
Extracting Roots of Arithmetic Circuits by Adapting Numerical

Methods

Maurice Jansen ∗

July 27, 2010

Abstract

For two polynomials f ∈ F[x1, x2, . . . , xn, y] and p ∈ F[x1, x2, . . . , xn], we say that p is a root of f , if
f(x1, x2, . . . , xn, p) ≡ 0. We study the relation between the arithmetic circuit sizes of f and p for general
circuits and skew circuits. Arithmetic skew circuits are defined by restricting every multiplication gate
to have at least one of its inputs equal to a variable or a field constant. They were introduced by Toda
[1], who showed they capture the complexity of the determinant polynomial.

We address the following fundamental question: suppose the polynomial f can be computed by a
skew circuits of size s. Is the skew circuit size of every root p of f guaranteed to be bounded by a
polynomial in s ? For general circuits it is known that the circuit size of any root p of a polynomial
f with circuit size s is at most poly(s, deg(p), m), where m is the multiplicity of p in f , i.e. m is the
largest number such that (p−y)m divides f . This bound follows from a result about factors of arithmetic
circuits independently obtained by Kaltofen [2] and Bürgisser [3].

In this paper, we study the above question for skew circuits for the canonical case where f is assumed
to factor as

f = p0 · (p1 − y)(p2 − y) . . . (pr − y),

for p0, p1, . . . , pr ∈ F[x1, x2, . . . , xn] with p0 6≡ 0, and where p1, p2, . . . , pr are pairwise distinct, i.e. all
multiplicities are one. Our main result is that for this situation, provided F has characteristic zero, any
root pi can be computed by a skew circuit of size polynomial in s. This demonstrates an important
special case where the answer to the above mentioned question is affirmative. Prior to this paper, no
method was known to provide a poly(s) bound for this main scenario.

To prove the above result, we view the question as a problem of computing eigenvalues. Roughly,
the pis are made to appear as the eigenvalues of some matrix over the field F(x1, x2, . . . , xn) of rational
functions. This problem is then solved by adapting the numerical method of power iteration to our
situation. Using power iteration makes the computation amenable to be coded out as a skew circuit,
since skew circuits can efficiently compute iterated matrix multiplication.

A novel aspect of this work is that we adapt techniques which are well-known from numerical analysis,
for use in the area of arithmetic circuit complexity. Staying with this theme, we also improve the above
mentioned poly(s, deg(p), m) bound for the circuit size of a root p of a polynomial f computed by an
(unrestricted) arithmetic circuit of size s. Rather than applying Ref. [2, 3], we develop a discrete analogue
of Newton’s Method.

1 Introduction

For an arithmetic circuit class C, whether C is closed under taking roots is a fundamental question, and
important consequences follow for classes that enjoy this property either completely, or for which a ‘fairly
decent’ root extraction lemma can be proved. Most notably, such a lemma is a crucial tool for the conditional

∗Institute for Theoretical Computer Science, Tsinghua University. Email: maurice.julien.jansen@gmail.com. This work
was supported in part by the National Natural Science Foundation of China Grant 60553001, and the National Basic Research
Program of China Grant 2007CB807900,2007CB807901.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 118 (2010)

derandomization of polynomial identity testing (PIT) for the class C. For the latter well-known problem one
is given an arithmetic circuit Φ, and the problem is to decide whether the polynomial computed by Φ is
identical to the zero polynomial or not. Due to a result independently obtained by Kaltofen [2] and Bürgisser
[3], we know that the class VP of poly degree polynomial families computable by poly size arithmetic circuits
is even closed under taking factors, which implies the closure under taking roots. In their seminal paper
on PIT, Kabanets and Impagliazzo [4] use this to give a deterministic subexponential time algorithm for
identity testing ‘VP-circuits’, under the assumption that there exist some explicit polynomial fn that requires
super-polynomial arithmetic circuit size.

For more restricted classes C, it is interesting to considering the question whether PIT for C can be
achieved deterministically under any weaker assumptions. When using the framework of Ref. [4], the
situation where C is closed under taking roots is ideal, since any loss incurred at the root extraction stage
is directly reflected in the quality of the resulting hardness to randomness conversion. Examples of research
efforts that follow this approach are the works by Dvir, Shpilka and Yehudayoff [5] and Jansen [6].

In Ref. [5] a root extraction lemma is proved for constant depth arithmetic circuits with O(1) loss in the
depth, that works well under the promise that the computed polynomials are of low degree. Consequently, a
corresponding hardness to randomness conversion is obtained that applies to a low degree promise version of
PIT for depth d−O(1) circuits, assuming the existence of an explicit polynomial that is hard for arithmetic
circuits of constant depth d. For skew circuits a root extraction lemma is proved in Ref. [6], again with
parameters working well only for low degree polynomials. Using this, it is proved that a certain low degree
promise version of PIT for skew circuits can be solved deterministically in subexponential time, assuming
some explicit polynomial is hard for skew circuits. In this paper we make progress towards showing that the
arithmetic circuit class VPskew of polynomial families computable by poly size skew circuits is closed under
taking roots. The latter statement, if true, would yield1 a deterministic subexponential time PIT algorithm
for VPskew, under the assumption that there exists some explicit family of polynomials that requires skew
circuits of super-polynomial size.

Already implicit in Ref. [5, 6] was the use of a discrete analogue of Newton’s Method. We will revisit
this, to give a self-contained proof of the fact that VP is closed under taking roots. The resulting argument
may serve as a conceptual simplification in Ref. [4], in the sense that calling upon the more involved works
Ref. [2, 3] is avoided. For skew circuits however, it is hard to imagine that this technique will ultimately lead
to an optimal root extraction lemma. Therefore, in this paper we take an entirely new approach. We cast
the problem as a task of computing eigenvalues, and adapt the method of power iteration to our domain.
This way, since skew circuits can efficiently compute matrix multiplication, we avoid the explosion in skew
circuit size seemingly inherent to adaptations of Newton’s Method.

In the continuous domain, given a real s× s matrix M , say with real eigenvalues λ1 > λ2 > . . . > λs > 0
and a corresponding independent set of unit eigenvectors v1, v2, . . . , vs, a well-known heuristic for finding an
approximation to the largest eigenvalue λ1 is to apply power iteration. Here, starting with some vector u
that is typically selected at random, writing u in the eigenbasis as u = a1v1 + a2v2 + . . . + asvs, for certain
scalars ai, one applies a large power of M to u to obtain Meu = a1λ

e
1v1 + a2λ

ev2 + . . . + asλ
evs. After

normalization, the term a1λ
e
1v1 will be the dominant one, and thus the normalized sum will converge to v1

as e → ∞. Once an approximation ṽ1 to v1 is obtained, one may approximate λ1 by computing, for some
nonzero component (ṽ1)ℓ, the ratio (Mṽ1)ℓ/(ṽ1)ℓ.

For the main development of this paper we will adapt the method of power iteration to construct small
skew circuits for roots of skew circuits. Typically, in practice no good bounds are available for the rate of
convergence of power iteration. It is worth mentioning that in our adaption we manage to avoid this, as
well as several other crucial issues that arise along the way. We postpone a discussion of our techniques to
Section 1.2. This work provides a case study of how standard tools from numerical analysis can be made
available in the area of arithmetic circuit complexity, and hopefully stimulates further research into this
relatively unexplored direction.

1Already if the main result of this paper (Theorem 1) can be generalized to deal with arbitrary multiplicities, one would
obtain this, based on the assumption that there exists an explicit family of polynomials that requires super-polynomial skew
circuit size over all fields.

2

1.1 Results

For the rest of the paper, we prefer to work with the technically more convenient algebraic branching program2

model. An algebraic branching program (ABP) is given by a layered directed acyclic graph with source σ
and sink τ , whose edges are labeled by variables or field constants. It computes the sum of weights of all
paths from σ to τ , where the weight of a path is defined as the product of edge-labels on the path. For
the size of an ABP we count the number of nodes in the underlying graph. As an easy exercise, given a
polynomial f , one can switch between skew circuits and ABPs for f with at most a quadratic blow-up in
the size. Our main result is the following theorem:

Theorem 1. Let F be a field of characteristic zero. Let f ∈ F[x1, x2, . . . , xn, y] be a nonzero polynomial that
can be computed by an ABP of size s. Suppose f factors as

f = p0(p1 − y)(p2 − y) . . . (pr − y),

where {p0, p1, p2, . . . , pr} ⊂ F[x1, x2, . . . , xn] and p1, p2, . . . , pr are pairwise distinct. Then every pi has an
ABP of size at most polynomial 3 in d, r and s, where d = maxi∈[r],pi 6≡0 deg(pi).

An ABP of size s computes a polynomial for which both its total degree and the individual degree of any
variable is bounded by s. This implies that in the above theorem both r and d are at most s. For example,
if p1, p2, . . . , pr are all nonzero, then f contains a term of degree at least deg(p1p2 . . . pr) ≥ d. Hence the
theorem implies that for every root we have an ABP of size poly(s). For comparison, Lemma 2.10 of Ref.

[6] yields4 an upper bound of s · 2O(log2 deg(pi))r4+log deg(pi) for the size of an ABP for pi.
For our second result, define the function M(d) to be an upper bound on the size of an arithmetic circuit

for computing the multiplication of two univariate polynomial g and h in F[z], given the coefficients of g and
h as input variables. By a result of Cantor and Kaltofen [7], one can take M(d) = O(d log d log log d), over
any field F. For (unrestricted) arithmetic circuits we have the following theorem:

Theorem 2. Let F be a field of characteristic zero. Let f ∈ F[x1, x2, . . . , xn, y] be a polynomial of degree
r > 0 that is computable by an arithmetic circuit of size s and let p ∈ F[X] be a nonconstant root of f
for y, i.e. f(x1, x2, . . . , xn, p) ≡ 0 and p 6∈ F. Then p can be computed by an arithmetic circuit of size
O(M(m)M(deg(p)) · deg(p) · s), where m is the multiplicity of the root p in f .

