
Extracting Roots of Arithmetic Circuits by Adapting Numerical

Methods

Maurice Jansen ∗

January 23, 2011

Abstract

Let R = F[x1, x2, . . . , xn]. For a polynomial f ∈ R[y], we say that a polynomial p ∈ R is a
root of f , if f(p) = 0. We study the relation between the arithmetic circuit sizes of f and p for
general circuits and algebraic branching programs. An algebraic branching program (ABP) is
given by a layered directed acyclic graph with source σ and sink τ , whose edges are labeled by
variables or field constants. It computes the sum of weights of all paths from σ to τ , where the
weight of a path is defined as the product of edge-labels on the path. For the size of an ABP
we count the number of nodes in the underlying graph.

We address the following fundamental question: suppose the polynomial f can be computed
by an ABP of size s. Is the ABP size of every root p of f guaranteed to be bounded by a
polynomial in s ? For general circuits it is known that the circuit size of any root p of a
polynomial f with circuit size s is at most poly(s, deg(p),m), where m is the multiplicity of p in
f , i.e. m is the largest number such that (p − y)m divides f . This bound follows from a result
about factors of arithmetic circuits independently obtained by Kaltofen [1] and Bürgisser [2].

In this paper, we study the above question for ABPs for the case where f is assumed to
factor as f = p0 · (p1 − y)(p2 − y) . . . (pr − y), for p0, p1, . . . , pr ∈ F[x1, x2, . . . , xn] with p0 6= 0
and |{p1, p2, . . . , pr}| = r, and where p1 is degree-dominant in the sense that mindeg(p1) >
max2≤i≤rdeg(pi). For this situation, provided F has characteristic zero, we show that p1 can
be computed by an ABP of size polynomial in s.

To prove the above result, we view the question as a problem of computing eigenval-
ues. Roughly, the pis are made to appear as the eigenvalues of some matrix over the field
F(x1, x2, . . . , xn) of rational functions. This problem is then solved by adapting the numeri-
cal method of power iteration to our situation. Using power iteration makes the computation
amenable to be coded out as an ABP, since ABPs can efficiently compute iterated matrix mul-
tiplication.

In this work we adapt techniques which are well-known from numerical analysis, for use in
the area of arithmetic circuit complexity. Staying with this theme, we also improve the above
mentioned poly(s, deg(p),m) bound for the circuit size of a root p of a polynomial f computed
by an (unrestricted) arithmetic circuit of size s. Rather than applying Ref. [1, 2], we develop a
discrete analogue of Newton’s Method.

∗Laboratory for Foundations of Computer Science, School of Informatics, The University of Edinburgh. Email:
maurice.julien.jansen@gmail.com. This work was conducted while the author was a Postdoctoral Fellow at the
Institute for Theoretical Computer Science of Tsinghua University, and it was supported in part by the National
Natural Science Foundation of China Grant 60553001, 61073174, 61033001 and the National Basic Research Program
of China Grant 2007CB807900, 2007CB807901.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 118 (2010)

1 Introduction

For informal use, let us say an arithmetic circuit class C is closed under taking roots, if roots of
(families of) polynomials in C also belong to the class C. Important consequences follow for classes
that enjoy this property either completely, or for which a ‘fairly decent’ root extraction lemma can
be proved. Most notably, such a lemma is a crucial tool for the conditional derandomization of
polynomial identity testing (PIT) for the class C. For the latter well-known problem one is given
an arithmetic circuit Φ, and the problem is to decide whether the polynomial computed by Φ is
identical to the zero polynomial or not. Due to a result independently obtained by Kaltofen [1] and
Bürgisser [2], we know that the class VP of poly degree polynomial families computable by poly
size arithmetic circuits is even closed under taking factors, which implies the closure under taking
roots. In their seminal paper on PIT, Kabanets and Impagliazzo [3] use this to give a deterministic
subexponential time algorithm for identity testing ‘VP-circuits’, under the assumption that there
exist some explicit polynomial fn that requires super-polynomial arithmetic circuit size.

For more restricted classes C, it is interesting to consider the question whether PIT for C can
be achieved deterministically under any weaker assumptions. When using the framework of Ref.
[3], the situation where C is closed under taking roots is ideal, since any loss incurred at the
root extraction stage is directly reflected in the quality of the resulting hardness to randomness
conversion. Examples of research efforts that follow this approach are the works by Dvir, Shpilka
and Yehudayoff [4] and Jansen [5].

In Ref. [4] a root extraction lemma is proved for constant depth arithmetic circuits with O(1) loss
in the depth, that works well under the promise that the computed polynomials are of low degree.
Consequently, a corresponding hardness to randomness conversion is obtained that applies to a low
degree promise version of PIT for depth d − O(1) circuits, assuming the existence of an explicit
polynomial that is hard for arithmetic circuits of constant depth d. For ABPs a root extraction
lemma is proved in Ref. [5], again with parameters working well only for low degree polynomials.
Using this, it is proved that a certain low degree promise version of PIT for ABPs can be solved
deterministically in subexponential time, assuming some explicit polynomial is hard for ABPs. In
this paper we make progress towards showing that the arithmetic circuit class VDET of polynomial
families computable by poly size ABPs is closed under taking roots. The latter statement, if true,
would yield a deterministic subexponential time PIT algorithm for VDET, under the assumption
that there exists some explicit family of polynomials that requires ABPs of super-polynomial size.

Already implicit in Ref. [4, 5] was the use of a discrete analogue of Newton’s Method. We will
revisit this, to give a self-contained proof of the fact that VP is closed under taking roots. The
resulting argument may serve as a conceptual simplification in Ref. [3], in the sense that calling
upon the more involved works Ref. [1, 2] is avoided. For ABPs however, it is hard to imagine
that this technique will ultimately lead to an optimal root extraction lemma. In this paper we
investigate a new approach. We cast the problem as a task of computing eigenvalues, and adapt
the method of power iteration to our domain. This way, since ABPs can efficiently compute matrix
multiplication, we avoid the explosion in ABP size seemingly inherent to adaptations of Newton’s
Method.

