
The Complexity of Testing Monomials in

Multivariate Polynomials

Zhixiang Chen and Bin Fu

Department of Computer Science
University of Texas-Pan American

Edinburg, TX 78539, USA
{chen,binfu}@cs.panam.edu

Abstract

The work in this paper is to initiate a theory of testing monomials
in multivariate polynomials. The central question is to ask whether a
polynomial represented by certain economically compact structure has
a multilinear monomial in its sum-product expansion. The complexity
aspects of this problem and its variants are investigated with two folds
of objectives. One is to understand how this problem relates to critical
problems in complexity, and if so to what extent. The other is to exploit
possibilities of applying algebraic properties of polynomials to the study
of those problems. A series of results about ΠΣΠ and ΠΣ polynomials
are obtained in this paper, laying a basis for further study along this line.

1 Introduction

We begin with two examples to exhibit the motivation and necessity of the
study about the monomial testing problem for multivariate polynomials. The
first is about testing a k-path in any given undirected graph G = (V,E) with
|V | = n, and the second is about the satisfiability problem. Throughout this
paper, polynomials refer to those with multiple variables.

For any fixed integer c ≥ 1, for each vertex vi ∈ V , define a polynomial pk,i

as follows:

p1,i = xc
i ,

pk+1,i = xc
i


 ∑

(vi,vj)∈E

pk,j


 , k > 1.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 114 (2010)

We define a polynomial for G as

p(G, k) =
n∑

i=1

pk,i.

Obviously, p(G, k) can be represented by an arithmetic circuit. It is easy to see
that the graph G has a k-path vi1 · · · vik

iff p(G, k) has a monomial of xc
i1
· · ·xc

ik

of degree ck in its sum-product expansion. G has a Hamiltonian path iff p(G,n)
has the monomial xc

1 · · ·xc
n of degree cn in its sum-product expansion. One can

also see that a path with some loop can be characterized by a monomial as well.
Those observations show that testing monomials in polynomials is closely related
to solving k-path, Hamiltonian path and other problems about graphs. When
c = 1, xi1 · · ·xik

is multilinear. The problem of testing multilinear monomials
has recently been exploited by Koutis [12] and Williams [17] to design innovative
randomized parameterized algorithms for the k-path problem.

Now, consider any CNF formula f = f1 ∧ · · · ∧ fm, a conjunction of m
clauses with each clause fi being a disjunction of some variables or negated
ones. We may view conjunction as multiplication and disjunction as addition,
so f looks like a ”polynomial”, denoted by p(f). p(f) has a much simpler ΠΣ
representation, as will be defined in the next section, than general arithmetic
circuits. Each ”monomial” π = π1 . . . πm in the sum-product expansion of p(f)
has a literal πi from the clause fi. Notice that a boolean variable x ∈ Z2 has
two properties of x2 = x and xx̄ = 0. If we could realize these properties
for p(f) without unfolding it into its sum-product, then p(f) would be a ”real
polynomial” with two characteristics: (1) If f is satisfiable then p(f) has a
multilinear monomial, and (2) if f is not satisfiable then p(f) is identical to
zero. These would give us two approaches towards testing the satisfiability of f .
The first is to test multilinear monomials in p(f), while the second is to test the
zero identity of p(f). However, the task of realizing these two properties with
some algebra to help transform f into a needed polynomial p(f) seems, if not
impossible, not easy. Techniques like arithmetization in Shamir [16] may not be
suitable in this situation. In many cases, we would like to move from Z2 to some
larger algebra so that we can enjoy more freedom to use techniques that may not
be available when the domain is too constrained. The algebraic approach within
Z2[Zk

2] in Koutis [12] and Williams [17] is one example along the above line. It
was proved in Bshouty et al. [5] that extensions of DNF formulas over Zn

2 to
ZN -DNF formulas over the ring Zn

N are learnable by a randomized algorithm
with equivalence queries, when N is large enough. This is possible because a
larger domain may allow more room to utilize randomization.

There has been a long history in complexity theory with heavy involvement
of studies and applications of polynomials. Most notably, low degree polynomial
testing/representing and polynomial identity testing have played invaluable roles
in many major breakthroughs in complexity theory. For example, low degree
polynomial testing is involved in the proof of the PCP Theorem, the cornerstone
of the theory of computational hardness of approximation and the culmination
of a long line of research on IP and PCP (see, Arora at el. [2] and Feige et

2

al. [7]). Polynomial identity testing has been extensively studied due to its
role in various aspects of theoretical computer science (see, for examples, Chen
and Kao [6], Kabanets and Impagliazzo [10]) and its applications in various
fundamental results such as Shamir’s IP=PSPACE [16] and the AKS Primality
Testing [1]. Low degree polynomial representing [13] has been sought for so as
to prove important results in circuit complexity, complexity class separation and
subexponential time learning of boolean functions (see, for examples, Beigel [4],
Fu[8] and Klivans and Servedio [11]). These are just a few examples. A survey
of the related literature is certainly beyond the scope of this paper.