Due to a Lemma by Gauss (Lemma 1), in the above situation p is a root of f if and only p − y is an
irreducible factor of f in F[x1, x2, . . . , xn, y]. Using Ref. [2, 3] to obtain arithmetic circuits for the factor
p− y, as done in Ref. [4], yields a circuit for the root p of size O(M(deg(p)3m)(s + deg(p) log m)). It can be
verified that our result is an improvement over the bound obtained this way.

1.2 Outline of the Proof of Theorem 1 and Techniques

To establish Theorem 1 we more or less will follow the following program:

1. Reduction to ‘nice’ polynomials.

The first step in the proof is to show that the general case of Theorem 1 reduces to the case where
p0 = 1 and the other pis are nonconstant polynomials, with the constant terms p1(0), p2(0), . . . , pr(0)
being distinct nonzero constants. Say αi = pi(0). Wlog. let us assume that we want to construct an
ABP for p1.

2See Section 2 for a formal definition.
3In this paper our aims are purely theoretical. The exponents of this polynomial are large, i.e. without making efforts to

optimize a bound of O(r2556d84s2160) can be given. To some extent it is remarkable that a polynomial bound can be given at
all. If f satisfies a certain ‘niceness’ condition the bound improves somewhat down to O(r396d84s180).

4Note that this lemma is stated for skew circuits, but inspection of the proof shows that that the quadratic blow-up of s can
be avoided.

3

2. Applying homogenization.

We apply a particular kind of homogenization on the xi variables, using a new variable z. This will give
us an ABP computing f ′ = zc

∏

i∈[r](qi − y), for some integer c > 0, where qi = zdpi(
x1

z
, x2

z
, . . . , xn

z
)

and d = maxideg(pi). For α ∈ F, we consider shifting by αzd, by defining f ′
α = f ′

|y:=y+αzd =
∏

i∈[r](qi − αzd − y). We want to exploit the fact that for the shifted polynomials fα2
, fα3

, . . . , fαr
,

since all αis are distinct, the factor (q1 − αiz
d − y) still contains the monomial zd of highest z-degree,

for every 2 ≤ i ≤ r, whereas for every other factor this term is dropped in one of fα2
, fα3

, . . . , fαr
.

3. Use the completeness of the determinant to obtain an eigenvalue problem.

For any α ∈ F, using the completeness of the determinant, we will obtain that f ′
α = det(Pα − yQ),

for some {0,−1}-valued matrix Q and a nonsingular matrix Pα, whose entries are products of xi

variables and powers of z. Let Mα = Adj(Pα)Q, where Adj(Pα) denotes the adjugate of Pα, i.e.

P−1
α = Adj(Pα)/det(Pα). It is not too difficult to see that for each i, λi := det(Pα)

qi−αzd is an eigenvalue of

Mα, over the field of rational function F(X, z).

4. Selecting a starting point u, and applying power iteration.

Say for i ∈ [r], vi is an eigenvectors corresponding to λi, whose entries are polynomials. We take
the matrix V = [v1, v2, . . . , vr, ei1 , . . . , eis−r

], where we extend with some standard basis vectors eij
to

make V nonsingular. For an arbitrary point u ∈ Range(M0), writing u = a1v1 + . . . + arvr, means
we have to apply V −1 = Adj(V)/det(V) to u in order to express u in the different basis. Generally
this is problematic, since then we obtain ais that are rational functions, rather than polynomials. To
stress, at any point of our computation, we want to make sure that we are computing with polynomials,
so that at the end we can obtain (a multiple of) v1 based on considering z-degrees of terms. We will
spend an important part of the proof showing that det(V)2 can actually be computed without direct
knowledge of the vis. Hence we can scale up the above ais by a factor of det(V)2, to ensure they
are elements of F[X, z], and bootstrap the computation. In order to show this, we have to normalize
our ABPs to some deliberately chosen standard form. Then we can provide a closed form for each
vi in terms of the normalized ABP and the (unknown) value qi. It turns out that for eigenvectors
v1, v2, . . . , vr obtained this way, det(V)2 = zc′

∏

1≤i<j≤n(qi − qj)
2, for some integer c′ > 0. Since

∏

1≤i<j≤n(xi − xj)
2 is a symmetric polynomial, we know it is expressible in terms of the elementary

symmetric polynomials Sj
r(x1, . . . , xr) =

∑

I⊂[r]

∏

i∈I xi, due to the fundamental theorem on symmetric

polynomials. Eventhough we cannot directly compute the qis, Sj
r(q1, . . . , qr) equals the coefficient of

(−y)r−j in f ′ (ignoring the factor zc). We will see that therefore it can be obtained by some standard
circuit manipulations. This way we obtain a relatively small ABP for det(V)2.

The next step is to apply power iteration. We construct a (multi-output) ABP computing
Me

αr
. . . Me

α3
Me

α2
u, where e is some appropriately selected large integer. The next crucial part of

the proof is to show that when changing α, only the eigenvalues of Mα change, but that the vis remain
to be a valid set of eigenvectors. This will allow us to finally arrive at the following expression:

u′ := Me
αr

. . . Me
α3

Me
α2

u =
∑

i∈[r]

ai

r
∏

j=2

(

det(Pαj
)

qi − αjzd

)e

vi.

For the above expression we will have that u′ is a vector of polynomials, since we ensure that every
ai ∈ F[X, z], and that every vj and Mα only contains polynomial entries. We will show that from the
vector u′, we can separate out a multiple of the eigenvector v1 by discarding terms that have z-degree
larger than some threshold. To keep e reasonable we will need to provide good bounds on the degrees
of the ais and entries of the eigenvectors vj . Next, we can compute q1 by applying M0 once more
and doing a division. For the latter, we use a recent result by Kaltofen and Koiran [8] to perform the
(exact) division of two ABPs. Finally, the ABP for p1 is obtained by setting z = 1 in the ABP for q1.

4

1.3 Structure of the Rest of the Paper

Section 2 is a preliminaries section. In Section 3 we prove the reduction to so-called nice polynomials. In
Section 4 we develop the needed notions regarding standard form ABPs, homogenization and completeness
of the determinant. In Section 5 we prove our main root extraction lemma for nice polynomials. Section 6
is a short section in which we use the main lemma to prove Theorem 1. Finally, we prove Theorem 2 in
Section 7, where we consider Newton’s Method and root extraction for unrestricted arithmetic circuits.

2 Preliminaries

Let F be a field of characteristic zero. Let X = {x1, x2, . . . , xn} be a set of indeterminates. Let G denote the
field of rational functions F(X, z). For a polynomial f ∈ F[X, y] and p ∈ F[X], f|y=p denotes the polynomial
obtained by substituting p for y in f . In case f|y=p ≡ 0, we say that p is a root of f for y. Recall the following
lemma by Gauss:

Lemma 1 (Gauss). Let f ∈ F[X, y] be a nonzero polynomial, and let p ∈ F[X] be a root of f for y. Then
p − y is an irreducible factor of f in the ring F[X, y].

In the above situation, the multiplicity of the root p is defined to be the largest number m such that
(p − y)m divides f .

The Vandermonde determinant is the polynomial Vandet(x1, x2, . . . , xn) =
∏

1≤i<j≤n(xi − xj). Total
degree of a nonzero polynomial f is denoted by deg(f). The maximum degree of a variable xi in a monomial
of a nonzero polynomial f is denoted by degxi

(f). For a nonzero vector v of polynomials, we define deg(v) =
maxj,vj 6≡0 deg(vj) and degxi

(v) = maxj,vj 6≡0 degxi
(vj). For a polynomial f ∈ F[X], we denote by [f]=i, or

simply f=i, the homogeneous component of degree i. Similarly, we use the notations f≤i, f≥i, [f]≤i and
[f]≥i. We will also use this notation for vectors of polynomials. For example, (f, g, h)≤i = (f≤i, g≤i, h≤i).
At a few occasions we will also use the notation f≤zi, for f ∈ F[X, z]. This is defined analogously, but now
using the individual degree measure degz instead of total degree measure deg. For a nonzero polynomial f ,
mindeg(f) is the minimum i such that f=i is nonzero. Similarly, we define mindegxj

(f) to be the minimum
i such that xi

j appears in a monomial of f . We extend this to any nonzero vector v of polynomials, by letting
mindeg(v) = minj,vj 6≡0 mindeg(vj) and mindegxi

(v) = minj,vj 6≡0 mindegxi
(vj). Given an integer d ≥ 0 and

a variable z, for a polynomial f of degree ≤ d, the homogenization of f to degree d using the variable z, is
the polynomial zdf(x1

z
, x2

z
, . . . , xn

z
).

For a matrix M , we denote by M [[i, j]] the matrix obtained by removing row i and column j. Let us
denote by M [i, j] the matrix obtained from M by setting all entries in row i and column j to 0, except for
entry Mi,j , which is set to 1. Using Laplace expansion along row i of M [i, j] one immediately concludes that
the following holds:

Proposition 1. For any matrix M , det(M [i, j]) = (−1)i+j det(M [[i, j]]).

For a s×s matrix M , Adj(M) denotes the s×s adjugate matrix of M , defined by Adj(M)ij = det(M [j, i]).
For any matrix M , MAdj(M) = Adj(M)M = det(M)I, where I denotes the identity matrix.

2.1 Arithmetic Circuits and Algebraic Branching Programs

An arithmetic circuit Ψ over variables X and field F is given by a directed acyclic graph whose nodes of
in-degree larger than zero are labeled by {+,×}, and with other nodes labeled by elements of X ∪ F. At
each node g of Ψ we have associated a polynomial in F[X] computed by g, which is defined in the standard
manner. The output of Ψ is the polynomial computed by some designed output gate. For the size of Ψ
we count the number of edges. The size of a polynomial f , denoted by s(f), is the size of the smallest
arithmetic circuit computing f . We let VP stand for the class of polynomial families (fn) for which there
exists a polynomial p(n) such that deg(fn) ≤ p(n) and s(fn) ≤ p(n).

