity of the composition
f ◦ (g, . . . , g) of two boolean functions matches the product of the query complexities of f and g,
without a logarithmic factor for error reduction. The algorithm alternates a fixed reflection with
input queries. Originally introduced for solving the unstructured search problem, this structure
is therefore a universal feature of quantum query algorithms.

We give a second algorithm for evaluating span programs that has the further potential to be
time-efficient. Subsequent applications have derived nearly time-optimal quantum algorithms
for evaluating many read-once formulas. Span programs may have promise for developing more
quantum algorithms.

1 Introduction

The query complexity, or decision-tree complexity, of a function measures the number of input bits
that must be read in order to evaluate the function. Computation between queries is not counted.
Quantum algorithms can run in superposition, and the quantum query complexity therefore allows
coherent access to the input string (Figure 1). Quantum query complexity with bounded error can
be far smaller than classical randomized query complexity [BV97, Sim97, Sho97, Aar10], but for
total functions [BBC+01] or functions satisfying certain symmetries [AA09] the two measures are
polynomially related; see the survey [BW02].

Although the query complexity of a function can fall well below its time complexity, studying query
complexity has historically given insight into the power of quantum computers. For example, the
quantum part of Shor’s algorithms for integer factorization and discrete logarithm is a quantum query
algorithm for period finding [Sho97]. Grover’s unstructured database search algorithm is a quantum
query algorithm for evaluating the n-bit OR function, with Θ(

√
n) queries [Gro96, BBHT98].

Unlike for time complexity, there are also strong information-theoretic techniques for placing
lower bounds on quantum query complexity. These lower-bound techniques can be broadly classified

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 110 (2010)

workspace
V0 V1 VQ

measure
output

query
registers Ox Ox

· · ·

Figure 1: Beginning in a fixed initial state, a quantum query algorithm alternates arbitrary unitaries
Vq that do not depend on the input with coherent input oracle queries Ox. For a boolean function,
Ox is the unitary that maps |j, b〉 to |j, xj ⊕ b〉, for j = 1, . . . , n and b ∈ {0, 1}. Finally, the output
is measured. The algorithm’s query complexity is the number of calls made to Ox, i.e., Q in the
illustrated circuit diagram.

as using either the polynomial method [BBC+01] or the adversary method [Amb02, ŠS06]. Høyer
and Špalek [HŠ05] have surveyed the development of these two methods and their multitude
of applications. In particular, Ambainis’s original lower bound [Amb02] has several stronger
variants [HNS02, BS04, Amb06, Zha05, BSS03, LM04] that are equivalent to each other [ŠS06].
The two techniques are incomparable. For instance, for the n-input collision problem, the best
adversary lower bound is of O(1), whereas the correct complexity, determined by the polynomial
method [AS04, Kut05, Amb05] and a matching algorithm [BHT98] is Θ(n1/3). Ambainis defined
functions fk that can be represented exactly by a polynomial of degree 2k, which limits the
polynomial method, but for which the adversary lower bound is 2.5k [Amb06].

However, Høyer, Lee and Špalek [HLŠ07] have discovered a strict generalization of the adversary
bound that remains a lower bound on quantum query complexity:

Definition 1.1 (Adversary bounds). For finite sets C and E, and D ⊆ Cn, let f : D → E. An
adversary matrix for f is a |D|× |D| real, symmetric matrix Γ that satisfies Γxy = 0 for all x, y ∈ D
with f(x) = f(y). Define the adversary and general adversary bounds for f by

Adv(f) = max
Γ≥0

‖Γ‖
maxj∈[n] ‖Γ(j)‖

(1.1)

Adv±(f) = max
Γ

‖Γ‖
maxj∈[n] ‖Γ(j)‖

. (1.2)

Both maximizations are over adversary matrices Γ, required to be entry-wise nonnegative in Adv(f).
Γ(j) denotes the restriction of Γ to those entries (x, y) with xj 6= yj.

Observe that Adv±(f) ≥ Adv(f) always. Although the two bounds are sometimes equal, it
appears that they usually differ [HLŠ06]. For Ambainis’s functions fk, Adv±(fk) > 2.51k.

Theorem 1.2 ([BSS03, HLŠ07]). For any function f , let Q(f) be the quantum query complexity
for evaluating f with error probability at most 1/10. Then Q(f) = Ω

(
Adv±(f)

)
and in particular,

Q(f) ≥ 1
5

Adv(f) and Q(f) ≥ 1
10

Adv±(f) . (1.3)

The proof of Theorem 1.2 is similar to a classical hybrid argument. It works by considering a
superposition of inputs, determined by a principal eigenvector of the adversary matrix Γ. Roughly,
a successful algorithm must learn information nearly ‖Γ‖, with at most maxj∈[n] ‖Γ(j)‖ learned from
any one query. The ratio of these quantities thus lower-bounds Q(f).

2

Although the two bounds have very similar definitions, the general adversary bound Adv± is
in fact much more powerful than the adversary bound Adv. Our main result is that the general
adversary lower bound is tight for every boolean function:

Theorem 1.3. For any function f : D → {0, 1}, with D ⊆ {0, 1}n, the general adversary bound
characterizes quantum query complexity:

Q(f) = Θ
(
Adv±(f)

)
. (1.4)

Based on binary input encodings, Lee et al. have generalized Theorem 1.3 to show that the
general adversary bound is tight up to logarithmic factors for every function f :

Theorem 1.4 ([LMRŠ10]). For finite sets C and E, and D ⊆ Cn, let f : D → E. Then

Q(f) = Ω
(
Adv±(f)

)
and Q(f) = O

(
Adv±(f) log |C|

)
. (1.5)

Theorems 1.3 and 1.4 suggest that one way of developing new quantum query algorithms may be
to solve for the general adversary bound. More precisely, Eq. (1.2) is a semi-definite program (SDP),
and for algorithms we need solutions to the dual SDP (see Lemma 3.1). The SDP is typically
exponentially large, depending on |D|. Even so, solving the equally large adversary bound SDP is
often straightforward. For instance, there is a solution that implies Adv(f) ≤

√
nminbCb(f) for

a partial boolean function, or Adv(f) ≤
√
C0(f)C1(f) for a total boolean function, where Cb(f)

is the certificate complexity on inputs x with f(x) = b [Sze03, LM04, Zha05, ŠS06]. The general
adversary lower bound is fortunately not limited by this certificate complexity barrier [HLŠ07], but
no equally simple dual SDP solution is known. Removing from the primal SDP the constraints
Γxy ≥ 0 changes dual SDP inequalities to stronger, equality constraints. Another useful property of
the adversary bound is that the dual SDP always has a rank-one solution [HLŠ07, Theorem 18],
which does not appear to hold for Adv± [Rei10a].

With the above qualifications, studying the general adversary bound is a promising approach
to developing new quantum algorithms and to furthering our understanding of quantum query
complexity. In particular, Theorem 1.3 resolves the query complexity for composed functions and
read-once formulas, because the general adversary bound composes easily (see Section 1.1 below).
The algorithm used to prove Theorem 1.3 has an especially simple form, based on a single fixed
reflection, that may be useful for other applications (see Section 1.2). Finally, the dual SDP for
Adv± turns out to be closely related to the span program computational model, which has been
well-studied in classical complexity theory. One application of Theorem 1.3 is to show that span
programs, measured by the witness size complexity measure, and quantum algorithms, measured
by query complexity, are equivalent computational models, up to a constant factor. Thus efficient
quantum query algorithms can be derived by finding new span programs, which are essentially
linear-algebraic objects or can also be seen as weighted bipartite graphs. This algorithmic approach
has consequences for time complexity as well as query complexity (see Section 1.3).

Barnum, Saks and Szegedy [BSS03] have given a family of SDPs that characterize quantum
query complexity according to their feasibility or infeasibility, instead of according to the optimum
value of a single SDP. The BSS SDPs work for any specified error rate, including zero. The general
adversary bound is a polynomially smaller SDP, since it does not need separate terms for every
query, but of course the truth table of a function is typically exponentially long anyway. Whereas our
algorithm uses a workspace of n+O(log n) qubits to evaluate an n-bit boolean function (by [Rei10a,
Lemma 5.3]), n+ 1 qubits suffice by [BSS03].

3

1.1 Composition of functions, algorithms and lower bounds

A fundamental problem in the theory of computation is how the query complexity transforms under
function composition. In the simplest case, for f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, let f •g
be the function {0, 1}nm → {0, 1} defined by

(f • g)(x) = f
(
g(x1, . . . , xm), . . . , g(x(n−1)m+1, . . . , xnm)

)
. (1.6)

How does the query complexity of f •g relate to the query complexities of f and g? For deterministic
classical query complexity D, D(f • g) = D(f)D(g), and the optimal algorithm for evaluating
f • g is the composition of the optimal algorithms for evaluating f and for evaluating g. For
bounded-error randomized and quantum query complexities, R and Q, respectively, R(f • g) =
O
(
R(f)R(g) logR(f)

)
and Q(f • g) = O

(
Q(f)Q(g) logQ(f)

)
. Indeed, in these cases, a bounded-

error algorithm for evaluating f • g can be built directly from bounded-error algorithms for f and
for g, if we use repetition to reduce the error rate of the inner algorithm to below roughly 1/R(f) or
1/Q(f). However, the extra logarithmic factors are not always necessary, for example when f = g is
an OR or PARITY function.

A beautiful property of the adversary bounds is that they transform multiplicatively under
function composition. That is, Adv(f • g) = Adv(f)Adv(g) [Amb06, LLS06] and

Adv±(f • g) = Adv±(f)Adv±(g) . (1.7)

Here, the ≥ direction is from [HLŠ07] and the ≤ direction is from [Rei10a], inspired by span program
composition rules. Using Eq. (1.7), Theorem 1.3 implies:

Theorem 1.5. Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}. Then

Q(f • g) = Θ
(
Q(f)Q(g)

)
. (1.8)

The novelty of Theorem 1.5 is that the logQ(f) factor can always be removed in the quantum
case, and that there is a matching lower bound. Moreover, by applying Eq. (1.7) recursively, we
obtain that for any boolean functions f1, f2, . . . , fk, Q(f1 • · · · • fk) = Θ

(
Adv±(f1) · · ·Adv±(fk)

)
,

where the hidden constants depend neither on k nor the fj . Näıve composition of the algorithms
for f1, . . . , fk works poorly in this case, since the product of the error-reduction factors grows
exponentially with k.

More generally, a read-once formula ϕ over S, a set of boolean functions, is a rooted tree in
which each node with m children is associated to a m-bit function from S, for m ∈ N. Any such
tree with n leaves naturally defines a function ϕ : {0, 1}n → {0, 1}, by evaluating the functions
recursively toward the root. Note that the different input subproblems to any given node of ϕ are
independent of each other, which is important for lower bounds.

Definition 1.1 can be extended to allow weights s ∈ (0,∞)n, by letting

Adv±s (f) = max
Γ

‖Γ‖
maxj∈[n]

1
sj
‖Γ(j)‖

. (1.9)

Then for f : {0, 1}k → {0, 1} and gj : {0, 1}mj → {0, 1}, defining h : {0, 1}m1×· · ·×{0, 1}mk → {0, 1}
by h(x1, . . . , xk) = f

(
g1(x1), . . . , gk(xk)

)
, Eq. (1.7) generalizes to give

Adv±(h) = Adv±s (f) , (1.10)

4

where sj = Adv±(gj) [HLŠ07, Rei10a]. This equation implies that we can calculate the general
adversary bound, and hence the quantum query complexity, of the entire formula ϕ merely by
computing weighted general adversary bounds for individual functions in S. For example, one
can compute the weighted general adversary bounds for the n-bit AND and OR functions as
Adv±s (ORn) = Adv±s (ANDn) =

√∑
j s

2
j [BS04]. It thus follows:

Corollary 1.6. The general adversary bound and quantum query complexity of a read-once AND-OR
formula with n inputs are

√
n and Θ(

√
n), respectively.

Previous work has shown that the quantum query complexity of evaluating a read-once AND-OR
formula on n inputs is

√
n 2O(

√
logn) [ACR+10, FGG08], and has characterized the query complexity

of “adversary-balanced” formulas when the set S has constant size [RŠ08]. This and other previous
and subsequent work on formula-evaluation will be discussed in Section 1.3 below.

Classically, the randomized query complexity even of AND-OR formulas is unknown, except in
the “well-balanced” case [Sni85, SW86, San95], and the best general lower bound is Ω(n0.51) [HW91],
conjectured to be quite loose. This emphasizes the power of Eq. (1.10) for quantum query complexity.

Furthermore, the quantum query algorithm for evaluating f • g in Theorem 1.5 is not the
composition of an algorithm for evaluating f with an algorithm for evaluating g. Instead, it
corresponds to a solution to the general adversary bound dual SDP for f • g, i.e., a span program,
that is a certain composition of dual SDP solutions—span programs—for f and for g. This notion of
composition is natural, but also very different from the usual way of composing classical or quantum
algorithms. See [RŠ08, Rei09c, Rei09b, Rei09a] for more details on span program composition.

1.2 Reflection structure of the algorithm

The algorithm behind Theorem 1.3 has a simple structure. On input x, the algorithm applies in
alternation the input oracle Ox and a certain fixed reflection, which is specified precisely in Section 3.
In fact, the input oracle is itself a reflection, O2

x = 1. It follows that every boolean function can
be evaluated optimally, with bounded error, by alternating two fixed reflections. This is similar
to Grover’s search algorithm, in which the state vector rotates through a certain two-dimensional
space. During our algorithm, the state vector rotates steadily through each of many orthogonal,
reflection-invariant, two-dimensional spaces.

