
Distance Estimators with Sublogarithmic Number of Queries

Michal Moshkovitz ∗

July 24, 2010

Abstract

A distance estimator is a code together with a randomized algorithm. The algorithm approximates
the distance of any word from the code by making a small number of queries to the word. One
such example is the Reed-Muller code equipped with an appropriate algorithm. It has polynomial
length, polylogarithmic alphabet size, and polylogarithmic number of queries. In our work we present
two results. First, we construct a distance estimator with arbitrary small alphabet size, polynomial
length, and polylogarithmic number of queries. Second, we construct a distance estimator with
sublogarithmic number of queries, almost linear length, and polylogarithmic alphabet size.

Distance estimators are the coding theoretical analog of two-query low-error PCP. A recent work
by Moshkovitz and Raz [FOCS’08] established two-query low-error PCP for the first time. In this
work we examine whether we can construct a distance estimator via the new technique for PCP.
Perhaps surprisingly, the new technique illuminates the difference between codes and PCP; there is
an inherent problem with using the technique in the same way that was done for PCP. However, as
we see in this work, the technique can be used to construct a distance estimator (up to a point).

To prove our results, we develop a general scheme for showing that a combinatorial operation
preserves the distance estimator property.

∗michali.mos@gmail.com. Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.
Supported by the Israel Science Foundation, by the Wolfson Family Charitable Trust, and by a European Research
Council (ERC) Starting Grant.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 119 (2010)

Contents

1 Introduction 3

1.1 PCP of Low Error and Distance Estimators . 3

1.2 Our Results . 4

1.3 Comparison with Previous Work . 6

1.4 Proof Outline . 7

1.5 Organization . 9

2 Preliminaries 9

3 Variants of Distance Estimators and their Relations 12

4 Construction of a Locally Decodable List Explainable Tester 16

4.1 Definitions . 17

4.2 The Construction . 20

5 Combinatorial Operations on Distance Estimators 25

5.1 Summary of Parameters . 25

5.2 Alphabet Reduction . 25

5.3 Right Degree Reduction . 27

5.4 Query Reduction . 28

6 Putting the Pieces Together 31

A An alternative Proof of the Schwartz-Zippel Lemma 35

2

1 Introduction

A local algorithm is an algorithm that given an input does not query the input entirely, and yet is able
to return an approximate correct answer with high probability. Local algorithms can run in sublinear
time. Hence, an extremely fast running time is possible, even for large input size. Constructing local
algorithms received a lot of attention in the past few years. A few examples of known local algorithms
that are related to codes/verification are:

1. locally testable codes (LTC) [12]: the algorithm accepts if the given word is in the code and
rejects words that are far from the code.

2. locally decodable codes (LDC) [16]: given a corrupted codeword, the algorithm decodes any
required symbol of the message.

3. probabilistically checkable proofs (PCP) [3, 2]: the verifier accepts if the given word is in the
language and given a proof that is correct. It rejects words that are not in the language, no
matter what the proof is.

In this paper we consider the natural question of constructing a code and a local algorithm that
estimates the distance of any given word from the code. The Reed-Muller code is an example of
a distance estimator. Each codeword in the Reed-Muller code is the truth table of a multivariate
low degree polynomial. The code has polynomial length and polylogarithmic alphabet size. The low
degree theorem (LDT for short; see [22, 4, 19]) proves that it is a distance estimator with polylog-
arithmic number of queries using the following local algorithm: given a truth table of an arbitrary
function f , choose a random line and return the distance of the closest low degree polynomial to f
on this line. The notion of a distance estimator is defined explicitly for the first time in this work.

1.1 PCP of Low Error and Distance Estimators

Locally Testable Codes (LTC) and Probabilistically Checkable Proofs (PCP) are closely related. In
both, a local test is performed in order to answer a global question (is the word in the code or far
from the code? is the proof correct or there is no correct proof?). Constructions of PCP usually
yield LTC [12, 7, 8, 5]. More than that, in [5] it is proven that a stronger notion of PCP (called
PCP of proximity or assignment testers) can be transformed into LTC. However, in general, the two
notions are different. Notably, in PCP the algorithm may accept (with high probability) if there
exists a correct proof even if the given proof is far from being correct, while in LTC the algorithm
accepts with high probability only if the given word is close to a codeword.

The error of PCP is defined to be the probability that the algorithm accepts an input that is not
in the language being decided, for the best proof. We want the error to be as low as possible. In a
recent work [21] two-query PCP with low error was constructed. The analog of low-error two-query
PCP for codes are distance estimators. One could hope that a distance estimator can be constructed
from the PCP techniques, but this turn out to be more difficult than expected.

In this paragraph we describe some relevant aspects of the techniques of [21] with the simplifica-
tion of [10] and explain the problem of constructing LTC using the same approach (in particular, we
cannot construct a distance estimator, since distance estimator is a stronger notion). The core of the

3

technique of [21] is a new composition operation. It takes PCP with a large number of queries and
produces PCP with a smaller number of queries. Analogously, in the coding language, it takes an
algorithm with a large number of queries and a code with a large distance. It creates a new algorithm
with a smaller number of queries and a new code with a large distance. The operation takes each
codeword and divides it into overlapping blocks. Then, it encodes each block using some code with
large distance. We do not describe the new algorithm, but only mention that the word generated
from the following steps is accepted by the algorithm with high probability. Take a codeword, replace
each block with a close string on this block, and encode it. This word can be proven to be far from
the code. For PCP this is not a problem, since the algorithm may accept if there only exists a valid
proof (and indeed there exists — the one we started with). On the other hand, this example shows
that the algorithm and code resulted from the composition do not form LTC.

To the best of our knowledge, composition is the first operation with inherent difficulties trans-
lating from the PCP world to the codes world. For more on this subject see Section 1.4.

1.2 Our Results

Before formalizing our results we need some basic definitions and notations. A code is defined by an
encoding function, E : Σk → Σn (we call k the message length). We sometimes refer to a code as
the image of E. A local algorithm gets an oracle access to a word w ∈ Σn. We now list the standard
parameters of a code and a local algorithm.

Code parameters:

(a) length: n. We want to minimize the length. Linear length, n = O(k), is preferable.

(b) (relative) distance: the minimal fraction of symbols on which two codewords differ. It is
denoted by 4. We wish to maximize this parameter. Close to 1 is preferable.

(c) alphabet size: |Σ|. We wish to minimize this parameter.