5

An algebraic branching program (ABP) over X and F is a 4-tuple Φ = (G,w, σ, τ), where G = (V,E)
is a weighted directed acyclic graph for which the vertex set V can be partitioned into levels L0, L1, . . . , Lℓ,
where L0 = σ and Lℓ = τ . Vertices σ and τ are called the source and sink of Φ, respectively. Edges may
only go between consecutive levels Li and Li+1. The subgraph induced by Li and Li+1 is called a layer of
Φ. The weight function w : E → X ∪F assigns variables or field constants to the edges of G. For a path p in
G, we extend the weight function by w(p) =

∏

e∈p w(e). Let Pi,j denote the collection of all directed paths

p from i to j in G. The program Φ computes the polynomial Φ̂ :=
∑

p∈Pσ,τ
w(p). The size of Φ is defined to

be |V |. For nodes v and w in Φ, Φv,w denotes the subprogram of Φ with source v and sink w.
We extend the definition to what we call generalized ABPs as follows. Let z be a new variable. Let

W = {zd · ℓ : d ≥ 0, ℓ ∈ X ∪ F}. For generalized ABPs, we allow any weight w(e) to be an element in W.
For example, an edge is allowed to have weight z10x1, or just z5, or any element from X ∪ F as before. The
output of such an ABP is an element of F[X, z], and is defined in the obvious way.

We will also consider “multi-output” ABPs. In this case the last layer of the A consists of several sink
nodes τ1, τ2, . . . , τm. The output of the ABP is given by the tuple of polynomials (f1, f2, . . . , fm) computed
by the subprograms Aσ,τ1

, Aσ,τ2
, . . . , Aσ,τm

. Mainly, we use this feature for conveniently constructing larger
single-output ABPs. For example, if we want to apply some m′×m matrix M to the vector (f1, f2, . . . , fm)T ,
note that this is easily done by adding one more layer with edge labels corresponding to entries of M . In
particular, for m′ = 1 with entries of M in F, this produces a single output ABP computing a linear
combination of f1, f2, . . . , fm.

One main reason for using ABPs rather than skew circuits, is that they are more convenient when
doing substitution. It is easily seen that if g(x1, x2, . . . , xn) can be computed by an ABP Ag of size sg and
f(x1, x2, . . . , xn) is computed by an ABP Af of size sf , then f|xi=g can be computed by an ABP of size
O(efsg), where ef = O(s2

f) is the number of edges in Af . Indeed, simply ‘expand’ every edge labeled xi

in Af into a subprogram Ag. This can be done while keeping the program leveled with the final size being
O(efsg).

We use the following result by Mahajan and Vinay:

Theorem 3 (See Theorem 2 in [9]). The determinant of an n × n matrix can be computed by an ABP of
size O(n3) with O(n5) many edges.

For the analysis, we let γ1 and γ2 be universal constants such that the determinant of an n × n matrix
can be computed by an ABP with γ1 many nodes and γ2 many edges. By the above we can take γ1 = 3 and
γ2 = 5. Also, we define the universal constant γ3 to be the best possible constant for the exponent of s in
the following lemma (so γ3 ≤ 12):

Lemma 2 (From Lemma 1 and Lemma 2 in [8]5). Suppose |F| is infinite. Let f, g ∈ F[x1, x2, . . . , xn] be
given that both are computable by ABPs of size at most s. Assuming the division f/g is exact, then f/g can
be computed by an ABP of size O(s12).

The following two lemma’s are proved by the well-known trick of ‘splitting’ nodes in order to keep track
of degree components. For Lemma 3 this is done to keep track of total degree, after which the appropriate
powers of z can be attached to construct the final ABP. For Lemma 4 the trick is applied to keep track of
components with different degree in z, which allows the final ABP to be coded easily. For example, an edge
(v, w) with label xi · z

k induces edges (vi, wi+k) with label xi, for all i + k ≤ d, where v and are split into
v0, v1, . . . , vd and w0, w1, . . . , wd, respectively.

Lemma 3. Let d ≥ 0 be an integer and z a new variable. Let Φ be an ABP of size s computing the polynomial
f ∈ F[X] of degree at most d. Then there exist an ABP Ψ of size O(ds) computing the homogenization of f
to degree d using the variable z.

Lemma 4. Let d ≥ 0 be an integer and z a new variable. Let Φ be a generalized ABP of size s with e many
edges computing the polynomial f ∈ F[X, z]. Then there exist an ABP Ψ of size O(ds) and O(de) many
edges computing [f]≤zd. A similar statement holds for computing [f]=zd.

5We get an extra quadratic blow-up of s, since the DAG we use for ABPs must be leveled, as opposed to the DAG constructed
in Lemma 2 of Ref. [8].

6

We also need a lemma by Alon:

Lemma 5 (Lemma 2.1 in [10]). Let f ∈ F[X] be a nonzero polynomial such that the degree of f in xi is
bounded by ri, and let Si ⊆ F be of size at least ri + 1, for all i ∈ [n]. Then there exists (s1, s2, . . . , sn) ∈
S1 × S2 × . . . × Sn with f(s1, s2, . . . , sn) 6= 0.

Finally, we use a result by Kaltofen and Singer for computing partial derivatives. For a polynomial

f ∈ F[X, y] and integer k ≥ 0, ∂kf
∂ky

denotes the kth order formal partial derivate of f w.r.t. the variable y. In

the following, M(d) is the previously introduced function M, that gives an upper bound on the arithmetic
circuit size for multiplication of two univariate polynomials of degree d over F, given their coefficients as
input variables.

Theorem 4 (Theorem 3.1 in [11]). For any integer k ≥ 0, if f ∈ F[X, y] can be computed by an arithmetic

circuit of size s, then ∂kf
∂ky

can be computed by an arithmetic circuit of size O(M(k) · s).

3 Reduction to Root Extraction for ‘Nice’ Polynomials

Definition 1. Two polynomials p, q ∈ F[X] are said to be in general position, if p(0) and q(0) are both
nonzero, and p(0) 6= q(0). A set of polynomials {p1, p2, . . . , pr} is said to be in general position, if for every
i, j ∈ [r] with i 6= j, pi and pj are in general position.

Definition 2. A polynomial f ∈ F[X, y] is called nice, if f factors as f = (p1 − y)(p2 − y) . . . (pr − y), where
{p1, p2, . . . , pr} ⊂ F[X] is a set of nonconstant polynomials that is in general position.

Suppose for the above situation we have a method of constructing an ABP for any pi that is of size at
most β(r, d, s) for some function β, where s denotes the ABP size of f and d = maxi deg(pi). We reduce the
more general case of Main Theorem 1 to root extraction for nice polynomials as follows:

Lemma 6. Suppose |F| is infinite. Suppose f ∈ F[X, y] factors as f = p0(p1 − y)(p2 − y) . . . (pr − y), where
{p0, p1, p2, . . . , pr} ⊂ F[X] and p1, p2, . . . , pr are pairwise distinct. Suppose f can be computed by an ABP
of size s. Then every pi has an ABP of size O(β(r, d,O(rγ3sγ3)), , where d = maxi∈[r] deg(pi) and γ3 is the
absolute constant from Section 2.

Proof. By Lemma 4, we have an ABP for the coefficient of yr in f of size O(rs). This program computes
(−1)rp0. If there are pis that are constant, any of these can be computed by ABPs with size at most 2.
Wlog. assume p1, p2, . . . , pj are constant. Since j ≤ r ≤ s, it is easily seen we have an ABP of size O(rs)
that computes p0(p1 − y)(p2 − y) . . . (pj − y). Now use Lemma 2 to obtain an ABP of size s = O(rγ3sγ3)

computing f̃ = (pj+1 − y)(pj+2 − y) . . . (pr − y). Hence at the cost of blowing up the size to O(rγ3sγ3), we
can assume that f is of the form f = (p1 − y)(p2 − y) . . . (pr − y), where p1, p2, . . . , pr are nonconstant and
pairwise distinct.

Since |F| is infinite, there exists a ∈ F
n such that for every i, pi(a) 6= 0, and for every i 6= j, pi(a) 6= pj(a).

Namely, we can simply take a nonzero of the polynomial
∏

i∈[r] pi

∏

i6=j∈[r](pi − pj). Consider f ′ := f(x1 +

a1, x2 + a2, . . . , xn + an, y). We have that

f ′ =

r
∏

i=1

(pi(x1 + a1, x2 + a2, . . . , xn + an) − y)

=
r

∏

i=1

(pi(x1 + a1, x2 + a2, . . . , xn + an)≥1 + pi(a1, a2, . . . , an) − y).

Hence f ′ is nice. An ABP of size O(rγ3sγ3) for f ′ is easily obtained from the ABP for f . We can then
do the root extraction for the nice polynomial f ′. This gives us an ABP for any desired pi(x1 + a1, x2 +
a2, . . . , xn + an) of size at most β(r, d,O(rγ3sγ3)) . Next we easily perform a modification of this program to
realize the substitution xi := xi − ai, for all i ∈ [r], while blowing up the size by a constant factor at most.
Hence, we obtain an ABP for pi(x1, x2, . . . , xn) of size O(β(r, d,O(rγ3sγ3)).

7

4 Standard Form ABPs, Valiant Matrices and Homogenizations

Definition 3. Let f ∈ F[X, y] be a polynomial whose degree in y equals r, and write f =
∑r

i=0 Cr(x)yr. We
say an ABP Φ with source σ and sink τ computing f is in standard form, if it has the following structure:

• There is a set of distinct nodes {b0, b1, . . . , br}, such that for each i ∈ {0, 1, . . . , r}, there is an edge
from the source σ to bi with label 1. These are the only edges adjacent to the source.

• There are distinct nodes c0, c1, . . . , cr. The subprograms in the set {Φbi,ci
: i ∈ [r]} are disjoint as

graphs. For every i ∈ {0, 1, . . . , r}, the subprogram Φσ,ci
computes Ci(x).

• There is a path cr = a0, a1, . . . , ar−1, ar = τ , where each edge (ai, ai+1) is labeled with the variable y.
These are the only occurrences of y variables in Φ.

• All remaining edges are labeled with the constant one. These simply realize that for every 0 ≤ i < r,
there is one single path of weight 1 from ci to ar−i.

• the length of every path from σ to τ is even.