The above two examples of the k-path testing and satisfiability problems,
the rich literature about polynomial testing and many other observations have
motivated us to develop a new theory of testing monomials in polynomials rep-
resented by economically compact structures. The monomial testing problem is
related to, and somehow complements with, the low degree testing and the iden-
tity testing of polynomials. We want to investigate various complexity aspects
of the monomial testing problem and its variants with two folds of objectives.
One is to understand how this problem relates to critical problems in complex-
ity, and if so to what extent. The other is to exploit possibilities of applying
algebraic properties of polynomials to the study of those critical problems.

The paper is organized as follows. We first define ΠΣΠ and ΠΣ polynomials.
The first is a product of clauses such that each clause is a sum of terms and
each term is a product of variables. The second is like the first except that
each term is just one variable. These polynomials have easy depth-3 or depth-
2 circuit representations that have been extensively studied for the polynomial
identity testing problem. We prove a series of results: The multilinear monomial
testing problem for ΠΣΠ polynomials is NP-hard, even when each clause has
at most three terms. The testing problem for ΠΣ polynomials is in P, and
so is the testing for two-term ΠΣΠ polynomials. However, the testing for a
product of one two-term ΠΣΠ polynomial and another ΠΣ polynomial is NP-
hard. This type of polynomial product is, more or less, related to the polynomial
factorization problem. We also prove that testing c-monomials for two-term
ΠΣΠ polynomials is NP-hard for any c > 2, but the same testing is in P for ΠΣ
polynomials. Finally, two parameterized algorithms was devised for three-term
ΠΣΠ polynomials and products of two-term ΠΣΠ and ΠΣ polynomials. These
results have laid a basis for further study about testing monomials.

2 Notations and Definitions

Let P ∈ {Z, ZN , Z2}, N > 2. For variables x1, . . . , xn, let P[x1, · · · , xn] denote
the communicative ring of all the n-variate polynomials with coefficients from
P. For 1 ≤ i1 < · · · < ik ≤ n, π = xj1

i1
· · ·xjk

ik
is called a monomial. The degree

of π, denoted by deg(π), is
∑k

s=1 js. π is multilinear, if j1 = · · · = jk = 1, i.e., π
is linear in all its variables xi1 , . . . , xik

. For any given integer c ≥ 1, π is called
a c-monomial, if 1 ≤ j1, . . . , jk < c.

An arithmetic circuit, or circuit for short, is a direct acyclic graph with +

3

gates of unbounded fan-ins, × gates of two fan-ins, and all terminals correspond-
ing to variables. The size, denoted by s(n), of a circuit with n variables is the
number of gates in it. A circuit is called a formula, if the fan-out of every gate
is at most one, i.e., the underlying direct acyclic graph is a tree.

By definition, any polynomial p(x1, . . . , xn) can be expressed as a sum of a
list of monomials, called the sum-product expansion. The degree of the poly-
nomial is the largest degree of its monomials in the expansion. With this ex-
pression, it is trivial to see whether p(x1, . . . , xn) has a multilinear monomial,
or a monomial with any given pattern. Unfortunately, this expression is es-
sentially problematic and infeasible to realize, because a polynomial may often
have exponentially many monomials in its expansion.

In general, a polynomial p(x1, . . . , xn) can be represented by a circuit or
some even simpler structure as defined in the following. This type of represen-
tation is simple and compact and may have a substantially smaller size, say,
polynomially in n, in comparison with the number of all monomials in the sum-
product expansion. The challenge is how to test whether p(x1, . . . , xn) has a
multilinear monomial or some needed monomial, efficiently without unfolding
it into its sum-product expansion?

Definition 1 Let p(x1, . . . , xn) ∈ P[x1, . . . , xn] be any given polynomial. Let
m, s, t ≥ 1 be integers.

• p(x1, . . . , xn) is said to be a ΠmΣsΠt polynomial, if p(x1, . . . , xn) =
∏t

i=1 Fi,
Fi =

∑ri

j=1 Xij and 1 ≤ ri ≤ s, and deg(Xij) ≤ t. We call each Fi a
clause. Note that Xij is not a monomial in the sum-product expansion of
p(x1, . . . , xn) unless m = 1. To differentiate this subtlety, we call Xij a
term.

• In particular, we say p(x1, . . . , xn) is a ΠmΣs polynomial, if it is a ΠmΣsΠ1

polynomial. Here, each clause is a linear addition of single variables. In
other word, each term has degree 1.

• When no confusing arises from the context, we use ΠΣΠ and ΠΣ to stand
for ΠmΣsΠt and ΠmΣs respectively.

