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Abstract
We study a variant of the classical circuit-lower-bound problems: proving lower

bounds for sampling distributions given random bits. We prove a lower bound of
1− 1/nΩ(1) on the statistical distance between (i) the output distribution of any small
constant-depth (a.k.a. AC0) circuit f : {0, 1}poly(n) → {0, 1}n, and (ii) the uniform
distribution over any code C ⊆ {0, 1}n that is “good”, i.e. has relative distance and
rate both Ω(1). This seems to be the first lower bound of this kind.

We give two simple applications of this result: (1) any data structure for storing
codewords of a good code C ⊆ {0, 1}n requires redundancy Ω(log n), if each bit of
the codeword can be retrieved by a small AC0 circuit; (2) for some choice of the
underlying combinatorial designs, the output distribution of Nisan’s pseudorandom
generator against AC0 circuits of depth d cannot be sampled by small AC0 circuits of
depth less than d.

1 Introduction

A classical problem in computational complexity is to prove circuit lower bounds, that is to
show that certain functions cannot be computed or approximated in various computational
models. We study in this paper a variant of this problem raised by Viola [Vio10]: proving
lower bounds for sampling distributions given random bits.

To illustrate the differences between computing a function and sampling a distribution,
consider for example the Parity function Parity(x1, . . . , xn) := x1 ⊕ . . . ⊕ xn. A classical
result of H̊astad [H̊as87] shows that Parity cannot be approximated by unbounded fan-in
constant-depth (i.e., AC0) small circuits with better than exponentially small bias. It is
possible however to sample an (input,output) pair (x1, . . . , xn,Parity(x1, . . . , xn)) in AC0:
let y1, . . . , yn+1 be uniform bits, and take xi = yi ⊕ yi+1 and Parity(x1, . . . , xn) = y1 ⊕ yn+1.

The main result we prove in this work is that small AC0 circuits cannot approximate
uniform distributions over good codes, where approximation is measured by the statistical
distance between the two corresponding distributions D′ and D′′:

sd(D′, D′′) = max
S
|Pr[D′ ∈ S]− Pr[D′′ ∈ S]|.
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A subset C ⊂ {0, 1}n is an (n, k, d) code if |C| = 2k and the hamming distance between any
two distinct codewords x, y ∈ C is at least d. A code C is good if k = Ω(n) and d = Ω(n).
As is well known, there exist explicit constructions of good codes. We denote by Um the
uniform distribution over {0, 1}m and by UC the uniform distribution over codewords of C.

Theorem 1 (Small AC0 circuits cannot sample codes). Let F : {0, 1}m → {0, 1}n be a
function computable by an AC0 circuit of depth t and size M . Let C ⊂ {0, 1}n be an
(n, k, d)-code. Then

sd(F (Um), UC) ≥ 1−O
( n
dk
· logt−1M

)1/3

.

In particular, if C is a good code, t = O(1), and M = poly(n) then sd(F (Um), UC) ≥
1− 1/nΩ(1).

It is well-known (and we review it in Subsection 1.1) that small AC0 circuits cannot
compute the encoding function of any good error-correcting code; our lower bound is stronger
in that it applies even if the circuit is given as input a number of random bits that is
longer than the message length of the code. Furthermore, we achieve statistical distance
approaching one, which is crucial for a couple of applications mentioned below. It may
even be true that the statistical distance approaches 1 exponentially fast, as opposed to
polynomially fast in our result. But our techniques seem unable to establish this, and
more generally we raise the question of proving such a statistical bound for any explicit
distribution.

We next discuss two applications of Theorem 1. From a technical point of view, the
applications are straightforward corollaries to the theorem.

Data structures. As pointed out in [Vio10], proving lower bounds approaching 1 on the
statistical distance between the output of a circuit and some flat distribution T on {0, 1}n
implies data structures lower bounds for storing elements t in the support of T succinctly
while retrieving each bit of t efficiently. In particular, one obtains the following lower bound
for storing codewords.

Corollary 2. Let C be an (n, k, d) code with kd ≥ n1+Ω(1). Suppose we can store codewords
of C using only k+ r bits so that each bit of the codeword can be computed by an AC0 circuit
of depth O(1) and size poly(n). Then r ≥ Ω(log n).

Proof. Assume for the sake of contradiction that it is possible. Consider the AC0 circuit
F : {0, 1}k+r → {0, 1}n computing the codeword bits. For a random input to F , the
output distribution of F has statistical distance ≤ 1 − 2−r from the uniform distribution
over codewords. By Theorem 1, 2−r ≤ 1/nΩ(1) hence r ≥ Ω(log n).