Two curious properties of this algorithm are that the operations between oracle queries are
reflections, and that they are all the same. Neither property is surprising on its own. Indeed,
considering an arbitrary quantum query algorithm, shown in Figure 1, we may add a clock register
and define V =

∑Q
q=0 |q + 1〉〈q| ⊗ Vq; when the clock reads q, V applies Vq and increments the clock

(mod Q + 1). Then the algorithm that alternates V and Ox has the same effect as the original
algorithm. Similarly, if some Vq is not a reflection, we may add a one-qubit register for that q, and
then use the reflection Ṽq = |1〉〈0| ⊗ Vq + |0〉〈1| ⊗ V †q instead of Vq. However, if we combine these two
algorithmic transformations, in either order, then the desired property from the first transformation
is lost. A black-box conversion of an algorithm into the two-fixed-reflections form, that preserves
the completeness and soundness parameters, does not appear to be possible.

The second reflection is about the eigenvalue-zero subspace of the adjacency matrix AG for a
certain graph G derived from a dual SDP for Adv±. A previous algorithm, in [Rei09a], roughly
simulates AG as a Hamiltonian in continuous time. The problem it faces is that the norm of AG
can be super-constant, which slows the simulation. Fortunately, a relationship between the discrete-

5

|t〉
x2

x1

0

(a)

|t〉
x2

x1

0

(b)

Figure 2: The span programs in (a) and (b) each consist of a target vector |t〉 and two input vectors,
labeled by the literals x1 and x2. Each span program computes the function x1 ∧ x2, since a linear
combination of both input vectors is needed to span the target. The span program in (b) has a
smaller witness size, though, because a shorter combination of the input vectors spans the target.

and continuous-time quantum query complexity models, from [CGM+09], allows for removing the
norm dependency, at a sub-logarithmic cost to the query complexity. By instead reflecting about
the eigenvalue-zero subspace of AG, we efficiently remove the dependence on higher-energy portions
of AG. This new approach is inspired by Ambainis’s AND-OR formula-evaluation algorithm [Amb07].

Intuitively, the underlying reason why the two-reflections structure is possible seems to come
from the simple form of the general adversary bound SDP, Eq. (1.2). Since neither this SDP
nor its dual has different terms for different query times, an algorithm based on the dual SDP is
naturally symmetrical, without requiring the above clock-register trick. Note that in order to match
the general adversary lower bound, most queries made by the algorithm must be roughly equally
effective, in order to learn greedily the maximum possible amount of information, maxj∈[n] ‖Γ(j)‖.

Although aesthetically appealing, the two-reflections property has no immediate practical impli-
cations. In Section 9 we speculate on its use for fault-tolerant function evaluation. Essentially, the
algorithm’s structured form may allow for other black-box algorithm transformations. While known
algorithms can in principle be converted into this two-reflections form [Rei09a, Theorems 3.1, 5.2],
we do not know an explicit closed form for the second reflection, e.g., for the collision problem.

1.3 Span programs

As explained in Section 1.1, a main application of Theorem 1.3 is to evaluating formulas. In fact,
the formula-evaluation problem has fostered the development of Theorem 1.3, beginning with
Farhi, Goldstone and Gutmann’s nearly optimal quantum algorithm for evaluating balanced binary
AND-OR formulas [FGG08, ACR+10]. Reichardt and Špalek [RŠ08] extend the allowed gate set
considerably by drawing a connection to span programs, a computational model introduced by
Karchmer and Wigderson [KW93]. A span program defines a function according to whether subsets of
“input vectors” span a certain “target vector,” and the witness size complexity measure, from [RŠ08],
roughly measures how long a combination is needed to reach the target. Figure 2 shows two examples,
and the formal definitions are in Section 6. Ref. [RŠ08] gives a quantum algorithm for evaluating
certain composed span programs, with a query complexity upper-bounded by the witness size. Thus
in fact the allowed formula gate set includes all functions f : {0, 1}n → {0, 1}, with n = O(1), for
which we have a span program P computing f and with witness size wsize(P) = Adv±(f).

Subsequent work [Rei10a] has provided a systematic method for finding optimal span programs.
Ref. [Rei10a] shows that it suffices to consider so-called “canonical” span programs, a specialization

6

introduced by [KW93], and then derives an SDP for optimizing the witness size of canonical span
programs. Remarkably, the SDP value corresponds exactly to the general adversary bound:

Theorem 1.7 ([Rei10a]). For any function f : D → {0, 1}, with D ⊆ {0, 1}n,

inf
P

wsize(P,D) = Adv±(f) , (1.11)

where the infimum is over span programs P computing f . Moreover, this infimum is achieved.

This result greatly extends the gate set over which the formula-evaluation algorithm of [RŠ08]
works optimally. In fact, it allows the algorithm to run on formulas with any constant-size gate set.

Unfortunately, for reasons explained in Section 1.4 below, the algorithm from [RŠ08] can only
evaluate composed constant-size span programs, not general span programs. The new result behind
Theorem 1.3 is a quantum algorithm for evaluating arbitrary span programs, with only a constant
query overhead on the witness size. For simplicity, we will present the algorithm and prove its
correctness, in Sections 3 through 5, based directly on a solution to the dual Adv± SDP, without
going through the span program formalism. From Theorems 1.3 and 1.7 it then follows:

Corollary 1.8. For any function f : D → {0, 1}, with D ⊆ {0, 1}n,

inf
P

wsize(P,D) = Θ
(
Q(f)

)
, (1.12)

where the infimum is over span programs P computing f . Therefore, up to a constant factor, span
programs are equivalent to quantum query algorithms.

Although we prove Theorem 1.3 directly, in order to understand the algorithm’s origins it is still
useful to study span programs. Therefore, in Sections 6 and 7, we define span programs and their
correspondence with bipartite graphs. We also define two complexity measures, the witness size and
the full witness size. For an optimal canonical span program, these measures differ by at most one.

In Section 8, we will present another quantum algorithm for evaluating a span program P , that
uses O

(
fwsize(P)‖abs(AGP)‖

)
queries to evaluate f , where fwsize(P) is the full witness size and

abs(AGP) is the entry-wise absolute value of the weighted adjacency matrix for the corresponding
bipartite graph (Theorem 8.1). The algorithm is based on Szegedy’s quantum walk model [Sze04],
which also uses two reflections. This alternative algorithm is useful since it often has a time-efficient
implementation, when ‖abs(AGP)‖ and the maximum degree of GP can be bounded. There is
considerable freedom in designing a span program for a function, and these quantities should be
minded. Subsequent work has applied Theorem 8.1 to derive a query-optimal and nearly time-
optimal quantum algorithm for evaluating a large class of read-once formulas over any finite gate
set [Rei09b], and to derive a nearly query- and time-optimal quantum algorithm for evaluating
arbitrary read-once AND-OR formulas [Rei09c].

1.4 Analysis of the algorithm

The main technical difficulty in the proof of Theorem 1.3 is analyzing the spectrum of a certain
bipartite graph. In Section 4, we show that properties of eigenvalue-zero eigenvectors of bipartite
graphs in fact imply an “effective” spectral gap around zero for perturbed graphs. This small-
eigenvalue analysis is the key step that allows us to evaluate span programs on a quantum computer.

7

The [RŠ08] formula-evaluation algorithm works by plugging together optimal span programs for
the individual gates in a formula ϕ to construct a composed span program P that computes ϕ. Then
a family of related graphs GP (x), one for each input x, is constructed. For an input x, the algorithm
starts at a particular “output vertex” of the graph, and runs a quantum walk for about 1/wsize(P)
steps in order to compute ϕ(x). The algorithm’s analysis has two parts. First, for completeness, it
is shown that when ϕ(x) = 1, there exists a normalized, eigenvalue-zero eigenvector of the weighted
adjacency matrix AGP (x) with large overlap on the output vertex. Thus the algorithm can detect a
stationary component in the walk. Second, for soundness, it is shown that if ϕ(x) = 0, then AGP (x)

has a spectral gap of Ω(1/wsize(P)) for eigenvectors supported on the output vertex. The inverse
spectral gap, as a kind of mixing time, determines the algorithm’s query complexity.

The completeness step of the proof comes from relating the definition of GP (x) to the witness
size definition. Eigenvalue-zero eigenvectors correspond exactly to span program “witnesses,” with
the squared support on the output vertex corresponding to the witness size. This argument
straightforwardly extends to arbitrary span programs.

For soundness, the [RŠ08] proof essentially inverts the matrix AGP (x) − ρ1 gate by gate, span
program by span program, starting at the inputs and working recursively toward the output vertex.
In this way, it roughly computes the Taylor series about ρ = 0 of the eigenvalue-ρ eigenvectors in
order eventually to find a contradiction for |ρ| small. One would not expect this method to extend
to arbitrary span programs, because it loses a constant factor that depends badly on the individual
span programs used for each gate. Indeed, the approach fails in general. Span programs can be
constructed for which the associated graphs simply do not have an Ω(1/wsize(P)) spectral gap in
the 0 case. (For example, take a large span program and add an AND gate to the top whose other
input is 0. The composed span program computes the constant 0 function and has constant witness
size, but the spectral gaps of the associated large graphs need not be Ω(1).)

It has not been understood why the [RŠ08] analysis works so well when applied to balanced
compositions of constant-size optimal span programs. In particular, the correspondence between
graphs and span programs by definition relates the witness size to properties of eigenvalue-zero
eigenvectors. Why does the same witness size quantity also appear in the spectral gap?

We show that this is not a coincidence, that in general an eigenvalue-zero eigenvector of a
bipartite graph implies an “effective” spectral gap for a perturbed graph. Somewhat more precisely,
the inference is that the total squared overlap on the output vertex of small-eigenvalue eigenvectors
is small. This argument leads to a substantially more general small-eigenvalue spectral analysis. It
also implies simpler proofs of the formula-evaluation results in [FGG08, ACR+10, RŠ08].

This article is based on two arXiv preprints: a portion of [Rei09a], and [Rei10b]. The technical
report [Rei10a] contains another portion of the former preprint’s results, namely the connection
between the general adversary bound and optimal span program witness size (Theorem 1.7).

2 Definitions

For a natural number n ∈ N, let [n] = {1, 2, . . . , n}. For a bit b ∈ {0, 1}, let b̄ = 1− b. For a finite
set X, let CX be the Hilbert space C|X| with orthonormal basis {|x〉 : x ∈ X}. We assume familiarity
with ket notation, e.g.,

∑
x∈X |x〉〈x| = 1 the identity on CX . For vector spaces V and W over C,

let L(V,W) denote the set of all linear transformations from V into W , and let L(V) = L(V, V).
‖A‖ is the spectral norm of an operator A.

A weighted bipartite graph G can be specified by its weighted biadjacency matrix BG. G has a

8

vertex for every row and for every column of BG, and edges between the row and column vertices
have weights specified by the matrix entries. The weighted adjacency matrix of G is

AG =
(

0 BG
B†G 0

)
. (2.1)

3 The algorithms

For a boolean function, taking the dual of the general adversary bound SDP in Definition 1.1 gives:

Lemma 3.1 ([Rei10a, Theorem 4.4]). Let f : D → {0, 1}, with D ⊆ {0, 1}n. For b ∈ {0, 1}, let
Fb = {x ∈ D : f(x) = b}. Then

Adv±(f) = min
m∈N,{|vxj〉∈Cm:x∈D,j∈[n]} :

∀(x,y)∈F0×F1,
∑

j∈[n]:xj 6=yj
〈vxj |vyj〉=1

max
x∈D

∑
j∈[n]

‖|vxj〉‖2 .
(3.1)

Based on a feasible solution to this SDP with objective value W (≥ 1), we will give three algorithms
for evaluating f , each with query complexity O(W). (A feasible solution corresponds to a span
program in canonical form, and its value equals the span program witness size [Rei10a].)

Let I = [n]× {0, 1} × [m]. Let |t〉 ∈ CF0 and A ∈ L(CI ,CF0) be given by

|t〉 =
1

3
√
W

∑
x∈F0

|x〉

A =
∑

x∈F0,j∈[n]

|x〉〈j, x̄j | ⊗ 〈vxj | .
(3.2)

Let G be the weighted bipartite graph with biadjacency matrix BG ∈ L(C{ø} ⊕CI ,CF0):

BG =
(
|t〉 A

)
. (3.3)

The vertex set of G is the disjoint union F0 ∪ {ø} ∪ I.
Let ∆ ∈ L(CF0∪{ø}∪I) be the orthogonal projection onto the span of all eigenvalue-zero eigen-

vectors of the weighted adjacency matrix AG. For an input x ∈ D, let Πx ∈ L(CF0∪{ø}∪I) be the
projection

Πx = 1−
∑

j∈[n],k∈[m]

|j, x̄j , k〉〈j, x̄j , k| . (3.4)

That is, Πx is a diagonal matrix that projects onto all vertices except those associated to the input
bit complements x̄j . Finally, let

Ux = (2Πx − 1)(2∆− 1) . (3.5)

Ux consists of the two reflections 2∆− 1 and 2Πx − 1. The first reflection does not depend on the
input x. The second reflection can be implemented using a single call to the input oracle Ox.

We present three related algorithms, each slightly simpler than the one before:

9

Algorithm 1:

1. Prepare the initial state |ø〉 ∈ CF0∪{ø}∪I .

2. Run phase estimation on Ux, with precision δp = 1
100W and error rate δe = 1

10 .