Algorithm parameters:

(a) number of queries: number of coordinates, of {1, . . . , n}, that the algorithm queries. This
parameter measures how local the algorithm is. We want to minimize this parameter.

(b) error : probability that the output of the algorithm deviates significantly from the distance
of the word form the code, see Definition 1.1. We wish to minimize the error. Sub-constant
is preferable.

The queries of a (non-adaptive) algorithm can be represented as a bipartite graph G = (A,B,E)
(with some ordering of the edges), where B corresponds to the n coordinates, A corresponds to the
randomness of the algorithm, and an edge (a, b) corresponds to querying a coordinate b when the
randomness is a. For a word w ∈ Σn and a vertex a ∈ A of degree deg(a), we denote by wa ∈ Σdeg(a)

the word w restricted to the neighbors of a. Similarly, Ca = {ca | c ∈ C} ⊆ Σdeg(a) is the code C
restricted to the neighbors of a.

In this work we examine the estimation version of the LTC problem. We want to locally find the
distance of any given word from a code that we construct. We are mostly interested in estimating

4

the distance of words that are far from the code. The case of words that are close to the code is
typically easier. This case was already been investigated quite a lot in the literature, see Section 1.3.

Instead of estimating the distance of a word from the code, it is more convenient for us to estimate
a related notion — (relative) agreement (for words that are far from the code the distance is large
and the agreement is low). For a word w and a code C we denote by agr(w,C) the fraction of
coordinates on which w and its closest codeword in C agree on. Notice that the distance of the word
w from the code C is equal to 1− agr(w,C).

A graph G gives a natural test: pick a random vertex a ∈ A and return agr(wa, Ca) (we call the
last term the local agreement). This gives rise to the definition of a tester. A pair (C,G) of a code
C ⊆ Σn and a bipartite graph G = (A,B,E) with |B| = n is called a tester.

Next we formalize the definition of a distance estimator.

Definition 1.1. A tester (C ⊆ Σn, (A,B,E)) is a (γ, β,M)-high probability distance estimator if for
every word w ∈ Σn it holds that

Pr
a∈A

[agr(wa, Ca) > M · agr(w,C) + γ] ≤ β.

In words, the probability that the output of the algorithm, agr(wa, Ca), is more than an additive
factor γ and a multiplicative factor M from the desired answer, agr(w,C), is at most β. We wish to
minimize M,γ, and β; M = 1 is preferable. Notice that 0 ≤ γ, β ≤ 1.

Notice that Definition 1.1 only bounds the probability that the output of the algorithm is much
more than the correct answer (and not the probability that the output of the algorithm is much less
than the correct answer). The reason is that the direction that appears in this definition is the harder
one. As for the other direction, we can bound this probability more easily. We can do this in two
ways: first, it is easy to prove that for regular graphs it holds that Ea∈A[agr(wa, Ca)] ≥ agr(w,C) (see
Claim 2.3 for the proof); we can then use Markov’s inequality to get the required bound. Second, if
the underlying graph is a sampler (see Definition 2.4), then Pra∈A[agr(wa, Ca) < agr(w,C) + γ] ≤ β,
for small β, γ. In a future version we prove that the underlying graph that we construct is indeed a
sampler.

In this work we construct two distance estimators. The first construction (in Theorem 1.2) is
of a tester that the alphabet size can be made arbitrary small. The distance of the code is nearly
optimal, the additive error is small, and the multiplicative error is 1. The downside is a somewhat
large number of queries (at least polylogarithmic). The second construction (in Theorem 1.3) is of a
tester with sublogarithmic number of queries and the code is of an almost linear length. However, this
construction has a large multiplicative factor. For both of the results we start with the Reed-Muller
code and perform a sequence of combinatorial operations on it.

Theorem 1.2. For any k ≥ 1 and 1/log1/17 k < ε < 1 there is an (ε, ε, 1)-high probability distance
estimator with message length k, alphabet size poly(1

ε), and distance 1−O(ε2). The other parameters
are either (i) polynomial length and poly(log k) number of queries, or (ii) almost linear length (i.e.,
k1+o(1)) and ko(1) number of queries.

Theorem 1.3. For any k ≥ 1 and any constant 0 < c < 1 there exists c′ = O(c) such that for any
(log k)−c

′
< ε < 1 there is an (ε, ε,poly(1

ε))-high probability distance estimator with message length k,
almost linear length, logc k number of queries, poly(log k) alphabet size, and distance 1− 1/poly(log k).

5

Notice that the second theorem is interesting only for words w that are far from the code (i.e.,
agr(w,C) ≤ poly(ε)). The first theorem is interesting for a larger set of words: for all words w such
that agr(w,C) ≤ 1− ε.

1.3 Comparison with Previous Work

Reed-Muller Code. A code that was studied in the context of LTC is the Reed-Muller code,
where the codewords correspond to polynomials of low degree compared to the field size. There are
many ways to set the parameters of such a code while keeping its length polynomial (see Section 6
for details). One possibility is to have a polynomial length and poly(log k) number of queries and
alphabet size. Another possibility is to have an almost linear length (k1+o(1)) and ko(1) number of
queries and alphabet size. Using the low degree theorem (LDT) we know that in both cases the
tester is a (o(1), o(1), 1)-distance estimator. Due to the large alphabet size a near optimal distance
(1 − o(1)) is achievable. We emphasize that if we require the length to be polynomial, the number
of queries and alphabet size must be at least polylogarithmic, no matter how we set the parameters.

In contrast to the large alphabet size in the Reed-Muller code, Theorem 1.2 gives an arbitrary
small alphabet size at the price of increasing the additive error. The second result, Theorem 1.3,
breaks the barrier of polylogarithmic number of queries of the Reed-Muller code by constructing a
distance estimator with sublogarithmic number of queries, at the price of increasing the error.

A different variant of the Reed-Muller code is the case that the alphabet size is constant and the
dimension and degree are large. This case is of less interest to us, since we require the distance of the
code to be at least (some) constant and the length to be polynomial and these cannot be achieved
for that variant of the Reed-Muller code.

