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Abstract

We prove almost tight hardness results for finding independent sets in bounded degree graphs
and hypergraphs that admit a good coloring. Our specific results include the following (where
A, assumed to be a constant, is a bound on the degree, and n is the number of vertices):

_1
e NP-hardness of finding an independent set of size larger than O (n (%) T_1> in a 2-

colorable r-uniform hypergraph for r > 4. A simple algorithm is known to find independent
sets of size ) (ﬁ) in any r-uniform hypergraph of maximum degree A. Under a com-

binatorial conjecture on hypergraphs, the (log A)l/ (r=1) factor in our result is necessary.

e Conditional hardness of finding an independent set with more than O (m) vertices
in a k-colorable graph for some absolute constant ¢ < 4, under Khot’s 2-to-1 Conjec-
ture. This suggests the near-optimality of Karger, Motwani and Sudan’s graph coloring

algorithm which finds an independent set of size 2 (W@) in k-colorable graphs.

e Conditional hardness of finding independent sets of size nA~1/8+°a(1) in almost 2-colorable
3-uniform hypergraphs, under the Unique Games Conjecture. This suggests the optimality
of the known algorithms to find an independent set of size Q(nA~1/8) in 2-colorable 3-
uniform hypergraphs.

1
e Conditional hardness of finding an independent set of size more than O <n (%) T_1> in

logr
r

r-uniform hypergraphs that contain an independent set of size n(l - O( )) assuming

the Unique Games Conjecture.
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1 Introduction

The Independent Set problem is one of the most well-known NP-complete problems. On general
graphs (and hypergraphs), even approximating the solution to a factor of n'~¢ (as a function of
the number n of vertices) is known to be NP-hard. For graphs with maximum degree at most A, a
simple greedy algorithm finds an independent set of size (n/A). For graphs which are promised to
have small chromatic number, a better guarantee is known: given a k-colorable graph, an algorithm
due to Karger et al. [12] uses semidefinite programming (SDP) to find an independent set of size
about Q(n/A'=2/F). Similar SDP based algorithms for finding independent sets of non-trivial size
are also known for 2-colorable 3-uniform hypergraphs [1, 4].

In this paper, we investigate the inapproximability of the independent set problem on bounded
degree graphs and hypergraphs which are promised to be colorable with few colors (and therefore
in particular have a large independent set). We obtain several strong hardness results even for such
hypergraphs, and our inapproximability factors as a function of the degree bound A almost match
known algorithms.

Before stating our results and comparing them to the known algorithmic bounds, we recall the
basic terminology. An r-uniform hypergraph G = (V, E) consists of a collection of vertices v € V'
and a collection of (hyper)edges e € E where e is a size r subset of V' (e € (‘:)) The degree of a
vertex v € V, A, is the number of times it appears in edges. A hypergraph G is degree-A bounded
if all vertices have degree at most A. Notice that for r = 2, this definition corresponds to a graph.
An independent set of G is a subset I of vertices such that no edge is completely contained in I.
Similarly, a subset of vertices S is a vertex cover of G if S has non-empty intersection with all edges.
A hypergraph G is called k-colorable if its vertices can be partitioned into at most & many disjoint
independent sets. A related weaker notion is (k,€)-semicolorability, where there is a k coloring so
that at most e-fraction of edges are monochromatic.

1.1 Our results

We obtain several hardness results for finding independent sets of the following general form: given
a degree-A bounded (hyper)graph G with some strong structural property that guarantees the
existence of a large independent set (such as k-colorability for some small k), it is nevertheless hard
to find an independent set of size % for an appropriate function f(-) of the degree A. Furthermore
the bounds f(A) in our hardness results almost match the bounds achieved by known efficient
algorithms. Note that a result of this form also implies a factor Q(f(A)) inapproximability result
for finding independent sets in degree-A bounded (hyper)graphs. The formal result statements
follow. In the following, A (assumed to be a constant) denotes the bound on the degree of the

hypergraphs and n the number of vertices.
For r-uniform hypergraphs, a simple randomized algorithm finds an independent set of size
1/(r—1)
Q(x7t=n) [1]. We prove the NP-hardness of finding independent sets larger than O (n (%) )
even for 2-colorable r-uniform hypergraphs when r > 4. To the best of our knowledge, such

1/(r=1)
a € ((lmﬁA) > hardness result for independent sets on degree-A bounded r-uniform hy-

pergraphs was not known. Also, the factor (log A)Y/("=1) slack in our hardness result (com-



pared to the algorithmic bound of ﬁ) is inherent, assuming P # NP and a conjecture of
Frieze and Mubayi [7] on the existence of independent sets in hypergraphs with forbidden sub-
graphs. Our work highlights a natural open question on finding O(Al/ (T_l))—factor approximation
for independent set on such hypergraphs (see Remark 1).

