
Graph Isomorphism is not AC0 reducible

to Group Isomorphism

Arkadev Chattopadhyay1 Jacobo Torán2 Fabian Wagner2

1Department of Computer Science,

University of Toronto, ON M5S 3G4 Canada,

arkadev@cs.toronto.edu,

2Institut für Theoretische Informatik,

Universität Ulm, 89069 Ulm, Germany,

{jacobo.toran, fabian.wagner}@uni-ulm.de

July 22, 2010

Topics: Complexity, Algorithms, Isomorphism Problems, Circuit Complexity.

Abstract

We give a new upper bound for the Group and Quasigroup Isomorphism problems
when the input structures are given explicitly by multiplication tables. We show
that these problems can be computed by polynomial size nondeterministic circuits of
unbounded fan-in with O(log log n) depth and O(log2 n) nondeterministic bits, where
n is the number of group elements. This improves the existing upper bound from
[Wol94] for the problems. In the previous upper bound the circuits have bounded fan-
in but depth O(log2 n) and also O(log2 n) nondeterministic bits. We then prove that
the kind of circuits from our upper bound cannot compute the Parity function. Since
Parity is AC0 reducible to Graph Isomorphism, this implies that Graph Isomorphism
is strictly harder than Group or Quasigroup Isomorphism under the ordering defined
by AC0 reductions.

1 Introduction.

The input of the Group Isomorphism problem GroupIso consists in two groups G1 and G2

of order n given by multiplication tables (n×n matrices of integers between 1 and n) and it
is asked whether the groups are isomorphic, that is, whether there is a bijection ϕ between
the elements of both groups satisfying for every pair of elements i, j, ϕ(ij) = ϕ(i)ϕ(j)1.

1For convenience we represent in both quasigroups the group operation by concatenation.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 117 (2010)

A quasigroup is an algebraic structure (Ω, ·) where the set Ω is closed under a binary
operation · that has the following property: for each pair of elements a, b, there exists
a unique element cL (and cR) such that cL · a = b (and a · cR = b). In contrast to
groups, a quasigroup is not necessarily associative and does not need to have an identity.
The Quasigroup Isomorphism problem QGroupIso is defined as GroupIso but the input
structures are multiplication tables of quasigroups, also called Latin squares. GroupIso
is trivially reducible to QGroupIso but a reduction in the other direction is not known.
The complexity of both problem has been studied for more than three decades. Groups
and quasigroups of order n have generator sets of size bounded by log n. Because of this
fact an isomorphism algorithm for GroupIso or QGroupIso running in time nlog n+O(1) can
be obtained by computing a generator set of size log n in G1, mapping this set in every
possible way to a set of elements in G2 and checking that by extending the mapping to all
the (quasi)group elements following the multiplication tables of G1 and G2, an isomorphism
is defined. This algorithm is attributed to Tarjan in [Mil78]. A stronger result showing
that GroupIso can be solved in space O(log2 n) was given in [LSZ76]. The same result for
the case of quasigroups was obtained later by Wolf in [Wol94].

In spite of these facts, no deterministic polynomial time algorithm for these problems
is known although they seem far from being NP-complete2. The status of the problems
is similar to that of the better known Graph Isomorphism problem (GI). It is known
that QGroupIso is AC0 reducible to GI [Mil78], but the second one seems to be a harder
problem. In this paper we prove this intuition by showing without assumptions that an AC0

reduction in the other direction is not possible. This is done in two steps: first we improve
the existing upper bound for QGroupIso to a class of polynomial size nondeterministic
circuits of O(log log n) depth (Section 3). Then in Section 4 we show that this circuit class
cannot compute the Parity function. It follows that GroupIso and QGroupIso cannot be
hard under AC0 reductions for any class that is powerful enough to compute Parity, like
NC1 or L. This contrasts with the hardness properties of GI [Tor04, Tor10]. It also implies
that GI cannot be AC0 reducible to GroupIso or to QGroupIso .