More generally, if in the above edges not labeled with y carry labels ∈ W, then we say that Φ is in
generalized standard form.

The standard form is exemplified in Figure 1, where edges drawn without labels carry the field constant 1
by convention. We remark that for a standard form ABP Φbi,ci

and Φσ,ci
compute the same polynomial.

For generalized standard form ABPs the computed polynomials differ by a factor of w(σ, bi).

Lemma 7. Let f ∈ F[X, y] be computed by an ABP Φ of size s, and let r = degy(f). Then f can be computed
by an ABP Ψ in standard from of size O(sr2). This means in particular that the variable y appears exactly
r times on an edge in Ψ.

Φbr,cr
Φbr−1,cr−1

Φbr−2,cr−2
Φb0,c0

σ

τ = ar

ar−1

y

y

y

y

a0 = cr

a1

a2

br br−1 br−2 b0

cr−1 cr−2 c0

. . .

Figure 1: Schematic depiction of an ABP Φ in standard form computing f =
Pr

i=0
Cr(x)yr. For each i, the

subprogram Φbi,ci
computes Ci(x).

8

Proof. Write f =
∑r

i=0 fr(x1, x2, . . . , xn)yi. Each fi can be computed by an ABP of size O(sr) by Lemma 4.
Given that we have such ABPs, the final ABP Ψ of size O(sr2) is obtained in a straightforward manner.

Given an ABP Φ of size s computing f , we can construct a matrix M(Φ) of order s, whose entries are
variables and field elements, such that det(M) = f , as done in [12]. Namely, thinking of Φ as a graph, one
adds a loop back from τ to σ with label 1, and one puts a self loop on all nodes other than σ and τ with
label 1. Let M(Φ) be the6 adjacency matrix of the weighted graph obtained this way, which we call the
Valiant matrix associated to Φ. Assuming wlog. that the length of every path from σ to τ in Φ is even7,
then det(M(φ)) = f . To make this clear, let us introduce the following notion:

Definition 4. A cycle cover C in a directed graph G = (V,E) with n vertices is a set of disjoint simple
cycles C1, C2, . . . , Ci such that every vertex in G is contained in some cycle Ci. For weighted G, the weight
of a cycle C is taken to be the product of weights of edges in C. For a simple cycle C we define its sign
sgn(C) to be −1 if C is of even length, and 1 otherwise. For the cycle cover C, define sgn(C) =

∏

i sgn(Ci).

If MG is the adjacency matrix of a weighted graph G, observe that det(MG) equals
∑

C sgn(C)w(C),
where the sum is over all cycle covers C of G. In M(Φ) cycle covers correspond exactly to paths from the
source to the sink in Φ. Namely, each path from σ to τ is completed with the loop from τ back to σ, and
self loops are added for all nodes not in this cycle. Note every cycle cover has sign 1, since the length of any
σ, τ -path is even. We conclude that det(M(Φ)) = f .

Rows and columns of M(Φ) correspond to nodes in Φ. In our notation, we will use variable names of
nodes of Φ to index the matrix M(Φ), and also do this for s-vectors operated on. For example, for the
standard form ABP Φ for Definition 3, the entry M(Φ)a0a1

equals y. More generally, if we start with a
generalized ABP Φ, we define in a completely analogous fashion the associated generalized Valiant matrix
M(Φ). In this case, M(Φ) contains elements from W, since whatever weight an edge in Φ carries goes into
the corresponding entry of M(Φ).

Definition 5. Let z be a variable. Given the Valiant matrix M(Φ) associated to an ABP Φ, we define its
d-homogenization to be the matrix obtained from M(Φ) by

1. Replacing every variable entry xi by xiz
d−1.

2. Replacing every constant entry c ∈ F by czd.

3. Leaving y variables unchanged.

We denote this matrix by M(Φ), provided it is clear from the context what d is. Then we can write
M(Φ) = zdM(x1

z
, x2

z
, . . . , xn

z
, y

zd). For an ABP Φ, its d-homogenization Φ is the generalized ABP obtained
by performing the above replacement operations (1,2,3) for every edge label.

Note that M(Φ) and M(Φ) are different matrices. The following proposition shows how they relate:

Proposition 2. Let Φ be an ABP of size s with source σ and sink τ . For the case of d-homogenization, we
have the following two properties:

1. M(Φ) and M(Φ) only differ for nonzero entries on the diagonal and the ‘loopback’ entry on row τ ,
column σ. For these entries, M(Φ) contains the field element 1, whereas M(Φ) contains zd.

2. det(M(Φ)) = z(s−ℓ)d det(M(Φ)), where ℓ equals the number of layers of Φ.

6Wlog. we can assume nodes in Φ always carry a unique number ∈ [s], which we then use to index columns/rows. This way,
we can truly speak of the matrix M(Φ).

7Note that since ABPs are leveled all paths from σ to τ are of the same length. Also note that if this length is odd, then
det(M(φ)) = −f .

9

Proof. The first property clearly holds. For the second property, let G be the weighted graph with adjacency
matrix M(Φ)). Then det(M(Φ)) equals

∑

C sgn(C)w(C), where the sum is over all cycle covers C of G.
These cycle covers correspond to paths from σ to τ . For each such path, there is added the loop-back edge
from τ to σ to complete the ‘big cycle’. In addition s − (ℓ + 1) self-loops are added to cover all vertices
not covered in the big loop. In the computation of det(M(Φ)) these edges carry the label 1. By the first
property, we can think of det(M(Φ)) as a sum of cycle covers in the graph G, but where the weights of the
loopback entry and the s− (ℓ + 1) self-loops have been changed from 1 to zd. This results in an extra factor
of z(s−ℓ)d per cycle cover, and yields the second property.

Proposition 3. Suppose Φ is an ABP of size s computes f ∈ F[X, y], where f factors as

f = (p1 − y)(p2 − y) . . . (pr − y).

Let d = maxi deg(pi). Then for d-homogenization M(Φ) we have that

det(M(Φ)) = zd(s−r)(q1 − y)(q2 − y) . . . (qr − y),

where ∀i ∈ [r], qi = zdpi(
x1

z
, x2

z
, . . . , xn

z
). In other words, qi is the homogenization of the polynomial pi to

degree d.

Proof.

det(M(Φ)) = det(zdM(Φ)(
x1

z
,
x2

z
, . . . ,

xn

z
,

y

zd
))

= zds det(M(Φ)(
x1

z
,
x2

z
, . . . ,

xn

z
,

y

zd
))

= zdsf(
x1

z
,
x2

z
, . . . ,

xn

z
,

y

zd
)

= zds
∏

i∈[r]

(pi(
x1

z
,
x2

z
, . . . ,

xn

z
) −

y

zd
)

= zd(s−r)
∏

i∈[r]

(qi − y).

We have the following easily proved decomposition Lemma for Valiant matrices associated to ABPs in
standard form:

Lemma 8. Let f ∈ F[X, y] be computed by a standard form ABP Φ of size s an let r = degy(f). Suppose
that f(x1, x2, . . . , xn, 0) 6≡ 0. Then the associated Valiant matrix M(Φ) can be written as

M(Φ) = A(x1, x2, . . . , xn) − yB,

where

1. A and B are square matrices of order s.

2. B is a matrix whose entries are taken from the set {0,−1}. In each row/column there is at most one
-1, and the number of -1s in B equals r.

3. A has entries taken from the set F ∪ {x1, x2, . . . , xn}.

4. A is invertible, if we consider it over the field of rational functions F(X).

Proof. The properties of the lemma follow easily by taking B to have -1 precisely in the places where M(Φ)
has y’s and zeros everywhere else. In particular, for the last property, since det(A) = det(M(Φ)|y=0) =
det(M(Φ))|y=0 = f(x1, x2, . . . , xn, 0) 6≡ 0, we conclude that A is invertible over F(X).

10

4.1 A Closed Form for Eigenvectors Related to the Valiant Matrix

Proposition 4. Let M be a singular matrix of order m. For any fixed i, if we define the m-vector v by
taking vj = det(M [i, j]), then Mv = 0.

Proof. For any k ∈ [m], using Proposition 1, we get that (Mv)k =
∑

ℓ∈[m] Mkℓvℓ =
∑

ℓ∈[m] Mkℓ det(M [i, ℓ]) =
∑

ℓ∈[m] Mkℓ(−1)i+ℓ det(M [[i, ℓ]]). If k = i, this equals the Laplace expansion for det(M) along row i, so

(Mv)k = det(M) = 0. If k 6= i, this equals the Laplace expansion of the matrix M ′ obtained by replacing
the ith row with the kth row of M . Since M ′ contains the same row twice, det(M ′) = 0, which implies that
also in this case (Mv)k = 0.

The following lemma provides us with a closed form solution v for the system of linear equations Nv = 0,
with N = M(Φ)|y=q, derived from the associated Valiant matrix M(Φ) of a generalized standard form
ABP Φ computing some polynomial f , where q is a root of f . If q is a nonzero root of f , and expressing

M(Φ) = A − yB as in Lemma 8, then it is easily seen that Adj(A)Bv = det(A)
q

· v. In other words, v is an

eigenvector of Adj(A)B corresponding to the eigenvalue det(A)
q

.

Lemma 9. Let Φ be a generalized ABP of size s in standard form computing the polynomial f =
∑r

i=0 Ci(X, z)yr ∈ F[X, z, y] of degree r in y. Let d be a bound on the z-degree of edge labels in Φ. Let nodes
a0, b0, c0, a1, b1, c1, . . . , ar, br, cr be given as in Definition 3, which implies the subprogram Φσ,ci

computes
Ci(X, z). Let M(Φ) be the associated generalized standard form Valiant matrix. Suppose that q ∈ F[X, z] is
such that f|y=q ≡ 0. Let N be the matrix obtained by setting y = q in M(Φ), i.e. N = M(Φ)|y=q. Suppose
we define the s-vector v by

(v)j = det(N [cr, j]),

for all j ∈ [s]. Then the following hold:

1. Nv = 0.

2. det(N [ci, j]) has z-degree at most smax(degz(q), d).