3. Output 1 if the measured phase is zero. Otherwise output 0.

Algorithm 2:

1. Prepare the initial state 1√
2
(|0〉+ |1〉)⊗ |ø〉 ∈ C2 ⊗CF0∪{ø}∪I .

2. Pick T ∈ [d100W e] uniformly at random. Apply the controlled unitary |0〉〈0| ⊗
1 + |1〉〈1| ⊗ UTx .

3. Measure the first register in the basis 1√
2
(|0〉±|1〉). Output 1 if the measurement

result is 1√
2
(|0〉+ |1〉), and output 0 otherwise.

Algorithm 3:

1. Prepare the initial state |ø〉 ∈ CF0∪{ø}∪I .

2. Pick T ∈ [d105W e] uniformly at random. Apply UTx .

3. Measure the vertex. Output 1 if the measurement result is |ø〉, and output 0
otherwise.

Phase estimation on a unitary V with precision δp and error rate δe can be implemented using
O
(

1
δp

log 1
δe

)
controlled applications of V [KOS07, NWZ09], so the first algorithm has O(W) query

complexity. The second algorithm essentially applies a simplified version of phase estimation.
Intuitively, it works because it suffices to distinguish zero from nonzero phase. The third algorithm
does away with any phase estimation. Intuitively, this is possible because Ux is the product of two
reflections, so its spectrum is symmetrical. The second and third algorithms clearly have O(W)
query complexity. The factor of 105 in the third algorithm’s query complexity can be reduced by
three orders of magnitude by adjusting downward the scaling factor for |t〉 in Eq. (3.2).

The time, or number of elementary operations, required to implement the reflection 2∆− 1 is
unclear. In practice it may be preferable to use the potentially less query-efficient quantum walk
algorithm from Theorem 8.1 below.

In the following two sections, we will show that all three algorithms correctly evaluate f(x),
with constant gaps between the soundness error and completeness parameters.

4 Effective spectral gaps for perturbed bipartite graphs

In this section, we give a general argument that relates properties of eigenvalue-zero eigenvectors of
weighted bipartite graphs to what are in a certain sense “effective” spectral gaps. As explained in
Section 1.4, this small-eigenvalue analysis substantially extends the analysis in [RŠ08].

The main result of this section is:

10

Theorem 4.1. Let G be a weighted bipartite graph with biadjacency matrix BG ∈ L(CU ,CT).
Assume that for some δ > 0 and |t〉 ∈ CT , the weighted adjacency matrix AG has an eigenvalue-zero
eigenvector |ψ〉 with

|〈t|ψT 〉|2 ≥ δ‖|ψ〉‖2 . (4.1)

Let G′ be the same as G except with a new vertex, ø, added to the U side, with outgoing edges
weighted by the entries of |t〉. That is, the biadjacency matrix of G′ is

BG′ =
(
|t〉 BG

)ø U
T (4.2)

Let {|α〉} be a complete set of orthonormal eigenvectors of the weighted adjacency matrix AG′ , with
corresponding eigenvalues ρ(α). Then for all Υ ≥ 0, the squared length of the projection of |ø〉 onto
the span of the eigenvectors α with |ρ(α)| ≤ Υ satisfies∑

α: |ρ(α)|≤Υ

|〈α|ø〉|2 ≤ 8Υ2/δ . (4.3)

To motivate our approach to proving Theorem 4.1, let us recall some basic properties about the
eigenvalues and eigenvectors of bipartite graphs.

Proposition 4.2. Let G be a weighted bipartite graph with biadjacency matrix BG and adjacency
matrix AG =

(
0 BG
B†G 0

)
.

Assume that |ψ〉 = (|ψT 〉, |ψU 〉) ∈ CT ⊕CU is an eigenvalue-ρ eigenvector of AG, for some ρ 6= 0.
Then (|ψT 〉,−|ψU 〉) is an eigenvector of AG with eigenvalue −ρ. Moreover, |ψT 〉 = 1

ρBG|ψU 〉 is an

eigenvector of BGB
†
G and |ψU 〉 = 1

ρB
†
G|ψT 〉 is an eigenvector of B†GBG, both with corresponding

eigenvalues ρ2.
Conversely, if |ϕ〉 ∈ CT is an eigenvalue-λ eigenvector of BGB

†
G for λ > 0, then B†G|ϕ〉 ∈ CU is

an eigenvalue-λ eigenvector of B†GBG and |ψ±〉 = (|ϕ〉,± 1√
λ
B†G|ϕ〉) ∈ CT ⊕CU are eigenvectors of

AG with corresponding eigenvalues ±
√
λ.

The proof is immediate.
Thus the spectrum of AG is symmetrical around zero, and nonzero-eigenvalue eigenvectors

of the positive semi-definite matrix BGB
†
G are in exact correspondence to symmetrical pairs of

nonzero-eigenvalue eigenvectors of AG.
Proposition 4.2 allows us to translate the claims of Theorem 4.1 into claims on spectral properties

of positive semi-definite matrices. We will start, though, by proving the necessary result for positive
semi-definite matrices, Theorem 4.3 below. After proving Theorem 4.3, we will give the translation
to prove Theorem 4.1.

Theorem 4.3. Let X ∈ L(V) be a positive semi-definite matrix, |t〉 ∈ V a vector, and let X ′ =
X + |t〉〈t|. Let {|β〉} be a complete set of orthonormal eigenvectors of X ′, with corresponding
eigenvalues λ(β) ≥ 0. Assume that there exists a |ϕ〉 ∈ Ker(X) with |〈t|ϕ〉|2 ≥ δ‖|ϕ〉‖2. Then for
any Λ ≥ 0,

δ
∑

β:λ(β)≤Λ
〈t|β〉6=0

1
λ(β)

|〈t|β〉|2 ≤ 4Λ . (4.4)

11

Proof. The sum is well-defined, with no division by zero, because any |β〉 with 〈t|β〉 6= 0 must have
λ(β) = 〈β|X ′|β〉 = 〈β|X|β〉+ |〈t|β〉|2 > 0.

The key lemma for proving Theorem 4.3 is:

Lemma 4.4. Under the conditions of Theorem 4.3, for any |ξ〉 ∈ V ,

δ|〈t|ξ〉|2 ≤ ‖X ′|ξ〉‖2 . (4.5)

Moreover, if |ξ〉 is a linear combination of eigenvectors with corresponding eigenvalues at most κ,
i.e., |ξ〉 =

∑
β:λ(β)≤κ 〈β|ξ〉|β〉, then

δ|〈t|ξ〉|2 ≤ κ2‖|ξ〉‖2 . (4.6)

Proof. We will write the matrices X and X ′ out in coordinates. Fixing 〈t|ξ〉, we will use straight-
forward calculus to minimize ‖X ′|ξ〉‖2.

Let |1〉, . . . , |m〉 be a complete, orthonormal set of eigenvectors for
(
1− |t〉〈t|

‖|t〉‖2
)
X
(
1− |t〉〈t|

‖|t〉‖2
)
, with

corresponding eigenvalues a1, . . . , am. In the coordinates
(|t〉
‖|t〉‖ , |1〉, . . . , |m〉

)
, X and X ′ are given by

X =


a b̄1 . . . b̄m
b1 a1 0
...

. . .
bm 0 am

 X ′ =


a+ ‖|t〉‖2 b̄1 . . . b̄m

b1 a1 0
...

. . .
bm 0 am

 (4.7)

where a = 〈t|X|t〉/‖|t〉‖2 and bj = 〈aj |X |t〉
‖|t〉‖ , for j ∈ [m].

By incorporating any phases into the basis vectors |j〉, we may assume that all bj ≥ 0. Further-
more, we may assume without loss of generality that all bj > 0. Indeed, if some bj = 0, then the
|j〉 coordinate lies in a different block of X ′ from |t〉, so removing this coordinate will not affect
min|ψ〉 ‖X ′|ψ〉‖/|〈t|ψ〉|. Since X � 0, all aj ≥ 0. Moreover, if some aj = 0, then since

(a bj
bj 0

)
is a

(positive semi-definite) submatrix of X, it must be that bj = 0. Hence we may assume that aj > 0
for all j ∈ [m].

We are given the existence of a |ϕ〉 ∈ Ker(X) with |〈t|ϕ〉|2 ≥ δ‖|ϕ〉‖2. Let us write out this
condition in coordinates. By scaling |ϕ〉, we may assume that 〈t|ϕ〉 = ‖|t〉‖. Thus, written in
coordinates, |ϕ〉 = (1,− b1

a1
, . . . ,− bm

am
) and 〈t|X|ϕ〉 = 0 implies that

a =
m∑
j=1

b2j/aj . (4.8)

The condition |〈t|ϕ〉|2 ≥ δ‖|ϕ〉‖2, in coordinates, is

‖|t〉‖2 ≥ δ
(

1 +
m∑
j=1

(bj
aj

)2)
. (4.9)

We can now solve the minimization problem:

Claim 4.5.

min
|ξ〉: 〈t|ξ〉=‖|t〉‖

‖X ′|ξ〉‖2 =
‖|t〉‖4

1 +
∑

j

(bj
aj

)2 ≥ δ‖|t〉‖2 . (4.10)

12

Proof. Since X ′ is a symmetric matrix, we may assume that |ξ〉 has real coordinates. Introduce
variables c1, . . . , cm and let |ξ〉 = (1, c1, . . . , cm). For j ∈ [m], let γj = aj

(aj
bj
cj + 1

)
. Then

‖X ′|ξ〉‖2 =
(
a+ ‖|t〉‖2 +

∑
j

bjcj
)2 +

∑
j

(bj + ajcj)2

=
(
a+ ‖|t〉‖2 +

∑
j

b2j
aj

(γj
aj
− 1
))2

+
∑
j

(bj
aj
γj

)2

=
(
‖|t〉‖2 +

∑
j

(bj
aj

)2
γj

)2

+
∑
j

(bj
aj

)2
γ2
j , (4.11)

where we have substituted cj = bj
aj

(γj
aj
− 1
)

and then used Eq. (4.8) to cancel a from the first term.
A global minimum exists and will satisfy, for all j ∈ [m],

0 =
∂

∂γj
‖X ′|ξ〉‖2

= 2
(bj
aj

)2
(
γj + ‖|t〉‖2 +

∑
k

(bk
ak

)2
γk

)
.

(4.12)

Thus we should set all γj equal, γj = γ for j ∈ [m], where γ = −‖|t〉‖2/(1 + S) and S =
∑

j

(bj
aj

)2.

Substituting back into Eq. (4.11), ‖X ′|ξ〉‖2 at the minimum is

‖X ′|ξ〉‖2 = (‖|t〉‖2 + Sγ)2 + Sγ2

= ‖|t〉‖4/(1 + S) , (4.13)

as claimed.

Eq. (4.5) follows. Eq. (4.6) is an immediate consequence, since |ξ〉 =
∑

β:λ(β)≤κ 〈β|ξ〉|β〉 implies
‖X ′|ξ〉‖ ≤ κ‖|ξ〉‖. This completes the proof of Lemma 4.4.

Now let us derive Eq. (4.4) by bootstrapping Lemma 4.4. We aim to bound

δ
∑

β:λ(β)≤Λ
〈t|β〉6=0

1
λ(β)

|〈t|β〉|2 = δ
∞∑
k=0

∑
Λ

2k+1<λ(β)≤ Λ

2k

1
λ(β)

|〈t|β〉|2

≤ δ

Λ

∞∑
k=0

2k+1
∑

Λ

2k+1<λ(β)≤ Λ

2k

|〈t|β〉|2

=
δ

Λ

∞∑
k=0

2k+1〈t|tk〉 , (4.14)

13

where |tk〉 =
∑

β: Λ

2k+1<λ(β)≤ Λ

2k
〈β|t〉|β〉, the projection of |t〉 onto the span of the eigenvectors with

eigenvalues in
(

Λ
2k+1 ,

Λ
2k

]
. Therefore 〈t|tk〉 = 〈tk|tk〉 = |〈t|tk〉|2/‖|tk〉‖2 when |tk〉 6= 0, so Eq. (4.6)

can be applied with |ξ〉 = |tk〉 and κ = Λ/2k to continue:

δ
∑

β:λ(β)≤Λ
〈t|β〉6=0

1
λ(β)

|〈t|β〉|2 ≤ 1
Λ

∞∑
k=0

2k+1
(Λ

2k
)2

= 2Λ
∞∑
k=0

1
2k

= 4Λ , (4.15)

as claimed.

With Theorem 4.3 in hand, we can now apply Proposition 4.2 to prove Theorem 4.1.

Proof of Theorem 4.1. We are given an eigenvalue-zero eigenvector of AG, (|ψT 〉, 0) ∈ CT ⊕ CU

with |〈t|ψT 〉|2 ≥ δ‖|ψT 〉‖2. In particular, B†G|ψT 〉 = 0.
An eigenvalue-zero eigenvector |ζ〉 = (|ζT 〉, ζø, |ζU 〉) ∈ CT ⊕C{ø} ⊕CU has to satisfy

0 = BG′(ζø, |ζU 〉)
= ζø|t〉+BG|ζU 〉 .

(4.16)

Since |〈t|ψT 〉|2 > 0 and B†G|ψT 〉 = 0, |t〉 cannot lie in the range of BG, so ζø must be zero. Thus
follows the claim for Υ = 0, that AG′ has no eigenvalue-zero eigenvectors supported on |ø〉.