Similarly, we use ΠΣsΠ and ΠΣs to stand for ΠmΣsΠt and ΠmΣs respec-
tively, emphasizing that every clause in a polynomial has at most s terms
or is a linear addition of at most s single variables.

• For any given integer k ≥ 1, p(x1, . . . , xn) is called a k-ΠΣΠ polynomial,
if each of its terms has k distinct variables.

• p(x1, . . . , xn) is called a ΠΣΠ × ΠΣ polynomial, if p(x1, . . . , xn) = p1p2

such that p1 is a ΠΣΠ polynomial and p2 is a ΠΣ polynomial. Similarly,
p(x1, . . . , xn) is called a k-ΠΣΠ×ΠΣ polynomial, if p(x1, . . . , xn) = p1p2

such that p1 is a k-ΠΣΠ polynomial and p2 is a ΠΣ polynomial.

It is easy to see that a ΠmΣsΠt or ΠmΣs polynomial may has as many as
sm monomials in its sum-product expansion.

4

On the surface, a ΠmΣsΠt polynomial ”resembles” a SAT formula, especially
when t = 1. Likewise, a ΠmΣ3Πt (ΠmΣ2Πt) polynomial ”resembles” a 3SAT
(2SAT) formula, especially when t = 1. However, negated variables are not
involved in a polynomials. Furthermore, as pointed out in the previous section,
it is not easy, if not impossible, to have some easy algebra to deal with the
properties of x2 = x and x · x̄ = 0 in a field, especially when the field is larger
than Z2. Also, as pointed out before, the arithmetization technique in Shamir
[16] is not applicable to this case.

3 ΠΣΠ Polynomials

Given any ΠmΣsΠt polynomial p(x1, . . . , xn) = p1 · · · pm, one can nondetermin-
istically choose a term πi from the clause pi and then check whether π1 · · ·πm

is a multilinear monomial. So the problem of testing multilinear monomials in
a ΠΣΠ polynomial is in NP. In the following we show that this problem is also
NP-hard.

Theorem 2 It is NP-hard to test whether a 2-ΠmΣ3Π2 polynomial has a mul-
tilinear monomial in its sum-product expansion.

Note that every clause in such a 2-ΠmΣ3Π2 polynomial has at most three
terms such that each term has at most two distinct variables.

Proof We reduce 3SAT to the given problem. Let f = f1 ∧ · · · ∧ fm be a
3SAT formula. Without loss of generality, we assume that every variable xi in
f appears at most three times, and if xi appears three times, then xi itself occurs
twice and x̄i once. (It is easy to see that a simple preprocessing procedure can
transform any 3SAT formula to satisfy these properties.)

Let xi be any given variable in f , we introduce new variables to replace it.
If xi appears only once then we replace the appearance of xi (or x̄i) by a new
variable yi1. When xi appears twice, then we do the following: If xi (or its
negation x̄i) occurs twice, then replace the first occurrence by a new variable
yi1 and the second by yi2. If both xi and x̄i occur, then replace both occurrences
by yi1. When xi occurs three times with xi appearing twice and x̄i once, then
replace the first xi by yi1 and the second by yi2, and replace x̄i by yi1yi2. This
procedure of replacing all variables in f , negated or not, with new variables can
be carried out easily in quadratic time.

Let p = p1 · · · pm be polynomial resulting from the above replacement pro-
cess. Here, pi corresponds to fi with boolean literals being replaced. Clearly, p
is a 2-ΠmΣ3Π2 polynomial.

We now consider the sum-product expansion of f = f1 · · · fm. It is easy to
see that f is satisfiable iff its sum-product expansion has a product

ψ = x̃i1 · · · x̃im ,

where the literal x̃ij is from the clause fj and is either xij or x̄ij , 1 ≤ j ≤ m.
Furthermore, the negation of x̃ij must not occur in π.

5

Let t(x̃ij) denote the replacement of x̃ij by new variables yij1 and/or yij2

as described above to transform f to p. Then, t(x̃ij
) is a term in the clause pj .

Hence,
t(ψ) = t(x̃ij) · · · t(x̃im)

is a monomial in the sum-product expansion of p. Moreover, t(ψ) is multilinear,
because a variable and its negation cannot appear in π at the same time.

On the other hand, assume that

π = π1 · · ·πm

is a multilinear monomial in p with the term πij
in the clause pj . Let t−1(·) de-

note the reversal replacement of t(·). Then, by the procedure of the replacement
above, t−1(πij) is a variable or the negation of a variable in fj . Thus,

t−1(π) = t−1(π1) · · · t−1(πm)

is a product in the sum-product expansion of f . Since π is multilinear, a variable
and its negation cannot appear in t−1(π) at the same time. This implies that f
is satisfiable by an assignment of setting all the literals in t−1(π) true. 2

We give an example to illustrate the variable replacement procedure given
in the above proof. Given a 3SAT formula

f = (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x̄3) ∧ (x4 ∨ x5),

the polynomial for f after variable replacements is

p(f) = (y11 + y21y22 + y31)(y11y12 + y21 + y41)(y12 + y22 + y31)(y42 + y51).