3. For all j ∈ {1, . . . , r}, (v)aj
= qr−j · (−1)j+1Cr(X, z).

Proof. Observe that det(N) = det(M(Φ)|y=q) = f|y=q ≡ 0. Hence the first property follows from Propo-
sition 4. The second property is clear. To verify the last property, let j ∈ [r] be arbitrary. Consider the
matrix N = M(Φ)|y=q. Let G be the weighted graph corresponding to M(Φ). We can think of the matrix
N [cr, aj] as the adjacency matrix of a graph H formed by doing the following to G:

• replacing all y-labels in G by q.

• Removing all edges out of cr, including the self loop.

• Removing all edges into aj , including the self loop.

• Adding the edge From cr to aj with label one.

Then det(N [cr, aj]) =
∑

C sgn(C)w(C), where the sum is over all cycle covers in H. Observe that since
cr and aj do not have self-loops, any cycle cover C in H must include the edge (cr, aj). So the cycle covers
are of the following structure:

• From the source σ there is a path to cr.

• Then the edge (cr, aj) is taken.

• Then r − j edges with label q are taken.

• Finally, the loop back from ar = τ to the source σ is taken.

11

• Self-loops with label 1 are taken for all vertices not included in above cycle.

All of the above described cycles starting at the source σ are of the same length. In case j = 1 the
length equals the same ‘big cycle length’ as in M(Φ), which is odd. For general j, by considering how
many edges we skip with the edge (cr, aj) one can conclude that sgn(C) = (−1)j+1. Hence det(N [cr, aj]) =
∑

C sgn(C)w(C) = (−1)j+1
∑

C w(C). The expression
∑

C w(C) equals the sum of weights of all paths from
σ to τ that go over (cr, aj). Since these paths all go over cr, this sum factors as Cr(X, z) (weight of all paths
from σ to cr) times qr−j (weights of path “(cr, aj), followed by going from aj to τ”).

5 Main Lemma and its Proof

Lemma 10. Let f ∈ F[X, y] be a nice polynomial of degree r > 1 computed by a standard form ABP Φ of
size s. Suppose f factors as

f = (p1 − y)(p2 − y) . . . (pr − y),

where {p1, p2, . . . , pr} ⊂ F[X] is a set of nonconstant polynomials in general position. Then any pi can be
computed by an ABP of size O((r3d7s12+γ1 + r6+γ2d5s7)γ3), where d = maxi∈[r] deg(pi) and γ1, γ2 and γ3

are the absolute constants introduced in Section 2.

Proof. Our goal is to construct a small ABP for any desired root pi. Wlog. we will show the method for
obtaining p1. The other roots follow by making a suitable variable renaming.

5.1 Towards Computing Eigenvectors

Consider the associated Valiant matrix M(Φ). Let M(Φ) be the d-homogenization of M(Φ). Note that
f|y=0 6≡ 0. Apply Lemma 8 to obtain matrices A and B of order s such that M(Φ) = A− yB. We have that

f = det(A − yB).

Let
qi = zdpi(

x1

z
,
x2

z
, . . . ,

xn

z
).

Each polynomial qi is homogeneous of degree d. Restricting our attention to degrees in z only, we see
that the original constant term pi(0) of pi is mapped to the term pi(0)zd in qi with largest z-degree. Since
p1, p2, . . . , pr are in general position, zd appears with a different coefficient in each qi. Our aim is to exploit
this fact in order to differentiate between the different qis.

Let αi = coef(qi, z
d). In other words, αi = pi(0). We have that {α1, α2, . . . , αr} is a set of r distinct

nonzero values from F. Note that s ≥ r. Define

f0 = zd(s−r)(q1 − y)(q2 − y) . . . (qr − y).

More generally, for any α ∈ F, define fα = (f0)|y:=y+αzd . Then

fα = zd(s−r) · (q1 − αzd − y)(q2 − αzd − y) . . . (qr − αzd − y).

Let R = zdA(x1

z
, x2

z
, . . . , xn

z
), and Q = B.

Lemma 11. The following three statements are true:

1. R − yQ = M(Φ).

2. ∀α ∈ F, fα = det(R − αzdQ − yQ). In particular f0 = det(R − yQ).

3. R is nonsingular.

12

Proof. The first property is clear. For the second property, note that Proposition 3 gives that f0 =
det(M(Φ)). So f0 = det(R − yQ), by the first property. Hence fα = det(R − yQ)y:=y+αzd = det(R −
αzdQ − yQ). The third property follows from the second property. Namely, (f0)|y=0 = det(R). It must
be that (f0)|y=0 6= 0, since otherwise qi = 0, for some i. However, this means that pi = 0, which is a
contradiction.

Let ℓ be the number of layers of Φ. Note that s > ℓ > r. Define for any α ∈ F, fα = fα/zd(s−ℓ). Then

fα = zd(ℓ−r) · (q1 − αzd − y)(q2 − αzd − y) . . . (qr − αzd − y),

Let Φ be the d-homogenization of Φ. Note that Φ is in generalized standard from. Observe, that Q does not
have nonzero entries on its diagonal or on the ‘loopback’ entry on row τ , column σ, since in the standard
form nodes labeled with the variable y do not appear on self-loops or the loopback edge from τ to σ. By
Proposition 2, we can write

M(Φ) = P − yQ,

where P is obtained from R by setting all nonzero diagonal entries and the ‘loopback’ entry (τ, σ) to the
field element 1.

Corollary 1. We have the following two properties:

1. For all α ∈ F, det(P − αzdQ − yQ) = fα.

2. For every α ∈ F, P − αzdQ is nonsingular.

Proof. From Proposition 2, it follows that f0 = det(M(Φ)) = det(P −yQ). This readily gives the first stated
property. From this we conclude that det(P −αzdQ) = (fα)|y=0. If (fα)|y=0 is zero, then there exists i such

that qi − αzd equals zero. This implies pi was a constant polynomial, which is a contradiction.

Remark 1. Observe that by definition Φ computes det(M(Φ)), and that this equals det(P − yQ) = f0, due
to the above corollary.

Lemma 12. Let nodes a0, b0, c0, a1, b1, c1, . . . , ar, br, cr in Φ be given as in Definition 3. Let Ci(X, z) be the
polynomial computed by the subprogram Φσ,ci

. Clearly, we have that f0 =
∑r

i=0 Ci(X, z)yi. For all i ∈ [r],
we define the column vector vi by letting for every j ∈ [s],

(vi)j = det(Nqi
[cr, j]),

where Nqi
= M(Φ)|y=qi

. In other words, Nqi
= P − qiQ. Then the following four statements are true:

1. For every i ∈ [r], Nqi
vi = 0.

2. For every i ∈ [r], degz(vi) ≤ sd.

3. There exist n− r standard basis vectors ei1 , ei2 , . . . , eis−r
such that if we define the matrix V by letting

V = [v1, v2, . . . , vr, ei1 , ei2 , . . . , eis−r
],

then
det(V) = (±1) · zd(ℓ−r)r · Vandet(q1, q2, . . . , qr).

4. Vandet(q1, q2, . . . , qr)
2 can be computed by an ABP of size O(r5+γ2ds), where γ2 is the absolute constant

introduced in Section 2.

13

Proof. The first and second item immediately follow from Lemma 9, Items 1 and 2. Note that Cr(X, z) =
coef(yr, f0) = (−1)rzd(ℓ−r). By Lemma 9, Item 3, up to reordering of rows and multiplying rows with the
field element −1, the matrix V ′ = [v1, v2, . . . , vr] consisting of the r column vectors v1, v2, . . . , vr contains
the following r × r Vandermonde matrix as a submatrix on rows in the set J = {aj : j ∈ [r]}:

zd(ℓ−r) ·











qr−1
1 qr−1

2 . . . qr−1
r

...
q1 q2 . . . qr

1 1 . . . 1











Choosing ei1 , ei2 , . . . , ein−r
to be an independent set of vectors that is zero on rows indexed by J gives the

third property. The fourth property will be proved in the next subsection.

Remark 2. As a note on the side, we observe that the vector vi is an eigenvector of P−1Q corresponding
to eigenvalue 1/qi, when working over the field G. Namely,

Nvi = 0 ⇔ (P − qi · Q)vi = 0

⇔ (P−1) · (P − qi · Q)vi = 0

⇔ (I − qi · P
−1Q)vi = 0

⇔ P−1Qvi = 1/qi · vi.

5.2 A Small ABP for Computing Vandet(q1, q2, . . . , qr)
2

This subsection is dedicated to proving Item 4 of Lemma 12. Define the polynomial

Ti(x1, x2, . . . , xr) = xi
1 + xi

2 + . . . + xi
r.

We use the fact8 that

det











T0 T1 . . . Tr−1

T1 T2 . . . Tr

...
Tr−1 Tr . . . T2r−2











= Vandet(x1, x2, . . . , xr)
2. (1)

The strategy is to express each Ti as a ‘small’ formula of Sj
r(x1, x2, . . . , xr), where Sj

r is the elementary
symmetric polynomial in r variables of degree j, i.e.

Sj
r(x1, x2, . . . , xr) =

∑

I⊂[r],|I|=j

∏

i∈I

xi.

It is well-known that the Tis and Sj
rs are related through the Newton Identities.

At first sight it may look like we have run into a circular argument. How do we plug in the qis? This
bootstrapping problem is resolved by observing that, if we succeed in the above9, regardless of not having
small ABPs for the qis, we readily have small ABPs for any Sj

r(q1, q2, . . . , qr). Namely, consider the following
remark and subsequent derivation:

Remark 3. For every j, Sj
r(p1, p2, . . . , pr) equals the coefficient of yr−j of f modulo a factor of ±1. Hence

an ABP Φj computing Sj
r(p1, p2, . . . , pr) of size at most s is easily obtained from the standard form ABP Φ.

8This follows by multiplying the Vandermonde matrix with nodes x1, x2, . . . , xr by it transpose.
9In [13] the converse is achieved to get small depths formulas for S

j
r .