Turning to graphs, the famous algorithm of Karger, Motwani and Sudan (KMS) finds an inde-
pendent set of size 2 (W@) in a k-colorable degree-A bounded graph. Assuming Khot’s

2-to-1 Conjecture [13], and using a construction (albeit with a different analysis) from the authors’
hardness result for Maximum k-Colorable Subgraph [9], we show that the performance of the KMS
algorithm is nearly best possible. Formally, we prove that for some absolute constant ¢ < 4, it is

hard to find an independent set larger than O (W) in a k-colorable graph for k > 7.

For 3-uniform hypergraphs, our results for 2-colorable hypergraphs mentioned above do not
apply. This is for a good reason, since there are algorithms to find an independent set of size about
n/ A8 in the 2-colorable case. For 2-colorable 3-uniform hypergraphs, we obtain a conditional
hardness results based on the Unique Games Conjecture (UGC) [13]. Due to the nature of this
conjecture, our result only shows hardness for (2,e) semicolorable hypergraphs. Using a SDP
based algorithm, it was shown by several authors [1, 4, 15] how to find an independent set of size
Q(nAfl/ 8) in 2-colorable 3-uniform hypergraphs. By analyzing an appropriate dictatorship test
using tools from Gaussian Noise Stability [16], we show that this performance is essentially best
possible (up to log®™M A factors).

Since a 2-colorable hypergraph in particular has an independent set of size n/2, our result shows
the hardness of finding non-trivial independent sets in such hypergraphs. Once a hypergraph
has an independent set of size at least (1 — 1/r + v)n for some constant v > 0, the factor-r
approximation algorithm for vertex cover on r uniform hypergraphs gives an efficient algorithm to
find an independent set of size ryn = Q(n). In the quest to pin down the largest « for which strong
hardness results apply for finding independent sets in r-uniform hypergraphs which are promised to

have an independent set of an, we show that even if there is an independent set of size n (1 — bﬁ),

it is hard (under UGC) to find independent sets larger than O(n(—loiA)l/ (T_1)>.

1.2 Proof methods

Our main technique involves combining certain “robust” hardness results for independent sets on
graphs or hypergraphs of small chromatic number (with no restrictions on the degree) with a
sparsification procedure to reduce the degree of the graph. The “robustness” refers to the fact that
in the soundness case, not only is there no independent set of size yn (for any desired v > 0),
but every set of size yn contains a constant fraction «(7) of the total number of edges in the
graph. This approach was used for the results shown in [2] to establish hardness of approximating

independent set size on degree-A bounded graphs within a €2 (log%) factor assuming UGC. In
the soundness analysis of these density arguments, we use a soft decoding type approach to argue
about the existence of a good labeling, unlike the usual thresholding-based approach.

This paper extends the results shown in [2] in several directions. The results from [2] are
conditioned on UGC and only apply to graphs with big independent sets. Moreover they do
not shed light on the approximation guarantee possible for k-colorable graphs. In this work, we



borrow their sparsification procedure and combine it with different robust hardness results for
finding independent sets in graphs and hypergraphs with small chromatic number. Some of these
robust hardness results for independent set (e.g. the one for 2-colorable 4-uniform hypergraphs) are
borrowed directly from the literature, and the others (e.g. for k-colorable graphs and 2-semicolorable
3-uniform hypergraphs) are shown in this paper. Our final quantitative results show that it is not
possible to beat the performance of the known coloring algorithms (up to some small factors) as
a function of the degree. Some of our hypergraph results do not rely on any conjecture, and the
result for k-colorable graphs relies on the 2-to-1 Conjecture [13]. Also conditioned on UGC, we
show hardness results for hypergraphs which have extremely large independent sets.

2 Independent sets in 2-colorable hypergraphs

Our first result is an unconditional NP-hardness result for 2-colorable r > 4-uniform hypergraphs.
The next result uses the 2-to-1 Conjecture for proving a similar result on k-colorable graphs. Both
of these results are based on the idea of proving a certain density property and then using this
to show that a simple sparsification procedure based on random sampling of (hyper)edges will not
produce a big independent set. We first introduce the sparsification procedure. We then use it to
first give the results on hypergraphs as it is easier and unconditional.

2.1 Sparsification Procedure
Both of our hardness results use a random sampling based sparsification procedure which relies on
the underlying hypergraph having a certain density property, as outlined in [2].

For a given set S, we will denote x ~ S as choosing an element of S uniformly at random. We
now give the density definition:

Definition 2.1. Let H be an r-uniform hypergraph H = (V(H), E(H)), with r > 2. Density of a
set U CV on H is defined as

Density ; [U] = Pr..p) [e € U].

In other words, density is the probability that a randomly selected hyperedge will lie completely inside
this set.

Moreover H is said to be (c,7y)-dense if for every S € (O‘K/|)’ Density; [S] = 7.

We construct H' = (V, E’) by randomly sampling  fraction of edges with replacement, so that
|E'| = B|E|. The new graph H’ inherits any (semi)coloring properties of the original hypergraph
H. First, we introduce the definition of semicolorability:

Definition 2.2. An r-uniform hypergraph G is called (k,e) semicolorable if there is a k-coloring
of the vertices in G such that all but at most e-fraction of edges are monochromatic.