Robust Locally Testable Codes. In the work of Ben-Sasson and Sudan [6] a construction of
a distance estimator with the property Ea∈A[4(wa, Ca)] ≥ α4(w,C) is described, where 4 is the
relative distance and 0 < α < 1 is not arbitrarily close to 1. This notion is called Robust Locally
Testable Codes to reflect the connection to a variant of PCP introduced in a prior work to theirs [5]
called Robust PCP. In terms of agreement, they prove that Ea∈A[agr(wa, Ca)] ≤ α·agr(w,C)+(1−α).
For words w that are extremely close to the code (namely, agr(w,C) > 1 − (ε/(1−α))) their result is
better than Theorem 1.2. While, for the case that w is farther from the code, Theorem 1.2 gives a
better result.

The number of queries in their construction is kc for some constant c < 1. In both of our results
the query size is much better. Namely, the number of queries in our construction is ko(1) or even
sublogarithmic.

Dinur-Goldenberg [9] and Impagliazzo-Kabanets-Wigderson [15]. They construct a tester
that test if a given word is far from the code. Their construction has two disadvantages. First, they
are solving the decision problem (testing if the word is far) and not the estimation problem. Second,
they work with a weaker notion of agreement (for example, two codewords can be different in every
coordinate but still be considered close according to their definition). Their multiplicative factor is
1. The distance of their code is poor: polynomially small.

They had two results. First, the tradeoff between the alphabet and the error is good but then

6

if the error is sub-constant the length is not even polynomial. In contrast to the polynomial length
in our construction, despite the small error. Their second result gives a polynomial length code
but with large alphabet size compared to the error. In contrast to our almost linear length and
inverse polynomial relation between error and alphabet. On the bright side, they query only 2 or 3
coordinates, while we query much more1.

Tolerant Locally Testable Codes. In [14] the notion of Tolerant Locally Testable Codes was
introduced. It is a strengthening of the decision problem (the LTC problem); the added requirement
is that words that are close to the code should be accepted with high probability. (Notice that the
notion of tolerant LTC is still a weaker notion than estimating the distance.) In [14] the authors
modify the construction of [5, 6] to be tolerant LTC and not just LTC.

1.4 Proof Outline

To prove Theorems 1.2 and 1.3 we apply a series of combinatorial operations on the Reed-Muller code,
along the lines of the recent low-error PCP construction of [21, 10]. The combinatorial operations
we use are: query reduction, right degree reduction, and alphabet reduction (see Section 5 for the
description of the operations). Next we describe how to (partly) solve the problem that was presented
in Section 1.1 and highlights a difference between PCP and LTC.

Differences Between LTC and PCP: Query Reduction. We remind the reader that the
query reduction operation (in the PCP world it is called composition) takes as an input a tester
(C, (A,B,E)) and translates each codeword to a new codeword as follows. First, it divides the
codeword into overlapping blocks. Then, it encodes each block using some inner code. As we already
discussed in Section 1.1, in general the query reduction operation does not necessarily work for LTC.
We gave there a word that is far from the code but it is accepted with high probability. To construct
this word we used the fact that Ca have low distance for all a ∈ A. We overcome this difficulty by
first recalling that the Reed-Muller code has a high local distance (i.e., for every a ∈ A, Ca has high
distance). Second, we show that high local distance is enough to prove that the resulting tester (from
the query reduction operation) is a distance estimator with a large multiplicative factor (recall that
a small multiplicative factor is preferable).

It is more convenient to use a definition that encapsulates the two requirements: distance esti-
mator and a high local distance. This notion was stated in the LDT literature [4, 22, 19] (see Section
3 for a proof of the equivalence). We call this property locally list explainable tester (LLE). Roughly
speaking, a tester (C, (A,B,E)) is an LLE if for every word w there is a short list of codewords
L(w) ⊆ C that “explains” all somewhat close local codewords. I.e., for most a ∈ A all local code-
words ca ∈ Ca are either in L(w)a or agr(wa, c

a) is small. It is clear that a tester that is an LLE does
not have the problem presented in Section 1.1.

Our key point is the following. Consider a combinatorial operation that takes as input an LLE
and returns a tester. If the combinatorial operation satisfies a certain condition (to be described
below), then the returned tester is a distance estimator. In particular we can show that the query
reduction operation and the other combinatorial operations we use satisfy the condition. However,

1For our stronger notion (i.e., distance estimator), the number of queries must depend on ε.

7

it seems inherent that the tester resulting from the query reduction operation is not an LLE. This
means that we cannot use recursion as [10] do to reduce the query size from sublogarithmic to a
constant, since the problem mentioned in Section 1.1 arises after one step.

Another difference between LTC and PCP is revealed in the construction of the inner code used
in the query reduction operation. The inner code is required to be an LLE (though we allow poor
parameters compared to our constructions in Theorems 1.2,1.3) and also must satisfy an additional
property that we do not describe here. One might hope that we would be able to transform the
Reed-Muller code to an inner code using the construction outlined in [10], but this is not the case.
We devote Section 4 to the purpose of constructing an inner code.

Condition for Proving Correctness of a Combinatorial Operation. Each of the combina-
torial operations that we consider takes as an input a tester (C ⊆ Σ|B|, G = (A,B,E)) and outputs
a new tester (C ′ ⊆ ∆|B

′|, (A′, B′, E′)). An operation can change the tester (C,G) in many different
ways. For example, replace each vertex in B with a few vertices in B′ (e.g., this is how alphabet
reduction and right degree reduction look). Another example is replacing the vertex set B with a
few copies of the vertex set A (e.g., this is how query reduction looks). The combinatorial operation
also translates each codeword in C to a unique codeword in C ′. We denote the translation function
by Tran : C → C ′. The inverse function of Tran defines the source of any codeword in C ′. We can
also define the sources of a local codeword ca

′ ∈ C ′a′ (for any a′ ∈ A′) as the codewords that agree
on this local codeword (i.e., all c ∈ C such that Tran(c)a′ = ca

′
). Since ca

′
is a local codeword, most

likely there is more than one source. However, our combinatorial operations have the property that
for every a′ ∈ A′ there is a set of coordinates S(a′) ⊆ B such that the restriction of the sources to
those coordinates is unique. I.e., for any two completions of ca

′
to global codewords c1, c2 ∈ C ′, their

sources have the same value in the coordinates of S(a′). We define the source of a local codeword
ca
′

as the sources of ca
′

restricted to the coordinates in S(a′). For example, if the combinatorial
operation replaces each coordinate b ∈ B with s coordinates b′1, . . . , b

′
s then the sources of any local

codeword that contains the s coordinates b′1, . . . , b
′
s have the same value in their b-th coordinate.