14

Say that Φj computes the polynomial Dj(X, z). We conclude that we have an ABP Ψj computing
Sj

r(q1, q2, . . . , qr) of size O(rds) as follows:

Sj
r(q1, q2, . . . , qr) = Sj

r(zdp1(
x1

z
,
x2

z
, . . . ,

xn

z
), . . . , zdpr(

x1

z
,
x2

z
, . . . ,

xn

z
))

= zdjSj
r(p1(

x1

z
,
x2

z
, . . . ,

xn

z
), . . . , pr(

x1

z
,
x2

z
, . . . ,

xn

z
))

= zdj(±1) · Dj(
x1

z
,
x2

z
, . . . ,

xn

z
)

Note that the degree of Dj is at most dj. So zdjDj(
x1

z
, x2

z
, . . . , xn

z
) is just the homogenization of Dj to

degree dj. Applying Lemma 3 to Φj yields the required ABP Ψj .

5.2.1 A Formal Power Series Identity Related to the Newton Identities

Let w be an new variable. We have the following lemma:

Lemma 13. Provided the characteristic of F is zero, we have the following identity in the ring of formal
power series F[[X]]:

∑

ℓ≥1
1
ℓ
(
∑r

j=1(−1)jSj
r(x1, x2, . . . , xr)w

j)ℓ =
∑

n≥1
−wn

n
Tn(x1, x2, . . . , xr).

Proof. We recall the definitions of the formal power series (FPS) exp(w) and log(1−w). These are given by
exp(w) =

∑

n≥0
wn

n! . and log(1 − w) = −
∑

n≥1
wn

n
. We will use that exp(log(1 − wxj)) = 1 − wxj . Hence

∏

j∈[r]

(1 − wxj) =
∏

j∈[r]

exp(log(1 − wxj))

= exp(
∑

j∈[r]

log(1 − wxj))

= exp(−
∑

j∈[r]

∑

n≥1

(wxj)
n/n)

= exp(−
∑

n≥1

Tn(x1, x2, . . . , xr)w
n/n)

Hence, by multiplying out the l.h.s. we get that

r
∑

j=1

(−1)jSj
n(x1, x2, . . . , xr)w

j = exp(−
∑

n≥1

Tn(x1, x2, . . . , xr)w
n/n) − 1.

Now we use that for g(w) := −
∑

n≥1 Tn(x1, x2, . . . , xr)w
n/n, it holds that log(1 + (exp(g(w))− 1)) = g(w).

Thus applying log(1 + w) to both sides of the above equation yields that

−
∑

n≥1

Tn(x1, x2, . . . , xr)w
n/n = log(1 −

r
∑

j=1

(−1)jSj
n(x1, x2, . . . , xr)w

j)

=
∑

ℓ≥1

1

ℓ
(

r
∑

j=1

(−1)jSj
n(x1, x2, . . . , xr)w

j))ℓ.

In the following, we truncate the expression on the l.h.s. in the above lemma, discarding terms that
cannot possibly contribute to the coefficient of wi. Then we do some circuit manipulations to extract the
coefficient of wi, and this way we obtain an ABP computing Ti in terms of the Sj

rs.

15

Proposition 5. Let u1, u2, . . . , ur be a set of new variables. For any i ∈ [r] the following statements are

true. Let E(u1, u2, . . . , ui, w) =
∑

1≤ℓ≤i
1
ℓ
(
∑i

j=1(−1)jujw
j)ℓ. Then

1. There exists an ABP Γ(u1, u2, . . . , ui, w) with O(i3) many edges computing E.

2. There exists an ABP Γ′(u1, u2, . . . , ui) with O(i4) many edges computing the coefficient of wi in E.

3. Say Γ′ computes the polynomial E′. Then E′(S1
r (x), S2

r (x), . . . , Si
r(x)) = −Ti(x1, x2, . . . , xr)/i.

Proof. The first item is left as an easy exercise. Then second item then follows by applying Lemma 4. The
last item follows from Lemma 13.

5.2.2 Putting It Together

By Proposition 5, E′(S1
r (q1, . . . , qr), S

2
r (q1, . . . , qr), . . . , S

i
r(q1, . . . , qr)) = −Ti(q1, . . . , qr)/i. By Remark 3

and comments thereafter, we conclude that for any i ∈ [r], we have an ABP computing Ti(q1, . . . , qr) of size
O(r5ds). The r×r determinant can be computed by an ABP with O(rγ2) many edges by Theorem 3. Hence
using Equation (1) we obtain an ABP for computing Vandet(q1, q2, . . . , qr)

2 of size O(r5+γ2ds).

5.3 Selecting a Good Starting Vector u

As hinted on before, our strategy is to use P and Q to find the root q1 of f0. We will use an iterative method,
where we repeatedly apply the matrices Adj(P) and Q to some chosen starting vector u. As will become
clear later, we must pick this u to be of low degree in order for our method to converge within reasonable
number of iterations. We take care of this next. Let

M0 = Adj(P)Q.

and let s × s matrix V = [v1, v2, . . . , vr, ei1 , ei2 , . . . , eis−r
] be given by Lemma 12. The set {M0v : v ∈ G

s}
we denote by Range(M0).

Proposition 6. Working over the field G, we have the following properties:

1. For every i ∈ [r], vi is an eigenvector of M0 corresponding to the eigenvalue det(P)
qi

.

2. The vectors v1, v2, . . . , vr form a basis of Range(M0).

Proof. By Corollary 1, the polynomials q1, q2, . . . , qr are precisely all the solutions for y of the equation
det(P − yQ) ≡ 0. For a polynomial q, we have that

det(P − q · Q) ≡ 0 ⇔ ∃v ∈ G
s 6= ~0, such that Pv = q · Qv.

Lemma 12 shows that for every i ∈ [r],
(P − qiQ)vi = 0.

Due to Item 2 of Corollary 1, Adj(P) is nonsingular. Hence this is equivalent to

(det(P)I − qiM0)vi. = 0 (2)

Since qi 6≡ 0, we can rewrite this as

(
det(P)

qi

I − M0)vi = 0.

Hence vi is an eigenvector of M0 corresponding to eigenvalue det(P)
qi

. Lemma 12 gives that v1, v2, . . . , vr are

independent vectors. Due to Item 2, Lemma 8, rank(Q) = r. Since Adj(P) is nonsingular, we have that
rank(M0) = rank(Q) = r. Hence it must be that v1, v2, . . . vr form a basis of Range(M0).

16

Remark 4. The following observation is not used in the sequel. The characteristic polynomial of M0 is
given by

p(λ) = det(λI − M0).

This polynomial is an element of G[λ]. The above show that each λ − det(P)
qi

divides p(λ). We have that

dim(null(M0)) = s − r, since rank(M0) = r. By linear algebra, the geometric multiplicity of an eigenvalue
always is less than or equal to the algebraic multiplicity. Hence λs−r divides p(λ). Since degλ(p) = s and all
of 0, q1, q2, . . . , qr are distinct this implies that

p(λ) = λs−r(λ −
det(P)

q1
)(λ −

det(P)

q2
) . . . (λ −

det(P)

qr

).

Lemma 14. There exists i ∈ [s] such that we can write

det(V)2M0ei = a1v1 + a2v2 + . . . + arvr,

where

1. ∀i, ai ∈ F[X, z].

2. a1 6= 0.

3. ∀i, degz(ai) ≤ d3s5.

Proof. By Item 2 of Proposition 6, v1, v2, . . . , vr forms a basis of range(M0). Hence for every ei, we can
write

det(V)2M0ei = a1,iv1 + a2,iv2 + . . . + ar,ivr,

for certain a1,i, a2,i, . . . , ar,i ∈ G. Suppose that for every i ∈ [s], a1,i = 0. This means that range(M0) ⊆
span(v2, . . . , vr), i.e. rank(M0) ≤ r − 1. This is a contradiction, as we observed before that rank(M0) = r.
Now let i be such that a1,i 6= 0. The coefficients a1,i, a2,i, . . . , ar,i can be obtained as the first r components
of the vector

V −1 det(V)2M0ei = det(V) · Adj(V)M0ei.

Note that this implies all ai are in F[X, z], as all of V,Adj(V) and M0 only have polynomial entries. The z-
degrees of entries in Adj(V), and also degz(det(V)), can be bounded by ds2, since entries of V have z-degree
at most sd due to Item 2, Lemma 12. Furthermore, d bounds the z-degrees of entries of P . So Adj(P) has
entries of z-degrees bounded by sd. Since Q is a matrix with elements in {0,−1}, this implies the entries of
M0 have degrees bounded by sd. This gives the required bound on the degrees of the ais.

Let i be given by the above lemma, and fix the vector

u = det(V)2M0ei.

This vector will be the starting point for applying power iteration. To stress, this is an element of F[X, z]s,
since V , M0 and ei only contain polynomial entries.

Lemma 15. The vector u can be computed by a multi-output generalized ABP of size O(s1+γ1 + r5+γ2ds).

Proof. By Lemma 12, we have an ABP B1 of size O(r5+γ2ds) computing the polynomial det(V)2. M0ei is
the ith column of M0 = Adj(P)Q. By Item 2, Lemma 8, Q is a projection. Therefore M0ei equals some
column of Adj(P). Each entry of Adj(P) can be computed by Theorem 3 by a generalized ABP of size
O(sγ1). This way we obtain a multi-output generalized ABP B2 computing M0ei of size O(s1+γ1). Putting
B1 and B2 in series gives the required multi-output generalized ABP.

17

5.4 Applying Power Iteration

Now we are ready to start applying power iteration in order to isolate the single eigenvector v1 and conse-
quently find the corresponding eigenvalue. We have that

u = a1v1 + a2v2 + . . . + arvr,

for certain ai ∈ F[X, z], as given by Lemma 14. Together with Lemma 12, we can bound for any i, degz(ai)+
degz(vi) ≤ d3s5 + ds. For any α ∈ F, define

Pα = P − αzdQ,

and
Mα = Adj(Pα)Q.

Note this definition coincides with previously defined M0. We have the following proposition:

Proposition 7. For all α ∈ F, i ∈ [r], Pαvi = (qi − αzd) · Qvi.