Note that without the restriction that the bits are retrievable by small AC0 circuits, r = 0
is possible.

The model in Corollary 2 generalizes standard models such as bit-probe and cell-probe
(for background, see [Mil99]): it is easy to see that one can simulate cell-probes by small
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AC0 circuits, while the lower bound in Corollary 2 holds even if one is allowed to look at the
entire data structure, as long as the computation is done efficiently in AC0. One can think
of this as placing a lower bound on data structures where queries are answered quickly in
parallel. This seems to be the first result of this kind.

We note that Gál and Miltersen [GM07] prove a bit-probe lower bound for the same
data structure problem as in Corollary 2. Their lower bound on the redundancy r is much
stronger than ours. It is conceivable that one can obtain their result (or even improve it) by
improving the bound in Theorem 1 to be exponentially close to one.

The complexity of Nisan’s generator against AC0. In this section we discuss the
consequences of our results for the complexity of Nisan’s generator [Nis91] against small
bounded-depth circuits (AC0 circuits). As typical of the Nisan-Wigderson style pseudoran-
dom generators, computing Nisan’s generator requires more resources than the circuits it is
supposed to fool: Nisan’s generator against circuits of depth d and size n (taking ≤ n input
bits) computes the parity function on inputs of length ` that, loosely, is ≥ logd+1 n, and thus
to be computed in size poly(n) the generator requires depth ≥ d + 1.1 However, it was not
clear if such a lower bound on the complexity of computing the generator still holds if we
only want to produce its output distribution, which is all that matters for pseudorandomness
purposes. In this section we give a first answer to this question by showing that qualitatively
the same lower bound applies for this task too, even up to a constant statistical distance,
for a particular implementation of Nisan’s generator as we explain next.

Nisan’s generator G : {0, 1}k → {0, 1}n can be written as G(x) = Mx where M is an
n× k matrix and multiplication is modulo 2. The rows of M are characteristic vectors of a
design with set-size ` and intersection size ≤ log n, which means that each row has hamming
weight exactly ` and any two rows share at most log n ones. To fool circuits of depth d, one
sets ` sufficiently larger than logd+1 n and k = poly(`). Nisan’s proof works for any choice
of M satisfying the above constraints. We now exhibit a particular matrix M satisfying the
constraints such that generating the distribution Mx requires circuits of depth ≥ d. This
is accomplished by showing a matrix satisfying the constraints that is also the generator
matrix of a good code, and then applying Theorem 1.

Theorem 3. Let ` = `(n) and k = k(n) be functions such that k ≥ 4`2, n = ω(k3), and `(n)
is odd.
For arbitrarily large n, there is an n× k matrix such that:

(1) M forms a design: each row of M has hamming weight `, and any two rows share at
most log n ones, and

(2) Any AC0 circuit of size s and depth c whose output distribution (over uniform input)
has statistical distance less than 1/2 from Mx (over uniform x ∈ {0, 1}k) satisfies
logc−1 s = Ω(`).

1The distinction between d + 1 and d is irrelevant for the main message of this section. But we mention
it arises because (1) up to lower order terms, the minimum size of depth-d circuits for parity on ` bits is
exp(`1/(d−1)) [H̊as87], and (2) the depth increases by 1 in the proof of correctness of Nisan’s generator.

3



In particular, if one wants to compute the generator for ` ≥ logd+1 n by an AC0 circuit
of size s = poly(n) then depth c ≥ d is required. Except for the arbitrariness in the
choice of the underlying designs, this theorem shows an inherent inefficiency in Nisan’s
generator. By contrast, there is an alternative generator in [Vio10] (based on the results in
[Baz07, Raz09, Bra09] and in [GUV09]) which fools circuits of depth d and can be computed
by small depth-2 circuits.

We prove Theorem 3 in Section 3.

1.1 Techniques

In this section we explain the techniques behind the proof of Theorem 1. In short, the result
is obtained by combining bounds on the noise-sensitivity (a.k.a. average-sensitivity) of small
AC0 circuits with isoperimetric inequalities for the boolean cube. The techniques apply to
any model with “low” noise-sensitivity; we focus on AC0 circuits for concreteness.