The upper bound is based on the bounded nondeterminism properties of the problems.
Observe that Tarjan’s algorithm can in fact be converted into a polynomial time nondeter-
ministic procedure for QGroupIso that uses only log2 n nondeterministic bits, by guessing
the mapping from the generator set in G1 to G2 instead of testing all possible 1-1 mappings,
and then extend this partial map to the whole quasigroup. This observation is mentioned
explicitly in [PY96, Wol94]. Papadimitriou and Yannakakis [PY96] show that the quasi-
group isomorphism problem is in β2P, a restricted version of NP, where on input of length n,
a polynomial time bounded Turing machine has access to O(log2 n) non-deterministic bits
(more detail is given in the preliminaries section). In [AT06] some evidence is given indi-
cating that QGroupIso is probably not complete for β2P. Wolf [Wol94] improved the non-
deterministic complexity of the problem by showing that QGroupIso ∈ β2NC2 the class of
problems computed by NC2 circuits having additionally O(log2 n) non-deterministic bits

2In fact, as we show in this paper, GroupIso and QGroupIso cannot be NP-complete under AC0 reduc-
tions.

2

on inputs of size n. As in the β2P upper bound, the circuit can guess the generators of both
quasigroups as well as a bijection between both generator sets. Wolf shows that checking
whether this partial bijection can be extended to an isomorphism, can be done by an NC2

circuit. We improve this upper bound to β2FOLL, the class of problems computable by
(uniform) families of polynomial size unbounded fan-in circuits with O(log log n) depth and
O(log2 n) nondeterministic bits, where n is the number of quasigroup elements. The proof
of this result is based on a special kind of generating sequences for the quasigroups called
cube generating sequences. The cube generating sequences provide a representation for the
structures that allow very quick isomorphism tests. Erdős and Rényi showed that groups
have many generating sequences of this kind. We extend in Section 3 their result to the
more general case of quasigroups.

The lower bound for β2FOLL circuits for the Parity function is proved, in Section 4, by
first showing that computation by a few non-deterministic bits implies the existence of a
polynomial size deterministic circuit of depth O(log log n) that approximates Parity non-
trivially. The argument is completed by a routine application of the decision-tree version
of the Switching Lemma due to Razborov [Raz93] that rules out such approximations of
Parity.

2 Preliminaries

2.1 Quasigroups

Given a set of elements from a quasigroup, a parenthesization specifies the sequence in
which to multiply the elements. A parenthesization can be represented as a binary tree
with the quasigroup elements at the leaves. The depth of a parenthesization is the depth
of the binary tree representing it. For a quasigroup G and a set of elements g1, . . . , gl ∈ Gl

and a parenthesization P we denote by P (g1, . . . , gl) the result of the multiplication of the
elements according to P . For our results we need the following elementary fact.

Fact 2.1 Let P be any correct parenthesization for the multiplication of l elements in
G. Then for every i ∈ {1, . . . , l} for every b ∈ G and every fixed choice of el-
ements g1, . . . , gi−i, gi+1, . . . , gl, b ∈ Gl there is a unique element gi ∈ G such that
P (g1, . . . , gi−i, gi, gi+1, . . . , gl) = b.

Proof: By induction on l. For the base case l = 2 the quasigroup axioms imply the result.
For l > 2 we consider the binary tree representing the parenthesization. We search for
a value of gi such that the equation P (g1, . . . , gi−i, gi, gi+1, . . . , gl) = b holds. The value
of one of the successors of the root is determined by the values of g1, . . . , gi−i, gi+1, . . . , gl.
W.l.o.g. let this be the left successor and denote its multiplication value by c. The value
of the other successor must then be equal to d, the unique element in G with c · d = b. By
induction hypothesis there is a unique value for qi such that the multiplication of the right
subtree equals d. �

3

2.2 Complexity Classes

For the standard complexity classes used in this paper, like L or the circuit classes ACi or
NCi we refer the reader to the standard books in complexity theory.