Observation 2.3. If H is (k,e)-semicolorable, H' is also (k,e)-semicolorable.

Lemma 2.4. If H is (u, u*/3)-dense, then H' has no independent set of size un with probability
3 for the choice B|E| = ©(nh(p)u™), where h(p) = —plogpu — (1 — p)log(1 — p).



Proof. Consider a fixed subset U. There are at least | E|x* many hyperedges completely inside U.
The probability that U is an independent set in H’ is given by (1 — p*/3)°IEl ~ exp (—p*BIE|/3).
Taking union probability over all such subsets, the probability of having a size un-independent set
is:

n A A _ A
(1) expt-s11/3) = ex (0 (st - wlE)3) )
For suitable 3|E| = ©(nh(u)p ™), this probability is < 3. O

The average degree of a vertex in H' is Aayg = O (B8]E|/n) = O(h(p) ). By a simple Chernoff
bound, it is easy to see that Prg/ [Ay > 2A,vs] < exp(—Aayvg) = o(p) where A, is the degree of
vertex u in H'. We can remove all such vertices, as there is no independent set of size un —o(un) in
H'. Hence we can make sure that in the final hypergraph, all vertices have degree A, < 2H (u) uA

As a summary, we have the following lemma:

Lemma 2.5. Given positive reals, p, A, for any r-uniform hypergraph H = (V, E), in polyno-
mial time, we can construct an r-uniform hypergraph H' = (V,E') with mazimum degree A =
O(h(p) u=>) such that:

e Completeness: If H is k-colorable, then H' is k-colorable also.

e Soundness: If H is (u, %)—dense, then H' has no independent set of size un/2.

In order to avoid repeating calculations, we summarize how to relate the degree bound with
independent set inapproximability in the following corollary, whose proof appears in Appendix A.

Corollary 2.6. Given an r-uniform hypergraph H = (V, E'), any positive constante > 0, A > 1 and
A some large integer, there exists a constant p = (A, X) and an r-uniform hypergraph H' = (V, E’)
with maximum degree A such that:

o Completeness: If H is (k,e)-semicolorable, then H' is (k,e)-semicolorable also.

1/(A-1)
e Soundness: If H is (u, %)—dense, H' has no independent set of size O <n (%) >

2.2 Results for 2-Colorable r-Uniform Hypergraphs

For this result, we will use the PCP verifier given by Holmerin [11] for Vertex-Cover hardness
on 4-uniform hypergraphs, which we will then extend to higher uniformities by a simple direct
product. Notice that this is the same PCP verifier originally used by Guruswami et al. [8] for
proving hardness of approximate 4-uniform hypergraph coloring. The following is a simple corollary
of the results from these papers [8, 11]:

Theorem 2.7. For any pn > 0 and small enough 0 < 6§ = o(u*), the following holds: Given a
4-uniform hypergraph H = (V, E) on n vertices, it is NP-hard to distinguish if

e H is 2-colorable or,



o H is (u, u* — 8)-dense.

In other words, it is NP-hard to find a subset with size un of vertices such that at most (u* — 6)-
fraction of the edges lie completely inside that set even when the hypergraph is 2-colorable. In
particular, it is hard to find independent set of size un.

Proof. Consider Test FHS-§ given in [11] (Proposition 3.14), where there is a vertex corresponding
the entry in each table, A,(f). For every query of the form (A, (g1), Aw, (h1), Aw,(92), Aw,(92)),
there is a hyperedge on the corresponding set of vertices. Notice that in [8], it is proven that for
this hypergraph will be 2-colorable if the underlying instance ¢ is satisfiable. Also it can easily be
shown that the hypergraph produced will have all vertex degrees equal.

For the second part, assume that ¢ is not satisfiable and there is a set U with |U| = un such that
Prewp[e CU] < pu* — 6. Let f: V — {0,1} be the indicator function for this set. Arithmetizing

the density:
I/

vee

PreNE [6 Q U] = EewE

which is the rejection probability of Test FHS-0 on proof given by g = 2f — 1. Since g is (2u — 1)-
balanced, by Proposition 3.15 in [11], ¢ is satisfiable since Pr..p[e C U] < p* — 6, which is a
contradiction. O

A simple extension of the above argument gives a similar result for hypergraphs with uniformities
> 4.

Lemma 2.8. For all 6, > 0 and r > 4, the following holds: Given an r-uniform regular hypergraph
H = (V,E) on n vertices, it is NP-hard to distinguish if

e H is 2-colorable or,

o H is (u,pu" — 0,)-dense .

Proof. We will prove by induction on . For r = 4, the result is given above. Assume for r > 4,
the decision problem is hard for §,. Let é,41 = 6,0 . Given any r-uniform regular hypergraph
H) = (V,E") | construct a new (r + 1)-uniform hypergraph H*1) = (V, EC+1D) on the same
vertex set with the hyperedges defined as follows: For every v € V, and every e € E() such that
v ¢ e, add edge e, = e U {v} to EC1). Since all vertices had same degree in H("), they have the
same degree in H (r+1) also. Moreover if H(") is 2-colorable, H("t1) is 2-colorable also, as its edges
strictly contain at least an edge from E("),

Assume there is a set U € (;[Z]z) with Densityy; [H(T“)} <yt — 6,41. This implies
/,LT+1 — (5r,«+1 2 PreNE(H(r+1)) [6 g U] = Pre/NE(H(r))’UNv\e/ [6 g UAhve U]
> Pre’NE(H(T)) [6 - U] PrUNV\e’ [’U € U}
> Density; [H(T)} 1

p" — 8, > Densityy; [H(")} .