In the continuous domain, given a real s × s matrix M , say with real eigenvalues λ1 > λ2 >
. . . > λs > 0 and a corresponding independent set of unit eigenvectors v1, v2, . . . , vs, a well-known
heuristic for finding an approximation to the largest eigenvalue λ1 is to apply power iteration.
Here, starting with some vector u that is typically selected at random, writing u in the eigenbasis
as u = a1v1 + a2v2 + . . .+ asvs, for certain scalars ai, one applies a large power of M to u to obtain

2

M eu = a1λ
e
1v1 + a2λ

ev2 + . . . + asλ
evs. After normalization, the term a1λ

e
1v1 will be the dominant

one, and thus the normalized sum will converge to v1 as e → ∞. Once an approximation ṽ1 to v1

is obtained, one may approximate λ1 by computing, for some nonzero component (ṽ1)ℓ, the ratio
(Mṽ1)ℓ/(ṽ1)ℓ.

We will adapt the method of power iteration to construct small ABPs for roots of ABPs. Similar
to the above example for the continuous domain, the method enables one to obtain an ABP for
the root which is degree-dominant, in the sense that its minimum degree term has degree larger
than the degree of any other root. This work provides a case study of how standard tools from
numerical analysis can be made available in the area of arithmetic circuit complexity, and hopefully
stimulates further research into this direction.

1.1 Results

Our first result is the following theorem1:

Theorem 1. Let F be a field of characteristic zero. Let f ∈ F[x1, x2, . . . , xn, y] be a nonzero
polynomial that can be computed by an ABP of size s. Suppose f factors as

f = p0(p1 − y)(p2 − y) . . . (pr − y),

where {p0, p1, p2, . . . , pr} ⊂ F[x1, x2, . . . , xn] with |{p1, p2, . . . , pr}| = r and mindeg(p1) >
max2≤i≤rdeg(pi). Then p1 has an ABP of size at most polynomial in d, r and s, where d =
maxi∈[r],pi 6=0 deg(pi).

An ABP of size s computes a polynomial for which both its total degree and the individual degree
of any variable is bounded by s. This implies that in the above theorem both r and d are at most
s. For comparison, Lemma 2.10 of Ref. [5] yields2 an upper bound of s · 2O(log2 deg(pi))r4+log deg(pi)

for the size of an ABP for pi.
For our second result, define the function M(d) to be an upper bound on the size of an arithmetic

circuit for computing the multiplication of two univariate polynomial g and h in F[z] of degree at
most d, given the coefficients of g and h as input variables. By a result of Cantor and Kaltofen [6],
one can take M(d) = O(d log d log log d), over any field F. For (unrestricted) arithmetic circuits we
have the following theorem:

Theorem 2. Let F be a field of characteristic zero. Let R = F[x1, x2, . . . , xn]. Let f ∈ R[y] be a
polynomial of degree r > 0 that is computable by an arithmetic circuit of size s and let p ∈ R be a
nonconstant root of f for y, i.e. f(p) ≡ 0 and p 6∈ F. Then p can be computed by an arithmetic
circuit of size O(M(m)M(deg(p)) · deg(p) · s), where m is the multiplicity of the root p in f .

Due to a Lemma by Gauss (Lemma 1), in the above situation p is a root of f if and only p− y
is an irreducible factor of f in F[x1, x2, . . . , xn, y]. Using Ref. [1, 2] to obtain arithmetic circuits
for the factor p − y, as done in Ref. [3], yields a circuit for the root p of size O(M(deg(p)3m)(s +
deg(p) log m)). It can be verified that our result is an improvement over the bound obtained this
way.

1In a preliminary version of this paper, which appeared at The 2nd Symposium on Innovations in Computer
Science (ICS 2011), it was claimed erroneously that this could be done soly under the assumption that p1, p2, . . . , pr

are distinct. It is an interesting open problem whether the techniques demonstrated in the current paper can be
generalized to this restricted multiplicity case.

2Note that this lemma is stated for skew circuits, but inspection of the proof yields the given bound.

3

2 Preliminaries

Let F be a field of characteristic zero. Let X = {x1, x2, . . . , xn} be a set of indeterminates. Let
R = F[X]. Let G denote the field of rational functions F(X). For a polynomial f ∈ R[y] and p ∈ R,
f|y=p denotes the polynomial obtained by substituting p for y in f . In case f|y=p = 0, we say that
p is a root of f for y. Recall the following lemma by Gauss:

Lemma 1 (Gauss). Let f ∈ F[X, y] be a nonzero polynomial, and let p ∈ F[X] be a root of f for
y. Then p − y is an irreducible factor of f in the ring F[X, y].

In the above situation, the multiplicity of the root p is defined to be the largest number m
such that (p − y)m divides f . The Vandermonde determinant is defined to be the polynomial
Vandet(x1, x2, . . . , xn) =

∏

1≤i<j≤n(xi −xj). For two polynomials f and g, if there exists a polyno-
mial h such that f = gh, we say g divides f , and that the division f/g is exact. Total degree of a
polynomial f is denoted by deg(f). For a vector v of polynomials, we define deg(v) = maxj deg(vj).
For a polynomial f ∈ F[X], we denote by [f]=i, or simply f=i, the homogeneous component of de-
gree i. Similarly, we use the notations f≤i, f≥i, [f]≤i and [f]≥i. We will also use this notation
for vectors of polynomials. For example, (f, g, h)≤i = (f≤i, g≤i, h≤i). For a nonzero polynomial f ,
mindeg(f) is the minimum i such that f=i is nonzero, We extend this to any nonzero vector v of
polynomials, by letting mindeg(v) = minj,vj 6=0 mindeg(vj).

For a matrix M , we denote by M [[i, j]] the matrix obtained by removing row i and column
j. Let us denote by M [i, j] the matrix obtained from M by setting all entries in row i and
column j to 0, except for entry Mi,j , which is set to 1. Using Laplace expansion along row i
of M [i, j] one immediately concludes that the following holds: for any matrix M , det(M [i, j]) =
(−1)i+j det(M [[i, j]]). For a s × s matrix M , Adj(M) denotes the s × s adjugate matrix of M ,
defined by Adj(M)ij = det(M [j, i]). For any matrix M , MAdj(M) = Adj(M)M = det(M)I,
where I denotes the identity matrix.