We are now ready to loosely state the condition: for every word w′ ∈ ∆|B
′| and for every

coordinate in B, there is a short list of symbols in Σ with the following property. For most a′ ∈ A′,
the source of every (somewhat close) local codeword is in the short list.

We can prove that if the latter condition holds then the resulting tester is a punctured estimator
(see Definition 3.7); this is a weaker notion than LLE. In Lemma 3.8 we prove that any punctured
estimator is a distance estimator with a large multiplicative factor. In this paper we also give a
stronger condition such that any combinatorial operation satisfying it results with an LLE (and not
just a punctured estimator). The alphabet reduction and the right degree reduction both satisfy this
stronger condition. The query reduction operation does not satisfy this stronger condition.

This work also has the benefit of presenting a unified, and hopefully simpler, framework for all
combinatorial operations. This might help to prove that other natural combinatorial operations (e.g.,
applying code repetition or the distance amplification of [1]) preserve the LLE property. We do not
show the details of this proofs since our interests lie only in the three operations needed for our
constructions.

8

1.5 Organization

In Section 2 we give the basic definitions and lemmas we use. In Section 3 we define different
notions of distance estimators and discuss their relations. To achieve Theorem 1.3 we need an inner
component that we construct in Section 4. In Section 5 we present combinatorial operations on
testers and prove they preserve the distance estimator property. We put all the pieces together in
Section 6. In that section we describe the processes that create the testers of Theorems 1.2 and 1.3
and analyze their parameters.

2 Preliminaries

General notation. Given a graph G and a vertex v in G, we denote by ΓG(v) the set that consists
of all the neighbors of v. If the graph G is clear from the context we write Γ(v). We say that G is
regular if the degrees of all the vertices in G are equal. We say that a bipartite graph (A,B,E) is
right regular if the degrees of all the vertices a ∈ A are equal. We denote by [k] the set {1, . . . , k}. We
denote by ◦ the string concatenation operation. Given a predicate P , we denote by IP the indicator
function for P , i.e., IP = 1 if P is true and else IP = 0. For a set Σ and an integer s we denote by(

Σ
≤s
)

the set that contains all subsets of Σ of size at most s. For any set A we denote by P(A) the
power set of A, i.e., the set that contains all the subsets of A. We use F to denote a finite field and
deg p to denote the total degree of a polynomial p. For a vector v ∈ Fm, a coordinate i ∈ {1, . . . ,m},
and a ∈ F we denote by (v1, . . . , vm)|i→a the vector (v1, . . . , vi−1, a, vi+1, . . . , vm). In Sections 4 and

6, we use the symbol δm,d,k,f to denote the value 384 ·m
(

8

√
1
k + 4

√
md
f

)
, for integers m, d, k 6= 0, and

f 6= 0.

Codes and agreement. A word w is a tuple over an alphabet Σ, i.e., w ∈ Σn for some integer
n ≥ 1. For a coordinate i ∈ {1, . . . , n}, we denote by wi the i th coordinate of w. A code C is a set
of words, i.e., C ⊆ Σn. A word in C is called a codeword. The message length of a code C ⊆ Σn is
defined as log|Σ| |C|. For two words u,w ∈ Σn we define their (relative) agreement as the fraction

of coordinates in which u and v have the same symbol, i.e., agr(u,w) = 1
n |{i |ui = wi}|. We define

the (relative) distance of a code C as 4(C) = 1−maxc1 6=c2∈C(agr(c1, c2)). The closest codeword to
w in C (ties are broken arbitrarily) is denoted by τ(w,C). We define the agreement of w with C as
the agreement of w with the closest codeword in C, i.e., agr(w,C) = agr(w, τ(w,C)). We say that a
code C ⊆ Σn is systematic for a set C ′ ⊆ Σk, if for every c ∈ C there is a unique c′ ∈ C ′ such that
c = c′ ◦ u for some u ∈ Σn−k.

Extended words. We say that a tuple W is an s-extended word, for some integer s, if W ∈
(

Σ
≤s
)n

,
i.e., each coordinate Wi in W is a set of at most s symbols from Σ. We, naturally, identify every
word w ∈ Σn with the 1-extended word ({wi})ni=1. We can alternatively define an s-extended word
using s words: W is created from a set of s words {w1, . . . , ws} (and denoted as W =< w1, . . . , ws >)
if for every i ∈ {1, . . . , n}, Wi = {w1

i , . . . , w
s
i }. Notice that an extended word can be created from

many different sets.

We can extend the definition of agreement to extended words in the following way: for two
extended words W,U ∈ P(Σ)n we define their agreement as agr(W,U) = 1

n |{i |Wi ∩ Ui 6= φ}|. (For

9

a word w ∈ Σn and an extended word U ∈ P(Σ)n, agr(w,U) is well-defined since w is identified with
a 1-extended word.) Mind the fact that for two words u,w ∈ Σn, if agr(w, u) = 1 then w = u, while
for two extended words, this is false. Notice that for an extended word W =< w1, . . . , ws >, for
some words w1, . . . , ws ∈ Σn, it holds that for any extended word U ∈ P(Σ)n,

agr(W,U) ≤
∑
i∈[s]

agr(wi, U). (1)

For a code C and an extended word W ∈ P(Σ)n we define the closest codeword in C to W (denoted
as τ(W,C)) and the agreement of W with C (denoted as agr(W,C)) similarly to the case where W is
a word. As an aside note, we remark that the problem of list-recovery [13] can be formulated, using
our terminology, as the problem of finding all close codewords in C to a given s-extended word.

For a code C and an integer s we denote by C�s the set of all s-extended words created by any
set of at most s codewords in C. I.e., C�s = {< c1, . . . , cs > | c1, . . . , cs ∈ C}. It follows from
Equation 1 that agr(W,C�s) ≤ s · agr(W,C).

For two extended words W,U ∈ P(Σ)n, we define the difference V = U \W as the extended word
in which the i th coordinate is Vi = Ui \Wi (this operation will be used in Definition 3.7 and Section
5.4).

The next lemma is known as the Johnson Bound (for a proof, see, e.g., [10], Fact 5.5).

Lemma 2.1 (Johnson Bound). For a code C with distance 1− δ, any η ≥ 2
√
δ, and any word w it

holds that |{c ∈ C | agr(w, c) > η}| ≤ 2/η.