The first inequality follows because all vertices have same degree. This means the decision problem
on H*Y implies the decision problem on H(), which is hard by our induction hypothesis. ]

On this hypergraph, we can directly apply Corollary 2.6 and obtain the following:

Theorem 2.9. For any integer r > 4 and integer constant A, given an r-uniform hypergraph,
with mazimum degree A, it is NP-hard to decide whether if this hypergraph is 2-colorable or largest

independent set size is O(n(%)l/(“l)).

Proof. Given an r-uniform hypergraph instance H from Lemma 2.8 we can construct another
hypergraph H’ using Corollary 2.6 with A\ = r. Completeness follows from how 2-colorability
feature is preserved in all transformations. Soundness follows because if there is no independent

set of size O (%n), H is not (p, u" — d)-dense for small enough 0. O

Remark 1. The corollary is tightly related to a conjecture of Frieze and Mubayi [7], which (re-
stated for suitability to our problem) says that r-uniform Ky, 1-free hypergraphs (Ko,—1 is the
hypergraph clique on 2r — 1 vertices) with maximum degree A have an independent set of size at

least ¢,n <loiA> "' Since any 2-colorable hypergraph is Ks,_1-free, their conjecture implies that

our hardness result is tight (assuming P # NP).

3 Independent sets in k-colorable graphs

For this result, we will use the verifier given by Guruswami and Sinop [9] for the Maximum k-
Colorable Subgraph problem. The difference is that we analyze density properties instead of es-
timating the fraction of miscolored edges. First we will give some definitions and introduce the
d-to-1 Conjecture which is needed for this hardness result.

3.1 Preliminaries

We begin by reviewing some definitions and the d-to-1 Conjecture.

Definition 3.1. An instance of a bipartite Label Cover problem represented as L = (U, V, E, W, Ry, Ry, II)
consists of a weighted bipartite graph over node sets U and V with edges e = (u,v) € E of non-
negative real weight we € W and ), we = 1. Ry and Ry are integers with1 < Ry < Ry . I is a col-
lection of projection functions for each edge: 1 = {my, : {1,..., Ry} — {1,... ,RU}‘U eUnweV}.

A labeling ¢ is a mapping £ : U — {1,..., Ry}, £:V — {1,...,Ry}. An edge e = (u,v) is satisfied

by labeling € if m.(£(v)) = £(u). We define the value of a labeling as sum of weights of edges satisfied

by this labeling normalized by the total weight. Opt(L) is the mazimum value over any labeling.

Definition 3.2. A projection © : {1,...,Ry} — {1,..., Ry} is called d-to-1 if for each i €
{1,..., Ry}, |77 1(i)| < d. It is called exactly d-to-1 if |[7~1(i)| = d for eachi € {1,2,..., Ry}.

Definition 3.3. A bipartite Label-Cover instance L is called d-to-1 Label-Cover if all projection
functions, m € I are d-to-1.



Conjecture 3.4 (d-to-1 Conjecture [13]). For any v > 0, there exists a right reqular d-to-1 Label-
Cover instance L with Ry = R(y) and Ry /d < Ry < Ry many labels such that it is NP-hard to
decide between two cases, Opt(L) = 1 or Opt(L) < . Note that although the original conjecture
tnvolves d-to-1 projection functions, we will assume that it also holds for exactly d-to-1 functions
(so dRy = Ry ) as in [5].

The hardness results for these problems generally rely heavily on Gaussian stability bounds.
We will include here the form we use in this paper. We use the same notation as Mossel [16]. Let
o(x) = (27r)_1/2 exp(—x2/2) and N(z) £ ffoo o(z)dw.

Definition 3.5. For p,v € [0,1] and p € [—1,1], Gaussian stability bound is defined as:
L, (p,v) = Pra, [:v <N7Yp) A pr4+1-p2y>N11-v)l.
In this expression, x and y are independent normal variables with mean 0, variance 1 and N1 (x)
1s the inverse cumulative normal distribution.
Given (p1,...,pr—1) € [0,1]*71, and (p1,...,px) € [0,1]F for k > 3, we define, inductively,
Eﬂl,mpk—l('u’l’ U "U’k) < Epl (M1’£P2,.,-,pk—1('u27 to Huk))'

In Dinur et al. [5], the noise stability of two functions with same domains are bounded by the
spectral radius of underlying Markov operator mapping this domain to itself. In [16], the spectral
radius is generalized to correlation constants so as to allow for functions with different domains:

Definition 3.6. Given two finite probability spaces Q1 and Qo with probability distribution P on
Qq x Qo, the correlation between these two spaces is defined as:

p(1, 922 P) £ sup{Cov[f,g] : f € L*(),g € L*(D), Var[f] = Var[g] = 1}.