An arithmetic circuit Ψ over variables X and field F is given by a directed acyclic graph whose
nodes of in-degree larger than zero are labeled by {+,×}, and with other nodes labeled by elements
of X ∪ F. At each node g of Ψ we have associated a polynomial in F[X] computed by g, which is
defined in the standard manner. The output of Ψ is the polynomial computed by some designed
output gate. For the size of Ψ we count the number of edges. The size of a polynomial f , denoted
by s(f), is the size of the smallest arithmetic circuit computing f . We let VP stand for the class
of polynomial families (fn) for which there exists a polynomial p(n) such that deg(fn) ≤ p(n) and
s(fn) ≤ p(n).

An algebraic branching program (ABP) over X and F is a 4-tuple Φ = (G, w, σ, τ), where
G = (V, E) is a weighted directed acyclic graph for which the vertex set V can be partitioned into
levels L0, L1, . . . , Lℓ, where L0 = σ and Lℓ = τ . Vertices σ and τ are called the source and sink of
Φ, respectively. Edges may only go between consecutive levels Li and Li+1. The subgraph induced
by Li and Li+1 is called a layer of Φ. The weight function w : E → X ∪ F assigns variables or field
constants to the edges of G. For a path p in G, we extend the weight function by w(p) =

∏

e∈p w(e).
Let Pi,j denote the collection of all directed paths p from i to j in G. The program Φ computes
the polynomial Φ̂ :=

∑

p∈Pσ,τ
w(p). The size of Φ is defined to be |V |. For nodes v and w in Φ,

Φv,w denotes the subprogram of Φ with source v and sink w.
We will also consider “multi-output” ABPs. In this case the last layer of the A consists of

several sink nodes τ1, τ2, . . . , τm. The output of the ABP is given by the tuple of polynomials
(f1, f2, . . . , fm) computed by the subprograms Aσ,τ1 , Aσ,τ2 , . . . , Aσ,τm .

4

ABPs are convenient when dealing with substitution. It is easily seen that if g can be computed
by an ABP Ag of size sg and f is computed by an ABP Af of size sf , then f|xi=g can be computed
by an ABP of size O(efsg), where ef = O(s2

f) is the number of edges in Af . For the analysis, we
define absolute constants γ1 = 3, γ2 = 5, γ3 = 12. We use a result by Mahajan and Vinay and a
result by Kaltofen and Koiran.

Theorem 3 (See Theorem 2 in [8]). The determinant of an n × n matrix can be computed by an
ABP of size O(nγ1) with O(nγ2) many edges.

Lemma 2 (See3 [7]). Suppose |F| is infinite. Let f, g ∈ F[X] be given that both are computable by
ABPs of size at most s. Assuming the division f/g is exact, then f/g can be computed by an ABP
of size O(sγ3).

The following lemma is proved by the well-known trick of ‘splitting’ nodes in order to keep track
of degree components.

Lemma 3. Let d ≥ 0 be an integer. Let Φ be an ABP of size s with e many edges computing the
polynomial f ∈ F[X]. Then there exist an ABP Ψ of size O(ds) and O(de) many edges computing
[f]≤d. Similarly for f≥d and f=d. Also, a similar statement holds for multi-output ABPs.

Finally, we use a result by Kaltofen and Singer for computing formal partial derivatives. We

use the notation ∂kf

∂ky
to denote the formal partial derivative of f of order k w.r.t. the variable y.

Theorem 4 (Theorem 3.1 in [10]). For any integer k ≥ 0, if f ∈ F[X, y] can be computed by an

arithmetic circuit of size s, then ∂kf

∂ky
can be computed by an arithmetic circuit of size O(M(k) · s).

3 Standard Form ABPs, Valiant Matrices and Homogenizations

Definition 1. Let f ∈ F[X, y] be a polynomial whose degree in y equals r, and write f =
∑r

i=0 Cr(x)yr. We say an ABP Φ with source σ and sink τ computing f is in standard form,
if it has the following structure:

• There is a set of distinct nodes {b0, b1, . . . , br}, such that for each i ∈ {0, 1, . . . , r}, there is
an edge from the source σ to bi with label 1. These are the only edges adjacent to the source.

• There are distinct nodes c0, c1, . . . , cr. The subprograms in the set {Φbi,ci
: i ∈ [r]} are disjoint

as graphs. For every i ∈ {0, 1, . . . , r}, the subprogram Φσ,ci
computes Ci(x).

• There is a path cr = a0, a1, . . . , ar−1, ar = τ , where each edge (ai, ai+1) is labeled with the
variable y. These are the only occurrences of y variables in Φ.

• All remaining edges are labeled with the constant one. These simply realize that for every
0 ≤ i < r, there is one single path of weight 1 from ci to ar−i.

• the length of every path from σ to τ is even.

The following lemma follows along similar lines as Lemma 3:

3This follows from From Lemma 1 and Lemma 2 in Ref. [7]. We get an extra quadratic blow-up of s, since the
DAG we use for ABPs must be leveled.

5

Lemma 4. Let f ∈ F[X, y] be computed by an ABP Φ of size s, and let r = degy(f). Then f
can be computed by an ABP Ψ in standard from of size O(sr2). This means in particular that the
variable y appears exactly r times on an edge in Ψ.

Given an ABP Φ of size s computing f , we can construct a matrix M(Φ) of order s, whose
entries are variables and field elements, such that det(M) = f , as done in [11]. Namely, thinking of
Φ as a graph, one adds a loop back from τ to σ with label 1, and one puts a self loop on all nodes
other than σ and τ with label 1. Wlog. we make the following convention:

Convention 1. We assume nodes in Φ always carry a unique number ∈ [s], which we then use to
index columns/rows, and we assume that nodes a0, a1, . . . , ar are numbered 1, 2, . . . , r + 1, respec-
tively.