The complexity class FOLL, or FO(log log n) was introduced in [BKLM00] in order
to characterize the complexity of the group membership problem. FOLL is the class of
problems solvable by uniform polynomial size circuit families of unbounded fan-in and
depth O(log log n). Since the Parity function is not in FOLL, no problem in FOLL can be
complete under AC0-reductions for any class containing Parity, such as NC1 or L. Currently
AC1 is the best upper bound for FOLL and the class is not known to be contained even in
NL.

For a circuit class C, βkC is the class of languages recognized by a (uniform) family
of C circuits with n input bits and O(logk n) nondeterministic bits. We say that such a
nondeterministic circuit accepts an string x if for some choice of the nondeterministic bits
the circuit with input x outputs a one. Classes of bounded nondeterminism have appeared
in different forms in the literature [KF84, DT90, PY96, GLM96]. As we show in this paper,
the circuit setting is well suited to argue about these classes.

3 Nondeterministic Circuit Complexity of QGroupIso

We show in this section that GroupIso can be solved by a uniform family of nondeter-
ministic FOLL circuits with O(logn) nondeterministic bits: QGroupIso ∈ β2FOLL. This
result improves a series of upper bounds of this kind for the problem: Papadimitriou and
Yannakakis showed in [PY96] that QGroupIso ∈ β2P this was improved to β2NC2by Wolf
[Wol94] and more recently by Wagner to β2SAC1 [Wag10].

In our proof the nondeterministic bits of the circuits are used in order to guess a special
kind of generator sequence for both quasigroups. We call these generators cube generating
sequences.

Definition 3.1 A sequence of group elements g = (g0, g1, . . . , gk) together with a paren-
thesization P for k elements is a cube generating sequence for quasigroup G if

G = {P (g0, g
ǫ1
1 , . . . , gǫk

k) | ǫi ∈ {0, 1}}
The set {P (g0, g

ǫ1
1 , . . . , gǫk

k) | ǫi ∈ {0, 1}} is the cube Cube(g, P) generated by the sequence
g and the parenthesization P .

In a cube generating sequence, the generators are given in a fixed order. Erdős and
Renyi [ER65] proved that every group with n elements has cube generating sequences of
size O(log n). As a matter of fact there are many such short sequences. In the case of
groups we do not need to talk about parenthesizations since the operation is associative.

Theorem 3.2 [ER65] Let G be a finite group with n elements. For any δ > 0 the proba-
bility that a sequence of group elements of size k ≥ log n + 2 log 1

δ
+ log log n + 5 selected

uniformly at random is a cube generating sequence for G, is > 1− δ.

4

This result can be adapted to work also for quasigroups. For our purposes a simpler
existential version of the result suffices. However we need to make sure that the multipli-
cations of the generators can be be performed very fast in parallel and therefore we need
a a short cube generation sequence with shallow parentisation.

Theorem 3.3 For a finite quasigroup G with n elements, there exists a cube generating
sequence g for G, together with a parenthesization P such that g has O(log n) elements and
P has depth O(log log n).

Proof: Let G be a quasigroup with n elements and for k > 0 let P be any fixed paren-
thesization of k + 1 elements. Let g0, . . . , gk be k + 1 elements chosen in G uniformly at
random and independently of each other. For b ∈ G let Vk(b) be the number of repre-
sentations of b of the form b = P (g0, g

ǫ1
1 , . . . , gǫk

k) with ǫi ∈ {0, 1}. For succinctness for
ǫ = (ǫ1, . . . , ǫk) ∈ {0, 1}

k and g = (g0, . . . , gk) ∈ Gk+1 we represent P (g0, g
ǫ1
1 , . . . , gǫk

k) by
P (gǫ) (or even gǫ when the parenthesization is clear).