Since this is a supremum over functions of bounded variance, we can further assume that E [f] =
Elg] =0.

We will restate the noise stability result of Mossel [16] in the form we use:

Proposition 3.7. [16] Let (H?:1 ng), P;), 1 <i < r be a sequence of finite probability spaces such
that for all 1 < i < r, the minimum probability of any atom in H§:1 Q)

(2

furthermore that there exists p € [0,1]*~1 and 0 < p < 1 such that p(le), . ,Qg

is at least . Assume
Py < p, and

p(Q{ID QUIthkD by < () (1)

for all i,5. Then for every e > 0, there exists 7 > 0 and k = k(T,) > 0 such that if f; :
I, QZ(]) — [0,1] for 1 < j < k satisfy max; ;(InfS*(f;)) < 7 then it holds that

k
LEA]. L Elf]) —e<E[]] fi]- (2)
j=1

If instead of Condition 1, all P; are pairwise independent, then H§:1 E[f;] —e< E[H?Zl fj].

We will use the following estimate. Its proof appears in Appendix B:

LiA+2¢Ap
A — w1z
Lemma 3.8. For p >0, A > 1 and small enough p >0, T,(p, p*) = Q ( 1k )



3.2 Reduction from 2-to-1 Label Cover

The following lemma is based on a PCP verifier from Guruswami and Sinop [9]. Usually soundness
analysis is performed by thresholding the influential coordinates for each vertex and then choosing a
label from these. As mentioned in the introduction, we use a randomized decoding procedure based
on influences for soundness analysis. This is almost equivalent to Hastad’s decoding procedure in
his classic paper [10]. We are interested in keeping the exponents as small as possible, which is not
possible with usual thresholding based decoding methods. Also this decoding procedure makes the
analysis bit more transparent.

Lemma 3.9. Given any integer k > 6, any constant p > 0, there exists a constant v = ~'(u, k)
such that for any 2-to-1 Label-Cover instance L, it is possible to construct a graph G on vertex set
V(L) x [k)E with the following properties:

o Completeness: If L is satisfiable, then G is k-colorable.

2/(1—£%5)
e Soundness: If Opt(L) <+, then G is <MaQ <#(’“1

) )—dense for somel <c<4
In(1/p)

Proof. Consider the graph constructed from £ by the verifier in Section 3.4 of [9]. Completeness
of this verifier is already proven in [9]. For the soundness part, assume that there is an indicator
function f(v,z) : V x [k?]® — {0,1} with E [f] > p and fraction of edges inside is v < %EP(T)(M, 1).
Here p(T') = %5 corresponds to the spectral radius of Markov operator 7" from that construction
with ¢ < 4 is a positive real. We will show it is possible to construct a good labeling for £ from

this f. After arithmetization:

Euntr [Euvvims) [Bonpze yorors [0, 2) - FOO,9)]]] =~ < Tpepy(p, 1)/3 (3)
where §(u) denotes the neighbors of u. As usual, if we let g,(v) = E,pq) [f(v,T)], we have
Euz [gu(z)] = Ey [pt] = p. Here if x € [k]?", then T € [k?]" with &; = z9; 1 + kxo;.
2/(1-57)
Let ¢ £ Lony(p,p)/3 = Q <“1n(1k/;)> with corresponding k(e, ) and 7(e, ) from noise

stability proposition. Consider the following labeling, ¢: Label each v € V' (resp. u € U) using i €
{1,...,2R} (vesp. j € {1,...,R}) with probability InfS**(f(v))/(2x) (resp. InfS"(g,)/k). With

the remaining probability, assign arbitrary label. Since for any function h, >, Inf <d(h) < dVarlh|
and that Var[f(v)], Var[g] < 1, this is a valid probability distribution. G1ven a vertex u € U,
without loss of generality, assume 7y, (2i — 1) = 7y, (2¢) = i. The fraction of satisfied edges incident
to this vertex u is given by the following expression:

Procs [(v) € {260u), 20(u) + 1] > 5 5Foe lzlnf<*”~ gu) (Tf525,(F(0) + 52 (f (v )))]

%2 Zlnfg” (9u)Euesny IS5 (F(0) + It (£(v))]

n 1 . K
2 5.2 Zlnf< Ju Z Ianz 1)65 (u) [f( ) > ﬁ Zlnff (gu)27
=1



where we used the convexity of Inf and the fact that for two functions hi(z) = ho(Z), under the
uniform distribution, Inffd(hl) < Inf;fdl(hg) + Inf <2d(hg).