We start by recalling the low noise-sensitivity of AC0 circuits [LMN93, Bop97]. We use
the following version, given explicitly in [Vio04, Lemma 6.6]. Let f : {0, 1}m → {0, 1} be an
AC0 circuit of depth t and size M . Then

Pr
x∈Um,e∈µp

[f(x) 6= f(x+ e)] ≤ O
(
p · logt−1M

)
,

where Um is the uniform distribution over {0, 1}m, ‘+’ denotes bit-wise xor, and e ∈ µp is
obtained by setting each bit independently to 1 with probability p. We explain our ideas in
stages, thinking of M = poly(n), t = O(1), so that logt−1M = poly log n.

Why small AC0 circuits cannot compute good codes. Using the low noise-sensitivity
of AC0 it is easy to see that a small AC0 circuit f cannot compute the encoding function E :
{0, 1}k=Ω(n) → {0, 1}n of a code with minimum distance d = Ω(n): If we choose x ∈ {0, 1}k
at random and let e ∈ µ1/k then f(x) and f(x + e) have expected hamming distance only
n(1/k) poly log n = poly log n, while on the other hand (if e 6= 0) the two codewords should
have hamming distance ≥ d = Ω(n). This gives a contradiction and proves that small AC0

circuits cannot compute good codes.

Warm-up: lower bound for generating a codeword. Imagine now that the circuit
is given as input not a number of bits equal to the message length, but m � k bits, think
m = n100, and we would like to show that its output distribution cannot be uniform over
codewords (statistical distance 0). The argument from the previous paragraph does not
apply any more because it could happen that f(x) = f(x + e) with high probability. We
reason as follows. For any codeword y ∈ {0, 1}n let f−1(y) ⊆ {0, 1}m be the set of input bits
causing the circuit to output y. If we show that, not matter how the sets f−1(y) are placed,
with high probability over the choice of x and e the inputs x, x + e fall into different sets
f−1(y), then we can carry through the same argument as before.

To argue this, we use the edge-isoperimetric inequality over the hamming cube [Har64,
Har76]. This states that for any set S ⊆ {0, 1}m, the number of edges (unordered pairs of
nodes at distance 1) with one endpoint in S and the other outside of S is ≥ |S|(m− log2 |S|),
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which is tight if S is a subcube. Therefore, no matter where x lands, assuming for simplicity
that e has hamming weight 1, we have over the choice of such an e that the probability that
x+ e lands in a different set is

≥ m− log2 2m/2k

m
=

k

m
.

Hence the expected hamming distance between f(x) and f(x+e) is ≥ (k/m)d. On the other
hand, by low noise-sensitivity of AC0 (p = 1/m) it is only (n poly log n)/m, which yields a
contradiction as long as kd� n.

Obtaining statistical distance 1 − ε. To explain the techniques we use to improve the
bound in the previous paragraph to a 1 − ε statistical distance bound, consider the model
case in which the circuit f outputs a codeword with probability ε over the input, and we
have no control on its output for the other 1− ε fraction of inputs. To use noise-sensitivity,
we need to argue that both f(x) and f(x+ e) are valid codewords.

We note that using the edge-isoperimetric inequality in a straight forward manner one
cannot get error below ε < 1/2, since there are sets S ⊂ {0, 1}m of size |S| ≥ 2m−1 which
contain no edges (e.g., the set of all {0, 1}m strings with parity 0). Thus, if F maps S to
codewords and {0, 1}m \ S to non-codewords, then at least one of f(x), f(x+ e) is always a
non-codeword and we cannot argue by using the minimal distance of the code.

To improve the statistical distance bound to make it approach 1, we increase the noise
parameter p in the definition of e. Using a symmetrization argument this resolves the problem
of showing that both f(x) and f(x+e) are codewords with noticeable probability, but leaves
the problem of analyzing the boundary of sets with respect to noise. We make use of a more
sophisticated isoperimetric inequality that applies to vectors perturbed to noise. We show
that for any set A ⊂ {0, 1}m, and any 0 ≤ p ≤ 1/2(

|A|
2m

)2

≤ Pr
x∈Um,e∈µp

[x ∈ A, x+ e ∈ A] ≤
(
|A|
2m

)1/(1−p)

. (?)

These inequalities and their proofs were pointed out to us by Alex Samorodnitsky. The
first inequality is the “symmetrization argument” we alluded to before, and it is proved via
the Cauchy-Schwarz inequality. The second inequality is based on the hypercontractivity
theorem (often credited to Bonami, Beckner, and Gross). The inequalities may be folklore
but we could not find them in the literature.