For each b ∈ G, Vk(b) is a random variable. We estimate its expectation and its variance.
For a random sequence g = (g0, . . . , gk) ∈ Gk+1 consider the indicator variable

Xǫ(b) =

{

1 if gǫ = p
0 otherwise.

For random g, Pr[Xǫ(b) = 1] = 1
n
. This is because Xǫ(b) = 1 if and only if gǫ = b and

this is true exactly when g0 is equal to the unique element x ∈ G satisfying the equation
b = P (x, gǫ1

1 , . . . , gǫk
k) (Fact 2.1). Since g0 is chosen uniformly at random this probability

is 1
n
. It follows:

E[Vk(b)] = E[
∑

ǫ∈{0,1}k

Xǫ(b)] =
∑

ǫ∈{0,1}k

E[Xǫ(b)] =
2k

n
.

For the variance we need to estimate the probability Pr[gǫ = gǫ′ = b] for a random
g ∈ Gk+1 and fixed b ∈ G and ǫ, ǫ′ ∈ {0, 1}k. In the case when ǫ = ǫ′ the probability is
equal to 1

n
as already explained. For the case ǫ 6= ǫ′ we can suppose there is a position

i with ǫi = 1 and ǫ′i = 0. gǫ′ = b if and only if g0 is equal to the unique element x ∈ G

satisfying the equation b = P (x, g
ǫ′1
1 , . . . , g

ǫ′k
k . If this holds then gǫ = b if and only if gi is

equal to the unique element y ∈ G satisfying b = P (x, gǫ1
1 , . . . , g

ǫi−1

i−1 , y, g
ǫi+1

i+1 , . . . , g
ǫ′k
k). Since

g0 and gi are chosen independently, the probability that these two facts hold is then 1
n2 .

Now we can estimate the variance of Vk(b).

5

V ar[Vk(b)] = E[V 2
k (b)]− E[Vk(b)]

2 =

= E[(
∑

ǫ∈{0,1}k

Xǫ(b))(
∑

ǫ∈{0,1}k

Xǫ(b))]−
22k

n2
=

= E[
∑

ǫ,ǫ′∈{0,1}k

Xǫ(b)X
′
ǫ(b)]−

22k

n2
=

=
∑

ǫ∈{0,1}k

E[Xǫ(b)] +
∑

ǫ 6=ǫ′∈{0,1}k

E[Xǫ(b)X
′
ǫ(b)]−

22k

n2
=

=
2k

n
+ 2k(2k − 1)Pr[gǫ = gǫ′ = b]−

22k

n2
=

=
2k

n
+

2k(2k − 1)

n2
−

22k

n2
≤

2k

n

Let Nk be the number of elements in G not having any representation in the cube
generated by a random sequence g of size k+1. We show next that E[Nk] ≤

n2

2k . For this
we need to estimate the probability that for an element b ∈ G, Vk(b) = 0.

Pr[Vk(b) = 0] ≤ Pr[|Vk(b)−
2k

n
| ≥

2k

n
]

≤
Var[Vk(b)]n

2

22k
=

n

2k

The third step follows by Chebyshev’s inequality. We can now estimate the expectation
for Nk.

E[Nk] =
∑

b∈G

Pr[Vk(b) = 0] ≤
n2

2k
.

Considering k = ⌈2 log n⌉ + 1 we have E[Nk] < 1, which means that there must be a
sequence g of size k + 1 that represents all the elements in G. Since this works for any
parenthesization we can fix P to be a balanced binary tree with k + 1 leaves and therefore
depth O(log log n).

�

Observe that for a quasigroup G, a fixed k and a fixed parenthesization P , the family
of functions obtained by choosing a sequence g of k +1 elements in G uniformly at random
and mapping ǫ ∈ {0, 1}k to gǫ ∈ G (with parenthesization P) is in fact a 2-universal family
of hash functions. As it can be seen in our previous proof, the argument does not need
fully independence while choosing the elements in G, but just pairwise independence. As
a consequence it is possible to obtain small cube generating sets for G deterministically.
However this would not bring any advantage to our nondeterministic algorithm, since
O(log2 n) nondeterministic bits are needed to guess the cube generating set of the second

6

input structure in a way that the isomorphism can be extended to all the elements in the
canonical way.