Using the noise stability result from Proposition 3.7 and the fact that the spectral radius of
T, p=p(T) < kc is the correlation constant, if Ey y7 [gu(7)gu(y)] < Ly (ttu, ) — €, then
S, InfS(g,)? > 72. Otherwise 3, Inf~"(g,)? > 0 . Here we used pi, = E; [gy()]. Therefore

Z Inffn(gU)Q >7_2 [Ep(T) (Mu» :uu) — & Er,yNT [gu(

> Inf§“<gu>2] 7B Ly (s ) = £ = By [9, ()90 )]

2/(1=%57)

2 Hu
> ¢ E, [ Q2 W —e—E, [Em,wa [gu(l‘)gu(y)“

2/(1=555)
o2 .
{1/
. . 2/(-%57)
In the last line, we appealed to the convexity of 2 (“1(1/)
n(1/p
will satisfy at least a constant (independent of n and R) fraction of edges. Taking +’ appropriately,

we see that if the initial label cover instance £ was not satisfiable beyond +/, then no such set can
exist. =

) and Equation 3. Hence this labeling

Theorem 3.10. For any integer k > 6 and integer constant A, given a graph G with maximum
degree A, it is NP-hard to decide whether if it is k-colorable or largest independent set size is
Ona (nA_HC/(k_l))) assuming the 2-to-1 Conjecture, for some constant ¢ < 4.

Proof. Given a regular graph instance G from Lemma 3.9, we can construct another graph G’ using
Corollary 2.6 with A = 2/(1 — p) with p < %5 being the correlation constant. In this new graph,

if there is no such independent set, this implies H is not (u, ,u2/ (l_p))—dense, which is NP-hard to
decide under the 2-to-1 Conjecture. O

4 2-Semicolorable 3-Uniform Hypergraphs

In this section, we give a similar result to the previous result, but assuming only semicolorability.
In this context, we say a hypergraph is 2-semicolorable if there exists a 2-coloring of the graph
which leaves at most e-fraction hyperedges monochromatic. Our reduction is conditioned on the
Unique Games Conjecture, which is the primary reason for losing the perfect completeness. UGC
is very similar to the d-to-1 Conjecture introduced above with d = 1 and the perfect completeness
is replaced with 1 — & completeness.

Conjecture 4.1 (Unique Games Conjecture [13]). For any v > 0,e > 0, there exists a right
reqular 1-to-1 Label-Cover instance L with R = R(vy,e) many labels such that it is NP-hard to
decide between two cases, Opt(L) > 1 —¢e or Opt(L) < 7.



4.1 The Not-All-Equal test

Given a Unique Games instance £, our verifier is:

1. Choose u ~ U, and three vertices vy, vo, v3 independent at random from the neighbors of v.

2. Choose z,y,z € {0, 1} such that for each i € [R], (2;,%;, 2;) are drawn uniformly at random
from the NAE = {(0,0, 1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0)}

3. Accept iff Not-All-Equal(f(u1, ), f(uz2,y), f(us, 2)).

In soundness analysis, we will bound the density property of this verifier using a generalized
noise stability theorem of Mossel [16]. We will first compute the correlation constant, p, for the
probability space of accepting predicates of Not-All-Equal.

Lemma 4.2. The correlation between probability spaces XY := {0,117 x {0,1}¥ and Z := {0, 1} %,
is p(XY,Z) = ? and p(X,Y) = 3.

Proof. First observe that our distribution is invariant under permutations.

p(XY,Z) = sup{Cov[f,g] : f € L*({0,1}%),9 € L*({0,1}), Var[f] = Var[g] = 1}

_
_ - £(00)g(1) + [£(01) + F(10)}{9(0) + g(1)] +£(11)g(0)
£,9,E[f]=0,E[g]=0,Var[f]=1,Var[g]=1 6
_ sup F(00)g(1) + £(11)g(0)
1,9,E[f]=0,E[g]=0,Var[f]=1,Var[g]=1 6

This last expression is maximized when f(00)g(1) > 0, f(11)g(0) > 0 and f(01) = f(10) = 0. Thus
we have Var [f] =1 = f(11) = —/6 — f(00)2. Similarly g(1) = —/2 — ¢(0)2. Hence

(XY, Z) = £(00)4/2 = g(0)% + /6 — £(00)%9(0)

max —
£(00),9(0) 6

This is maximized for f(00) = —v/3 and g(0) = —1, so p(XY, Z) = /3/3.
Similarly, for p(X,Y’), we have

p(X,Y) = sup{Cov[f,g]: f € L*({0,1}),9 € L*({0,1}), Var[f] = Var[g] = 1}
f(0)g(0) +2(f(0)g(1) + f(1)g(0)) + f(1)g(1)

= sup
£,9,E[f]=0,E[g]=0,Var[f]=1,Var[g]=1 6
0
_ sup f(0)g(1) + f(1)g(0) + (£(0) + f(1))(9(0) + g(1))
£,9,E[f]=0,E[g]=0,Var f]=1,Var[g]=1 6

— % (f(0) = —f(1) = —g(0) = g(1) = —1).
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4.2 Reduction from Unique Games

The following lemma gives us the necessary density argument so as to make the sparsification
procedure go through.