Now to show Eq. (4.3) for Υ > 0, note that for each eigenvector |α〉 of AG′ , ρ(α)〈ø|α〉 =
〈ø|AG′ |α〉 = 〈t|αT 〉. Therefore∑

α: |ρ(α)|≤Υ

|〈α|ø〉|2 =
∑

α: 0<|ρ(α)|≤Υ

1
ρ(α)2

|〈t|αT 〉|2 . (4.17)

Let X ′ = BG′B
†
G′ . Let {|β〉} be a complete set of orthonormal eigenvectors of X ′, with corresponding

eigenvalues λ(β). By Proposition 4.2, each eigenvector |β〉 with λ(β) 6= 0 corresponds to a pair of
eigenvectors of AG′ with eigenvalues ±

√
λ(β). The above sum therefore equals

2
∑

β: 0<λ(β)≤Υ2

1
λ(β)

|〈t|β〉|2 . (4.18)

Now apply Theorem 4.3 with X = X ′ − |t〉〈t| = BGB
†
G � 0, |ϕ〉 = |ψT 〉 and Λ = Υ2, to obtain

the claimed upper bound of 8Υ2/δ.

5 Analysis of the algorithms

To analyze the algorithms from Section 3, we shall study the spectrum of the unitary Ux =
(2Πx − 1)(2∆− 1).

14

For this purpose, it will be useful to introduce two new graphs, following [RŠ08, Rei09a].
Let Π(x) =

∑
j∈[n] |j〉〈j| ⊗ |x̄j〉〈x̄j | ⊗ 1C[m] ∈ L(CI), and let G(x) and G′(x) be the weighted

bipartite graphs with biadjacency matrices

BG(x) =
(
|t〉 A

0 Π(x)

)
and BG′(x) =

(
A

Π(x)

)
. (5.1)

Based on the constraints of the SDP in Lemma 3.1, we can immediately construct eigenvalue-zero
eigenvectors for G(x) or G′(x), depending on whether f(x) = 1 or f(x) = 0:

Lemma 5.1. If f(x) = 1, then the vector

|ψ〉 = −3
√
W |ø〉+

∑
j∈[n]

|j, xj〉 ⊗ |vxj〉 ∈ C{ø}∪I (5.2)

satisfies BG(x)|ψ〉 = 0 and |〈ø|ψ〉|2/‖|ψ〉‖2 ≥ 9/10.
If f(x) = 0, then

|ψ〉 = −|x〉+
∑
j∈[n]

|j, x̄j〉 ⊗ |vxj〉 ∈ CF0∪I (5.3)

satisfies B†G′(x)|ψ〉 = 0 and |〈t|ψ〉|2/‖|ψ〉‖2 ≥ 1/(9W (W + 1)).

Substituting Lemma 5.1 into Theorem 4.1, we thus obtain the key statement:

Lemma 5.2. If f(x) = 1, then AG(x) has an eigenvalue-zero eigenvector |ψ〉, supported on the
column vertices, with

|〈ø|ψ〉|2

‖|ψ〉‖2
≥ 9

10
. (5.4)

If f(x) = 0, let {|α〉} be a complete set of orthonormal eigenvectors of AG(x) with corresponding
eigenvalues ρ(α). Then for any c ≥ 0,∑

α:|ρ(α)|≤c/W

|〈α|ø〉|2 ≤ 72
(

1 +
1
W

)
c2 . (5.5)

By choosing c a small positive constant, Eq. (5.5) gives an O(1/W) “effective spectral gap” for
eigenvectors of AG(x) supported on |ø〉; it says that |ø〉 has small squared overlap on the subspace
of O(1/W)-eigenvalue eigenvectors.

It remains to translate Lemma 5.2 into analogous statements for Ux:

Lemma 5.3. If f(x) = 1, then Ux has an eigenvalue-one eigenvector |ϕ〉 with

|〈ø|ϕ〉|2

‖|ϕ〉‖2
≥ 9

10
. (5.6)

If f(x) = 0, let {|β〉} be a complete set of orthonormal eigenvectors of Ux with corresponding
eigenvalues eiθ(β), θ(β) ∈ (−π, π]. Then for any Θ ≥ 0,∑

β:|θ(β)|≤Θ

|〈β|ø〉|2 ≤
(

2
√

6ΘW +
Θ
2

)2
. (5.7)

15

Assuming Lemma 5.3, the algorithms from Section 3 are both complete and sound. If f(x) = 1,
then the first, phase-estimation-based algorithm outputs 1 with probability at least 9/10− δe = 4/5.
If f(x) = 0, then setting Θ = δp = 1

100W , the algorithm outputs 1 with probability at most
δe + (2

√
6ΘW + Θ

2)2 < 2/5. The probability the second algorithm outputs 1 is the expectation
versus T of 1

4‖(1 + UTx)|ø〉‖2. If f(x) = 1, this is at least 9/10 for all T . If f(x) = 0, let τ = d100W e
and simplify

ET∈R[τ]

[1
4
‖(1 + UTx)|ø〉‖2

]
= ET∈R[τ]

[1
4

∑
β

|1 + eiθ(β)T |2|〈ø|β〉|2
]

=
1
4

∑
β

|〈ø|β〉|2
[
2 +

1
τ

(eiθ(β)(τ+1) − e−iθ(β)τ

eiθ(β) − 1
− 1
)]

.

(5.8)

Setting Θ = 1
50W and ξ = (2

√
6ΘW + Θ

2)2, we see that the algorithm outputs 1 with probability at
most ξ + (1− ξ)

(
1
2 + 1/(4τ sin Θ

2)
)
< 88% for W ≥ 1. As its analysis requires more care, we defer

consideration of the third algorithm to the end of this section.
For the proof of Lemma 5.3 we will use the following characterization of the eigen-decomposition

of the product of reflections, from [NWZ09] using observations by Jordan [Jor75]. Its use is common
in quantum computation, e.g., [Sze04, MW05].

Lemma 5.4. Given two projections Π and ∆, the Hilbert space can be decomposed into orthogonal
one- and two-dimensional subspaces invariant under Π and ∆. On the one-dimensional invariant
subspaces, (2Π− 1)(2∆− 1) acts as either +1 or −1. Each two-dimensional subspace is spanned by
an eigenvalue-λ eigenvector |v〉 of ∆Π∆, with λ ∈ (0, 1), and |v⊥〉 = (1−∆)Π|v〉/‖(1−∆)Π|v〉‖.
Letting θ = 2 arccos

√
λ ∈ (0, π), so Π|v〉/‖Π|v〉‖ = cos θ2 |v〉 + sin θ

2 |v
⊥〉, the eigenvectors and

corresponding eigenvalues of (2Π− 1)(2∆− 1) on this subspace are, respectively,

|v〉 ∓ i|v⊥〉√
2

and e±iθ . (5.9)

Proof of Lemma 5.3. Notice from Eqs. (3.3) and (5.1) that G is naturally a subgraph of G(x).
Since AG∆ = 0 by definition of ∆, AG(x)∆ = S(1−Πx), where S is a permutation matrix.

First consider the case f(x) = 1. Let |ϕ〉 be the restriction of |ψ〉 from Eq. (5.4) to the
vertices of G. Since |ψ〉 has no support on the extra vertices of G(x), ‖|ϕ〉‖ = ‖|ψ〉‖ and |ϕ〉 is an
eigenvalue-zero eigenvector of AG; ∆|ϕ〉 = |ϕ〉. Also Πx|ϕ〉 = |ϕ〉, so indeed Ux|ϕ〉 = |ϕ〉.

Next consider the case f(x) = 0. Let

|ζ〉 =
∑

β:|θ(β)|≤Θ

|β〉〈β|ø〉 (5.10)

be the projection of |ø〉 onto the space of eigenvectors with phase at most Θ in magnitude. Our aim
is to upper bound ‖|ζ〉‖2 = 〈ø|ζ〉 = |〈ø|ζ̂〉|2, where |ζ̂〉 = |ζ〉/‖|ζ〉‖. Notice that |ζ̂〉 is supported only
on eigenvectors |β〉 with θ(β) 6= 0, i.e., on the two-dimensional invariant subspaces of Πx and ∆.
Indeed, if Ux|β〉 = |β〉, then either |β〉 = Πx|β〉 = ∆|β〉 or |β〉 = (1−Πx)|β〉 = (1−∆)|β〉. The first
possibility implies AG(x)|β〉 = 0, so by Eq. (5.5) with c = 0, 〈ø|β〉 = 0. In the second possibility,
also 〈ø|β〉 = 〈ø|Πx|β〉 = 0 since |ø〉 = Πx|ø〉.

16

We can split 〈ø|ζ̂〉 as
〈ø|ζ̂〉 = 〈ø|∆|ζ̂〉+ 〈ø|Πx(1−∆)|ζ̂〉

≤ |〈ø|∆|ζ̂〉|+ |〈ø|Πx(1−∆)|ζ̂〉|
≤ |〈ø|∆|ζ̂〉|+ ‖Πx(1−∆)|ζ̂〉‖ .

(5.11)

Start by bounding the second term, ‖Πx(1−∆)|ζ̂〉‖. Intuitively, this term is small because |ζ̂〉
is supported only on two-dimensional invariant subspaces where ∆ and Πx are close. Indeed, let
|−β〉 = (2∆− 1)|β〉, an eigenvector of AG with phase θ(−β) = −θ(β). Expanding |ζ̂〉 =

∑
β cβ|β〉,

‖Πx(1−∆)|ζ̂〉‖2 = ‖
∑
β

Πx(1−∆)cβ|β〉‖2

=
∑

β:θ(β)>0

‖Πx(1−∆)(cβ|β〉+ c−β|−β〉)‖2

=
∑

β:θ(β)>0

sin2 θ(β)
2
‖(1−∆)(cβ|β〉+ c−β|−β〉)‖2

≤
(Θ

2

)2
‖(1−∆)|ζ̂〉‖2 . (5.12)

It remains to bound |〈ø|∆|ζ̂〉| = |〈ø|w〉|‖∆|ζ̂〉‖, where |w〉 = ∆|ζ̂〉/‖∆|ζ̂〉‖ is an eigenvalue-zero
eigenvector of AG. Intuitively, if |〈ø|w〉| = |〈ø|Πx|w〉| is large, then since AG and AG(x) are the
same on Πx, ‖AG(x)|w〉‖ = ‖S(1−Πx)|w〉‖ will be small. This in turn will imply that |w〉 has large
support on the small-eigenvalue subspace of AG(x), contradicting Eq. (5.5).

Beginning the formal argument, we have

‖AG(x)∆|ζ̂〉‖2 = ‖(1−Πx)∆|ζ̂〉‖2

=
∑

β:θ(β)>0

‖(1−Πx)∆(cβ|β〉+ c−β|−β〉)‖2

=
∑

β:θ(β)>0

sin2 θ(β)
2
‖∆(cβ|β〉+ c−β|−β〉)‖2

≤
(Θ

2

)2
‖∆|ζ̂〉‖2 .

(5.13)

Hence ‖AG(x)|w〉‖ ≤ Θ/2.
Now split |w〉 = |wsmall〉+ |wbig〉, where for a certain d > 0 to be determined,

|wsmall〉 =
∑

α:|ρ(α)|≤dΘ/2

|α〉〈α|w〉

|wbig〉 =
∑

α:|ρ(α)|>dΘ/2

|α〉〈α|w〉 .
(5.14)

Then
|〈ø|∆|ζ̂〉| ≤ |〈ø|w〉| ≤ |〈ø|wsmall〉|+ |〈ø|wbig〉| . (5.15)

From Eq. (5.5) with c = dΘW/2, |〈ø|wsmall〉| ≤
√

72(1 + 1/W)c‖|wsmall〉‖ ≤ 6dΘW .

17

Since AG(x)|w〉 =
∑

α ρ(α)|α〉〈α|w〉, we have(Θ
2

)2
≥ ‖AG(x)|w〉‖2

= ‖AG(x)|wsmall〉‖2 + ‖AG(x)|wbig〉‖2

≥ d2
(Θ

2

)2
‖|wbig〉‖2 .

(5.16)

Hence ‖|wbig〉‖ ≤ 1/d.
Combining our calculations gives√ ∑

β:|θ(β)|≤Θ

|〈β|ø〉|2 = 〈ø|ζ̂〉 ≤ |〈ø|∆|ζ̂〉|+ ‖Πx(1−∆)|ζ̂〉‖ ≤ 6dΘW +
1
d

+
Θ
2
. (5.17)

The right-hand side is 2
√

6ΘW + Θ/2, as claimed, for d = 1/
√

6ΘW .

Having proved Lemma 5.3, we return to the correctness proof for the third algorithm.

Proposition 5.5. If f(x) = 1, then the third algorithm outputs 1 with probability at least 64%.
If f(x) = 0, then the third algorithm outputs 1 with probability at most 61%.