We can now prove our upper bound for QGroupIso .

Theorem 3.4 The Quasiroup Isomorphism problem is in β2FOLL.

Proof: Let G, H be two quasigroups given as multiplication tables let g = (g1, . . . , gk)
and h = (h1, . . . , hk) be generating sequences of the same length, and P be a balanced
parenthesization with G = Cube(g, P) and H = Cube(h, P).

If we can prove that the function that maps gi to hi for i ∈ {1, . . . , k} can be extended
to an isomorphism between G and G′ then clearly both quasigroups are isomorphic. This
is true if and only if for every ǫ, ǫ′, ǫ′′{0, 1}k gǫ = gǫ′gǫ′′ if and only if hǫ = hǫ′hǫ′′. On the
other hand if the quasigroups are not isomorphic, the function mapping gi to hi would not
pass the mentioned isomorphism test.

This is the basis for the upper bound. O(log2 n) nondeterministic bits in the circuit
circuit are used for guessing the cube generating sequences for G and H in the right order.
The isomorphism tests can be done then in the depth of the multiplications which is the
depth of the parenthesization P , O(log log n).

input: Quasigroups G, H on elements in {1, . . . , n} given as multiplication tables,
cube generating sequences g = (g0, g1, . . . , gk) for G and h = (h0, h1, . . . , hk) for H with
balanced parenthesization P .

1: { test G = Cube(g, P) and H = Cube(h, P)}

2: for all a, b ∈ {1, . . . , n}
3: for all (ǫ1, . . . , ǫk) ∈ {0, 1}

k

4: check whether a = g0g
ǫ1
1 . . . gǫk

k and b = h0h
ǫ1
1 . . . hǫk

k

5: if a or b was not generated any ǫ then reject and halt.
6: { isomorphism test }

7: for all (ǫ1, . . . , ǫk) ∈ {0, 1}
k

8: for all (η1, . . . , ηk) ∈ {0, 1}
k

9: c← g0g
ǫ1
1 . . . gǫk

k , d← g0g
η1

1 . . . gηk

k

10: c′ ← h0h
ǫ1
1 . . . hǫk

k , d′ ← h0h
η1
1 . . . hηk

k

11: for all (ν1, . . . , νk) ∈ {0, 1}
k

12: if cd = g0g
ν1
1 . . . gνk

k ↔ c′ · d′ 6= h0h
ν1
1 · · · · · h

νk
k then halt and reject.

13: halt and accept.

Since k ∈ O(logn), the number of performed ǫ-tests is bounded by a polynomial.
Because of the parenthesization P , every multiplication g = gǫ1

1 . . . gǫk
k can be computed by

a sub-circuit of depth O(log log n) with unbounded fan-in. Each sub-circuit is organized
as a pyramid. At the bottom level it uses the multiplication tables to multiply pairs of
elements gǫi

i g
ǫi+1

i+1 . At the next level it multiplies pairs of results of the previous level, and
so on. The depth of the sub-circuits is bounded by O(log log n) since k ∈ O(log n). �

7

The upper bound that we get for groups is the same one. For concrete group families
it is possible to get better bounds. We include as example the case of Abelian groups.

3.1 On the Complexity of Abelian Group Isomorphism

We consider here the easier case when the input structures are Abelian groups.
Clearly, testing the property whether G is Abelian can be done in AC0 by simply testing

whether a · b = b · a holds for all elements a, b in parallel. The isomorphism test is based
on the following well known fact.

Fact 3.5 Two finite Abelian groups G and H with |G| = |H| = n are isomorphic iff the
number of elements of order m in G and H is the same, for all 1 ≤ m ≤ n.