Proof. By Lemma 12, Item 1, it holds that Pvi = qiQvi, for any i ∈ [r]. Hence

Pαvi = Pvi − αzdQvi

= qiQvi − αzdQvi

= (qi − αzd) · Qvi.

First we consider what happens when we apply Mα to one of the eigenvectors v1, v2, . . . , vr.

Proposition 8. For all i ∈ [r], e ≥ 1, Me
αvi =

(

det(Pα)
(qi−αzd)

)e

· vi. Furthermore, the entries of Mαvi lie in

F[X, z].

Proof. Since Pαvi = (qi − αzd) · Qvi, we have that

det(Pα)vi = Adj(Pα)Pαvi

= Adj(Pα)(qi − αzd) · Qvi

= (qi − αzd)Mαvi.

Hence, since qi − αzd 6≡ 0, we can write

Mαvi =
det(Pα)

(qi − αzd)
vi.

This proves the case e = 1, from which the general case follows trivially. The statement regarding the entries
of the vector Mαvi clear, since the entries of vi and Mα both lie in F[X, z].

More generally, we have the following statement:

Proposition 9. Given α2, α3, . . . , αr ∈ F, for all i ∈ [r], e ≥ 1 we have that

Me
αr

. . . Me
α3

Me
α2

vi =
r

∏

j=2

(

det(Pαj
)

(qi − αjzd)

)e

· vi,

and the entries of Me
αr

. . . Me
α3

Me
α2

vi lie in F[X, z]. Consequently, for any ℓ ∈ [s], we have that

18

• if (vi)ℓ 6≡ 0, then the z-degree of the ℓth component (Me
αr

. . . Me
α3

Me
α2

vi)ℓ equals

degz((vi)ℓ) +
r

∑

j=2

e · degz(det(Pαj
)) −

r
∑

j=2

e · degz(qi − αjz
d).

• if (vi)ℓ ≡ 0, then (Me
αr

. . . Me
α3

Me
α2

vi)ℓ ≡ 0.

Proof. The very first statement immediately follows from Proposition 8. Let Fℓ = (Me
αr

. . . Me
α3

Me
α2

vi)ℓ. It
is clear that if (vi)ℓ ≡ 0, then Fℓ ≡ 0. Otherwise, we get that

Fℓ ·

r
∏

j=2

(qi − αjz
d)e =

r
∏

j=2

(det(Pαj
)e · (vi)ℓ.

Think of these as polynomials in z, i.e. elements of F[X][z]. Since
∏r

j=2(det(Pαj
)e and

∏r
j=2(qi − αjz

d)e

are both nonzero polynomials, we get that

degz(Fℓ) + degz(

r
∏

j=2

(qi − αjz
d)e) = degz(

r
∏

j=2

(det(Pαj
)e) + degz((vi)ℓ).

Hence

degz(Fℓ) +

r
∑

j=2

e · degz(qi − αzd) =

r
∑

j=2

e · degz(det(Pαj
)) + degz((vi)ℓ).

Now consider what happens when we apply Me
αr

. . . Me
α3

Me
α2

to our chosen starting point u. By linearity
over G of Mα, we have that

Me
αr

. . . Me
α3

Me
α2

u =
∑

i∈[r]

aiM
e
αr

. . . Me
α3

Me
α2

vi

=
∑

i∈[r]

ai

r
∏

j=2

(

det(Pαj
)

qi − αjzd

)e

vi,

where the last equation follows from Proposition 9.
Let

g =
∑

i∈[r]

ai

r
∏

j=2

(

det(Pαj
)

qi − αjzd

)e

vi. (3)

By Proposition 9, for each i ∈ [r], the division in η :=
∏r

j=2

(

det(Pαj
)

qi−αjzd

)e

vi is exact, i.e. η is a vector in

F[X, z]s. Since every ai ∈ F[X, z], we have that g ∈ F[X, z]s. Also, Lemma 14 established that a1 6≡ 0. We
let R equal the maximum z-degree of any nonzero component of the i = 1 term in (3), i.e. let

R = degz



a1

r
∏

j=2

(

det(Pαj
)

q1 − αjzd

)e

v1



 .

Recall that the coefficient of zd in q1 equals α1, and that α1, α2, . . . , αr are distinct elements of F. Therefore
for j 6= 1, q1 − αjz

d still contains the unique maximum z-degree monomial zd, i.e. zd appears in q1 − αjz
d

with the nonzero coefficient α1 − αj . Proposition 9 therefore gives us that

R ≤ degz(a1) + degz(v1) +

r
∑

j=2

e · degz(det(Pαj
)) − e(r − 1)d.

19

For i > 1, if ai 6≡ 0, let Ti be he minimum z-degree of any nonzero component of the ith term of (3), i.e. let

Ti = mindegz



ai

r
∏

j=2

(

det(Pαj
)

qi − αjzd

)e

vi





Note that for qi −αjz
d, if j = i, we do not have the maximum degree monomial zd appearing. Proposition 9

therefore gives us that

Ti ≥

r
∑

j=2

e · degz(det(Pαj
)) −

r
∑

j=2

e · degz(qi − αjz
d)

≥
r

∑

j=2

e · degz(det(Pαj
)) − e(r − 2)d − e(d − 1)

≥

r
∑

j=2

e · degz(det(Pαj
)) − e(r − 1)d + e.

So for any e ≥ degz(a1) + degz(v1) + 1, we get that R < Ti for every i ≥ 2 with ai 6≡ 0. Recall that we
observed before that degz(a1) + degz(v1) ≤ d3s5 + ds. This provides us with a bound on how large e needs
to be set. We therefore take

e = d3s5 + ds + 1,

and let

κ =

r
∑

j=2

e · degz(det(Pαj
)) − e(r − 1)d + e − 1.

Note that degz(det(Pαj
)) ≤ sd. Hence κ ≤ e(rds + 1) = O(rd4s6). We have shown that

[g]≤zκ = a1

r
∏

j=2

(

det(Pαj
)

q1 − αjzd

)e

v1. (4)

5.5 Constructing the ABP for the Eigenvalue q1

Lemma 16. The vector g = Me
αr

. . . Me
α3

Me
α2

u can be computed by a generalized multi-output ABP of size
O(r2d3s6+γ1 + r5+γ2ds).

Proof. Starting with the generalized multi-output ABP computing u given by Lemma 15 of size O(s1+γ1 +
r5+γ2ds), we add stages to compute the required consecutive multiplication by matrices of the form Mα, for
α ∈ F. Each such matrix multiplication can be achieved by adding O(rs1+γ1) nodes to the ABP. Namely,
Mα = Adj(Pα)Q = Adj(P −αzdQ)Q. By Item 2, Lemma 8, Q is a projection, i.e. Mα consists of r columns
selected from Adj(P −αzdQ). If we would allow arbitrary polynomials on the wires of ABPs, this means that
multiplication by Mα can be realized by one layer that is a bipartite graph with s input nodes and s output
nodes with at most rs many edges that are labeled by entries of Adj(P −αzdQ). Within the generalized ABP
model we can achieve the same, by expanding each such edge into a subprogram computing the appropriate
entry of Adj(P − αzdQ). By Theorem 3, each entry of Adj(P − αzdQ) can be computed by a generalized
ABP of size O(sγ1). This gives a overall bound of O(rs1+γ1) many added nodes to multiply by Mα.

We therefore get that the final ABP for g has size O(er ·rs1+γ1 +s1+γ1 +r5+γ2ds). This gives the required
bound stated in the lemma, since e = d3s5 + ds + 1 and r < s.

Now we can use Lemma 4, to discard the homogeneous components of g of degree larger than κ to obtain
the following corollary:

Corollary 2. [g]≤zκ can be computed by a generalized multi-output ABP of size O(r3d7s12+γ1 + r6+γ2d5s7).

20

Let ṽ1 = [g]≤zκ, i.e.

ṽ1 := a1

r
∏

j=2

(

det(Pαj
)

q1 − αjzd

)e

v1.

We know that ṽ1 ∈ F[X, z], since g ∈ F[X, z]. We apply M0 one more time to obtain the eigenvector
corresponding to v1. We have that

M0ṽ1 =

(

det(P)

q1

)

ṽ1.

We know that M0ṽ1 ∈ F[X, z], since M0 only contains polynomial entries and ṽ1 ∈ F[X, z]. Hence, if ℓ is
such that (v1)ℓ is a nonzero component (which must exist), we get that

(ṽ1)ℓ · det(P)

(M0ṽ1)ℓ

= q1. (5)

The enumerator (ṽ1)ℓ ·det(P) is computed by series composition of a generalized ABP computing det(P)
with a single output generalized ABP computing (ṽ1)ℓ, which is obtained via Corollary 2. The size of the
resulting generalized ABP can be bounded by O(r3d7s12+γ1 + r6+γ2d5s7).

The denominator is obtained by adding one more stage to the ABP from Corollary 2 in order to compute
multiplication by M0, and then simply selecting the subprogram computing the ℓth component. The size of
the resulting single output generalized ABP can be bounded by O(r3d7s12+γ1 + r6+γ2d5s7).

Finally, we apply Lemma 2 to perform the exact division for the above two ABPs. We conclude q1 can be
computed by a generalized ABP of size O((r3d7s12+γ1 +r6+γ2d5s7)γ3). The ABP for p1 is obtained by setting
z = 1 in this ABP. This shows how to extract the root p1, and completes the proof of Main Lemma 10.

6 Main Theorem

We restate the main theorem from the introduction:

Theorem 5 (Theorem 1 Restated). Let F be a field of characteristic zero. Let f ∈ F[x1, x2, . . . , xn, y] be a
nonzero polynomial that can be computed by an ABP of size s. Suppose f factors as

f = p0(p1 − y)(p2 − y) . . . (pr − y),

where {p0, p1, p2, . . . , pr} ⊂ F[x1, x2, . . . , xn] and p1, p2, . . . , pr are pairwise distinct. Then every pi has an
ABP of size at most polynomial in d, r and s, where d = maxi∈[r],pi 6≡0 deg(pi).