The proof then proceeds as follows. For simplicity, consider again a model case in which
the input universe {0, 1}m is made of a 1 − ε fraction of inputs over which we have no
control, and the other ε2m inputs are uniformly partitioned into 2k sets A1, . . . , A2k each
corresponding to a codeword. Following the previous outline, we would like to argue that
with noticeable probability x ∈ Ai and x+ e ∈ Aj for i 6= j. We set the noise parameter to

p := log(4/ε)/k.

Now, by the left inequality in (?) we get that the probability that both x and x+ e fall into⋃
iAi is ≥ ε2. On the other hand, by the right inequality in (?) the probability of falling
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into the same set Ai is at most∑
i

(|Ai|/2m)1/(1−p) ≤
∑
i

(|Ai|/2m)1+p ≤ ε · (ε/2k)p ≤ ε · (1/2k)p ≤ ε2/2.

Thus with probability ≥ ε2/2 we have that x ∈ Ai and x + e ∈ Aj for i 6= j, in which case
the hamming distance between the output of f should be d. Thus the expected hamming
distance between f(x) and f(x+ e) is Ω(dε2).

On the other hand, the same expected hamming distance is at most n · p · poly log n =
n(poly log n)/k by the low noise-sensitivity of AC0 circuits. Combining these two bounds
gives the result:

Ω(dε2) ≤ n(poly log n)/k.

2 Lower bound for sampling good codes in AC0

We prove Theorem 1 in this section, restated next.

Theorem 1 (Small AC0 circuits cannot sample codes). (Restated.) Let F : {0, 1}m → {0, 1}n
be a function computable by an AC0 circuit of depth t and size M . Let C ⊂ {0, 1}n be an
(n, k, d)-code. Then

sd(F (Um), UC) ≥ 1−O
( n
dk
· logt−1M

)1/3

.

In particular, if C is a good code, t = O(1), and M = poly(n) then sd(F (Um), UC) ≥
1− 1/nΩ(1).

Although one could work with expected hamming distance as in the introduction, we
prove Theorem 1 using a certain extension of the notion of noise sensitivity of a function,
which we now define.

Definition 1 (Noise sensitivity). Let x ∈ Um be uniform over {0, 1}m. A sample e ∈ µp from
the p-biased distribution µp on {0, 1}m is obtained by setting each bit ei of e independently
to 1 with probability p. For any x ∈ {0, 1}m, we denote by x + e the bit-wise xor of x and
e. We define the noise sensitivity of f : {0, 1}m → {0, 1}n with regards to a set S ⊆ {0, 1}n
as the probability that f maps x, x+ e to distinct elements of S:

NSp(f ;S) := Pr
x∈Um,e∈µp

[f(x) ∈ S, f(x+ e) ∈ S, f(x) 6= f(x+ e)].

The standard noise sensitivity of a function corresponds to n = 1 and S = {0, 1}.
The proof of the theorem is deduced from the following lemmas. The first shows that if

C is large enough, then for any function F whose output distribution is not too far from UC,
we must have that NSp(F ; C) is relatively large. In fact, we prove this for any large enough
set S.

Lemma 4. Let S ⊂ {0, 1}n be a set. Let F : {0, 1}m → {0, 1}n be a function such that
sd(F (Um), US) ≤ 1− ε. Then for any 0 < p ≤ 1/2, if |S| ≥ (4/ε)1/p then

NSp(F ;S) ≥ ε2/8.
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We prove Lemma 4 in subsection 2.1. We then show that any function in AC0 must have
small noise sensitivity with regards to a code C of good distance.

Lemma 5 (AC0 circuits have low noise sensitivity w.r.t. codes). Let F : {0, 1}m → {0, 1}n
be an AC0 circuit of depth t and size M . Let C be an (n, k, d) code. Then for any 0 < p ≤ 1/2
we have

NSp(F ; C) ≤ O
(
p · n

d
logt−1M

)
.

We prove Lemma 5 in Subsection 2.2. We now deduce Theorem 1 from Lemmas 4 and 5.

Proof of Theorem 1. Let sd(F (Um), UC) := 1 − ε. First, note that we can assume k ≥
2 log(4/ε), for else the conclusion of the theorem holds (using d ≤ n,M ≥ 2 and a sufficiently
large constant in the O(·)). Let

p :=
log(4/ε)

k
,

so that |C| = 2k ≥ (4/ε)1/p. Since k ≥ 2 log(4/ε), we have p ≤ 1/2.
Applying Lemma 4 for S = C and Lemma 5 we get that

ε2/8 ≤ NSp(F ; C) ≤ O
(
p · n

d
logt−1M

)
.