A proof of this fact can be found for example in [Hal59]. The order of an element a is the
smallest integer i ≥ 0 such that ai = e. Hence, an isomorphism test simply computes the
orders for all elements using the power predicate. Barrington et.al. [BKLM00] considered
the complexity of the power predicate on Abelian groups.

Lemma 3.6 ([BKLM00]) Let G be a finite group given by its multiplication table. For all
elements a and b in G and all i ≤ n, the predicate b = ai can be computed in FOLL ∩ L.

In the isomorphism test, an FOLL computes outputs the order of all group elements.
This is a set of numbers in arbitrary order.

Given two multisets of numbers, the problem of pairwise comparing them is not in AC0,
since the Majority function reduces to this problem. It is known that the Sorting, i.e.
arranging n n-bit numbers in ascending order, is in TC0. This suffices for an isomorphism
test. When given two sorted multisets of numbers, say e1 ≤ · · · ≤ en and e′1 ≤ · · · ≤ e′n, it
can be tested in AC0 whether they coincide. We conclude:

Theorem 3.7 The Abelian Cayley-group isomorphism problem is in TC0(FOLL), and in
L.

4 Computing parity by shallow circuits with limited

non-determinism

We prove in this section that FOLL circuits (in fact polynomial size circuits of depth
O

(

(log log n)k
)

) cannot compute the Parity function even with the help of polylogarithmic
many nondeterministic bits.

Theorem 4.1 Let C be a circuit of polynomial size and depth O
(

(log log n)k
)

, with ac-
cess to O

(

(log n)ℓ
)

-many non-deterministic bits, where k, ℓ are arbitrary constant numbers.
Then C cannot be computing the parity function.

8

Proof:
Let C be computing parity and have depth d. Then for every possible setting of the

non deterministic bits C outputs zero for inputs of even parity. On the other hand, by
averaging, there exists at least one setting θ of the non-deterministic bits for which C
outputs 1 on at least 2n−1

2(log n)ℓ
many inputs of odd parity. Thus, the deterministic circuit Cθ

obtained from C by fixing its non-deterministic bits to θ approximates parity well, i.e.

Pr
x

[

Cθ

(

x
)

= Parity(x)
]

≥
1

2
+

1

2 · 2O((log n)ℓ)
.

However, Cθ has the same size and depth as C. The proof gets completed by showing
below, via Theorem 4.4, that such approximations to parity is impossible.

�

In order to prove the desired inapproximability results, we use a version of the Switching
Lemma. Switching Lemmas were developed in a series of works by [FSS81, Ajt83, Yao85,
Cai86, Has87] for proving lower bounds on the size of constant-depth circuits computing
parity. We recall the following decision-tree version, due to Razborov[Raz93]. Let Rm

n be
the space of all restrictions on n variables that leaves precisely m of them free. For any
restriction ρ, we denote by fρ the boolean function induced from f on variables left free
by ρ.

Lemma 4.2 (Switching Lemma, Razborov) Let f be a CNF (or DNF) formula with
clause width t on n variables. Let ρ be a random restriction in Rm

n . Then, there exists a
constant γ > 0 such that the probability of fρ not having a decision tree of height at most
s is less than

(

γmt
n

)s
.

An immediate consequence of this lemma is the following corollary:

Corollary 4.3 Let f be a function computed by a circuit of size S and depth d. Let
m = n/

(

(2γ)d(n1/(2d))d−1
)

. Then,

Pr
ρ∈Rm

n

[

h
(

fρ

)

> n1/2d

]

≤ S ·
1

2Ω
(

n1/2d
) ,

where, h
(

fρ

)

denotes the height of the best decision tree for fρ.