Proof. Letting τ = d105W e, the third algorithm outputs 1 with probability

p1 := ET∈R[τ]

[
|〈ø|UTx |ø〉|2

]
= ET∈R[τ]

[∣∣∣∑
β

eiθ(β)T |〈β|ø〉|2
∣∣∣2] . (5.18)

If f(x) = 1, then a crude bound puts p1 at least (9/10− 1/10)2 = 64%.
Assume f(x) = 0. Recall the notation that for an eigenvector |β〉 with |θ(β)| ∈ (0, π), |−β〉 =

(2∆− 1)|β〉 denotes the corresponding eigenvector with eigenvalue phase θ(−β) = −θ(β). The key
observation for this proof is that

〈ø|β〉 = e−iθ(β)〈ø|−β〉 . (5.19)

This equal splitting of |〈ø|β〉| and |〈ø|−β〉| will allow us to bound p1 close to 1/2 instead of the trivial
bound p1 ≤ 1. The intuition is that after applying Ux a suitable number of times, eigenvectors |β〉
and |−β〉 will accumulate roughly opposite phases, so their overlaps with |ø〉 will roughly cancel out.
For this argument to work, though, the eigenvalue phase θ(β) should be bounded away from zero
and from ±π. Therefore define the projections

∆Θ =
∑

β:|θ(β)|≤Θ

|β〉〈β|

∆Λ =
∑

β:|θ(β)|>Λ

|β〉〈β|

Σ = 1−∆Θ −∆Λ ,

(5.20)

where Θ and Λ, 0 < Θ < Λ < π, will be determined below. Lemma 5.3 immediately gives the
bound ‖∆Θ|ø〉‖ ≤ 2

√
6ΘW + Θ

2 . We can also place a bound on ‖∆Λ|ø〉‖, using

2(∆− 1)|ø〉 = (U †x − 1)|ø〉 =
∑
β

(e−iθ(β) − 1)|β〉〈β|ø〉 . (5.21)

18

Expanding the squared norm of both sides gives

‖(U †x − 1)|ø〉‖2 = 4
∑
β

sin2 θ(β)
2
|〈β|ø〉|2 ≥ ‖∆Λ|ø〉‖2 · 4 sin2 Λ

2
(5.22)

and

‖(U †x − 1)|ø〉‖2 = 4(1− ‖∆|ø〉‖2) ≤ 2/5 . (5.23)

In the second step we have used that ‖∆|ø〉‖2 ≥ 9/10; provided that f is not the constant zero
function, AG must have an eigenvalue-zero eigenvector with large overlap on |ø〉. Combining
Eqs. (5.22) and (5.23) gives

‖∆Λ|ø〉‖2 ≤
1

10 sin2 Λ
2

. (5.24)

Returning to Eq. (5.18), we have

p1 ≤ ET∈R[τ]

[(
‖∆Θ|ø〉‖2 + ‖∆Λ|ø〉‖2 +

∣∣∣ ∑
β:θ(β)∈(Θ,Λ]

|〈β|ø〉|2
(
eiθ(β)T + e−iθ(β)T

)∣∣∣)2
]

≤ (‖∆Θ|ø〉‖2 + ‖∆Λ|ø〉‖2)(2− ‖∆Θ|ø〉‖2 − ‖∆Λ|ø〉‖2)

+ ET∈R[τ]

[(∑
β:θ(β)∈(Θ,Λ]

|〈β|ø〉|2
(
eiθ(β)T + e−iθ(β)T

))2
]
.

(5.25)

The algorithm chooses T at random to allow bounding the last term. Expanding this term gives

ET∈R[τ]

[∑
β,β′:θ(β),θ(β′)∈(Θ,Λ]

|〈β|ø〉|2|〈β′|ø〉|2
(
eiθ(β)T + e−iθ(β)T

)(
eiθ(β

′)T + e−iθ(β
′)T
)]

= E
[∑
θ,θ′∈(Θ,Λ]

|〈β|ø〉|2|〈β′|ø〉|2
(
(ei(θ+θ

′)T + e−i(θ+θ
′)T) + (ei(θ−θ

′)T + e−i(θ−θ
′)T)
)]

(5.26)

≤ 1
2
‖Σ|ø〉‖4 + E

[∑
θ,θ′∈(Θ,Λ]

|〈β|ø〉|2|〈β′|ø〉|2
(
ei(θ+θ

′)T + e−i(θ+θ
′)T
)]

Here for brevity we have written θ and θ′ for θ(β) and θ(β′), respectively. In the second step, we
have used

∑
θ∈(Θ,Λ] |〈β|ø〉|

2 = 1
2‖Σ|ø〉‖

2. We continue by simplifying the expectation,

=
1
2
‖Σ|ø〉‖4 +

1
τ

∑
θ,θ′∈(Θ,Λ]

|〈β|ø〉|2|〈β′|ø〉|2
(ei(θ+θ′)(τ+1) − e−i(θ+θ′)τ

ei(θ+θ′) − 1
− 1
)

≤ 1
2

(
1 +

1/τ
minθ,θ′∈(Θ,Λ] |ei(θ+θ

′) − 1|

)
‖Σ|ø〉‖4 (5.27)

≤ 1
2

(
1 +

1
2τ min{sin Θ, sin Λ}

)
‖Σ|ø〉‖4 .

19

In the last step, we have used |ei(θ+θ′) − 1| = 2 sin θ+θ′

2 ≥ 2 min{sin Θ, sin Λ}. Substituting the result
back into Eq. (5.25) gives

p1 ≤ 1− 1
2

(
1− 1

2τ min{sin Θ, sin Λ}

)
‖Σ|ø〉‖4

≤ 1− 1
2

(
1− 1

2τ min{sin Θ, sin Λ}

)
max

[
1− 1

10 sin2 Λ
2

−
(

2
√

6ΘW +
Θ
2

)2
, 0
]2

.
(5.28)

Setting Λ = π −Θ and Θ = 1/(2000W), for W ≥ 1 a calculation yields p1 ≤ 61%.

6 Span programs

Having proved Theorem 1.3, we now turn attention to span programs. In this section, we will define
span programs, from [KW93], and the witness size span program complexity measure from [RŠ08].
Additionally, we define a new complexity measure, the “full witness size,” that charges even for the
“free” inputs. Section 7 develops a correspondence between span programs and bipartite graphs that,
together with Definition 6.4 below, underlies the construction of the graph G in Eqs. (3.2) and (3.3).
Theorems 7.2 and 7.3 then generalize Lemmas 5.1 and 5.2, respectively. Section 8 will apply this
framework to develop a fourth quantum algorithm for evaluating span programs. Compared to the
algorithms in Section 3, it has greater potential for having a time-efficient implementation.

A span program P is a certain linear-algebraic way of specifying a boolean function fP . Roughly,
P consists of a target vector |t〉 in a vector space V , and a collection of subspaces Vj,b ⊆ V , for j ∈ [n]
and b ∈ {0, 1}. For an input x ∈ {0, 1}n, fP (x) = 1 when the target can be reached using a linear
combination of vectors in ∪j∈[n]Vj,xj . For our complexity measures on span programs, however, it
will be necessary to fix a set of “input vectors” that span each subspace Vj,b. We desire to span the
target using a linear combination of these vectors with small coefficients (see Figure 2).

Formally we therefore define a span program as follows:

Definition 6.1 (Span program [KW93]). A span program P consists of a natural number n, a
finite-dimensional inner product space V over C, a “target” vector |t〉 ∈ V , disjoint sets Ifree and
Ij,b for j ∈ [n], b ∈ {0, 1}, and “input vectors” |vi〉 ∈ V for i ∈ Ifree ∪

⋃
j∈[n],b∈{0,1} Ij,b.

To P corresponds a function fP : {0, 1}n → {0, 1}, defined on x ∈ {0, 1}n by

fP (x) =

{
1 if |t〉 ∈ Span({|vi〉 : i ∈ Ifree ∪

⋃
j∈[n] Ij,xj})

0 otherwise
(6.1)

We say that Ifree indexes the set of “free” input vectors, while Ij,b indexes input vectors “labeled
by” (j, b). We say that P “computes” the function fP . For x ∈ {0, 1}n, fP (x) evaluates to 1, or
true, when the target can be reached using a linear combination of the “available” input vectors,
i.e., input vectors that are either free or labeled by (j, xj) for j ∈ [n].

Some additional notation is convenient. Fix a span program P . Let I = Ifree ∪
⋃
j∈[n],b∈{0,1} Ij,b.

Let A ∈ L(CI , V) be the linear operator

A =
∑
i∈I
|vi〉〈i| . (6.2)

Written as a matrix, the columns of A are the input vectors of P .

20

For an input x ∈ {0, 1}n, let I(x) be the set of available input vector indices and Π(x) ∈ L(CI)
the projection thereon,

I(x) = Ifree ∪
⋃
j∈[n]

Ij,xj (6.3)

Π(x) =
∑
i∈I(x)

|i〉〈i| . (6.4)

Then fP (x) = 1 if |t〉 ∈ Range(AΠ(x)). A vector |w〉 ∈ CI is said to be a witness for fP (x) = 1 if
Π(x)|w〉 = |w〉 and A|w〉 = |t〉. A vector |w′〉 ∈ V is said to be a witness for fP (x) = 0 if 〈t|w′〉 = 1
and Π(x)A†|w′〉 = 0.

Lemma 6.2. For a span program P , fP (x) = 1 if and only if |t〉 ∈ Range(AΠ(x)). Equivalently,
fP (x) = 0 if and only if Π(x)A†|t〉 ∈ Range

[
Π(x)A†

(
1− |t〉〈t|‖t‖2

)]
.

Lemma 6.2 follows from Eq. (6.1). Therefore exactly when fP (x) = 1 is there a “witness”
|w〉 ∈ CI satisfying AΠ(x)|w〉 = |t〉. Exactly when fP (x) = 0, there is a witness |w′〉 ∈ V satisfying
〈t|w′〉 6= 0 and Π(x)A†|w′〉 = 0, i.e., |w′〉 has nonzero inner product with the target vector and is
orthogonal to the available input vectors.

The main complexity measure we use to characterize span programs is the witness size [RŠ08]:

Definition 6.3 (Witness size). Consider a span program P , and a vector s ∈ [0,∞)n of nonnegative
“costs.” Let S =

∑
j∈[n],b∈{0,1},i∈Ij,b

√
sj |i〉〈i| ∈ L(CI). For each input x ∈ {0, 1}n, define the witness

size of P on x with costs s, wsizes(P, x), as follows:

wsizes(P, x) =

min|w〉:AΠ(x)|w〉=|t〉 ‖S|w〉‖2 if fP (x) = 1
min |w′〉: 〈t|w′〉=1

Π(x)A†|w′〉=0

‖SA†|w′〉‖2 if fP (x) = 0 (6.5)

The witness size of P with costs s, restricted to domain D ⊆ {0, 1}n, is

wsizes(P,D) = max
x∈D

wsizes(P, x) . (6.6)

Define the full witness size fwsizes(P,D) by letting Sf = S +
∑

i∈Ifree
|i〉〈i| and

fwsizes(P, x) =

min|w〉:AΠ(x)|w〉=|t〉(1 + ‖Sf |w〉‖2) if fP (x) = 1
min |w′〉: 〈t|w′〉=1

Π(x)A†|w′〉=0

(‖|w′〉‖2 + ‖SA†|w′〉‖2) if fP (x) = 0 (6.7)

fwsizes(P,D) = max
x∈D

fwsizes(P, x) . (6.8)

When not specified, D is assumed to be {0, 1}n and the costs s are taken to be uniform
s = ~1 = (1, 1, . . . , 1), e.g., wsize(P) = wsize~1(P, {0, 1}n). In the latter case, note that Sf = 1. The
extra generality of allowing nonuniform costs is necessary for considering unbalanced formulas.
For j ∈ [n], sj can intuitively be thought of as the charge for evaluating the jth input bit.

The above definition of span programs differs slightly from the original definition in [KW93].
Call a span program strict if Ifree = ∅. Ref. [KW93] considers only strict span programs. For the

21

witness size complexity measure, span programs and strict span programs are equivalent, since free
input vectors can be projected away without changing the witness size [Rei10a, Prop. 3.4]. Allowing
free input vectors is often convenient for defining and composing span programs, though, and may be
necessary for developing time-efficient quantum algorithms based on span programs. For succinctly
presenting span programs, Ref. [RŠ08] uses an even more relaxed span program definition, letting
each input vector be labeled by a subset of [n]× {0, 1}. This definition is also equivalent to ours.
Classical applications of span programs have used a different complexity measure, the “size” of P
being the number of input vectors, |I|. This measure has been characterized in [Gál01].

To help explain the derivation of the algorithms in Section 3, define canonical span programs:

Definition 6.4 ([KW93]). A strict span program P on n bits is canonical if V = CF0 where F0 =
{x ∈ {0, 1}n : fP (x) = 0}, the target is |t〉 =

∑
x∈F0

|x〉, and for all x ∈ F0 and i ∈ I(x), 〈x|vi〉 = 0.

The full witness size is not the same as the witness size. When fP (x) = 1, the full witness size
counts the portion of |w〉 supported on Ifree, whereas the witness size does not. When fP (x) = 0,
the term ‖|w′〉‖2 in Eq. (6.7) is not necessarily bounded by the witness size. However, any span
program can be converted into canonical form, so that the two measures essentially agree:

Theorem 6.5 ([Rei10a, Theorem 3.6]). For any span program P and cost vector s, there exists a
canonical span program P̂ with fP̂ = fP and such that for all inputs x, wsizes(P̂ , x) ≤ wsizes(P, x)
and fwsizes(P̂ , x) ≤ wsizes(P, x) + 1.

Several further span program transformations, such as converting a span program computing f
into one computing ¬f , are given in [Rei09a]. Three methods of composing span programs, direct
sum, tensor product and reduced tensor product composition, are studied in [Rei09a, Rei09b, Rei09c].
Many explicit examples are given in [RŠ08, Rei09a].

7 Correspondence between span programs and bipartite graphs

In this section, we define a correspondence between span programs and weighted bipartite graphs.
We relate span program witness size to properties of eigenvalue-zero eigenvectors of these graphs,
following [RŠ08]. We then apply Theorem 4.1 to derive effective spectral gaps.

Definition 7.1 (Graphs GP (x) [RŠ08]). Let P be a span program with target vector |t〉 and input
vectors |vi〉 for i ∈ I, in inner product space V . Fix an arbitrary orthonormal basis {|k〉 : k ∈
[dim(V)]} for V . For x ∈ {0, 1}n, let GP (x) be the weighted bipartite graph with biadjacency matrix

BGP (x) =
(
|t〉 A

0 Π(x)

)ø I
V
I (7.1)

where
Π(x) = 1−Π(x) =

∑
i∈IrI(x)

|i〉〈i| . (7.2)

The row vertices of GP (x) are T = [dim(V)] ∪ I, and the column vertices are U = {ø} ∪ I, both
disjoint unions. The vertex ø is called the “output vertex.”