Hence we deduce that

ε ≤ O
( n
dk
· logt−1M

)1/3

.

2.1 Noise sensitivity of distributions close to uniform over a large
set

We prove Lemma 4 in this subsection. We restate it below for the convenience of the reader.

Lemma 4. (Restated.) Let S ⊂ {0, 1}n be a set. Let F : {0, 1}m → {0, 1}n be a function
such that sd(F (Um), US) ≤ 1− ε. Then for any 0 < p ≤ 1/2, if |S| ≥ (4/ε)1/p then

NSp(F ;S) ≥ ε2/8.

We will need the following lemma, already stated in the introduction (?).

Lemma 6. Let A ⊆ {0, 1}m and α := |A|/2m. Then for any 0 ≤ p ≤ 1/2 we have

α2 ≤ Pr
x∈Um,e∈µp

[x ∈ A, x+ e ∈ A] ≤ α1/(1−p) ≤ α1+p.

The proof requires a detour in Fourier analysis, and is given in Section 4.
We conclude the following corollary. If A1, . . . , At ⊂ {0, 1}m are disjoint subsets, each

of which is small, but whose union ∪ti=1Ai is large, then with good probability x and x + e
belong to distinct sets.
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Corollary 7. Let A1, . . . , At ⊂ {0, 1}m be disjoint subsets, such that |A1|, . . . , |At| ≤ α · 2m
and | ∪ti=1 Ai| = ε · 2m. Then

Pr
x∈Um,e∈µp

[∃i 6= j such that x ∈ Ai, x+ e ∈ Aj] ≥ ε(ε− αp).

Proof. Let A = ∪ti=1. We have

Pr[∃i 6= j such that x ∈ Ai, x+ e ∈ Aj] = Pr[x, x+ e ∈ A]−
t∑
i=1

Pr[x, x+ e ∈ Ai].

Thus, we need to lower bound the probability that both x, x + e ∈ A and to upper bound
the probability that x, x+ e ∈ Ai for any specific set Ai. By Lemma 6 we have

Pr[x ∈ A, x+ e ∈ A] ≥ ε2

and, for any set Ai,

Pr[x ∈ Ai, x+ e ∈ Ai] ≤
(
|Ai|
2m

)1+p

≤ |Ai|
2m
· αp.

Since
∑t

i=1 |Ai| = |A| = ε · 2m we conclude that

Pr[∃i 6= j s.t. x ∈ Ai, x+ e ∈ Aj] ≥ ε(ε− αp).

We also use the following claim.

Claim 8. Let S ⊂ {0, 1}n be a set. Let D be a distribution over {0, 1}n such that sd(D,US) ≤
1− ε. Let E := {x ∈ S : D(x) ≤ 2/ε

|S| }. Then

Pr
x∈D

[x ∈ E] ≥ ε/2.

Proof. We will show that Prx∈US
[x ∈ E] ≥ 1−ε/2. Since by assumption sd(D,US) ≤ 1−ε this

will imply that Prx∈D[x ∈ E] ≥ ε/2 as claimed. Let E ′ = S\E = {x ∈ S : D(x) ≥ 2/ε
|S| }. Note

that since
∑

x∈E′ D(x) ≤ 1 we get that |E ′| ≤ (ε/2)|S|. Thus Prx∈US
[x ∈ E ′] ≤ ε/2. Since

US is supported on S we conclude since Prx∈US
[x ∈ E] = 1− Prx∈US

[x ∈ E ′] ≥ 1− ε/2.

We now have all the ingredients to prove Lemma 4.

Proof of Lemma 4. Let D = F (Um) be the output distribution of F . Let E = {x ∈ S :

D(x) ≤ 2/ε
|S| }. Since sd(D,US) ≤ 1− ε we have by Claim 8 that

Pr
x∈{0,1}m

[F (x) ∈ E] ≥ ε/2.

For any y ∈ E let Ay ⊂ {0, 1}m be the preimage of y under F ,

Ay = F−1(y) = {x ∈ {0, 1}m : F (x) = y}.
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Note that by definition we have that the sets {Ay} are disjoint, that |Ay| ≤ 2/ε
|S| · 2

m for every

y ∈ E, and that | ∪y∈E Ay| ≥ (ε/2) · 2m. Let ε′ = ε/2. Hence by Corollary 7 we have that

Pr
x∈Um,e∈µp

[F (x) ∈ S, F (x+ e) ∈ S, F (x) 6= F (x+ e)]

≥ Pr
x∈Um,e∈µp

[∃y′ 6= y′′ ∈ E such that x ∈ Ay′ , x+ e ∈ Ay′′ ]

≥ ε′(ε′ − (ε′/|S|)p).