The truth assignment satisfying f as determined by the product x3 · x̄1 · x2 · x4

is one to one correspondent to the multilinear monomial y31 · y11y12 · y22 · y42 in
p(f).

Two corollaries follow immediately from this theorem.

Corollary 3 For any s ≥ 3, it is NP-hard to test whether a ΠmΣsΠt polynomial
has multilinear monomials in its sum-product expansion.

Corollary 4 It is NP-hard to test whether a polynomial has multilinear mono-
mials in its sum-product expansion, when the polynomial is represented by a
general arithmetic circuit.

The NP-hardness in the above corollary was obtained by Koutis [12].

4 ΠΣ Polynomials

Note that every clause in a ΠΣ polynomial p is a linear addition of single vari-
ables. p looks very much like a SAT formula. But this kind of structural

6

”resemblance” is very superficial, as we will show in the following that the mul-
tilinear monomial testing problem for p is in P. This shows that terms with
single variables do not have the same expression power as boolean variables and
their negations together can achieve. As exhibited in the proof of Theorem 2,
terms with two variables are equally powerful as boolean variables together with
their negations. Hence, it is interesting to see that a complexity boundary exists
between polynomials with terms of degree 1 and those with terms of degree 2.

Theorem 5 There is a O(ms
√

m + n) time algorithm to test if a ΠmΣs poly-
nomial has a multilinear monomial in its sum-product expansion.

Proof Let f(x1, . . . , xn) = f1 . . . fm be any given ΠmΣs polynomial. Without
loss of generality, we assume that each clause has exactly s many terms, i.e.,
fi =

∑s
j=1 xij , 1 ≤ i ≤ s. We shall reduce the problem of testing multilinear

monomials in f(x1, . . . , xn) to the problem of finding a maximum matching in
some bipartite graph.

We construct a bipartite graph G = (V1∪V2, E) as follows. V1 = {v1, . . . , vm}
so that each vi represents the clause fi. V2 = {x1, . . . , xn}. For each clause fi,
if it contains a variable xj then we add an edge (vi, xj) into E.

Suppose that f(x1, . . . , xn) has a multilinear monomial

π = xi1 · · ·xim

with xij in fj , 1 ≤ j ≤ m. Then, all the variables in π are distinct. Thus, we
have a maximum matching of size m

(v1, xi1), . . . , (vm, xim).

Now, assume that we have a maximum matching of size m

(v1, x
′
i1), . . . , (v1, x

′
im

).

Then, all the variables in the matching are distinct. Moreover, by the construc-
tion of the graph G, x′ij

are in the clause fj , 1 ≤ j ≤ m. Hence,

π′ = x′i1 · · ·x′im

is a multilinear monomial in f(x1, . . . , xn)
It is well-known that finding a maximum matching in a bipartite graph can

be done in O(|E|
√
|V |) time [3]. So the above reduction shows that we can test

whether f(x1, . . . , xn) has a multilinear monomial in O(ms
√

m + n), since the
graph G has m + n vertices and at most ms edges. 2

In the following, we give an extension of Theorem 5.

Theorem 6 There is a O(tckms
√

m + n) time algorithm to test whether any
given ΠkΣcΠt×ΠmΣs polynomial has a multilinear monomial in its sum-product
expansion.

7

Proof Let p = p1p2 be any given ΠkΣcΠt × ΠmΣs polynomial such that
p1 = f1 · · · fk is a ΠkΣcΠt polynomial and p2 = g1 · · · gm is a ΠmΣs polynomial.
Note that every clause fi in p1 has at most c terms with degree at most t. So, p1

has at most ck products in its sum-product expansion. Hence, in O(tck) time,
we can list all the products in that expansion, and let C denote the set of all
those products.

It is obvious that p has a multilinear monomial, iff there is one product ψ ∈ C
such that the polynomial ψp2 has a multilinear monomial.

Now, for any product ψ ∈ C, we consider how to test whether the polynomial

p(ψ) = ψ · p2 = ψ · g1 · · · gm

have a multilinear polynomial. Let

π = ψ · π1 · · ·πm

be an arbitrary product in the sum-product expand of p(ψ) with the term πi

in gi, 1 ≤ i ≤ m. Since ψ is fixed, in order to make π to be multilinear, each
πi must not have a variable in ψ. This observation helps us devise a one-pass
”purging” process to eliminate all the variables in every clause of gi that cannot
be included in a multilinear monomial in p(ψ). The purging works as follows:
For each clause gi, eliminate all its variables that also appear in ψ. Let g′i be
the resulting clause of gi, and p′2 = ·g′1 · · · g′m be the resulting polynomial of
p2. If any g′i is empty, then there is no multilinear monomials in ψ · p′2, hence
no multilinear monomials in p(ψ). Otherwise, by Theorem 5, we can decide
whether p′2 has a multilinear monomial, hence whether p(ψ) has a multilinear
monomial, in O(ms

√
m + n) time.