Let M(Φ) be the adjacency matrix of the weighted graph obtained this way, which we call the
Valiant matrix associated to Φ. Assuming wlog. that the length of every path from σ to τ in Φ is
even, then det(M(φ)) = f . In our notation, we will use variable names of nodes of Φ to index the
matrix M(Φ), and also do this for s-vectors operated on. For example, for the standard form ABP
Φ for Definition 1, the entry M(Φ)a0a1

equals y.
We let Π : F

s → F
s denote the projection mapping Π(a1, a2, . . . , as)

T =
(0, a2, . . . , ar+1, 0 . . . , 0)T , and we let Σ : F

s → F
s denote the mapping that performs a cyclic

shift by one as follows: Σ(a1, a2, . . . , as)
T = (a2, a3, . . . , as, a1)

T . As is standard practice, we will
also use Π and Σ to denote matrices that realize these mappings relative to the standard basis.

Φbr,cr
Φbr−1,cr−1

Φbr−2,cr−2
Φb0,c0

σ

τ = ar

ar−1

y

y

y

y

a0 = cr

a1

a2

br br−1 br−2 b0

cr−1 cr−2 c0

. . .

Figure 1: Schematic depiction of an ABP Φ in standard form computing f =
∑r

i=0
Cr(x)yr. For each i,

the subprogram Φbi,ci
computes Ci(x).

6

Proposition 1. In the above situation, we can write for some matrix A with entries in F ∪ X,
M(Φ) = A − yB, where −B = ΣΠ.

Proof. −B is a 0, 1-matrix that has a 1 on entry −Bij iff edge (i, j) is labeled with y. With out num-
bering convention, −B contain precisely r ones, and these are on entries −B12,−B23, . . . ,−Br,r+1.
This implies −B can be written as a projection on to coordinates 2, 3, . . . , r+1, followed by a shift,
i.e. −B = ΣΠ.

3.1 A Closed Form for Eigenvectors Related to the Valiant Matrix

The following proposition is easily proved using Laplace expansion:

Proposition 2. Let M be a singular matrix of order m. For any fixed i, if we define the m-vector
v by taking vj = det(M [i, j]), then Mv = 0.

Next we derive the main lemma of this subsection.

Lemma 5. Let Φ be an ABP of size s in standard form computing the polynomial f =
∑r

i=0 Ci(X)yr ∈ F[X, y] of degree r in y. Let nodes a0, b0, c0, a1, b1, c1, . . . , ar, br, cr be given as
in Definition 1, which implies the subprogram Φσ,ci

computes Ci(X). Let M(Φ) be the associated
standard form Valiant matrix. Suppose that q ∈ F[X] is such that f|y=q ≡ 0. Let N be the matrix
obtained by setting y = q in M(Φ), i.e. N = M(Φ)|y=q. Suppose we define the s-vector v by
(v)j = det(N [cr, j]), for all j ∈ [s]. Then the following hold:

1. Nv = 0.

2. deg(det(N [ci, j])) ≤ sdeg(q).

3. ∀j ∈ [r], (v)aj
= qr−j · (−1)j+1Cr(X).

By our labeling convention, the last item mean ∀j ∈ [r], (v)j+1 = qr−j · (−1)j+1Cr(X), and hence
also ∀j ∈ [r], (Πv)j+1 = qr−j · (−1)j+1Cr(X).

Proof. We recall the notion of a cycle cover for later use. A cycle cover C in a directed graph
G = (V, E) with n vertices is a set of disjoint simple cycles C1, C2, . . . , Ci such that every vertex in
G is contained in some cycle Ci. For weighted G, the weight of a cycle C is taken to be the product
of weights of edges in C. For a simple cycle C we define its sign sgn(C) to be −1 if C is of even
length, and 1 otherwise. For the cycle cover C, define sgn(C) =

∏

i sgn(Ci).
Observe that det(N) = det(M(Φ)|y=q) = f|y=q ≡ 0. Hence the first property follows from

Proposition 2. The second property is clear. To verify the last property, let j ∈ [r] be arbitrary.
Consider the matrix N = M(Φ)|y=q. Let G be the weighted graph corresponding to M(Φ). We can
think of the matrix N [cr, aj] as the adjacency matrix of a graph H formed by doing the following
to G:

• replacing all y-labels in G by q.

• Removing all edges out of cr, including the self loop.

• Removing all edges into aj , including the self loop.

• Adding the edge From cr to aj with label one.

7

Then det(N [cr, aj]) =
∑

C sgn(C)w(C), where the sum is over all cycle covers in H. Observe
that since cr and aj do not have self-loops, any cycle cover C in H must include the edge (cr, aj).
So the cycle covers are of the following structure: 1) From the source σ there is a path to cr, 2) The
edge (cr, aj) is taken, 3) r − j edges with label q are taken, 4) Finally, the loop back from ar = τ
to the source σ is taken, and self-loops with label 1 are taken for all vertices not included in above
cycle.

All of the above described cycles starting at the source σ are of the same length. In case j = 1
the length equals the same ‘big cycle length’ as in M(Φ), which is odd. For general j, by considering
how many edges we skip with the edge (cr, aj) one can conclude that sgn(C) = (−1)j+1. Hence
det(N [cr, aj]) =

∑

C sgn(C)w(C) = (−1)j+1
∑

C w(C). The expression
∑

C w(C) equals the sum
of weights of all paths from σ to τ that go over (cr, aj). Since these paths all go over cr, this sum
factors as Cr(X, z) (weight of all paths from σ to cr) times qr−j (weights of path “(cr, aj), followed
by going from aj to τ”).

4 Proof of Theorem 1

We first prove the following lemma:

Lemma 6. Let f ∈ F[X, y] be a polynomial of degree r > 1 computed by a standard form ABP Φ
of size s. Suppose f factors as

f =
∏

i∈[r]

(pi − y),

where {p1, p2, . . . , pr} ⊂ F[X] is a set of pairwise distinct nonzero polynomials and such that

mindeg(p1) > max2≤i≤rdeg(pi).

Then p1 can be computed by an ABP of size O(dγ2

3
+2γ3rγ2

3s(γ1+γ2+4)γ2

3
+4γ3), where d =

maxi∈[r] deg(pi) and γ1, γ2 and γ3 are the absolute constants introduced in Section 2.