Thus to conclude we just need to verify that the condition |S| ≥ (4/ε)1/p implies that

(ε′/|S|)p ≤ 1/|S|p ≤ ε′/2,

and we get that

NSp(F ;S) = Pr
x∈Um,e∈µp

[F (x) ∈ S, F (x+ e) ∈ S, F (x) 6= F (x+ e)] ≥ (ε′)2/2 = ε2/8

as claimed.

2.2 Noise sensitivity of AC0 functions with respect to codes

We prove Lemma 5 in this subsection. We restate it below for the convenience of the reader.

Lemma 5 (AC0 circuits have low noise sensitivity w.r.t. codes). (Restated.) Let F : {0, 1}m →
{0, 1}n be an AC0 circuit of depth t and size M . Let C be an (n, k, d) code. Then for any
0 < p ≤ 1/2 we have

NSp(F ; C) ≤ O
(
p · n

d
logt−1M

)
.

The proof of Lemma 5 uses the low noise-sensitivity of AC0 circuits [LMN93, Bop97].
We use the following version, given explicitly in [Vio04, Lemma 6.6].

Lemma 9. Let f : {0, 1}m → {0, 1} be an AC0 circuit of depth t and size M . Then

Pr
x∈Um,e∈µp

[f(x) 6= f(x+ e)] ≤ O
(
p · logt−1M

)
.

We now prove Lemma 5.

Proof of Lemma 5. The proof will follow by analysis of the average distance between F (x)
and F (x + e). Let F = (f1, . . . , fn) where each fi : {0, 1}m → {0, 1} is an AC0 function
of depth t and size at most M . By Lemma 9 we know that Prx,e[fi(x) 6= fi(x + e)] ≤
O
(
p · logt−1M

)
. Since Ex,e[dist(F (x), F (x + e)] =

∑n
i=1 Prx,e[fi(x) 6= fi(x + e)] we deduce

that
Ex,e[dist(F (x), F (x+ e))] ≤ O(n · p · logt−1M).

On the other hand, as C is a code with minimal distance d, whenever F (x), F (x + e) ∈ C
such that F (x) 6= F (x+ e) we must have dist(F (x), F (x+ e)) ≥ d. Hence we get that

Ex,e[dist(F (x), F (x+ e))] ≥ d · Pr
x,e

[F (x) ∈ C, F (x+ e) ∈ C, F (x) 6= F (x+ e)].

Thus we deduce that

Pr
x,e

[F (x) ∈ C, F (x+ e) ∈ C, F (x) 6= F (x+ e)] ≤ O
(
p · n

d
logt−1M

)
.
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3 The complexity of Nisan’s generator against AC0

We prove Theorem 3 in this section, which we restate for the convenience of the reader.

Theorem 3. (Restated.) Let ` = `(n) and k = k(n) be functions such that k ≥ 4`2, n =
ω(k3), and `(n) is odd.
For arbitrarily large n, there is an n× k matrix such that:

(1) M forms a design: each row of M has hamming weight `, and any two rows share at
most log n ones, and

(2) Any AC0 circuit of size s and depth c whose output distribution (over uniform input)
has statistical distance less than 1/2 from Mx (over uniform x ∈ {0, 1}k) satisfies
logc−1 s = Ω(`).

A natural approach is to choose each row of M to be a random string with ` ones.
However, we find it easier to analyze a different, block-wise construction.

Proof. Divide [k] into ` blocks of size k/` each. To construct a row of M , with probability
1/2 independently choose one bit from every block, and with probability 1/2 shift all the
blocks by 1 to the right rolling over (so the last bit of the last block is the first bit of the
row) and again independently choose one bit from every block. This “trick” of shifting is
useful when arguing that the matrix generates a good enough code.

Do this independently across rows. We show that each of (1) and (2) holds with proba-
bility > 1/2, hence there exists a matrix as claimed.