Reed-Muller Code. The Reed Muller code, denoted as RMF,m,d, is the evaluation, on Fm, of all
m-variate polynomials with degree at most d over a field F. I.e., for Fm = {a1, . . . , a|F|m}

RMF,m,d = {p(a1) ◦ . . . ◦ p(a|F|m) | deg p ≤ d}.

The following lemma shows us that the Reed-Muller code has a large distance.

Lemma 2.2 (Schwartz-Zippel Lemma). For any m-variate polynomial p of degree at most d over a
field F, that is not the zero polynomial, it holds that

Pr
x∈Fm

(p(x) = 0) ≤ d

|F|
.

The lemma can be easily proved by induction. An easy proof of a slightly weaker form of this
lemma (d/(|F|−1) instead of d/|F|), resembling a proof given in [18], appears in appendix A.

The code RMF,m,m(|H|−1) is systematic for F|H|
m

, for any set H ⊆ F, using the low degree
extension. It shows a mapping of any f : Hm → F to a (unique) m-variate polynomial with
individual degree at most |H| − 1, see Lemma 2.6 in [20].

Testers. A pair (C,G) where C ⊆ Σn is a code of length n over alphabet Σ and G = (A,B,E)
is a bipartite graph with |B| = n is called a tester. For a ∈ A we call Γ(a) the window a. We use
the notation wa to denote the restriction of a word w ∈ Σn to the deg(a) coordinates that are the

10

neighbors of a. Similarly, we denote by Ca = {ca | c ∈ C} ⊆ Σdeg(a) the code C restricted to Γ(a).
We use the notation ca for a local codeword, i.e., ca ∈ Ca, for some a ∈ A.

Recall that our goal is to estimate agr(w,C) for any given word w. A natural way to do this is
to take a tester and return agr(wa, Ca) for a random a ∈ A. The next claim shows that this way we
do not return less than agr(w,C).

Claim 2.3. Assume that the graph of a tester (C ⊆ Σn, G = (A,B,E)) is regular. Then for all
w ∈ Σn, it holds that

agr(w,C) ≤ Ea∈A[agr(wa, Ca)].

Proof. Denote by c = τ(w,C) the closest codeword in C to w. Then it holds that

agr(w,C) = agr(w, c) = Ea∈A,b∈Γ(a)[Iwb=cb] ≤ Ea∈A[agr(wa, Ca)],

where the second equality follows from the fact that G is regular.

Sampler Graphs. We say that a graph G = (A,B,E) is a sampler if for every T ⊆ B it holds

that most vertices in A have roughly |T ||B| of their neighbors inside T . More formally,

Definition 2.4 (sampler). For an accuracy parameter 0 ≤ ε ≤ 1 and a confidence parameter 0 ≤
ε′ ≤ 1, we say that a regular bipartite graph G = (A,B,E) with left degree dA is a (ε, ε′)-sampler if
for every T ⊆ B it holds that,

Pr
a∈A

(∣∣∣∣ |Γ(a) ∩ T |
dA

− |T |
|B|

∣∣∣∣ ≥ ε) ≤ ε′.
We also need to define a stronger notion of a sampler that will be helpful in Section 5. The

stronger notion requires the maximum fraction of vertices in A that do not approximate T correctly
to also depend multiplicatively on the size of T .

Definition 2.5 (strong-sampler). For an accuracy parameter 0 ≤ ε ≤ 1 and a confidence parameter
0 ≤ ε′ ≤ 1, we say that a regular bipartite graph G = (A,B,E) with left degree dA is a (ε, ε′)-strong-
sampler if for every T ⊆ B it holds that

Pr
a∈A

(∣∣∣∣ |Γ(a) ∩ T |
dA

− |T |
|B|

∣∣∣∣ ≥ ε) ≤ ε′ |T ||B| .
To show that strong-samplers exist, we recall the definition of an expander graph and prove that

an expander graph is a strong-sampler.

Definition 2.6 (expander). For a regular bipartite graph G = (A,B,E) with left degree dA, we say
that G is a λ-expander if for every S ⊆ A and T ⊆ B it holds that∣∣∣∣ |E(S, T)|

dA |S|
− |T |
|B|

∣∣∣∣ ≤ λ

dA

√
|T |
|S|

.

Claim 2.7. Assume that a regular graph G = (A,B,E) is a λ-expander with left degree dA, and

right degree dB. Then for any ε > 0, G is a (ε, 2λ2

ε2dAdB
)-strong-sampler.

11

Proof. Let δ denote |T ||B| . Define the set S1 ⊆ A to be all the vertices in A that have at least (δ+ε)dA
neighbors in T , and S2 ⊆ A to be all the vertices in A that have at most (δ − ε)dA neighbors in T .
Our goal is to prove that these sets are small.

To prove that S1 is small, note that

|E(S1, T)| ≥ (δ + ε)dA |S1| .

On the other hand, Definition 2.6 implies that

|E(S1, T)| ≤ δdA |S1|+ λ
√
|S1| |T |.

Since 1
dA

= |A|
|B|dB we get that |S1| ≤ λ2|A|

ε2dAdB
δ.

Similarly, one can prove that S2 is small.

There is a constant α < 1 such that for any n, d there is a Θ(dα)-expander (A,B,E) with
|A| = |B| = n and degree Θ(d); see, for example, [21, Lemma 5.3]. Using Claim 2.7 we have the
following corollary.

Corollary 2.8. There is a constant α < 1 such that for any ε > 0 and for any two integers d, n
there is a regular graph G = (A,B,E) with |A| = |B| = n, degree Θ(d), and G is a (ε,Θ(1

ε2d2(1−α)
))-

strong-sampler.

3 Variants of Distance Estimators and their Relations

In this section we define the notion of a distance estimator, which is a weaker notion than high
probability distance estimator (introduced in Section 1). We choose to use this weaker definition
because one of the components we use (low degree theorem from [19]) uses distance estimator and not
high probability distance estimator. We then introduce three more definitions (locally list explainable
tester, extended locally list explainable tester, and punctured estimator) and show relations among all
four definitions. It is important to note that we construct a locally list explainable tester (Definition
3.2) and punctured estimator (Definition 3.7) that imply the stronger notion of a high probability
distance estimator (see Lemmas 3.3 and 3.8). In Figure 1 we summarize the relations. We finish this
section with a related definition, called Locally Decodable List Explainable Tester (LDLE).