Putting all the steps together, we can test whether p has a multilinear mono-
mial in O(tckms

√
m + n) time. 2

5 ΠΣ2Π polynomials

In Section 3, we has proved that the multilinear monomial testing problem
for any ΠΣsΠ polynomials with at most s ≥ 3 terms in each clause is NP-
hard. In this section, we shall show that another complexity boundary exists
between ΠΣ3Π polynomials and ΠΣ2Π polynomials. As noted before, a ΠΣ2Π
polynomial may look like a 2SAT formula, but they are essentially different from
each other. For example, unlike 2SAT formulas, no implication can be derived
for two terms in a clause. Thus, the classical algorithm based on implication
graphs for 2SAT formulas by Aspvall, Plass and Tarjan [3] does not apply to
ΠΣ2Π polynomials. The implication graphs can also help prove that 2SAT is
NL-complete [14]. But we do not know whether the monomial testing problem
for ΠΣ2Π polynomials is NL-complete or not. We feel that it may be not.
There is another algorithm for solving 2SAT in quadratic time via repeatedly
”purging” contradicting literals. The algorithm devised in the following more
or less follows a similar approach of that quadratic time algorithm.

8

Theorem 7 There is a quadratic time algorithm to test whether any given
ΠmΣ2Πt polynomial has a multilinear monomial in its sum-product expansion.

Proof Let f = f1 · · · fm be any given ΠmΣ2Πt polynomial such that fi =
(Ti1 + Ti2) and each term has degree at most t. Let

π = π1 · · ·πm

be any monomial in the sum-product expansion of f . Here term π is either Ti1

or Ti2, 1 ≤ i ≤ m. Observe that π is multilinear, iff any two terms in it must
not share a common variable. We now devise a ”purging” based algorithm to
decide whether a multilinear monomial π exists in f . The purging part of this
algorithm is similar to what is used in the proof of Theorem 6.

The purging algorithm works as follows. We select any clause fi from f ,
and choose a term in fi for πi. we purge all the terms in the remaining clauses
that share a common variable with πi. Once we find one clause with one term
being purged but with the other left, we then choose this remaining term in
that clause to repeat the purging process.

The purging stops for πi when one of the three possible scenarios happens:
(1) We find one clause fj with two terms being purged. In this case, any of

the two terms in fj cannot be chosen to form a multilinear monomial along with
πi. So, we have to choose the other term in fi for π, if that term has not been
chosen. We use this πi to repeat the same purging process. If fi has not term
left, then this means that neither term in fi can be chosen to form a multilinear
monomial, so the answer is ”NO”.

(2) We find that every clause fj contributes one term πj during the purging
process. This means that π = π1 · · ·πm has no variables appearing more than
once, hence it is a multilinear monomial, so an answer ”YES” is obtained.

(3) We find that the purging process fails to purge any terms in a subset of
clauses. Let S ⊂ I denote the index of these clause, where I = {1, . . . , m}. Let
π′ be the product of πj with j ∈ I − S. According to the purging process, π′

does not share any common variables with terms in any clause fu with u ∈ S.
Hence, the input polynomial f has a multilinear monomial iff the product of
those clauses fu has a multilinear monomial. Therefore, we recursively to apply
the purging process to this product of clauses. Note that this product has at
least one fewer clause than f .

With the help of some simple data structure, the purging process can be
implemented in quadratic time. 2

6 ΠΣ2Π×ΠΣ Polynomials vs. ΠΣ2Π and ΠΣ Poly-
nomials

In structure, a ΠΣ2Π × ΠΣ polynomial is a product of one ΠΣ2Π polynomial
and another ΠΣ polynomial. This structural characteristic is somehow related

9

to polynomial factorization. It has been shown in Sections 4 and 5 that testing
multilinear monomials in ΠΣ2Π or ΠΣ polynomials can be done respectively in
polynomial time. This might encourage one to think that testing multilinear
monomials in ΠΣ2Π× ΠΣ polynomials could also be done in polynomial time.
However, a little bit surprisingly the following theorem shows that a complex-
ity boundary exists, separating ΠΣ2Π × ΠΣ polynomials from ΠΣ2Π and ΠΣ
polynomials.

Theorem 8 The problem of testing multilinear monomials in ΠΣ2Π×ΠΣ poly-
nomials is NP-complete.