(1) The hamming weight of the rows is ` by construction. To analyze the intersection
size, consider any two rows r and r′. Fix arbitrarily r′, and also fix arbitrarily the choice of
whether or not to shift the blocks of r by 1. Note that each block of r intersects at most 2
blocks of r′. Hence for every block i of r, the probability that the choice of the bit in the
i-th block of r overlaps a bit of r′ is ≤ 2`/k. Consequently, the probability that r and r′

share more than log n ones is at most(
`

log n

)
(2`/k)logn ≤ (`2/k)logn ≤ 1/n2.

Hence the probability that there exist two rows sharing more than log n ones is at most(
n
2

)
1/n2 < 1/2.
(2) We show that with probability > 1/2 the matrix M is the generator matrix of a

code with “good” parameters, and then apply Theorem 1. M corresponds to a code with
block-length n and message-length k. We now analyze the distance. Since the code is linear,
it is sufficient to bound from below the hamming weight of any non-zero codeword, which
we accomplish by bounding each fixed codeword and then applying a union bound.

First we claim that for any fixed nonzero x ∈ {0, 1}k and row index, the probability (over
the bits in that row) that the inner product between x and that row is 1 is at least

p := 0.5`/k.
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If x = 1k, then Mx = 1n since ` is odd, with probability 1. Fix any x 6∈ {0k, 1k}. With
probability ≥ 1/2 over the choice of whether or not to shift the blocks of the row by 1, there
is a block of k/` bits of x with both a 0 and a 1. Consider the inner product between the
row and x. Whatever the choice for the row in the other blocks, the choice in this block
guarantees that this inner product is 1 with probability at least `/k. This establishes the
claim.

Thus, Mx has expected hamming weight pn. By a standard Chernoff bound, the proba-
bility that Mx has hamming weight less than (p/2)n is at most

e−2(p/2)2n ≤ 2−Ω(`2/k2)n < 2−Ω(n/k2) < (1/2)2k

using that n = ω(k3). By a union bound, with probability bigger than 1/2 it holds that Mx
has hamming weight at least (p/2)n for every non-zero x. This means that M generates a
code with hamming distance ≥ (p/2)n = 0.25`n/k. By Theorem 1, any circuit of depth c
and size s has an output distribution (over uniform input) whose statistical distance from
the distribution Mx (for uniform x ∈ {0, 1}k) is ≥ 1− ε for

ε = O

(
n

(0.25`n/k)k
logc−1 s

)1/3

= O

(
logc−1 s

`

)1/3

.

If one wants ε ≥ 1/2 then logc−1 s = Ω(`), concluding the proof.

Not every matrix M corresponding to a design is the generator matrix of a “good” code,
e.g. let one column of M be 0. However it may be possible that every matrix M corresponding
to a design contains as a submatrix a “good” code. This would generalize our results showing
that the lower bound applies regardless of the choice of the design.

4 Proof of noise sensitivity isoperimetric inequality

We prove in this section Lemma 6, restated next.

Lemma 6. (Restated.) Let A ⊆ {0, 1}m and α := |A|/2m. Then for any 0 ≤ p ≤ 1/2 we
have

α2 ≤ Pr
x∈Um,e∈µp

[x ∈ A, x+ e ∈ A] ≤ α1/(1−p) ≤ α1+p.

The third inequality is obvious. We now prove the first.
We can view e ∈ µp as the bit-wise xor of e′, e′′ ∈ µp′ if p = 2p′(1 − p′). Fix such

a p′. Thus, the joint distribution (x, x + e)x∈Un,e∈µp is equivalent to the joint distribution
(x + e′, x + e′′)x∈Un,e′,e′′∈µp′

. Let 1A : {0, 1}m → {0, 1} denote the indicator function for A.
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We thus have

Pr
x∈Um,e∈µp

[x ∈ A, x+ e ∈ A]

= Pr
x∈Um,e′,e′′∈µp′

[x+ e′ ∈ A, x+ e′′ ∈ A]

= Ex∈Um,e′,e′′∈µp′
1A(x+ e′)1A(x+ e′′)

= Ex∈Um

(
Ee′∈µp′

1A(x+ e′)
)2

≥
(
Ex∈Um,e′∈µp′

1A(x+ e′)
)2

= (Ex∈Um1A(x))2

=

(
|A|
2m

)2

,

where the inequality follows from the Cauchy-Schwarz inequality.
We now prove the second inequality. This requires a detour in discrete Fourier analysis,

see [O’D07] for background.
Let f : {0, 1}m → R be a function. The p-noise sensitivity of f is given by

NSp(f) := Ex∈Um,e∈µp [f(x)f(x+ e)].