22

Let GP be the bipartite graph with biadjacency matrix given by

BGP =
(
|t〉 A

0 Πfree

)ø I
V
I

Πfree =
∑

i∈IrIfree

|i〉〈i| .
(7.3)

Note that for each i ∈ I, GP (x) has two vertices, connected by a weight-one edge if i /∈ I(x).

7.1 Eigenvalue-zero spectral analysis of the graphs GP (x)

We now connect eigenvalue-zero eigenvectors of AGP (x) to span program witnesses, in a straightfor-
ward extension of [RŠ08, Theorems 2.5 and A.7].

Some more notation will be useful. Any vector |ψ〉 ∈ CT ⊕CU can be uniquely expanded as
|ψ〉 = (|ψT 〉, |ψU 〉), with |ψT 〉 ∈ CT and |ψU 〉 ∈ CU . For the graphs GP (x), CT = V ⊕ CI and
CU = C{ø} ⊕CI , so |ψ〉 can be further expanded as

(
(|ψT,V 〉, |ψT,I〉), (ψU,ø, |ψU,I〉)

)
.

With this notation, the eigenvalue-ρ eigenvector equation of AGP (x),

ρ|ψ〉 = AGP (x)|ψ〉 , (7.4)

is equivalent to the four equations

ρ|ψT,V 〉 = ψU,ø|t〉+A|ψU,I〉 (7.5a)

ρ|ψT,I〉 = Π(x)|ψU,I〉 (7.5b)
ρψU,ø = 〈t|ψT,V 〉 (7.5c)

ρ|ψU,I〉 = A†|ψT,V 〉+ Π(x)|ψT,I〉 . (7.5d)

Theorem 7.2 ([RŠ08]). For a span program P and input x ∈ {0, 1}n, consider all the eigenvalue-
zero eigenvector equations of the weighted adjacency matrix AGP (x), except for the constraint at the
output vertex ø, i.e., Eqs. (7.5) except (7.5c) at ρ = 0.

These equations have a solution |ψ〉 with ψU,ø 6= 0 if and only if fP (x) = 1, and have a solution
|ψ〉 with 〈t|ψT,V 〉 6= 0 if and only if fP (x) = 0. More quantitatively, let s ∈ [0,∞)n be a vector of
nonnegative costs, and recall from Definition 6.3 the cost matrix Sf . Then

• If fP (x) = 1, AGP (x) has an eigenvalue-zero eigenvector |ψ〉 = (0, ψU,ø, |ψU,I〉) ∈ CT⊕C{ø}⊕CI

with
|ψU,ø|2

|ψU,ø|2 + ‖Sf |ψU,I〉‖2
=

1
fwsizes(P, x)

. (7.6)

• If fP (x) = 0, then there is a solution |ψ〉 = (|ψT,V 〉, |ψT,I〉, 0) ∈ V ⊕CI⊕CU to Eqs. (7.5a,b,d)
at ρ = 0, with

|〈t|ψT,V 〉|2

‖|ψT,V 〉‖2 + ‖Sf |ψT,I〉‖2
=

1
fwsizes(P, x)

. (7.7)

23

Proof. Let ρ = 0. Since GP (x) is bipartite, the ψT terms do not interact with the ψU terms. Thus
Eqs. (7.5c,d) (resp. 7.5a,b) can always be satisfied by setting the ψT (resp. ψU) terms to zero.

Now Eqs. (7.5a,b) are equivalent to −ψU,ø|t〉 = A|ψU,I〉 and |ψU,I〉 = Π(x)|ψU,I〉. If these
equations have a solution with ψU,ø 6= 0, then −|ψU,I〉/ψU,ø is a witness for fP (x) = 1. Conversely, if
fP (x) = 1, then let |w〉 ∈ CI be an optimal witness, satisfying AΠ(x)|w〉 = |t〉 and fwsizes(P, x) =
‖Sf |w〉‖2. Let ψU,ø = −1 and |ψU,I〉 = Π(x)|w〉. Then |ψ〉 = (0, ψU,ø, |ψU,I〉) satisfies Eqs. (7.5), and
Eq. (7.6) with equality.

Next, assume |ψ〉 solves Eq. (7.5d) with 〈t|ψT,V 〉 6= 0. Then Π(x)A†|ψT,V 〉 = −Π(x)Π(x)|ψT,I〉 =
0, so |ψT,V 〉/〈t|ψT,V 〉 is a witness for fP (x) = 0. Conversely, assume that fP (x) = 0 and let |w′〉 be
an optimal witness, achieving the full witness size Eq. (6.7). Let |ψT,V 〉 = |w′〉 and |ψT,I〉 = −A†|w′〉.
Then |ψ〉 = (|ψT,V 〉, |ψT,I〉, 0) satisfies Eqs. (7.5a,b,d), and Eq. (7.7) with equality.

Note that with costs s = ~1, Sf = 1, so ‖Sf |ψU,I〉‖2 = ‖|ψU,I〉‖2 and ‖Sf |ψT,I〉‖2 = ‖|ψT,I〉‖2.
Then the denominators on the left-hand sides of Eqs. (7.6) and (7.7) are both ‖|ψ〉‖2.

7.2 Amplification and effective spectral gaps for the graphs

Theorem 7.2 implies in particular that when fP (x) = 0, AGP (x) does not have any eigenvalue-zero
eigenvectors supported on the output vertex. Therefore AGP (x) has some spectral gap around zero
for eigenvectors overlapping |ø〉. This spectral gap can be arbitrarily small, though. In fact, though,
the lower bound Eq. (7.7) can be translated into a good lower bound on an “effective” spectral
gap. That is, we can upper-bound the total squared support of |ø〉 on small-magnitude eigenvalues
of AGP (x). This is strong enough for applying quantum phase estimation, and is the key result that
allows span programs to be evaluated on a quantum computer.

Theorem 7.3. Let P be a span program and D ⊆ {0, 1}n. Let P ′ be the same as P except with the
target vector scaled by a factor of 1/

√
fwsize(P,D). Then fP ′ = fP and, for all x ∈ D,

• If fP (x) = 1, then there is an eigenvalue-zero eigenvector |ψ〉 of AGP ′ (x) with

|〈ø|ψ〉|2

‖|ψ〉‖2
≥ 1

2
. (7.8)

• If fP (x) = 0, let {|α〉} be a complete set of orthonormal eigenvectors of AGP ′ (x), with
corresponding eigenvalues ρ(α). Then for any Υ ≥ 0, the squared length of the projection
of |ø〉 onto the span of the eigenvectors α with |ρ(α)| ≤ Υ satisfies∑

α: |ρ(α)|≤Υ

|〈α|ø〉|2 ≤ 8Υ2 fwsize(P,D)2 . (7.9)

Proof. Scaling the target vector does not change the function: fP ′ = fP . Moreover, for all x ∈ D,

fwsize(P ′, x) ≤

{
2 if fP (x) = 1
fwsize(P,D)2 if fP (x) = 0

(7.10)

This scaling, or “amplification,” step is essentially the same as a technique used in [ACR+10, RŠ08].
For the case fP (x) = 1, Eq. (7.8) now follows from Eq. (7.6) in Theorem 7.2.

24

For the case fP (x) = 0, we will combine Theorem 7.2 and Theorem 4.1. Let G be the graph
GP ′(x) with the output vertex and all incident edges deleted. Thus G’s biadjacency matrix is the
same as BGP ′ (x) from Eq. (7.1), except with the first column deleted. Theorem 7.2 implies that AG
has an eigenvalue-zero eigenvector |ψ〉 = (|ψT,V 〉, |ψT,I〉, 0) ∈ V ⊕CI ⊕CI satisfying

|〈t′|ψT,V 〉|2

‖|ψ〉‖2
≥ 1

fwsize(P,D)2 . (7.11)

Eq. (7.9) now follows by Eq. (4.3) in Theorem 4.1 with G′ = GP ′(x) and δ = 1/fwsize(P,D)2.

Note that the graph G defined by Eq. (3.3), on which the algorithms in Section 3 are based,
corresponds under Definition 7.1 to a span program. Undoing the amplification step by multiplying
the target vector by 3

√
W—see Eq. (3.2)—yields a canonical span program P that satisfies fP |D = f ,

wsize(P,D) = W = Adv±(f) and fwsize(P,D) ≤ W + 1. The eigenvectors in Lemma 5.1 are
constructed from witnesses as in Theorem 7.2. (For x ∈ F0, a witness to fP (x) = 0 is |w′〉 = |x〉.)
This explains the origin of G. For further details, see the proof of Theorem 1.7 in [Rei10a].

8 Quantum algorithm to evaluate a span program based on its
full witness size

Based on the graph spectral properties from Theorem 7.3, a quantum query algorithm for evaluating
span programs based on the full witness size can be constructed. The algorithms in Section 3
do this implicitly for an optimal span program. In this section, we will give a different quantum
algorithm, based on a certain quantum walk. Its query complexity loses a factor of ‖abs(AGP)‖,
where abs(·) denotes the entry-wise absolute value. The advantage of this algorithm, though, is
that there is often a clear time-efficient implementation of the basic operations, provided the graph
GP has polynomially bounded maximum degree. In particular, the time-efficient formula-evaluation
applications [Rei09b, Rei09c] use this algorithm; by working with span programs that are not in
canonical form, they trade off fwsize(P) versus ‖abs(AGP)‖ and the maximum degree.

Theorem 8.1. Let P be a span program and D ⊆ {0, 1}n. Then fP |D can be evaluated using

Q = O
(
fwsize(P,D) ‖abs(AGP)‖

)
(8.1)

quantum queries, with error probability at most 1/3. Moreover, if the maximum degree of a vertex in
GP is d, then the algorithm’s time complexity is at most a factor of (log d)

(
log(Q log d)

)O(1) worse,
after classical preprocessing and assuming constant-time coherent access to the preprocessed string.

The intuition behind this theorem is that fP can be evaluated by starting at the output vertex
and “measuring” AGP ′ (x) to an appropriate precision Υ. (More precisely, this is implemented by
applying phase estimation to a certain unitary operator.) Output 1 if and only if the measurement
returns 0. Eq. (7.8) implies completeness when f(x) = 1, because the initial state has large overlap
with an eigenvalue-zero eigenstate. Eq. (7.9) implies soundness when f(x) = 0.

The proof of Theorem 8.1 is based on Szegedy’s correspondence between continuous- and
discrete-time quantum walks [Sze04]. The proof is nearly the same as in [RŠ08, Appendix B.2],
which in turn is based on the algorithms in [CRŠZ07, ACR+10]. The difference is that we are only

25

assuming an effective spectral gap in the case f(x) = 0, instead of a spectral gap. This weaker
assumption means that establishing the algorithm’s soundness requires somewhat more care.

We use a formulation of Szegedy’s correspondence theorem from [ACR+10]:

Theorem 8.2 ([Sze04]). Let V be a finite set. For each v ∈ V , let |ϕv〉 ∈ CV be a length-one vector.
Define T ∈ L(CV ,CV ⊗CV), S,U ∈ L(CV ⊗CV) and M ∈ L(CV) by

T =
∑
v∈V

(|v〉 ⊗ |ϕv〉)〈v| S =
∑
v,w∈V

|v, w〉〈w, v| (8.2)

U = (2TT † − 1)S M = T †ST =
∑
v,w∈V

〈ϕv|w〉〈v|ϕw〉|v〉〈w| (8.3)

Since T †T = 1, U is a unitary. (U is a swap followed by a reflection about the span of the vectors
{|v〉 ⊗ |ϕv〉 : v ∈ V }.) M is a Hermitian matrix with ‖M‖ ≤ 1. Let {|α〉} be a complete set of
orthonormal eigenvectors of M with respective eigenvalues ρ(α).

Then the spectral decomposition of U corresponds to that of M as follows: Let Rα = Span{T |α〉, ST |α〉}.
Then Rα ⊥ Rα′ for α 6= α′; let R = ⊕αRα. U is −S on R⊥, and U preserves each subspace Rα.

If |ρ(α)| < 1, then Rα is two-dimensional, and within it the eigenvectors and corresponding
eigenvalues of U are given by

|α,±〉 =
(
1−

(
ρ(α)∓ i

√
1− ρ(α)2

)
S
)
T |α〉

λ(α,±) = ρ(α)± i
√

1− ρ(α)2 .
(8.4)

If ρ(α) ∈ {1,−1}, then ST |α〉 = ρ(α)T |α〉, so Rα is one-dimensional; let |α,+〉 = T |α〉 and
λ(α,+) = ρ(α) be the corresponding eigenvalue of U .

We will need slightly more control over the eigenvectors |α,±〉:

Lemma 8.3. With the setup of Theorem 8.2, for any |ψ〉 ∈ CV , the eigenvectors |α,±〉 with
|ρ(α)| < 1 satisfy ‖|α,±〉‖ =

√
2(1− ρ(α)2) and

|〈ψ|T †|α,±〉|2

‖|α,±〉‖2
=

1
2
|〈ψ|α〉|2 . (8.5)

When |ρ(α)| = 1, ‖|α,+〉‖ = 1 and 〈ψ|T †|α,+〉 = 〈ψ|α〉.