Lemma 4.3. Given any positive reals u, €, there exists ' (u,e) > 0, such that for any Unique Games
instance L, it is possible to construct a 3-uniform hypergraph G on vertex set V(L) x {0, 1} with
the following properties:

o Completeness If Opt(L) > 1 — /3, then G has a (2, €)-semicoloring.
e Soundness If Opt(L) < 7/, then G is (1, Q (1°/In(1/p)))-dense.

Proof. Consider the queries of verifier described above. Each query can be thought of as a 3-uniform
edge. For the completeness part, assume we are given an labeling which satisfies 1 — ¢/3 fraction
of the constraints in £. The corresponding dictator functions will pass the Not-All-Equal test with
probability (1 —&/3)3 > 1 —¢. In other words, the long codes will form a (2, £)-semicoloring for the
resulting 3-uniform hypergraph.

For the soundness part, consider an indicator function f(v,z) : V x {0,1}# — {0,1} with
E [f] = p having density v < %£<m’1/3> (py i, ). Let e = %£<m7l/3) (p, p, ) and k,7 be the

corresponding parameters from noise stability. After arithmetization:

EUNU [Evl,vg,vgwé(u) [Eac,y,z [f(Ul, ZL‘) : f(v% y) : f(U3, Z)H] =7

As usual, let g,(z) = Eys50u) [f(v,)]. Pick label i for each vertex with probability Inf~"/k (pick
arbitrary label with remaining probability). For the same reasons with k-colorability case, this is a
valid probability distribution. Using the same arguments, we can show that the fraction of satisfied
edges for fixed u € U is (after ordering labels so that my,, (i) = 7):

1 .
Prucsu) [0(v) = £(w)] > — > InfS"(gu)".
i=1

Using the noise stability result from Theorem 3.7 and correlation constants of this test, if

Em,y,Z [gu(x)gu(y)gu(z)] gz(m71/3> (:U'ua Mo ,Uu) — &= Er Nua Mu/ V 1/Nu
<Qin/ (1 1)) — e,

then Y, Inf~(g,)? > 72. Otherwise 3, Inf~"(gy)2 > 0 (tty = Ex [gu(2)]). Therefore

Zlnffn(gu)Z >7° {Q(Hg/ In(1/p)) — € — Ezy,- [QU(x)gu(y)gu(Z)]}

. [Z Inf§*’~<gu>2] 572 (B, (0028 (/)] } — € — 7 > Q28 n(1/ ).
Taking 7' = Q(72x 21/ In(1/1)) shows that a good labeling exists. O
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Theorem 4.4. Assuming UGC, the following holds: For any constant € > 0 and integer constant
A, given a 3-uniform hypergraph G with mazimum degree A, it is NP-hard to decide whether if it
is (2, e)-semicolorable or largest independent set size is Op (nA_l/S).

Proof. As usual, given a 3-uniform hypergraph instance H from Lemma 4.3, we can construct
another hypergraph H’ using Corollary 2.6 with A = 9. In this new graph, if there is no such
independent set, this implies H is not (u, Q(1”/In(1/u)))-dense. O

Remark 2. Up to polylog A factors, this result is tight. See [1, 4, 15].

5 r-Uniform Hypergraphs with Small Vertex Covers

In the previous sections, we gave strong inapproximability results for independent sets on bounded
degree 2-colorable (or 3-colorable) hypergraphs. A natural question is how far can we push in the
other direction: What is the best inapproximability we can get when all but a small fraction of
vertices form an independent set? We know that when there is an independent set of size greater
than n(1—1/r+4¢), we can find one of size at least rdén (by finding an r-approximate vertex cover).
Although we do not obtain results for this case, we will present results for the case of hypergraphs

which have an independent set of size n(1 — O(lofr) —¢). Our formal result is the following.

Theorem 5.1. Assuming UGC, the following holds: For all large enough integer constants r, A,
given an r-uniform hypergraph G with maximum degree A, it is NP-hard to decide whether G has

1
an independent set of size n (1 -0 (%)) or no independent set of size O <n (%) T_1> .
Our proof uses the following “independent set” version of the Unique Games Conjecture, which
is shown to be equivalent to the original one by Khot and Regev [14]:

Conjecture 5.2. For any v > 0, > 0, there exists a right regular 1-to-1 Label-Cover instance L
with R = R(7, ) many labels such that it is NP-hard to decide between two cases:

1. Completeness There is a set V' CV with |V'| = (1—¢)|V| and a labeling function £ : UUV —
[R] which has £(u) = my—y(£(v)) for every edge (u,v) withu € U and v € V'.

2. Soundness Opt(L) < 7.

First, we state the properties of a certain distribution whose existence is proved by Benjamini et al.
(Theorem 27 from [3]):

Theorem 5.3. There exists a pairwise independent distribution D on {0,1}" with the following
properties:

1. Prgplz=1]=0.

2. Forallie{l,...,r}, Pryuplz;=1=1-0 (logr>_

r
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Our verifier will, given a Unique Games instance £, make queries in the usual way:

1. Choose vertex u ~ U,
2. Choose vy, ...,v, ~ I'(u),

3. Choose z1,...,x, ~ D,

W

. Reject iff f(v1, oy —u(z1)) = ... = f(vp, Ty —u(xr)) = 1.