Proof. We will show the method for obtaining p1.

4.1 Towards Computing Eigenvectors

Consider the associated Valiant matrix M(Φ). Note that f|y=0 6= 0. By Proposition 1 we can write

M(Φ) = A − yB.

Then f = det(A − yB). We have the following two properties:

1. −B = ΣΠ

2. A is invertible over F(X).

Lemma 7. Let nodes {ai, bi, ci : i ∈ [r]} in Φ be given as in Definition 1. Let Ci(X) be the
polynomial computed by the subprogram Φσ,ci

. Clearly, we have that f =
∑r

i=0 Ci(X)yi. For all
i ∈ [r], we define the column vector vi by letting for every j ∈ [s], (vi)j = det(Npi

[cr, j]), where
Npi

= Npi
= A − piB. Then the following hold:

1. For every i ∈ [r], Npi
vi = 0.

8

2. For every i ∈ [r], deg(vi) ≤ sd.

3. Letting ei be the standard basis vector with 1 in the ith position, then for

V := [v1, v2, . . . , vr, e1, er+2, . . . , es],

it holds that
det(V) = (±1) · Vandet(p1, p2, . . . , pr).

4. Vandet(p1, p2, . . . , pr)
2 can be computed by an ABP of size O(r5+γ2ds), where γ2 is the absolute

constant introduced in Section 2.

Proof. The first and second item immediately follow from Lemma 5, Items 1 and 2. Note that
Cr(X) = coef(yr, f0) = (−1)r. By Lemma 5, Item 3, the matrix V ′ = [v1, v2, . . . , vr] consisting
of the r column vectors v1, v2, . . . , vr contains (modulo multiplying columns by −1) the r × r
Vandermonde matrix (pj

i)0≤j≤r−1,1≤i≤r. as a submatrix on rows in the set J = {aj : j ∈ [r]}. By
convention, J = {2, 3, . . . , r + 1}. Hence det(V) = (±1) · Vandet(p1, p2, . . . , pr). The proof of the
fourth property we treat in the next subsection.

Remark 1. Note that for v1, v2 . . . , vr as in the above, for

V ′ := [Πv1, Πv2, . . . ,Πvr, e1, er+2, . . . , es],

it also holds that
det(V ′) = (±1) · Vandet(p1, p2, . . . , pr).

as det(V ′) = det(V). Also note that det(V ′) 6= 0, as p1, p2, . . . , pr are pairwise distinct.

4.2 A Small ABP for Computing Vandet(p1, p2, . . . , pr)
2

This subsection is dedicated to proving Item 4 of Lemma 7. Define the polynomial

Ti(x1, x2, . . . , xr) = xi
1 + xi

2 + . . . + xi
r.

We use the fact4 that

det











T0 T1 . . . Tr−1

T1 T2 . . . Tr

...
Tr−1 Tr . . . T2r−2











(1)

= Vandet(x1, x2, . . . , xr)
2. (2)

The strategy is to express each Ti as a ‘small’ formula of Sj
r(x1, x2, . . . , xr), where Sj

r is the ele-
mentary symmetric polynomial in r variables of degree j, i.e.

Sj
r(x1, x2, . . . , xr) =

∑

I⊂[r],|I|=j

∏

i∈I

xi.

4This follows by multiplying the Vandermonde matrix with nodes x1, x2, . . . , xr by it transpose.

9

It is well-known that the Tis and Sj
rs are related through the Newton Identities.

At first sight it may look like we have run into a circular argument. How do we plug in the pis?
This bootstrapping problem is resolved by observing that, if we succeed in the above5, regardless of
not having small ABPs for the pis, we readily have small ABPs for any Sj

r(p1, p2, . . . , pr). Namely,
consider the following remark and subsequent derivation:

Remark 2. For every j, Sj
r(p1, p2, . . . , pr) equals the coefficient of yr−j of f modulo a factor of

±1. Hence an ABP Φj computing Sj
r(p1, p2, . . . , pr) of size at most s is easily obtained from the

standard form ABP Φ.

4.2.1 A Formal Power Series Identity Related to the Newton Identities

Let w be an new variable. We have the following lemma:

Lemma 8. Provided the characteristic of F is zero, we have the following identity in the ring of for-
mal power series F[[X]]:

∑

ℓ≥1
1
ℓ
(
∑r

j=1(−1)jSj
r(x1, x2, . . . , xr)w

j)ℓ =
∑

n≥1
−wn

n
Tn(x1, x2, . . . , xr).

Proof. We recall the definitions of the formal power series (FPS) exp(w) and log(1−w). These are
given by exp(w) =

∑

n≥0
wn

n! . and log(1 − w) = −
∑

n≥1
wn

n
. We will use that exp(log(1 − wxj)) =

1 − wxj . Hence

∏

j∈[r]

(1 − wxj)

=
∏

j∈[r]

exp(log(1 − wxj))

= exp(
∑

j∈[r]

log(1 − wxj))

= exp(−
∑

j∈[r]

∑

n≥1

(wxj)
n/n)

= exp(−
∑

n≥1

Tn(x1, x2, . . . , xr)w
n/n)

Hence, by multiplying out the l.h.s. we get that

r
∑

j=1

(−1)jSj
n(x1, x2, . . . , xr)w

j =

exp(−
∑

n≥1

Tn(x1, x2, . . . , xr)w
n/n) − 1.

Now we use that for g(w) := −
∑

n≥1 Tn(x1, x2, . . . , xr)w
n/n, it holds that log(1+(exp(g(w))−1)) =

5In [12] the converse is achieved to get small depths formulas for Sj
r .

10

g(w). Thus applying log(1 + w) to both sides of the above equation yields that

−
∑

n≥1

Tn(x1, x2, . . . , xr)w
n/n =

log(1 −
r

∑

j=1

(−1)jSj
n(x1, x2, . . . , xr)w

j) =

∑

ℓ≥1

1

ℓ
(

r
∑

j=1

(−1)jSj
n(x1, x2, . . . , xr)w

j))ℓ.

In the following, we truncate the expression on the l.h.s. in the above lemma, discarding terms
that cannot possibly contribute to the coefficient of wi. Then we do some circuit manipulations to
extract the coefficient of wi, and this way we obtain an ABP computing Ti in terms of the Sj

rs.