Proof It is easy to see that the given problem is in NP. To show that the prob-
lem is also NP-hard, we consider any given ΠmΣ3Πt polynomial f = f1 · · · fm

with m ≥ 1 and t ≥ 2 such that each clause fi = (Ti1 + Ti2 + Ti3) and each
term Tij has degree at most t, 1 ≤ i ≤ m, 1 ≤ j ≤ 3. We shall reduce f into
a ΠΣ2Π × ΠΣ polynomial. Once this is done, the NP-hardness of the given
problem follows from Theorem 2.

We consider the clause

fi = (Ti1 + Ti2 + Ti3).

We want to represent fi by a ΠΣ2Π × ΠΣ polynomial so that selecting ex-
actly one term from fi is equivalent to selecting exactly one monomial from the
new polynomial with exactly one term Tij in fi under the constraint that the
newly introduced variables are linear in the monomial. We construct the new
polynomial, denoted by p(fi), as follows.

p(fi) = (Ti1ui + vi)(Ti2ui + wi)(Ti3ui + zi)(vi + wi + zi),

where ui, vi, wi and zi are new variables. It is easy to see that there are only
three monomials in p(fi) satisfying the constraint:

Ti1uiviwizi, Ti2uiviwizi, and Ti3uiviwizi.

Each of those three monomials corresponds to exactly one term in fi. Now, let

p(f) = p(f1) · · · p(fm)

be the new polynomial representing f and

π = π1 · · ·πm

be a monomial in f with terms πi in fi. If π is multilinear, then so is

π′ = (π1u1v1w1z1) · · · (πmumvmwmzm)

in p(f). On the other hand, if

ψ = ψ1 · · ·ψm

10

is multilinear monomial in p(f), then ψi = Tijiuiviwizi with ji ∈ {1, 2, 3}. This
implies that

ψ′ = T1j1 · · ·Tmjm

must be a multilinear monomial in f . Obviously, the reduction from f to p(f)
can be done in polynomial time. 2

7 Testing c-Monomials

By definition, a multilinear monomial is a 2-monomial. It has been shown in
Section 5 that the problem of testing multilinear monomials in a ΠΣ2Π poly-
nomial is solvable in quadratic time. We shall show that another complexity
boundary exists to separate c-monomials from 1-monomials, even when c = 3.
On the positive side, we shall show that it is efficient to testing c-monomials for
ΠΣ polynomials.

Theorem 9 The problem of testing 3-monomials in any 3-ΠmΣ2Π6 polynomial
is NP-complete.

Proof We only need to show that the problem is NP-hard, since it is trivial
to see that the problem is in NP.

Let f = f1 · · · fm be any given 2-ΠmΣ3Π2 polynomial, where each clause
fi = (Ti1 + Ti2 + Ti3) and each term Tij is multilinear with at most 2 distinct
variables, 1 ≤ i ≤ m, 1 ≤ j ≤ 3. By Theorem 2, testing whether f has a
multilinear monomial is NP-hard. We now show how to construct a 3-ΠmΣ2Π6

polynomial to represent f with the property that p has a multilinear monomial
iff the new polynomial has a 2-monomial.

We consider the clause

fi = (Ti1 + Ti2 + Ti3).

We want to represent fi by a 3-ΠΣ2Π6 polynomial so that selecting exactly
one term from fi is equivalent to selecting exactly one 2-monomial from the
new polynomial with exactly one term Tij in fi under the constraints that Tij

appears twice and the newly introduced variables are each of degree 2. The
idea for constructing the new polynomial seems like what is used in the proof
of Theorem 8, but it is different from that construction. We design the new
polynomial, denoted by p(fi), as follows.

p(fi) = (Ti1Ti1u
2
i + vi)(Ti2Ti2u

2
i + vi)(Ti3Ti3u

2
i + vi)

where ui and vi are new variables. Since each term Tij is multilinear with at
most two distinct variables, p(fi) is a 3-ΠmΣ2Π6 polynomial. It is easy to see
that there are no multilinear monomials in p(fi). But there are three monomials
in p(fi) satisfying the given constraints:

Ti1Ti1u
2
i v

2
i , Ti2Ti2u

2
i v

2
i , and Ti3Ti3u

2
i v

2
i .

11

Each of those three monomials corresponds to exactly one term in fi. Note that
only those three monomials in p(fi) can possibly be 3-monomials, depending on
whether TijTij is a 3-monomials. Now, let

p(f) = p(fi) · · · p(fm)

be the new polynomial representing f and

π = π1 · · ·πm

be a monomial in f with terms πi in fi. If π is multilinear, then

π′ = (π1π1u
2
1v

2
1) · · · (πmπmu2

mv2
m)

is a 3-monomial in p(f). On the other hand, if

ψ = ψ1 · · ·ψm

is a 3-monomial in p(f), then ψi = TijiTijiu
2
i v

2
i with ji ∈ {1, 2, 3}. This implies

that
ψ′ = T1j1T1j1 · · ·TmjmTmjm

is a 3-monomial. Therefore,

ψ′′ = T1j1 · · ·Tmjm

must be a multilinear monomial in f . Obviously, reducing f to p(f) can be
done in polynomial time. 2

The following corollaries follows immediately from Theorem 7:

Corollary 10 For any c > 2, testing c-monomials in any ΠmΣsΠt polynomial
is NP-complete.