Definition 3.1 (distance estimator). We say that a tester (C,G), where C ⊆ Σn and G = (A,B,E)
is a (γ,M)-distance estimator if for every w ∈ Σn it holds that

Ea∈A[agr(wa, Ca)] ≤M · agr(w,C) + γ.

We would like γ, β to be close to 0, preferably sub-constant. If M = 1 we omit it and write
γ-distance estimator.

We now state the second definition of distance estimator. The definition requires that all close
local codewords come from a short global list. This notion appears implicitly in the LDT literature.

12

distance
estimator
Dfn. 3.1

LLE
Dfn. 3.2

ELLE
Dfn. 3.5

punctured
estimator
Dfn. 3.7

(1)

(2),(3)

by definition

(4)

(5)

by definition

Figure 1: Four definitions of distance estimator and their relations. (1) Using Lemma 3.4 with
the requirement that the local codes has distance close to 1. (2) Any (γ, L)-LLE is a (γ, L)-distance
estimator; (3) if the graph is a sampler, it is a (γ′, 1)-distance estimator (Lemma 3.3). (4) Any LLE is
an ELLE, with slightly worse parameters (Lemma 3.6). (5) Any (γ,M)-punctured estimator is a
(γ,M)-distance estimator (Lemma 3.8).

Definition 3.2 (locally list explainable tester). For any 0 ≤ γ ≤ 1 we say that a tester (C,G),
where C ⊆ Σn and G = (A,B,E) is a (γ, L)-locally list explainable tester (LLE) if for every word
w ∈ Σn there exists a list of codewords L(w) ⊆ C of size |L(w)| ≤ L satisfying that

Ea∈A[agr(wa, Ca \ L(w)a)] ≤ γ.

The next two lemmas establish connections between the two definitions above. The proofs are
adaptation of existing proofs in the LDT literature (e.g., [4, Theorems 6,7]) from the Reed-Muller
code to general codes.

Lemma 3.3. Let (C ⊆ Σn, G = (A,B,E)) be a (β, L)-LLE and assume that G is a (ε, ε′)-sampler
for some ε, ε′ > 0. Then, (C,G) is a (β + ε′L+ ε)-distance estimator.

Proof. Fix an arbitrary word w ∈ Σn and denote by L(w) = {c1, . . . , cL} ⊆ C the set of codewords
given to us by the assumption that (C,G) is a (β, L)-LLE. Then, the following inequalities hold:

Ea∈A[agr(wa, Ca)] ≤ Ea∈A[agr(wa, Ca \ L(w)a)] + Ea∈A[agr(wa, L(w)a)]

≤ β + Ea∈A[agr(wa, L(w)a)],

where the second inequality follows from our assumption on (C,G). To bound the latter expectation
by agr(w,C) + ε′L + ε we use the assumption that G is a sampler. For each codeword c in L(w)

define the set T = {i ∈ B |wi = ci} and notice that |T ||B| = agr(w, c). By the definition of a sampler

we get that for all but at most an ε′ fraction of the vertices a ∈ A it holds that agr(wa, Ca) ≤
agr(w, c) + ε ≤ agr(w,C) + ε. Hence for all but at most an ε′L fraction of the vertices a ∈ A it holds
that agr(wa, L(w)a) ≤ agr(w,C) + ε, and since agr(·) ≤ 1 we are done.

We note that using Markov’s inequality, the last proof in fact proves that an LLE is a high
probability distance estimator and not just a distance estimator. Notice that we can prove that any
(β, L)-LLE is a (β, L)-distance estimator, without using any assumption on G.

13

Lemma 3.4. Let (C,G), with 4(C) ≥ 1− γ2/2, be a (γ,M)-distance estimator and assume that for

every a ∈ A it holds that 4(Ca) ≥ 1− γ2

2 . Then, (C,G) is a (O(γ(M + 1)), 2
γ)-LLE.

Proof. Let w ∈ Σn be any word, and define L(w) = {c ∈ C | agr(w, c) ≥ γ}. Note that by the

Johnson bound (Lemma 2.1) and the assumption that 4(C) ≥ 1− γ2

2 we get that |L(w)| ≤ 2
γ .

We now show the existence of a word u that is sufficiently far from the code, namely, agr(u,C) ≤
2γ. Consider an arbitrary set of codewords J ⊆ C of size 1

γ (if |C| < 1
γ the lemma follows immedi-

ately). Define the word u ∈ Σn whose first γn coordinates are from the first codeword in J the next
γn coordinates are from the second codeword in J , and so on. Clearly, for every codeword c ∈ C,
agr(c, u) ≤ γ + (1−4(C)) 1

γ ≤ 2γ.

Denote by L(w)i the set of symbols {ci | ∃c ∈ L(w)}. We define the word w′ ∈ Σn as

w′i =

{
wi if wi /∈ L(w)i
ui else.

It is now easy to see that for all c ∈ C, agr(w′, C) ≤ 3γ: for c ∈ L(w), agr(w′, C) ≤ agr(u,C) ≤ 2γ
and for c ∈ C \ L(w), agr(w′, c) ≤ agr(w,C) + agr(u,C) ≤ γ + 2γ.

For every a ∈ A and ca ∈ Ca \ L(w)a it holds that

agr(wa, c
a) ≤ Pr

b∈Γ(a)
(wb = cab ∧ cab /∈ L(w)b) + Pr

b∈Γ(a)
(cab ∈ L(w)b)

≤ Pr
b∈Γ(a)

(w′b = cab) +
2

γ
(1−4(Ca))

≤ agr(w′a, Ca) + γ.

Hence, agr(wa, Ca \ L(w)a) ≤ agr(w′a, Ca) + γ. Taking expectation,

Ea[agr(wa, Ca \ L(w)a)] ≤ Ea[agr(w′a, Ca)] + γ ≤Magr(w′, C) + 2γ ≤ 3γM + 2γ,

where the second inequality is from the assumption that the tester (C,G) is a (γ,M)-distance esti-
mator.

We extend the definition of an LLE to the case that w is an extended word (i.e., each coordinate
in w is a list), and the local codewords are lists too (i.e., the local code is (Ca \ L(w)a)

�s).