Proof:
This can be shown by a simple inductive argument using the Switching Lemma. As-

sume, as our inductive hypothesis, the following: let i ≥ 2 and ni = n/
(

(2γ)i(n1/(2d))i−1
)

.
Let Gi be the set of gates in the ith layer of C and let Si be the number. Further, let
S≤i =

∑i
j=1 Sj. Our inductive hypothesis is the following:

Pr
ρ∈R

ni
n

[

∃g ∈ Gi : h
(

f g
ρ

)

> n1/2d

]

≤ S≤i ·
1

2n1/2d
,

9

where f g is the function computed at gate g. Now, if the ith layer of the circuit has
AND (OR) gates then one can assume w.l.o.g that i + 1th layer has OR (AND) gates. In
this case, assuming that each f g

ρ has a decision tree of height at most n1/2d, we represent

f g
ρ as a DNF of width at most n1/2d by using the small height decision tree. This collapses

layers i and i + 1 and hence the output of every gate at layer i + 1 is a DNF of width
n1/2d under the restriction ρ. We apply the Switching Lemma to each such DNF where
n = ni, m = ni+1 and t = n1/2d. Clearly, the probability that any fixed such DNF under
the next round of restriction fails to have a decision tree of height at most n1/2d is at most
2−n1/2d

. Applying the union bound to Si+1 such DNF’s (one for each gate at layer i + 1)
immediately completes the induction.

�

Applying the above, we get the following inapproximability result (which is possibly
implicit in work of Cai[Cai86]):

Theorem 4.4 Let C be any polynomial size circuit of depth d. Then,

Pr
x

[

C(x) = Parity(x)
]

≤
1

2
+

1

2Ω
(

n1/2d
) .

Proof:
Applying Corollary 4.3, we see that if we pick a random restriction that leaves m

variables free, where m = n/
(

(2γ)d(n1/(2d))d−1
)

with probability at least 1 − Size(C) ·

2−n1/2d
, the circuit will have a decision tree of height at most n1/2d. Hence, with that much

probability the number of free variables m is more than the height of the decision tree.
For each such restriction, the restricted circuit computes the right answer (which is either
Parity or its complement, on the m free variables) with probability exactly a half. Hence,
even assuming that for all other restrictions we get perfect correlation,

Pr
x

[

C
(

x
)

= Parity(x)
]

≤
1

2
+ Pr

ρ∈Rm
n

[

h
(

Cρ

)

> n1/2d

]

≤
1

2
+ Size

(

C
)

·
1

2n1/2d
.

The proof is completed by observing that the size of the circuit, denoted by Size
(

C
)

,
by assumption is polynomial.

�

5 Discussion

Although no polynomial time algorithms for GroupIso or QGroupIso are known, we have
shown in this paper that the problems are not hard enough to encode the Parity function.
Therefore these problems cannot be hard under AC0 reductions for any complexity class
containig Parity, like L or NC1. This contrasts sharply with the hardness properties of other

10

isomorphism problems like Graph Isomorphism. In fact, our research started originally
trying to prove that QGroupIso is hard for NC1. At first sight it looks as if the difficulty
in encoding the Parity function comes from the very structured way in which the input
information is presented in the the multiplication tables. The way of proving the result,
however was to show that the computation of QGroupIso can be divided in two faces,
a first bounded nondeterministic part and a very efficient checking part. We then gave
an upper bound for the checking part in terms of circuits with very restricted depth and
showed that these circuits cannot compute Parity even with the help of poly-log many
nondeterministic bits. We observe that this proof technique does not have anything to
do with isomorphism problems and can be applied to other problems whose computation
have similar bounded guessing and checking parts. For example the classes LOGNP0 and
LOGSNP0 from [PY96] would fall in β2AC0 in our setting. The results in this paper imply
that the problems in these classes cannot be AC0 hard for Parity. Observe that for example
the problem LOGCLIQUE, deciding if a given graph with n vertices has a clique of size
at least log n falls into this category. We find this surprising. It would be interesting to
study, maybe with other techniques, the existence of longer hierarchies of natural problems
defining different AC0 degrees.