Corollary 11 For any c > 2, testing c-monomials in any ΠmΣsΠt polynomial
represented by a formula or a general arithmetic circuit is NP-complete.

Recall that by Theorem 5 the multilinear monomial testing problem for ΠΣ
polynomials is solvable in polynomial time. The following theorem shows a com-
plementary result about c-monomial testing for the same type of polynomials.

Theorem 12 There is a O(cms
√

m + cn) time algorithm to test whether any
ΠmΣs polynomial has a c-monomial or not, where c > 2 is a fixed constant.

Proof We consider to generalize the maximum matching reduction in Theorem
5. Like before, Let f(x1, . . . , xn) = f1 . . . fm be any given ΠmΣs polynomial such
that fi =

∑s
j=1 xij , 1 ≤ i ≤ s. We construct a bipartite graph G = (V1 ∪V2, E)

as follows. V1 = {v1, . . . , vm} so that each vi represents the clause fi. V2 =
∪n

i=1{ui1, ui2, . . . , ui(c−1)}, i.e., each variable xi corresponds to c − 1 vertices

12

ui1, ui2, . . . , ui(c−1). For each clause fi, if it contains a variable xj then we add
c− 1 edges (vi, ujt) into E, 1 ≤ t ≤ c− 1.

Suppose that f(x1, . . . , xn) has a c-monomial

π = xi1 · · ·xim

with xij
in fj , 1 ≤ j ≤ m. Note that each variable xij

appears k(xij
) < c times

in π. Those appearances correspond to k(xij
) clauses ft1 , . . . , ftk(xij

) from which
xij

was respectively selected to form π. This implies that there are k(xij
) edges

matching vt1 , . . . , vtk(xij
) with k(xij

) vertices in V2 that represent xij
. Hence,

the collection of m edges for m appearances of all the variables, repeated or not,
in π forms a maximum matching of size m in the graph G.

Now, assume that we have a maximum matching of size m

(v1, ui1j1), . . . , (vm, uimjm).

Recall that uitjt
, 1 ≤ t ≤ m, is designed to represent the variable xit

. By the
construction of the graph G, xit are in the clause ft, 1 ≤ t ≤ m, and it may
appear c− 1 times. Hence,

π = xi1 · · ·xim

is a c-monomial in f(x1, . . . , xn).
With the help of the O(|E|

√
|V |) time algorithm [9] for finding a maximum

matching in a bipartite graph, testing whether f(x1, . . . , xn) has a c-monomial
can done in O(cms

√
m + cn), since the graph G has m+cn vertices and at most

cms edges. 2

8 Parameterized Algorithms

In this section, we shall devise two parameterized algorithms for testing multi-
linear monomials in ΠmΣ3Πt and ΠmΣ2Πt ×ΠkΣ3 polynomials. By Theorems
2 and 8, the multilinear monomial testing problem for each of these two types
of polynomials is NP-complete.

Theorem 13 There is a O(tm21.7751m) time algorithm to test whether any
ΠmΣ3Πt polynomial has a multilinear monomial in its sum-product expansion.

Proof Let f = f1 · · · fm be any given ΠmΣ3Πt polynomial, where each clause

fi = (Ti1 + Ti2 + Ti3)

and each term Tij has degree at most t, 1 ≤ i ≤ m, 1 ≤ j ≤ 3.
We now consider to reduce f to an undirected graph G = (V,E) such that f

has a multilinear monomial iff G has a maximum m-clique. For each clause fi,
we design three vertices vi1, vi2 and vi3, representing the three corresponding

13

terms in fi. Let V be the collection of those vertices for all the terms in f . For
any two vertices vij and vi′j′ with i 6= i′, we add an edge (vij , vi′j′) to E, if their
corresponding terms Tij and Ti′j′ do not share any common variable. Since any
two vertices designed for the terms in a clause are not connected, the maximum
cliques in G could have m vertices corresponding to m terms, each of which is
in one of those m clauses. Let

π = π1 · · ·πm

be any monomial in f with π being a term from fi. We consider two cases in
the following.

Assume that π is multilinear monomial. Let πi = Tiji
, ji ∈ {1, 2, 3}. Then,

any two terms Tiji and Ti′ji′ in π do not share any common variable. So, there is
an edge (viji

, vi′ji′) in E. Hence, the graph G has an m-clique {v1j1 , . . . , vmjm
}.