Due to the biased nature of this test, all vertices (v,z) have associated weights wt(v,z) =
(1 — p)"4®) pr=wt(=)  Here wt(z) is the number of 1’s in string = and p = O(logr/r). Note that it
is easy to go back to the unweighted instances by simply duplicating each vertex proportional to
its weight as observed by Dinur and Safra [6].

Lemma 5.4. For anyr > C, ¢ >0 and p > 0, there exists 7' (u,e) > 0, such that for any Unique
Games instance L, it is possible to construct an r-uniform hypergraph G on vertex set V/(£) x {0, 1}
with the following properties:

e Completeness If there is a set V', |V'| > |[V|(1 — €) as described in the completeness part of
Congecture 5.2, then G has an independent set of size n (1 -0 (logr>>.

T

o Soundness If Opt(L) <+, then G is (u,u"/3)-dense.

Proof. Completeness part is easy to see. Given a good labeling function ¢ with set V', let

if %4
floa) =g e
0 else.

Assume that f~1(1) is not an independent set. Then Ju € U with v1,...,v, € V' such that
Typ,) = 1 and (u,v;) are all constraint edges. But we have my, .y (£(vi)) = mp;—u(€(v;)), which is
impossible due to the first property of distribution D.

For the soundness part, the procedure is exactly same with 3-uniform 2-semicolorability case.
We will only point out the differences. Assume we are given a set of size p with density < %MT. We
also pick € = % 1. Using the stability bounds for pairwise independent functions, at the last step,
we obtain that the value of this labeling is at least 72k 2 [Eu [h] — %u"}. For r > 2, p7, is convex,
hence E,, [p,] — % u" > p" /3. Thus we take 7/ = 72k ~2u" /3 which completes the proof. O

Theorem 5.1 now follows by combining Lemma 5.4 and Corollary 2.6.
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A Proof of Corollary 2.6

Corollary 2.6 (restated) Given an r-uniform hypergraph H = (V| E), any positive constant € > 0,
A > 1 and A some large integer, there exists a constant = pu(A, X) and an r-uniform hypergraph
H' = (V,E') with mazimum degree A such that:

o Completeness: If H is (k,e)-semicolorable, then H' is (k,¢e)-semicolorable also.

1/(A—1)
o Soundness: If H is (p, %)—dense, H' has no independent set of size O <n (LgAA) >

)1/<H>

Proof. Choose j = (ﬁ . For large enough A, (1 — pu)log(1 — p) > —p/2.

1/(A—1
1 (102 A loglog A [log AN YO
—plogp = - -

A—1 A A—1 A

h(p) = —plogp — (1 = p)log(1 — p)
1/(A—1
_1 (mgM) O oglog A (1ogA>1/<“>+1 <1ogA)1/<“>

Ta—1 A A—1 A 2 A

1 A\ V0N
g A—1 () ‘
A—1 \log* A

Applying the sparsification procedure from Lemma 2.5, we obtain another hypergraph H’' with
degree of any node, A, satisfying

Au < 20(p)p = 0 (AYI (1og™/ A=) A) AV (1gV -V A) ) = O(A).

log A
then H is not (u, u*/3)-dense. O

1/(1-X)
Consequently, using the previous lemma, if H’ has an independent set of size 2 (n ( = ) ),

B Gaussian Stability Estimates

Lemma B.1. For p >0, A > 1 fized constants, and small enough p > 0, we have

14242V
poe?

A
Ep(ﬂyﬂ)—Q \/m

Proof. Let t,t' be such that N(—t) = p and N(—t') = p’ respectively. We know that t =
Vv2In(1/p) — O(InIn(1/p)) For p < 3, A > 1,¢,¢' > 0. We have the following inequality N(=VAt) =
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O(N(-t)*VmI/N({D)" ) =0 (u (u In 1/#) Al) — O(N(—t')/In(1/N(—t))). Hence 7111((1—/;@1)) -
O(N(~t")).
Thus;
L, (1, 1) =Prxy [X < —tA—pX ++/1-p2Y < _t’}
—N(—t)Prxy {—pX +V/1-p2Y < |X < —t}
—uPrxy [V1— g2V <t + pX|X < 1]

ZuPrxy {MY <t H+pXAX 2 —t(1+¢)|X < _t]
>uPry [X > —t(1+ )| X < —]

Pryy [\/1 Y < —t + pX|X = —t(1 + 5)}
>pPry [X > —t(1 4 ¢)|X < —t] Pry [\/1 2 <t — pt(1 + a)]
> (1 — exp(—#3(= + £2/2))N (— (¢ + pt(1 + £))/v/1— 72)

(1 = exp(—(e + /)0 (s exp(- VA o1+ )20 ).

Let ¢ = 1/t2. Then:
Ly (1) Zp(1 — exp(—(1 4 1/(26%))))

1 t2
0 (G e G (VA )i - ) )

1+A+2v2p
M <\/X+P)2 ,LL 1—p2
>0 1= =Q .
In(1/p) VInl/p
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