Proof. Fix an eigenvector |α〉 of AG(x) and let ρ = ρ(α). Assume that |ρ| < 1. We have

‖|α,±〉‖2 = 〈α|T †(1− e±i arccos ρS)(1− e∓i arccos ρS)T |α〉
= 〈α|T †2(1− ρS)T |α〉
= 2(1− ρ〈α|T †ST |α〉)
= 2(1− ρ2) ,

(8.6)

where we have used S2 = T †T = 1, ‖|α〉‖ = 1, and T †ST = M . Also, then, we compute

〈ψ|T †|α,±〉 = 〈ψ|T †(1− e∓i arccos ρS)T |α〉
= 〈ψ|T †T |α〉 − e∓i arccos ρ〈ψ|T †ST |α〉
= 〈ψ|α〉(1− ρ e∓i arccos ρ)

= 〈ψ|α〉(1− ρ2 ± iρ
√

1− ρ2) ,

(8.7)

26

so |〈ψ|T †|α,±〉|2 = |〈ψ|α〉|2(1− ρ2). Eq. (8.5) follows.
When |ρ(α)| = 1, the claims are immediate from |α,+〉 = T |α〉 and T †T = 1.

We can now prove Theorem 8.1.

Proof of Theorem 8.1. Let P ′ be the span program with amplified target vector defined in Theo-
rem 7.3. Let G be the same as the graph GP ′ , defined in Eq. (7.3), except scaled down by a factor
of ‖abs(AGP ′)‖ ≤ ‖abs(AGP)‖. That is, AG = AGP ′/‖abs(AGP ′)‖, so ‖abs(AG)‖ = 1. Let V be the
vertex set of G, E the edge set, and for j ∈ [n] and b ∈ {0, 1}, let Vj,b be the set of row vertices
corresponding to Ij,b. For an input x, let G(x) be GP ′(x) scaled by 1/‖abs(AGP ′)‖. From Eqs. (7.8)
and (7.9), we obtain that if fP (x) = 1, then there is an eigenvalue-zero eigenvector |ψ〉 of AG(x) with

|〈ø|ψ〉|2

‖|ψ〉‖2
≥ 1

2
(8.8)

and if fP (x) = 0, then for all Υ ≥ 0,∑
α: |ρ(α)|≤Υ

|〈α|ø〉|2 ≤ 8Υ2 fwsize(P,D)2 ‖abs(AGP)‖2 (8.9)

where |α〉 and ρ(α) denote the eigenvectors and respective eigenvalues of AG(x).
Assume that G is a connected graph; otherwise, discard all components other than the one contain-

ing the output vertex ø. Therefore abs(AG) has a single principal eigenvector |δ〉, abs(AG)|δ〉 = |δ〉,
with 〈v|δ〉 > 0 for all v ∈ V .

Put an arbitrary total order “<” on the vertices in V . For each v ∈ V , let

|ϕv〉 =
1√
〈v|δ〉

(√
〈v|AG|v〉〈v|δ〉|v〉+

∑
w∈V :w<v

√
|〈v|AG|w〉| 〈w|δ〉|w〉+

∑
w∈V : v<w
〈v|AG|w〉6=0

〈w|AG|v〉√
|〈v|AG|w〉|

√
〈w|δ〉|w〉

)
(8.10)

Then
‖|ϕv〉‖2 =

1
〈v|δ〉

∑
w∈V
〈v| abs(AG)|w〉〈w|δ〉 = 1 . (8.11)

Therefore Theorem 8.2 will apply; define T , S, U and M from Eqs. (8.2) and (8.3). Also let Õx
be the unitary

Õx|v, w〉 =

{
−|v, w〉 if v ∈ Vj,xj for some j ∈ [n]
|v, w〉 otherwise

(8.12)

One controlled call to Õx can be implemented using one call to the standard input oracle Ox of
Figure 1.

The algorithm has three steps:

Algorithm 4:

1. Prepare the initial state T |ø〉.

2. Let Υ = 1/
(
8 fwsize(P,D)‖abs(AGP)‖

)
. Run phase estimation on Wx = i ÕxU ,

with precision δp = 2
πΥ and error rate δe = 1/8.

3. Output 1 if the measured phase is 0 or π. Otherwise output 0.

27

The query complexity of this algorithm is O
(

1
δp

log 1
δe

)
= O(1/Υ) = O

(
fwsize(P,D)‖abs(AGP)‖

)
,

as claimed. We will not go into the details, but as in Section 3 the phase-estimation wrapper can be
removed by using a smaller amplification factor. It remains to prove completeness and soundness.

Fix an input x ∈ {0, 1}n. For v ∈ V , let

|ϕxv〉 =

{
|v〉 if v ∈ Vj,xj for some j ∈ [n]
|ϕv〉 otherwise

(8.13)

Apply Theorem 8.2 using the vectors |ϕxv〉 to define Tx, Ux and Mx.

Lemma 8.4. M = AG and Mx = AG(x). Moreover, letting CE = Span({|v, w〉 : (v, w) ∈ E}) ⊆
CV ⊗CV be the span of the edges of G, Ux|CE = ÕxU |CE and Tx|ø〉 = T |ø〉 ∈ CE.

Proof. First, note that for any vertices v, w ∈ V , from Eq. (8.3) and Eq. (8.10),

〈v|M |w〉 = 〈ϕv|w〉〈v|ϕw〉

= 〈v|AG|w〉

√
〈v|δ〉
〈w|δ〉

√
〈w|δ〉
〈v|δ〉

= 〈v|AG|w〉 .

(8.14)

Therefore M = AG.
Recall that G(x) is the same as G except with the edges to vertices in ∪j∈[n]Vj,xj removed.

Consider a v ∈ Vj,xj and let w 6= v be its single neighbor, so |ϕv〉 = |w〉. Since |ϕxv〉 = |v〉,
〈v|Mx|w〉 = 〈ϕxv |w〉〈v|ϕxw〉 = 0. However, for all pairs (v, w) that do not make an edge leaving some
Vj,xj , 〈v|Mx|w〉 = 〈v|M |w〉. Therefore Mx = AG(x).

Next, we aim to show that UxS and ÕxUS are the same when restricted to CE . Note that

US = 2TT † − 1CV ⊗CV

= 2
∑
v∈V
|v〉〈v| ⊗ |ϕv〉〈ϕv| − 1CV ⊗CV

=
∑
v∈V
|v〉〈v| ⊗ (2|ϕv〉〈ϕv| − 1CV) .

(8.15)

Similarly UxS =
∑

v |v〉〈v| ⊗ (2|ϕxv〉〈ϕxv | − 1CV). Therefore,

(US)†UxS =
∑
v

|v〉〈v| ⊗
[
(2|ϕv〉〈ϕv| − 1)(2|ϕxv〉〈ϕxv | − 1)

]
=

∑
v/∈∪jVj,xj

|v〉〈v| ⊗ 1 +
∑

j∈[n],v∈Vj,xj
w∼v

|v〉〈v| ⊗ (1− 2|v〉〈v| − 2|w〉〈w|) , (8.16)

where in the second term w is v’s single neighbor in G. On the other hand, from its definition in
Eq. (8.12),

Õx = 1CV ⊗CV − 2
∑

j∈[n],v∈Vj,xj

|v〉〈v| ⊗ 1CV . (8.17)

By inspection, this is the same as Eq. (8.16) on CE .
Finally, since by assumption ø /∈ Vinput, Tx|ø〉 = |ø〉 ⊗ |ϕxø〉 = |ø〉 ⊗ |ϕø〉 = T |ø〉. T |ø〉 ∈ CE by

Eq. (8.10).

28

The initial state T |ø〉 = Tx|ø〉 lies in Range(Tx) ⊆ CE . Also, Ux fixes CE ; in fact, it even fixes
the join of the ranges of Tx and STx, which could be smaller than CE . By Lemma 8.4, ÕxU and
Ux are the same restricted to CE . Therefore, the algorithm behaves the same as if it were running
phase estimation on iUx instead of Wx = iÕxU .

Based on Eq. (8.8), the algorithm is complete:

Lemma 8.5. If x ∈ D and f(x) = 1, then the algorithm outputs 1 with probability at least 1/2− δe.

Proof. Assume that f(x) = 1. From Eq. (8.8), AG(x) has an eigenvalue-zero eigenvector |α〉 ∈ CV

with ‖|α〉‖ = 1 and |〈ø|α〉|2 ≥ 1/2. By Theorem 8.2 with ρ(α) = 0, Ux has eigenvectors |α,±〉 =
(1± iS)Tx|α〉 with respective eigenvalues ±i. By Lemma 8.3, these satisfy

|〈ø|T †x |α,+〉|
2

‖|α,+〉‖
+
|〈ø|T †x |α,−〉|

2

‖|α,−〉‖
= |〈ø|α〉|2 ≥ 1

2
. (8.18)

Thus the algorithm measures a phase of 0 or π, and outputs 1, with probability at least 1/2− δe.

Based on Eq. (8.9), since the phase estimation precision is δp = 2
πΥ, the algorithm is sound:

Lemma 8.6. If x ∈ D and f(x) = 0, then the algorithm outputs 1 with probability at most 1/8 + δe.

Proof. Let {|α〉} be a complete set of orthonormal eigenvectors of AG(x), with corresponding
eigenvalues ρ(α). The initial state T |ø〉 = Tx|ø〉 lies in the range of Tx, and therefore is in the span
of the eigenvectors {|α,±〉}, i.e., the space R = ⊕αRα from Theorem 8.2. The probability that the
algorithm outputs 1 is therefore at most δe plus

∑
|α,b〉:

arg(λ(α,b))∈[π
2
−δp,π2 +δp]∪[−π

2
−δp,−π2 +δp]

|〈α, b|ø〉|2

‖|α, b〉‖2
=

∑
α:|arcsin ρ(α)|≤δp

(
|〈α,+|ø〉|2

‖|α,+〉‖2
+
|〈α,−|ø〉|2

‖|α,−〉‖2

)
(8.19)

where in the first sum b can be either + or −, and we have used λ(α,±) = e±i arccos ρ(α), so
arg(λ(α,±)) = ±(π2 − arcsin ρ(α)).

Since |arcsin ρ(α)| ≤ π
2 |ρ(α)|, and by Lemma 8.3, the above sum is at most∑

α:|ρ(α)|≤Υ

|〈α|ø〉|2 , (8.20)

which is at most 1/8 by Eq. (8.9).

Therefore, the algorithm is correct. The constant gap 3/8− 2δe = 1/8 between its completeness
and soundness parameters can be amplified as usual.

Finally, for the time-complexity claim, the algorithm uses a discrete-time quantum walk on a
scaled version of the graph GP ′(x). If the maximum degree of a vertex in GP is d, then each coin
reflection can be implemented using O(log d) single-qubit unitaries and queries to the preprocessed
string [GR02, CNW10]. The additional

(
log(Q log d)

)O(1) factor comes from applying the Solovay-
Kitaev Theorem [KSV02] to compile the single-qubit unitaries into products of elementary gates, to
precision 1/O(Q log d).

29

9 Open problems

We have shown that for any boolean function f , the general adversary lower bound Adv±(f) actually
characterizes bounded-error quantum query complexity Q(f). In proving this statement, we have
also shown that quantum algorithms, judged by query complexity, and span programs, judged by
witness size, are equivalent computational models for evaluating boolean functions. One consequence
is an efficiently computable characterization of the quantum query complexity for a read-once
formula over any constant-size gate set.

Span programs may also be useful for developing other quantum algorithms. They have a
rich mathematical structure, and their potential has not been fully explored. Span programs
can be constructed directly, but another approach is to solve for the general adversary bound.
The Adv± SDP is simpler than the previous known SDPs from [BSS03]. The simplifications may
ease the inference of structure from numerical investigations. For the ordered search problem in
particular, Childs and Lee have closely characterized Adv± [CL08]. To the author’s knowledge,
neither the [BSS03] SDPs nor Adv± have ever been solved directly for a substantially nontrivial,
asymptotically large family of functions, with better than a constant-factor improvement over the
adversary bound. It is the easy composition rule that allows for computing Adv± for a read-once
formula, by multiplying the bounds computed for constant-size gates.

It may be that the simple form of our algorithm will allow for further progress in the understanding
of quantum query algorithms. For example, this form and Theorem 1.5 suggest that it may be
possible to adapt the algorithm to evaluate any boolean function f with a bounded-error input
oracle with the same asymptotic number Θ(Adv±(f)) of quantum queries, following [HMW03]
for the OR function. Classically, in the noisy decision-tree model, an extra logarithmic factor for
error reduction is sometimes required [FRPU94], but this factor is not known to be needed for any
quantum query algorithm [BNRW05].

Regarding time complexity, new techniques are needed for developing span programs P such
that GP is sparse and ‖abs(AGP)‖ = O(1), so that the algorithm in Theorem 8.1 can be implemented
efficiently. Some partial progress is made in [Rei09b, Rei09c]. Investigating the tradeoffs involved
in designing span programs for query-optimal and nearly time-optimal quantum algorithms is an
important area for further research.

By a construction in [Rei09a, Theorem 3.1], a one-sided-error quantum algorithm can be
converted into a span program, and by Theorem 8.1, the span program can be converted back into
a quantum algorithm. Overall, this transformation can be seen to preserve time complexity, after
preprocessing. To some degree, this complements the equivalence results for best span program
witness size and bounded-error quantum query complexity, Corollary 1.8. However, the algorithm
from Theorem 8.1 has two-sided error. Perhaps a definition of “approximate” span programs would
allow a closer equivalence between algorithm time complexity and span program full witness size.