So far all the upper bounds known for GroupIso hold also for QGroupIso . The question
of whether the problems are equivalent under some reduction remains open.

References

[Ajt83] Miklós Ajtai. Σ1
1-formulae on finite structures. In Annals of Pure and Applied Logic,

24:1–48, 1983.

[AT06] V. Arvind and Jacobo Torán. The complexity of quasigroup isomorphism and the min-
imum generating set problem. In Tetsuo Asano, editor, International Symposium on Al-
gorithms and Computation (ISAAC), volume 4288 of Lecture Notes in Computer Science,
pages 233–242. Springer, 2006.

[BKLM00] David Mix Barrington, Peter Kadau, Klaus-Jörn Lange, and Pierre McKenzie. On the
complexity of some problems on groups input as multiplication tables. In Proceedings of the
15th Annual IEEE Conference on Computational Complexity (COCO), page 62, Washington,
DC, USA, 2000. IEEE Computer Society.

[Cai86] Jin-yi Cai. With probability one, a random oracle separates PSPACE from the
polynomial-time hierarchy. In Proceedings of the Eighteenth Annual ACM Symposium on
Theory of Computing (STOC) 38(1), 21–29, 1986.

[DT90] Josep D́ıaz and Jacobo Torán. Classes of Bounded Nondeterminism. Mathematical Sys-
tems Theory 23(1): 21–32, 1990.

[FSS81] Merrick L. Furst, James B. Saxe and Michael Sipser. Parity, circuits and the polynomial-
time hierarchy. In 22nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 260–270, 1981.

11

[ER65] Paul Erdős and Alfred Rényi. Probabilistic methods in group theory. Journal d’Analyse
Mathématique, 14:127–138, 1965.

[GLM96] Judy Goldsmith, Matthew A. Levy and Martin Mundhenk. Limited nondeterminism.
SIGACT News 27(2): 20–29, 1996.

[Hal59] Marshall Hall. The theory of groups. Macmillan, New York, 1959.

[Has87] John H̊astad Computational limitations of small-depth circuits. MIT Press, 1987.

[KF84] Chandra Kintala and Patrick Fisher. Refining nondeterminism in relativized complexity
classes. SIAM Journal on Computing 13:329–337, 1984.

[LSZ76] Richard J. Lipton, Lawrence Snyder, and Yechezkel Zalcstein. The complexity of word
and isomorphism problems for finite groups. Technical report, John Hopkins, 1976.

[Mil78] Gary L. Miller. On the nlogn isomorphism technique. In ACM Symposium on Theory of
Computing (STOC), 1978.

[PY96] Christos H. Papadimitriou and Mihalis Yannakakis. On limited nondeterminism and the
complexity of the VC dimension. Journal of Computer and System Sciences, 53:161–170,
1996.

[Raz93] Alexander A. Razborov. An equivalence between second order bounded domain bounded
arithmetic and first order bounded arithmetic. In P. Clote and J. Kraj́ıček, editors, Arith-
metic, Proof Theory and Computational Complexity, Oxford University Press (1993), 247–
277.

[Tor04] Jacobo Torán. On the hardness of Graph Isomorphism. SIAM Journal on Computing
33(5): 1093–1108, 2004.

[Tor10] Jacobo Torán. Reductions to Graph Isomorphism. Theory of Computing Systems 47(1):
288–299, 2010.

[Wag10] Fabian Wagner. On the complexity of isomorphism testing for restricted classes of
graphs. Ph.D. Thesis. Technical Report VTS-ID/7264, Institutional Repository of University
of Ulm, 2010.

[Wol94] Marty J. Wolf. Nondeterministic circuits, space complexity and quasigroups. Theoretical
Computer Science (TCS), 125:295–313, 1994.

[Yao85] Andrew C.C. Yao. Separating the polynomial hierarchy by oracles: Part I. In 26th
Annual Symposium on Foundations of Computer Science (FOCS), pages 1–10, 1985.

12

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