Proposition 3. Let u1, u2, . . . , ur be a set of new variables. For any i ∈ [r] the following statements
are true. Let E(u1, u2, . . . , ui, w) =

∑

1≤ℓ≤i
1
ℓ
(
∑i

j=1(−1)jujw
j)ℓ. Then

1. There exists an ABP Γ(u1, u2, . . . , ui, w) with O(i3) many edges computing E.

2. There exists an ABP Γ′(u1, u2, . . . , ui) with O(i4) many edges computing the coefficient of wi

in E.

3. Say Γ′ computes the polynomial E′. Then

E′(S1
r (x), S2

r (x), . . . , Si
r(x))

= −Ti(x1, x2, . . . , xr)/i.

Proof. The first item is left as an easy exercise. Then second item then follows by applying Lemma 3.
The last item follows from Lemma 8.

4.2.2 Putting It Together

By Proposition 3,

E′(S1
r (p1, . . . , pr), . . . , S

i
r(p1, . . . , pr))

= −Ti(p1, . . . , pr)/i.

By Remark 2 and comments thereafter, we conclude that for any i ∈ [r], we have an ABP com-
puting Ti(p1, . . . , pr) of size O(r5ds). The r × r determinant can be computed by an ABP with
O(rγ2) many edges by Theorem 3. Hence using Equation (2) we obtain an ABP for computing
Vandet(p1, p2, . . . , pr)

2 of size O(r5+γ2ds).

4.3 Selecting a Good Starting Vector u

Let s × s matrix V = [v1, v2, . . . , vr, e1, er+2, . . . , es] be given by Lemma 7. We have the following
straightforward proposition:

Proposition 4. ∀α ∈ F, Adj(A)Bvi = det(A)
pi

· vi.

11

Proof. By Lemma 7, Item 1, it holds that Avi = piBvi, for any i ∈ [r]. Therefore, Adj(A)Bvi =
det(A)

pi
· vi.

For each i ∈ [r], let wi = Πvi. Let V ′ = [w1, w2, . . . , wr, e1, er+2, . . . , es]. As we observed in
Remark 1, we have that det(V ′) = det(V).

Lemma 9. There exists a nonsingular matrix M and nonzero polynomial g such that

• for each i ∈ [r], Mwi = gpiwi.

• M has entries ∈ F[X] that are of degree at most s2.

• Each entry of M can be computed by an ABP of size O(sγ1+γ2).

• g has degree at most s2 and can be computed by an ABP of size O(sγ1+γ2).

Proof. Since −B = ΣΠ, we get by Proposition 4 that

Adj(A)ΣΠvi = −
det(A)

pi
vi

Applying the projection Π both on the left and right of the above equation, and using that
∀v,ΠΠv = Πv, we get that

(ΠAdj(A)ΣΠ)Πvi = −
det(A)

pi
Πvi.

We want to invert the action of Adj(A)Σ on Im(Π) and scale up by det(A). Note that ΠAdj(A)ΣΠ is
obtained from Adj(A)Σ by setting to zero entries outside the minor on rows/columns 2, 3, . . . , r+1.
Let P be the matrix

P = ΠAdj(A)ΣΠ + diag(c1, c2, . . . , cs).

where c1 = 1, c2 = 0, c3 = 0, . . . , cr+1 = 0, cr+2 = 1, cr+3 = 1, . . . , cs = 1. By the above, for each
i ∈ [r],

Pwi = −
det(A)

pi
wi.

We claim that P is nonsingular. Namely, as we observed before, det(A) 6= 0. We know that
w1, w2, . . . , ws, e1, er+2, . . . , es is a basis, since det(V ′) 6= 0. Note that P acts as an identity on
e1, er+2, . . . , es. We conclude that P applied to any vector in this basis results in a nonzero scaling
of the vector, and hence P is nonsingular. Let

M = −det(A)Adj(P).

and g = det(P). Then M = −det(A)gP−1. Hence

Mwi = gpiwi.

Using Theorem 3 it is straightforward to verify the bounds on the degrees of M and g and the sizes
of their respective ABPs.

The following lemma now follows easily:

12

Lemma 10. ∃i ∈ {2, 3, . . . , r + 1} such that

det(V ′)2Mei = a1w1 + a2w2 + . . . + arwr,

where M is the matrix given by Lemma 9, and

1. ∀i, ai ∈ F[X],

2. a1 6= 0, and

3. ∀i, deg(ai) ≤ (2d + 1)s2.

Proof. We have that w1, w2, . . . , wr forms a basis of Range(Π), since rank(Π) = r and
w1, w2, . . . , wr ∈ Range(Π) are independent. By Lemma 9, w1, w2, . . . , wr forms a basis of
MRange(Π). Hence dim(MRange(Π)) = r. The set {e2, e3, . . . , er+1} is also a basis of Range(Π).
Hence for every ei with i ∈ {2, 3, . . . , r+1}, we can write det(V ′)2Mei = a1,iw1+a2,iw2+. . .+ar,iwr,
for certain a1,i, a2,i, . . . , ar,i ∈ G. Suppose that for every i ∈ [s], a1,i = 0. This means that
MRange(Π) ⊆ span(w2, . . . , wr). Hence dim(MRange(Π)) < r, which is a contradiction.

Now let i be such that a1,i 6= 0. The coefficients a1,i, a2,i, . . . , ar,i can be obtained as the first
r components of the vector (V ′)−1 det(V ′)2Mei = det(V ′) · Adj(V ′)Mei. Note that this implies all
ai are in F[X], as all of V ′, Adj(V ′) and M only have polynomial entries. The degrees of entries in
Adj(V ′), and also deg(det(V ′)), can be bounded by ds2, since entries of V ′ have degree at most sd
due to Item 2, Lemma 7. By Lemma 9 entries of M have degrees bounded by s2. Hence any ai has
degree at most (2d + 1)s2.

Let i be given by the above lemma, and fix the vector u = det(V ′)2Mei. This vector will be the
starting point for applying power iteration. To stress, this is an element of F[X]s, since V ′, M and
ei only contain polynomial entries.