Proof. First we convert the ABP for f to standard form using Lemma 7. This blows up the size to O(r2s).
Next we apply Lemma 10. The composition of these two operations yields that for the function β(r, d, s)
from Lemma 6 we can write β(r, d, s) = O((r3d7(r2s)12+γ1 + r6+γ2d5(r2s)7)γ3), where γ1, γ2 and γ3 are
the absolute constants introduced in Section 2. To be concrete, by Theorem 3 and Lemma 2, we can
take γ1 = 3, γ2 = 5 and γ3 = 12. Hence we have β(r, d, s) = O((r33d7s15 + r25d5s7)12). Hence we
can write β(r, d, s) = O(r396d84s180). Hence by Lemma 6, every pi can be computed by an ABP of size
β(r, d, (rs)γ3) = O(r2556d84s2160).

7 Roots of General Arithmetic Circuits and Newton’s Method

For a univariate polynomial f(y) ∈ R[y] with f(p) = 0 for p ∈ R, Newton’s method is to start with some
initial guess y0 for p, and to compute successive (hopefully) better approximations y1, y2, . . . according to
the rule

yk+1 = yk −
f(yk)

f ′(yk)
,

where f ′ is the derivative of f . For arithmetic circuits we have the following analogue, where we compute
successively better approximations p≤k, p≤k+1, . . . to a root p ∈ F[X] of f ∈ F[X, y].

21

Lemma 17. Let f ∈ F[X, y] be such that degy(f) = r. Write f =
∑r

i=0 Ci(x)yi, and let f ′(x, y) := ∂f
∂y

=
∑r

i=1 iCi(x)yi−1. Let p ∈ F[X] be such that f(x, p) = 0 and assume that ξ0 := f ′(0, p(0)) 6= 0. Then for any
integer k ≥ 1 it holds that

p≤k+1 = p≤k −
1

ξ0
· f(x, p≤k)=k+1.

Proof. The following computation is modulo the ideal Ik+2 generated by xk+2
1 , xk+2

2 , . . . , xk+2
n , i.e. we identify

any polynomials g and h if [g]≤k+1 = [h]≤k+1.

0 ≡ f(x, p)

≡ f(x, p≤k + p=k+1)

≡

r
∑

i=0

Ci(x) (p≤k + p=k+1)
i

≡ C0(x) +

r
∑

i=1

Ci(x)
(

(p≤k)i + i · (p≤k)i−1 · p=k+1

)

≡
r

∑

i=0

Ci(x)(p≤k)i + p=k+1 ·
r

∑

i=1

i · Ci(x)(p≤k)i−1

≡ f(x, p≤k) + p=k+1 · f
′(x, p≤k)

≡ f(x, p≤k) + p=k+1 · f
′(x, p≤k)=0

Note that
f ′(x, p≤k)=0 = f ′(0, p≤k(0)) = f ′(0, p(0)) = ξ0.

We get that without going modulo Ik+2, the following equation is satisfied:

0 = f(x, p≤k)=k+1 + p=k+1 · ξ0.

This implies the statement of the lemma.

Corollary 3 (Theorem 2 Restated). Let F be a field of characteristic zero. Let f ∈ F[X, y] be a polynomial
of degree r > 0 that is computable by an arithmetic circuit of size s and let p ∈ F[X] be a nonconstant root
of f for y, i.e. f(x1, x2, . . . , xn, p) ≡ 0 and p 6∈ F. Then p can be computed by an arithmetic circuit of size
O(M(m)M(deg(p)) · deg(p) · s), where m is the multiplicity of the root p in f .

Proof. In case f ′(0, p(0)) 6= 0, we can construct an arithmetic circuit for p by repeatedly applying Lemma 17.
We compute the components of p separately, starting with p0 and p1, which we can easily compute within
size O(s). To compute p=k+1, provided we have p0, p1, . . . , p=k computed at gates somewhere already, we use
a copy of a circuit Φ that computes the homogeneous components of f up to degree k+1 ≤ deg(p). This is a
circuit for which, similar to the proof of Lemma 3, each node is split into k+1 nodes computing homogeneous
components. Let v0, v1, . . . , vk+1 be the gates in Φ corresponding to the output gate of the original circuit,
i.e. f0, f1, . . . , f=k+1 are computed at these gates. We can bound the size of Φ by O(M(k + 1)s), provided
we use a gadget of size M(k +1) that computes the coefficient map of polynomial multiplication, in order to
deal with multiplication when homogeneous components are given separately. Note that having p0, p1, . . . , pk

computed separately at gates is exactly the right format for feeding p≤k into Φ for the variable y. Namely,
for any nodes w0, w1, . . . , wk+1 that correspond10 to the splitting of an input node labeled by y, for any i,
replace any edge (wi, u) by an edge from the gate computing p=i to u. A straightforward structural induction
proves that after rewiring, for every 0 ≤ i ≤ k + 1, the gate vi computes f(x, p≤k)i. Lemma 17 tells us
that after rescaling the output of the gate vk+1 by a factor −1/ξ0, we have obtained p=k+1. We repeat

10These are just input nodes computing 0, except for w1, which computes y.

22

the previously described construction for k up to degree deg(p). This way, we obtain a circuit for p of size
O(M(deg(p)) · deg(p) · s).

If f ′(0, p(0)) = 0, then we can reduce to the above case as follows. Write f =
∑r

i=0 Ci(x)yi with

Cr(x) 6≡ 0. Let f i(x, y) = ∂if
∂iy

. Then fr(x, y) = r! · Cr(x). Since the characteristic of F is zero, r! 6= 0, so

fr(x, p) 6≡ 0. We have in this case that f0(x, p) ≡ 0. Let i be the smallest integer for which f i(x, p) 6≡ 0.
Then 0 < i ≤ r, and f i−1(x, p(x)) ≡ 0. Due to Lemma 1, y − p is an irreducible factor of f .

Claim 1. The number i equals the multiplicity of the root p in f .

Proof. Let m be the largest number for which we can write f = (p − y)m · h, for h ∈ F[X, y], i.e. m is the
multiplicity of the root p in f . We have that p− y does not divide h. Repeatedly computing partials yields:

∂f

∂y
= −m(p − y)m−1 · h + (p − y)m ∂h

∂y
.

∂2f

∂2y
= m(m − 1)(p − y)m−2 · h − m(p − y)m−1 ∂h

∂y
− (p − y)m−1 ∂h

∂y
. + (p − y)m ∂2h

∂2y
.

Note in the latter equation each term contains a factor (p−y)d, where d ≥ m−2. More generally, for k < m,

one obtains an expression for ∂kf
∂ky

as a sum a terms, where each term contains the factor (p − y)d, where

d ≥ m− k. Hence for k < m, p− y divides ∂kf
∂ky

. This implies that for k < m, fk(x, p) ≡ 0. Similarly, we get
that

fm(x, p) =

(

∂mf

∂my

)

|y:=p

= ((−1)mm! · h)|y:=p .

We know that h|y:=p 6≡ 0, since, if not, Lemma 1 would yield that p−y divides h, which is a contradiction.

We have that there exists x0 ∈ F such that f i(x0, p(x0)) 6= 0, e.g. by Lemma 5. Let g(x, y) = f i−1(x +
x0, y), and let q = p(x + x0). By Theorem 4, one gets that g is computable by a circuit of size O(M(m)s).
Let g′ = ∂g

∂y
. Then g′(x, y) = f i(x + x0, y). The polynomial g is not identically zero, and g(x, q(x)) =

f i−1(x + x0, p(x + x0)) ≡ 0, and furthermore g′(0, q(0)) = f i(x0, p(x0)) 6= 0. Now one proceeds as in the
first case, to get a circuit for q of size O(M(m)M(deg(p)) · deg(p) · s), from which one obtains a circuit for
p of size O(M(m)M(deg(p)) · deg(p) · s).

Lemma 1 implies that for the situation of the above corollary, max(m, deg(p)) ≤ deg(f). From this we
draw the following conclusion:

Corollary 4. The class VP is closed under taking roots.

References

[1] S. Toda. Classes of arithmetic circuits capturing the complexity of computing the determinant. IEICE
Trans. Inf. Syst., E75-D:116–124, 1992.

[2] Erich Kaltofen. Factorization of polynomials given by straight-line programs. In Randomness and
Computation, pages 375–412. JAI Press, 1989.

[3] P. Bürgisser. The complexity of factors of multivariate polynomials. Found. Comput. Math., 4(4):369–
396, 2004.

[4] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity testing means proving circuit
lower bounds. Computational Complexity, 13(1–2):1–44, 2004.

[5] Z. Dvir, A. Shpilka, and A Yehudayoff. Hardness-randomness tradeoffs for bounded depth arithmetic
circuits. In Proceedings of the 40th Annual STOC, pages 741–748, 2008.

23

[6] M. Jansen. Weakening assumptions for deterministic subexponential time non-singular matrix com-
pletion. In 27th International Symposium on Theoretical Aspects of Computer Science (STACS 2010),
volume 5 of Leibniz International Proceedings in Informatics (LIPIcs), pages 465–476, 2010.

[7] D.G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta
Informatica, 28(7):693–701, 1991.

[8] E. Kaltofen and P. Koiran. Expressing a fraction of two determinants as a determinant. In Proceedings,
The 19th International Symposium on Symbolic and Algebraic and Computation (ISSAC), pages 141–
146, 2008.

[9] M. Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and complexity. Chicago Journal
of Theoretical Computer Science, 1997(Article 5), 1997.

[10] N. Alon. Combinatorial nullstellensatz. Combinatorics, Probability and Computing, 8(1–2):7–29, 1999.

[11] E. Kaltofen and M. Singer. Size-efficient parallel algebraic circuits for partial derivatives. In V. Shirkov,
V.A. Rostovtsev, and V.P. Gerdt, editors, Proceedings, IV International Conference on Computer Al-
gebra in Physical Research, pages 133–145. World Scientific, 1991.

[12] L. Valiant. Completeness classes in algebra. In Proc. 11th Annual ACM Symposium on the Theory of
Computing, pages 249–261, 1979.

[13] A. Shpilka and A. Wigderson. Depth-3 arithmetic formulae over fields of characteristic zero. Journal of
Computational Complexity, 10(1):1–27, 2001.

24

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