Definition 3.5 (extended locally list explainable tester). We say that a tester (C,G), where C ⊆ Σn

and G = (A,B,E) is a (γ, s1, s2, L)-extended locally list explainable tester (ELLE) if for every s1-
extended word W there exists a list of codewords L(W) ⊆ C of size |L(W)| ≤ L satisfying that

Ea∈A
[
agr
(
Wa, (Ca \ L(W)a)

�s2)] ≤ γ.
Notice that any (γ, 1, 1, L)-ELLE is equivalent to a (γ, L)-LLE. Also notice that, by definition,

any ELLE is also an LLE. The next lemma states that any LLE is also an ELLE, with slightly worse
parameters.

Lemma 3.6. Assume a tester (C,G = (A,B,E)) is a (γ, L)-LLE. Then, for every integers s1, s2 > 0,
(C,G) is a (γs1s2, s1, s2, s1L)-ELLE.

14

Proof. Fix an arbitrary s1-extended word W . For j = 1, . . . , s1 define the word wj ∈ Σn by wjb =
(Wb)j . Here, (Wb)j denotes the j th symbol in the set Wb under some arbitrary order (we can assume
without loss of generality that each Wb is of size exactly s1). We define L(W) to be ∪jL(wj) and
notice that |L(W)| ≤ s1L. This completes the proof since

Ea∈A
[
agr
(
Wa, (Ca \ L(W)a)

�s2)] ≤ s2Ea∈A [agr (Wa, Ca \ L(W)a)]

≤ s2

s1∑
j=1

Ea[agr(wja, Ca \ L(W)a)]

≤ s2

s1∑
j=1

Ea[agr(wja, Ca \ L(wj)a)]

≤ s1s2γ,

where we used the simple fact stated as Equation 1.

Next, we define a punctured estimator. This notion appeared (in different words) in the LDT
literature. A tester is punctured estimator if for every word w there is a short list of codewords L(w)
that “cover” close local codewords. I.e., for every local codeword ca ∈ Ca that is close to wa, the
agreement of ca with the extended word created by L(w)a is large. More formally,

Definition 3.7 (punctured estimator). We say that a tester (C,G), where C ⊆ Σn and G =
(A,B,E) is a (γ,M)-punctured estimator if for every word w ∈ Σn there exists an M -extended word
c in C�M such that

Ea∈A[agr(wa \ ca, Ca)] ≤ γ,

where the minus sign denotes coordinate-wise set difference and we think of wa as an extended word.

Notice that any (γ, L)-LLE, is also an (γ, L)-punctured estimator. The next lemma shows that
any punctured estimator is also a distance estimator.

Lemma 3.8. Assume a tester (C,G = (A,B,E)) with C ⊆ Σn is right regular and a (γ,M)-
punctured estimator. Then, (C,G) is a (γ,M)-distance estimator.

Proof. Fix an arbitrary word w ∈ Σn. Denote by c ∈ C�M the M -extended word created from the
M codewords {c1, . . . , cM} as promised to us by the definition of punctured estimator. For every
a ∈ A we know that

agr(wa, Ca) ≤ agr(wa \ ca, Ca) + agr(wa, ca)

≤ agr(wa \ ca, Ca) +
∑
j∈[M]

agr(wa, c
j
a).

From the assumption thatG is right regular we know that Ea∈A[agr(wa, c
j
a)] = agr(w, cj) ≤ agr(w,C).

Using the assumption that (C,G) is a punctured estimator the proof is completed.

15

We note that using Markov’s inequality, the last proof in fact proves that a punctured estimator
is a high probability distance estimator and not just a distance estimator.

To prove theorem 1.3, we need an LLE that is able to decode. Our definition is related but
stronger than the recently introduced notion of Locally Decode/Reject Code [21] and the closely
related notion of dPCP [10]. Namely, our robustness property is stronger than [21, 10].

First, we extend the definition of a tester to the case there is an input to the local algorithm
(recall that the graph of a tester is the queries of a local algorithm). I.e., a tester is (C, {Gi}i∈[k]),
where [k] consists of all the possible values for the new input. We can now define a Locally Decodable
List Explainable Tester (LDLE).

Definition 3.9 (Locally Decodable List Explainable Tester). A tester (C, {Gi = (Ai, B,Ei)}i∈[k]) is

a (γ, L)-LDLE for some set C ′ ⊆ Σk, if the following two conditions hold.

1. (decodability) C is systematic for C ′ and for every i ∈ [k], a ∈ Ai and for every two codewords
c, c′ ∈ C, if c and c′ agree locally on a, i.e., ca = c′a, then these codewords also agree on the
coordinate i, i.e., ci = c′i.

2. (robustness) for every word w ∈ Σ|B| there exists a short list of codewords L(w) ⊆ C, |L(w)| ≤ L
such that

Ei,a∈Ai [agr(wa, Ca \ L(w)a)] ≤ γ.

In Section 4 we show how to construct an LDLE for every set for which we can check membership
efficiently.

4 Construction of a Locally Decodable List Explainable Tester

In this section we construct an LDLE for every C to which we can check membership (see Theorem
4.2). For that, we recall the definition of a circuit as a model that allows us to check membership to
a set.

Definition 4.1 (circuit). A circuit over a field F is an acyclic graph with in-degree 2 or 0 for each
vertex. The vertices of in-degree 0 are called inputs, and are labeled with either a variable or a
constant in F, and vertices of in-degree 2 are labeled with + (sum) or × (multiplication), and called
gates. One special vertex is designated as the output vertex. The size of the circuit is the number of
inputs and gates.

We say that a circuit checks membership in a set C ⊆ Fk if for every input x ∈ Fk, the output
gate is 0 if and only if x ∈ C. For example, we can construct a polynomial size circuit to check if
the input is an evaluation of a low degree polynomial.

Recall that an LDLE is a stronger notion than Locally Decode/Reject Code [21] and the closely
related notion of dPCP [10]. To construct an LDLE we need to modify the construction outlined in
[10]. They used the sum check protocol (see [17, 3] for more information); we instead use the zero
propagation test from [5], as the sum check protocol seems not to apply in our setting.

Theorem 4.2. Assume C ′ ⊆ Fk has a circuit of size S that checks membership in it and let h,m > 1
be such that hm ≥ S+|F| and |F| > (mh)2. Then, for any δ ≥ δm,(mh)2,|F|,|F| there is an (C, {Gi}i∈[k])

16

that is (O(δ + (mh)2/|F|δ), 2
δ)-LDLE for C ′. The length of C is |F|4m+1, the number of queries is at

most |F|4, the alphabet is F, and the distance is at least 1−O(mh/|F|).