Lemma 11. u can be computed by a multi-output generalized ABP of size O(r5+γ2ds + sγ1+γ2+2).

Proof. By Lemma 7, we have an ABP B1 of size O(r5+γ2ds) computing the polynomial det(V ′)2.
By Lemma 9 each entry of M can be computed by an ABP of size O(sγ1+γ2). By putting these in
series we obtain a multi-output ABP for u of size O(r5+γ2ds + sγ1+γ2+2).

4.4 Applying Power Iteration

Now we are ready to start applying power iteration in order to isolate the single eigenvector w1

and consequently find the corresponding eigenvalue. We have that u = a1w1 + a2w2 + . . . + arwr,
for certain ai ∈ F[X], as given by Lemma 10.

Let κ = mindeg(p1). Let B = max2≤i≤r deg(aiwi). By Lemma 7 and Lemma 10, B ≤ (2d +
1)s2 + sd. Set e = B + 1. When we apply M e to our chosen starting point u, by linearity over G

of M , we have that

u′ := M eu =
∑

i∈[r]

ai (gpi)
e wi.

We let

u′′ =
u′

ge
.

13

Then
u′′ =

∑

i∈[r]

ai (pi)
e wi

Let u′′′ = [u′′]≥κe. Note that for any 2 ≤ i ≤ r, deg(aip
e
iwi) ≤ B + (κ − 1)e, whereas

mindeg(a1p
e
1w1) ≥ κe. Since we set e = B + 1, we have that for any, 2 ≤ i ≤ r, deg(aip

e
iwi) < κe.

Hence
u′′′ = a1p

e
1w1.

4.5 Constructing the ABP for the Eigenvalue p1

Iterated matrix multiplication is coded easily with ABPs, which yields the following lemma:

Lemma 12. The vector u′ can be computed by a multi-output ABP of size O(drsγ1+γ2+4).

Proof. Starting with the generalized multi-output ABP computing u given by Lemma 11 of size
O(r5+γ2ds + sγ1+γ2+2), we add stages to compute the required consecutive multiplication by M .
By Lemma 9, each such matrix multiplication can be achieved by adding O(sγ1+γ2+2) nodes to the
ABP. We therefore get that the ABP for u′ has size O(esγ1+γ2+2 + r5+γ2ds). This gives the bound
O(dsγ1+γ2+4 + r5+γ2ds), since e = B + 1 ≤ (2d + 1)s2 + ds + 1 = O(ds2). Since γ1 must always be
at least 1, and r ≤ s, we can crudely simplify this bound to O(drsγ1+γ2+4).

Corollary 1. The vector u′′ can be computed by a multi-output ABP of size
O(dγ3rγ3s(γ1+γ2+4)γ3+2).

Proof. By Lemma 9, we can compute ge by an ABP of size O(esγ1+γ2) = O(dsγ1+γ2+2). We then
apply Lemma 2 to get for each entry of u′′ an ABP of size O(dγ3rγ3s(γ1+γ2+4)γ3).

Note that we can bound deg(u′′) = O(d2s2). Hence Lemma 3 and Corollary 1 give that

Corollary 2. The vector u′′′ can be computed by a multi-output ABP of size of size
O(dγ3+2rγ3s(γ1+γ2+4)γ3+4).

We apply M one more time to obtain the eigenvector corresponding to w1. We have that

Mu′′′ = gp1u
′′′.

We know that Mu′′′ ∈ F[X], since M only contains polynomial entries and u′′′ ∈ F[X]. Hence, if ℓ
is such that (u′′′)ℓ is a nonzero component (which must exist), we get that

(Mu′′′)ℓ

g(u′′′)ℓ
= p1.

Both for the enumerator and denominator in the above expression we have ABPs of size
O(dγ3+2rγ3s(γ1+γ2+4)γ3+4). Finally, we apply Lemma 2 to perform the exact division. Hence p1

can be computed by a ABP of size O(dγ2

3
+2γ3rγ2

3s(γ1+γ2+4)γ2

3
+4γ3). This completes the proof of

Lemma 6.

We can now prove Theorem 1. By Lemma 3, we have an ABP for the coefficient of yr in f of
size O(rs). This program computes (−1)rp0. If there are pis that are constant, any of these can be
computed by ABPs with size at most O(1). We use Lemma 2 to obtain an ABP of size O(rγ3sγ3),

14

where we have divided out p0 and any such linear factors. After this we we convert the ABP to
standard form using Lemma 4. This blows up the size to s′ = O(rγ3+2sγ3). We can now apply
Lemma 6 to obtain an ABP for p1 of size O(dγ2

3
+2γ3rγ2

3 (s′)(γ1+γ2+4)γ2

3
+4γ3), where γ1, γ2 and γ3 are

the absolute constants introduced in Section 2. We conclude p1 has an ABP of size poly(d, r, s).

5 Roots of Arithmetic Circuits and Newton’s Method

For f(y) ∈ R[y] with f(p) = 0 for p ∈ R, recall the update rule for Newton’s method yk+1 = yk −
f(yk)
f ′(yk) , where f ′ is the derivative of f . For arithmetic circuits we have the following analogue, where

we compute successively better approximations p≤k, p≤k+1, . . . to a root p ∈ F[X] of f ∈ F[X, y].

Lemma 13. Let f ∈ F[X, y] and let f ′(x, y) := ∂f
∂y

. Let p ∈ F[X] be a root of f for y, and assume

that ξ0 := f ′(0, p(0)) 6= 0. Then ∀k ≥ 1 it holds that p≤k+1 = p≤k − 1
ξ0

· f(x, p≤k)=k+1.

Proof. Let r = degy(f) and write f =
∑r

i=0 Ci(x)yi. So f ′(x, y) = ∂f
∂y

=
∑r

i=1 iCi(x)yi−1.

The following computation is modulo the ideal Ik+2 generated by xk+2
1 , xk+2

2 , . . . , xk+2
n , i.e. we

identify any polynomials g and h if [g]≤k+1 = [h]≤k+1.