We are interested in the p-noise sensitivity of the indicator function of A, 1A(x) := 1x∈A.
The noise sensitivity has a nice representation in terms of the Fourier coefficients of f , which
we now define. For S ⊆ [m] let the S-character function χS : {0, 1}m → {−1, 1} be defined
as

χS(x) = (−1)
∑

i∈S xi .

The characters are additive. That is, for any x, y ∈ {0, 1}m we have

χS(x+ y) = χS(x)χS(y)

where x + y is the bitwise-xor of x and y. The set of characters {χS}S⊆[m] forms an
orthonormal basis for the space of functions f : {0, 1}m → R under the inner product
〈f, g〉 = Ex∈Umf(x)g(x). That is, for any S, T ⊆ [m] we have

〈χS, χT 〉 = Ex∈Um [χS(x)χT (x)] = 1S=T .

Any function f : {0, 1}m → R can be represented as

f(x) =
∑
S⊆[m]

f̂(S)χS(x).

The coefficients f̂(S) are called the Fourier coefficients of f , and are given by

f̂(S) = Ex∈Um [f(x)χS(x)].

The noise sensitivity can now be easily described by the Fourier coefficients of f .
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Fact 10. Let f : {0, 1}m → R and let 0 ≤ p ≤ 1/2. Then NSp(f) =
∑

S⊆[m] f̂(S)2(1− 2p)|S|.

Proof. We have

NSp(f) = Ex∈Um,e∈µpf(x)f(x+ e)

= Ex∈Um,e∈µp

 ∑
S,T⊆[m]

f̂(S)f̂(T )χS(x)χT (x+ e)


=

∑
S,T⊆[m]

f̂(S)f̂(T )Ex∈Um,e∈µp [χS(x)χT (x)χT (e)]

=
∑

S,T⊆[m]

f̂(S)f̂(T )Ex∈Um [χS(x)χT (x)] Ee∈µp [χT (e)]

=
∑

S,T⊆[m]

f̂(S)f̂(T )1S=T (1− 2p)|T |

=
∑
S⊆[m]

f̂(S)2(1− 2p)|S|.

We now introduce the noise operator. For 0 ≤ ρ ≤ 1 the ρ-noise operator Tρ maps a
function f : {0, 1}m → R to a smoothed version of f denoted Tρf : {0, 1}m → R and defined
by

Tρf(x) :=
∑
S⊆[m]

f̂(S)ρ|S|χS(x).

The following fact is not hard to see using the fourier expansion of f(x+ e).

Fact 11. Let f : {0, 1}m → R and 0 ≤ p ≤ 1/2. Then T1−2pf(x) = Ee∈µpf(x+ e).

Noise sensitivity can also be described as the L2 norm of the noise operator. For 1 ≤ q ≤
∞, the Lq norm of f is

‖f‖q = (Ex∈Um [|f(x)|q])1/q.

Fact 12. Let f : {0, 1}m → R. Then NSp(f) = ‖T√1−2pf‖2
2.

Proof. We have:

‖T√1−2pf‖2
2 = Ex

(
T√1−2pf(x)

)2
= Ex

(
Ee∈µ 1−

√
1−2p
2

f(x+ e)

)2

= ExEe,e′∈µ 1−
√

1−2p
2

f(x+ e)f(x+ e′)

= ExEe,e′∈µ 1−
√

1−2p
2

f(x)f(x+ e+ e′)

= ExEe∈µpf(x)f(x+ e) = NSp(f).
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Thus, to study the noise sensitivity of f is equivalent to studying the L2 norm of Tρf . The
following hypercontractivity theorem relates the L2 norm of Tρf to norms of f , cf. [O’D07,
Lecture 16].

Theorem 13 (Hypercontractivity). Let f : {0, 1}m → R. Then for any 0 ≤ ρ ≤ 1 we have
‖Tρf‖2 ≤ ‖f‖1+ρ2 .

We can now prove the second inequality in Lemma 6. We have

NSp(1A) = ‖T√1−2p1A‖2
2 ≤ ‖1A‖2

2(1−p) (hypercontractivity)

=
(
Ex∈Um [|1A(x)|2(1−p)]

)1/(1−p)

= (Ex∈Um [1A(x)])1/(1−p) (1A is a {0, 1} function)

=

(
|A|
2m

)1/(1−p)

.

This concludes the proof of Lemma 6.

Acknowledgment. We thank Alex Samorodnitsky for pointing out to us the isoperimetric
inequality for noise, its proof, and for allowing us to include it in this paper.
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