Acknowledgements

I would like to thank Troy Lee and Robert Špalek for helpful discussions and feedback on early
drafts. I also thank Sergio Boixo, Chen-Fu Chiang, Stephen Jordan, Valentine Kabanets, Julia
Kempe, Rajat Mittal and Rolando Somma for useful comments. Research supported by NSERC,
ARO/DTO and MITACS.

30

References

[AA09] Scott Aaronson and Andris Ambainis. The need for structure in quantum speedups.
2009, arXiv:0911.0996 [quant-ph].

[Aar10] Scott Aaronson. BQP and the polynomial hierarchy. In Proc. 42nd ACM STOC, pages
141–150, 2010, arXiv:0910.4698 [quant-ph].

[ACR+10] Andris Ambainis, Andrew M. Childs, Ben W. Reichardt, Robert Špalek, and Shengyu
Zhang. Any AND-OR formula of size N can be evaluated in time N1/2+o(1) on a quantum
computer. SIAM J. Comput., 39(6):2513–2530, 2010. Earlier version in FOCS’07.

[Amb02] Andris Ambainis. Quantum lower bounds by quantum arguments. J. Comput. Syst.
Sci., 64:750–767, 2002, arXiv:quant-ph/0002066. Earlier version in STOC’00.

[Amb05] Andris Ambainis. Polynomial degree and lower bounds in quantum complexity: Colli-
sion and element distinctness with small range. Theory of Computing, 1:37–46, 2005,
arXiv:quant-ph/0305179.

[Amb06] Andris Ambainis. Polynomial degree vs. quantum query complexity. J. Comput. Syst.
Sci., 72(2):220–238, 2006, arXiv:quant-ph/0305028. Earlier version in FOCS’03.

[Amb07] Andris Ambainis. A nearly optimal discrete query quantum algorithm for evaluating
NAND formulas. 2007, arXiv:0704.3628 [quant-ph].

[AS04] Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and the
element distinctness problem. J. ACM, 51(4):595–605, 2004.

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de
Wolf. Quantum lower bounds by polynomials. J. ACM, 48(4):778–797, 2001,
arXiv:quant-ph/9802049. Earlier version in FOCS’98.

[BBHT98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quantum
searching. Fortschritte der Physik, 46(4-5):493–505, 1998, arXiv:quant-ph/9605034.
Earlier version in Proc. 4th Workshop on Physics and Computation, pp. 36-43, 1996.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum algorithm for the col-
lision problem. In Proc. 3rd LATIN, LNCS vol. 1380, pages 163–169, 1998,
arXiv:quant-ph/9705002.

[BNRW05] Harry Buhrman, Ilan Newman, Hein Röhrig, and Ronald de Wolf. Robust polynomials
and quantum algorithms. In Proc. 22nd STACS, LNCS vol. 3404, pages 593–604, 2005,
arXiv:quant-ph/0309220.

[BS04] Howard Barnum and Michael Saks. A lower bound on the quantum query
complexity of read-once functions. J. Comput. Syst. Sci., 69(2):244–258, 2004,
arXiv:quant-ph/0201007.

[BSS03] Howard Barnum, Michael Saks, and Mario Szegedy. Quantum query complexity and
semidefinite programming. In Proc. 18th IEEE Complexity, pages 179–193, 2003.

31

http://www.arxiv.org/abs/0911.0996
http://www.arxiv.org/abs/0910.4698
http://www.arxiv.org/abs/quant-ph/0002066
http://www.arxiv.org/abs/quant-ph/0305179
http://www.arxiv.org/abs/quant-ph/0305028
http://www.arxiv.org/abs/0704.3628
http://www.arxiv.org/abs/quant-ph/9802049
http://www.arxiv.org/abs/quant-ph/9605034
http://www.arxiv.org/abs/quant-ph/9705002
http://www.arxiv.org/abs/quant-ph/0309220
http://www.arxiv.org/abs/quant-ph/0201007

[BV97] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM J. Comput.,
26(5):1411–1473, 1997. Earlier version in STOC’93.

[BW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
A survey. Theoretical Computer Science, 288(1):21–43, 2002.

[CGM+09] Richard Cleve, Daniel Gottesman, Michele Mosca, Rolando D. Somma, and David L.
Yonge-Mallo. Efficient discrete-time simulations of continuous-time quantum query algo-
rithms. In Proc. 41st ACM STOC, pages 409–416, 2009, arXiv:0811.4428 [quant-ph].

[CL08] Andrew M. Childs and Troy Lee. Optimal quantum adversary lower bounds for ordered
search. In Proc. 35th ICALP, LNCS vol. 5125, pages 869–880, 2008, arXiv:0708.3396
[quant-ph].

[CNW10] Chen-Fu Chiang, Daniel Nagaj, and Pawel Wocjan. Efficient circuits for quantum walks.
Quantum Inf. Comput., 10(5&6):420–434, 2010, arXiv:0903.3465 [quant-ph].

[CRŠZ07] Andrew M. Childs, Ben W. Reichardt, Robert Špalek, and Shengyu Zhang. Every
NAND formula of size N can be evaluated in time N1/2+o(1) on a quantum computer.
2007, arXiv:quant-ph/0703015.

[FGG08] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum algorithm
for the Hamiltonian NAND tree. Theory of Computing, 4:169–190, 2008,
arXiv:quant-ph/0702144.

[FRPU94] Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy
information. SIAM J. Comput., 23(5):1001–1018, 1994. Earlier version in STOC’90.

[Gál01] Anna Gál. A characterization of span program size and improved lower bounds for
monotone span programs. Computational Complexity, 10:277–296, 2001.

[GR02] Lov K. Grover and Terry Rudolph. Creating superpositions that correspond to efficiently
integrable probability distributions. 2002, arXiv:quant-ph/0208112.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proc.
28th ACM STOC, pages 212–219, 1996, arXiv:quant-ph/9605043.

[HLŠ06] Peter Høyer, Troy Lee, and Robert Špalek. Source codes of semidefinite programs for
ADV±. http://www.ucw.cz/~robert/papers/adv/, 2006.

[HLŠ07] Peter Høyer, Troy Lee, and Robert Špalek. Negative weights make adversaries stronger.
In Proc. 39th ACM STOC, pages 526–535, 2007, arXiv:quant-ph/0611054.

[HMW03] Peter Høyer, Michele Mosca, and Ronald de Wolf. Quantum search on bounded-
error inputs. In Proc. 30th ICALP, pages 291–299, 2003, LNCS 2719.
arXiv:quant-ph/0304052.

[HNS02] Peter Høyer, Jan Neerbek, and Yaoyun Shi. Quantum complexities of ordered searching,
sorting, and element distinctness. Algorithmica, 34(4):429–448, 2002, Special issue on
Quantum Computation and Cryptography. arXiv:quant-ph/0102078.

32

http://www.arxiv.org/abs/0811.4428
http://www.arxiv.org/abs/0708.3396
http://www.arxiv.org/abs/0708.3396
http://www.arxiv.org/abs/0903.3465
http://www.arxiv.org/abs/quant-ph/0703015
http://www.arxiv.org/abs/quant-ph/0702144
http://www.arxiv.org/abs/quant-ph/0208112
http://www.arxiv.org/abs/quant-ph/9605043
http://www.ucw.cz/~robert/papers/adv/
http://www.arxiv.org/abs/quant-ph/0611054
http://www.arxiv.org/abs/quant-ph/0304052
http://www.arxiv.org/abs/quant-ph/0102078

[HŠ05] Peter Høyer and Robert Špalek. Lower bounds on quantum query complexity. EATCS
Bulletin, 87:78–103, October 2005, arXiv:quant-ph/0509153.

[HW91] Rafi Heiman and Avi Wigderson. Randomized vs. deterministic decision tree complexity
for read-once boolean functions. Computational Complexity, 1(4):311–329, 1991. Earlier
version in Structure in Complexity Theory ’91.

[Jor75] Camille Jordan. Essai sur la géométrie à n dimensions. Bulletin de la S. M. F., 3:103–174,
1875.

[KOS07] Emanuel Knill, Gerardo Ortiz, and Rolando D. Somma. Optimal quantum mea-
surements of expectation values of observables. Phys. Rev. A, 75:012328, 2007,
arXiv:quant-ph/0607019.

[KSV02] Alexei Yu. Kitaev, Alexander H. Shen, and Mikhail N. Vyalyi. Classical and Quantum
Computation, volume 47 of Graduate Studies in Mathematics. American Mathematical
Society, Providence, Rhode Island, 2002.

[Kut05] Samuel A. Kutin. Quantum lower bound for the collision problem with small range.
Theory of Computing, 1:29–36, 2005, arXiv:quant-ph/0304162.

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. In Proc. 8th IEEE Symp.
Structure in Complexity Theory, pages 102–111, 1993.

[LLS06] Sophie Laplante, Troy Lee, and Mario Szegedy. The quantum adversary method and
classical formula size lower bounds. Computational Complexity, 15:163–196, 2006,
arXiv:quant-ph/0501057. Earlier version in Complexity’05.

[LM04] Sophie Laplante and Frédéric Magniez. Lower bounds for randomized and quantum
query complexity using Kolmogorov arguments. In Proc. 19th IEEE Complexity, pages
294–304, 2004, arXiv:quant-ph/0311189.

[LMRŠ10] Troy Lee, Rajat Mittal, Ben W. Reichardt, and Robert Špalek. In preparation, 2010.

[MW05] Chris Marriott and John Watrous. Quantum Arthur-Merlin games. Computational
Complexity, 14(2):122152, 2005, arXiv:cs/0506068 [cs.CC].

[NWZ09] Daniel Nagaj, Pawel Wocjan, and Yong Zhang. Fast amplification of QMA. Quantum
Inf. Comput., 9:1053–1068, 2009, arXiv:0904.1549 [quant-ph].

[Rei09a] Ben W. Reichardt. Span programs and quantum query complexity: The general
adversary bound is nearly tight for every boolean function. 2009, arXiv:0904.2759
[quant-ph]. Extended abstract in Proc. 50th IEEE FOCS, pages 544–551, 2009.

[Rei09b] Ben W. Reichardt. Span-program-based quantum algorithm for evaluating unbalanced
formulas. 2009, arXiv:0907.1622 [quant-ph].

[Rei09c] Ben W. Reichardt. Faster quantum algorithm for evaluating game trees. 2009,
arXiv:0907.1623 [quant-ph].

[Rei10a] Ben W. Reichardt. Least span program witness size equals the general adversary
lower bound on quantum query complexity. Technical Report TR10-075, Electronic
Colloquium on Computational Complexity, http://eccc.hpi-web.de, 2010.

33

http://www.arxiv.org/abs/quant-ph/0509153
http://www.arxiv.org/abs/quant-ph/0607019
http://www.arxiv.org/abs/quant-ph/0304162
http://www.arxiv.org/abs/quant-ph/0501057
http://www.arxiv.org/abs/quant-ph/0311189
http://www.arxiv.org/abs/cs/0506068 [cs.CC]
http://www.arxiv.org/abs/0904.1549
http://www.arxiv.org/abs/0904.2759
http://www.arxiv.org/abs/0904.2759
http://www.arxiv.org/abs/0907.1622
http://www.arxiv.org/abs/0907.1623
http://eccc.hpi-web.de

[Rei10b] Ben W. Reichardt. Reflections for quantum query algorithms. 2010, arXiv:1005.1601
[quant-ph].

[RŠ08] Ben W. Reichardt and Robert Špalek. Span-program-based quantum algorithm for
evaluating formulas. In Proc. 40th ACM STOC, pages 103–112, 2008, arXiv:0710.2630
[quant-ph].

[San95] Miklos Santha. On the Monte Carlo decision tree complexity of read-once formulae.
Random Structures and Algorithms, 6(1):75–87, 1995. Earlier version in Proc. 6th IEEE
Structure in Complexity Theory, 1991.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997,
arXiv:quant-ph/0508027. Earlier version in FOCS’94.

[Sim97] Daniel R. Simon. On the power of quantum computation. SIAM J. Computing,
26(5):1474–1483, 1997. Earlier version in FOCS’94.

[Sni85] Marc Snir. Lower bounds on probabilistic linear decision trees. Theoretical Computer
Science, 38:69–82, 1985.

[ŠS06] Robert Špalek and Mario Szegedy. All quantum adversary methods are equivalent.
Theory of Computing, 2(1):1–18, 2006, arXiv:quant-ph/0409116. Earlier version in
ICALP’05.

[SW86] Michael Saks and Avi Wigderson. Probabilistic Boolean decision trees and the complexity
of evaluating game trees. In Proc. 27th IEEE FOCS, pages 29–38, 1986.

[Sze03] Mario Szegedy. On the quantum query complexity of detecting triangles in graphs. 2003,
arXiv:quant-ph/0310107.

[Sze04] Mario Szegedy. Quantum speed-up of Markov chain based algorithms. In Proc. 45th
IEEE FOCS, pages 32–41, 2004.

[Zha05] Shengyu Zhang. On the power of Ambainis’s lower bounds. Theoretical Computer Science,
339(2-3):241–256, 2005, arXiv:quant-ph/0311060. Earlier version in ICALP’04.

Institute for Quantum Computing, University of Waterloo
E-mail address: breic@iqc.ca

34

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

http://www.arxiv.org/abs/1005.1601
http://www.arxiv.org/abs/1005.1601
http://www.arxiv.org/abs/0710.2630
http://www.arxiv.org/abs/0710.2630
http://www.arxiv.org/abs/quant-ph/0508027
http://www.arxiv.org/abs/quant-ph/0409116
http://www.arxiv.org/abs/quant-ph/0310107
http://www.arxiv.org/abs/quant-ph/0311060