Certainly, this clique is maximum.
Now, suppose that G has a maximum clique {v1j1 , . . . , vmjm

}. Then, by the
construction of G, each vertex viji

corresponds to the term Tiji
in the clause

fi. Thus, the product of those m terms is a multilinear monomial, because any
two of those terms do not share a common variable.

Finally, we use Robson’s O(1.2108|V |) algorithm to find a maximum clique
for G. If the clique has size m, then f has a multilinear monomial. Otherwise,
it does not. Note that |V | = 3m. Combining the reduction time with the clique
finding time gives an overall O(tm21.7751m) time. 2

We now turn to ΠmΣ2Πt ×ΠkΣ3 polynomials and give the second parame-
terized algorithm for this type of polynomials.

Theorem 14 There is a O((mk)23k) time algorithm to test whether any ΠmΣ2Πt×
ΠkΣ3 polynomial has a multilinear monomial in its sum-product expansion.

Proof Let p = p1 · p2 such that p1 is a ΠmΣ2Πt polynomial and p2 is a
ΠkΣ3 polynomial. In O(3k) time, we list all the products in the sum-product
expansion of p2. Let C be the collection of those products. It is obvious that
p has a multilinear monomial iff there is a product π ∈ C such that p1 · π has
a multilinear monomial. Note that p1 · π is a Π(m + 1)Σ2Πt polynomial. By
Theorem 7, the multilinear monomial testing problem for p1 · π can be solved
by a quadratic time algorithm. Hence, the theorem follows by applying that
algorithm to p1 · π for every π ∈ C to see if one of them has a multilinear
monomial or not. 2

Acknowledgments

We thank Yang Liu and Robbie Schweller for many valuable discussions during
our weekly seminar. Conversations with them help inspire us to develop this

14

study of testing monomials. We thank Yang Liu for presenting Koutis’ paper
[12] at the seminar. The O((ms)23k) upper bound given in Theorem 14 has
been improved by Yang Liu to O((ms)22k).

Bin Fu’s research is support by an NSF CAREER Award, 2009 April 1 to
2014 March 31.

References

[1] A. Manindra, K. Neeraj, and S. Nitin, PRIMES is in P, Ann. of Math,
160(2): 781-793, 2004.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verifica-
tion and the hardness of approximation problems, Journal of the ACM 45
(3): 501555, 1998.

[3] Bengt Aspvall, Michael F. Plass and Robert E. Tarjan, A linear-time al-
gorithm for testing the truth of certain quantified boolean formulas, Infor-
mation Processing Letters 8 (3): 121-123, 1979.

[4] Richard Beigel, The polynomial method in circuit compplexity, Proceedings
of the Eighth Conference on Structure in Complexity Theory, pp. 82-95,
1993.

[5] Nader H. Bshouty, Zhixiang Chen, Scott E. Decatur, and Steve Homer, One
the learnability of ZN -DNF formulas, Proceedings of the Eighth Annual
Conference on Computational Learning Theory (COLT 1995), Santa Cruz,
California, USA. ACM, 1995, pp. 198-205.

[6] Zhi-Zhong Chen and Ming-Yang Kao, Reducing randomness via irrational
numbers, SIAM J. Comput. 29(4): 1247-1256, 2000.

[7] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy, Interactive
proofs and the hardness of approximating cliques, Journal of the ACM
(ACM) 43 (2): 268292, 1996.

[8] Bin Fu, Separating PH from PP by relativization, Acta Math. Sinica
8(3):329-336, 1992.

[9] John E. Hopcroft and Richard M. Karp, An n5/2 algorithm for maximum
matchings in bipartite graphs, SIAM Journal on Computing 2 (4): 225-231,
1973.

[10] V. Kabanets and R. Impagliazzo, Derandomizing polynomial identity tests
means proving circuit lower bounds, STOC, pp. 355-364, 2003.

[11] Adam Klivans and Rocco A. Servedio, Learning DNF in time 2Õ(n1/3),
STOC, pp. 258-265, 2001.

15

[12] Ioannis Koutis, Faster algebraic algorithms for path and packing problems,
Proceedings of the International Colloquium on Automata, Language and
Programming (ICALP), LNCS, vol. 5125, Springer, pp. 575-586, 2008.

[13] M. Minsky and S. Papert, Perceptrons (expanded edition 1988), MIT Press,
1968.

[14] Christos H. Papadimitriou, Computational Complexity, Addison-Wesley,
1994.

[15] J. M. Robson, Algorithms for maximum independent sets, Journal of Al-
gorithms 7 (3): 425-440, 1986.

[16] A. Shamir, IP = PSPACE, Journal of the ACM, 39(4): 869-877, 1992.

[17] Ryan Williams, Finding paths of length k in O∗(2k) time, Information
Processing Letters, 109, 315-318, 2009.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