0 ≡ f(x, p)

≡ f(x, p≤k + p=k+1)

≡
r

∑

i=0

Ci(x) (p≤k + p=k+1)
i

≡ C0(x) +
r

∑

i=1

Ci(x)
(

(p≤k)
i + i · (p≤k)

i−1 · p=k+1

)

≡
r

∑

i=0

Ci(x)(p≤k)
i +

p=k+1 ·
r

∑

i=1

i · Ci(x)(p≤k)
i−1

≡ f(x, p≤k) + p=k+1 · f
′(x, p≤k)

≡ f(x, p≤k) + p=k+1 · f
′(x, p≤k)=0.

Note that f ′(x, p≤k)=0 = f ′(0, p≤k(0)) = f ′(0, p(0)) = ξ0. We get that without going modulo Ik+2,
the following equation is satisfied: 0 = f(x, p≤k)=k+1 + p=k+1 · ξ0. This implies the statement of
the lemma.

5.1 Proof of Theorem 2

Let f ′(x, y) := ∂f
∂y

. In case f ′(0, p(0)) 6= 0, we can construct an arithmetic circuit for p by repeatedly
applying Lemma 13. We compute the components of p separately, starting with p0 and p1, which we
can easily compute within size O(s). To compute p=k+1, provided we have p0, p1, . . . , p=k computed
at gates somewhere already, we use a copy of a circuit Φ that computes the homogeneous compo-
nents of f up to degree k +1 ≤ deg(p). This is a circuit for which, similar to the proof of Lemma 3,

15

each node is split into k + 1 nodes computing homogeneous components. Let v0, v1, . . . , vk+1 be
the gates in Φ corresponding to the output gate of the original circuit, i.e. f0, f1, . . . , f=k+1 are
computed at these gates. We can bound the size of Φ by O(M(k+1)s), provided we use a gadget of
size M(k+1) that computes the coefficient map of polynomial multiplication, in order to deal with
multiplication. Note that having p0, p1, . . . , pk computed separately at gates is exactly the right
format for feeding p≤k into Φ for the variable y. A straightforward structural induction proves that
after rewiring, for every 0 ≤ i ≤ k + 1, the gate vi computes f(x, p≤k)i. Lemma 13 tells us that
after rescaling the output of the gate vk+1 by a factor −1/ξ0, we have obtained p=k+1. We repeat
the previously described construction for k up to degree deg(p). This way, we obtain a circuit for
p of size O(M(deg(p)) · deg(p) · s).

If f ′(0, p(0)) = 0, then we can reduce to the above case as follows. Write f =
∑r

i=0 Ci(x)yi

with Cr(x) 6≡ 0. Let f i(x, y) = ∂if
∂iy

. Then f r(x, y) = r! ·Cr(x). Since the characteristic of F is zero,

r! 6= 0, so f r(x, p) 6≡ 0. We have in this case that f0(x, p) ≡ 0. Let i be the smallest integer for
which f i(x, p) 6≡ 0. Then 0 < i ≤ r, and f i−1(x, p(x)) ≡ 0. Due to Lemma 1, f = (y − p)mh, for
some polynomial h not divsible by y − p. By repeatedly computing partial derivatives one easily
observes that the number i equals the multiplicity m of the root p in f .

We have that there exists x0 ∈ F such that f i(x0, p(x0)) 6= 0. Let g(x, y) = f i−1(x + x0, y), and
let q = p(x+x0). By Theorem 4, one gets that g is computable by a circuit of size O(M(m)s). Let
g′ = ∂g

∂y
. Then g′(x, y) = f i(x + x0, y). The polynomial g is not identically zero, and g(x, q(x)) =

f i−1(x + x0, p(x + x0)) ≡ 0, and furthermore g′(0, q(0)) = f i(x0, p(x0)) 6= 0. Now one proceeds
as in the first case, to get a circuit for q of size O(M(m)M(deg(p)) · deg(p) · s), from which one
obtains a circuit for p of size O(M(m)M(deg(p)) · deg(p) · s).

Corollary 3. The class VP is closed under taking roots.

References

[1] Erich Kaltofen. Factorization of polynomials given by straight-line programs. In Randomness
and Computation, pages 375–412. JAI Press, 1989.

[2] P. Bürgisser. The complexity of factors of multivariate polynomials. Found. Comput. Math.,
4(4):369–396, 2004.

[3] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity testing means proving
circuit lower bounds. Computational Complexity, 13(1–2):1–44, 2004.

[4] Z. Dvir, A. Shpilka, and A Yehudayoff. Hardness-randomness tradeoffs for bounded depth
arithmetic circuits. In Proceedings of the 40th Annual STOC, pages 741–748, 2008.

[5] M. Jansen. Weakening assumptions for deterministic subexponential time non-singular matrix
completion. In 27th International Symposium on Theoretical Aspects of Computer Science
(STACS 2010), volume 5 of Leibniz International Proceedings in Informatics (LIPIcs), pages
465–476, 2010.

[6] D.G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras.
Acta Informatica, 28(7):693–701, 1991.

16

[7] E. Kaltofen and P. Koiran. Expressing a fraction of two determinants as a determinant. In
Proceedings, The 19th International Symposium on Symbolic and Algebraic and Computation
(ISSAC), pages 141–146, 2008.

[8] M. Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and complexity. Chicago
Journal of Theoretical Computer Science, 1997(Article 5), 1997.

[9] N. Alon. Combinatorial nullstellensatz. Combinatorics, Probability and Computing, 8(1–2):7–
29, 1999.

[10] E. Kaltofen and M. Singer. Size-efficient parallel algebraic circuits for partial derivatives. In
V. Shirkov, V.A. Rostovtsev, and V.P. Gerdt, editors, Proceedings, IV International Confer-
ence on Computer Algebra in Physical Research, pages 133–145. World Scientific, 1991.

[11] L. Valiant. Completeness classes in algebra. In Proc. 11th Annual ACM Symposium on the
Theory of Computing, pages 249–261, 1979.

[12] A. Shpilka and A. Wigderson. Depth-3 arithmetic formulae over fields of characteristic zero.
Journal of Computational Complexity, 10(1):1–27, 2001.

17

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