Recall that δm,(mh)2,|F|,|F| was defined in Section 2.

4.1 Definitions

Individual degree, Curves, and Manifolds. For any polynomial p, we define degindv(p) as the
maximal individual degree, over all variables in p. For example, degindv(x2 + xyzw) = 2.

A curve c is a function c : F → Fm such that c(x) = (c1(x), . . . , cm(x)) for some m univariate
polynomials c1, . . . , cm : F→ F. We define the degree of a curve c as deg c = maxi(deg ci). An easy
fact, that follows from univariate interpolation, is that given any k different elements t1, . . . , tk ∈ F,
and any k points x1, . . . , xk ∈ Fm there exists a unique curve c = ct1,...,tk,x1,...,xk such that for every
i ∈ {1, . . . , k}, c(ti) = xi and deg(c) ≤ k − 1; see [20, Proposition 2.8] for the proof. We define
the restriction of a polynomial p : Fm → F to the curve c : F → Fm as the univariate polynomial
p|c : F → F that is defined by p|c(x) = p(c(x)). Another easy fact is that deg(p|c) ≤ deg(p) deg(c)
(see [20, Proposition 2.7] for the proof). A useful theorem on curves is the following.

Claim 4.3 ([20], Proposition 4.1). For different k + 1 scalars t1, . . . , tk+1 ∈ F, and k points
x1, . . . , xk ∈ Fm. Let xk+1 be a uniformly distributed point in Fm. Then, for every t ∈ F\{t1, . . . , tk},
the distribution ct1,...,tk+1,x1,...,xk+1

(t) is uniform in Fm.

A manifold υ is a function υ : Fk → Fm with υ(x1, . . . , xk) = (υ1(x1, . . . , xk), . . . , υm(x1, . . . , xk))
for some m k-variate polynomials υ1, . . . , υm : Fk → F. We define the degree of a manifold υ as
deg υ = maxi(deg υi). For a polynomial p : Fm → F and a manifold υ : Fk → Fm we define the
restriction of p to the manifold υ as a multivariate polynomial p|υ : Fk → F. It is defined by
p|υ(x1, . . . , xk) = p(υ(x1, . . . , xk)). Notice that for any polynomial p and a manifold υ, deg(p|υ) ≤
deg(p) deg(υ).

Checking Membership using Polynomials. We present an alternative definition for checking
membership, using polynomials.

Definition 4.4 (checking membership using polynomials). Let F be a field and let C ⊆ Fk. We say
that a set of polynomials P over ` ≥ k variables checks membership in C if for every a ∈ Fk it holds
that a ∈ C if and only if there exists (a unique) a′ ∈ F`−k such that a ◦ a′ is a common zero of all
polynomials in P .

Every circuit can be transformed into a set of polynomials that have the latter property, as the
next lemma shows. Notice that these polynomials are very local in the sense that each polynomial
depends only on a constant number of variables.

Claim 4.5. Let C ⊆ Fk be a set, and assume that there is a circuit of size S that checks membership
in C. Then, there is a set of polynomials that check membership in C over |F| + S variables.
Moreover, all polynomials are of the form yi1 − yi2yi3 − yi4 for some four variables yi1 , yi2 , yi3 , yi4
with the exception of two polynomials. One being y0, the other being y1−g, where g is a multiplicative
generator of F.

17

Proof. First, we assign a new variable yi to each element gi ∈ F for i ∈ {1, . . . , |F| − 1} and y0 to
0. We also create a set of |F| polynomials such that in any common zero of these polynomials the
value of yi is its matched element in F. The set of polynomials we create are: y0, y1 − g, and for
i ∈ {2, . . . , |F| − 1} the polynomial yi − yi−1y1 − y0.

Second, we assign a new variable to each gate. Now every gate and input is matched to a variable.
Loosely speaking, two variables enter every gate. For every gate that is matched to the variable yi1
and the variables that enter it are yi2 and yi3 we add a new polynomial. If this is a + gate, add the
polynomial yi1 − yi2y|F|−1 − yi3 (recall that y|F|−1 is 1 for a common zero). Else, if this is a × gate,
add the polynomial yi1 − yi2yi3 − y0 (recall that y0 is 0 for a common zero).

Third, if the variable matched with the output gate is yi1 , add the polynomial yi1−y0y0−y0.

Low Degree Theorem. We start with the fact that the Reed-Muller code is a distance estima-
tor due to the well known Low Degree Theorem (LDT) (see [4, 19, 22]). Briefly, the LDT states that
it is enough to query a 3-dimensional linear subspace to get a distance estimator. More formally,

Definition 4.6. For any field F and a subfield K ⊆ F we define the graph GLDT,K as (Fm × Km ×
Km,Fm, E) where ((x, y, z), w) ∈ E if and only if w = t1x+ t2y+ t3z for some t1 ∈ F\{0}, t2, t3 ∈ F.

Lemma 4.7 (Low Degree Testing Theorem). For every subfield K ⊆ F the tester (RMF,m,d, GLDT,K)
is a δm,d,|K|,|F|-distance estimator.

Recall that δm,d,|K|,|F| was defined in Section 2. To see that this lemma follows from [19, Theorem
2] note that the test in [19] is the same as choosing a random 3-dimensional linear sub-space and a
point in it. Second, the tester in Lemma 4.7 includes all 3-dimensional sub-space the same number
of times.

Using Lemma 3.4, the fact that RMF,m,d on any subspace is also a RMF,m′,d for some m′, and
that for δ ≥ δm,d,|K|,|F| it holds that δ ≥

√
2d/|F|, we have the simple corollary that the latter is also

an LLE.

Corollary 4.8 (Low Degree Testing Theorem-II). For every field F, a subfield K ⊆ F, and δ ≥
δm,d,|K|,|F| the tester (RMF,m,d, GLDT,K) is a (O(δ), 2

δ)-LLE.

Notice that GLDT,K is right regular with degree |K|2m |F|2 (|F| − 1). The reason is that for every
w ∈ Fm its neighbors are (w−t2y−t3z/t1, y, z) for every y, z ∈ Km, t2, t3 ∈ F, t1 ∈ F \ {0}.

Bundled Polynomial. We need a helpful claim that shows how to bundle a few low-degree poly-
nomials into one low-degree polynomial. Specifically, we can bundle kl polynomials of degree d into
one polynomial of degree only kl + d and the dimension increases by only l.

Claim 4.9. For any field F, a subset H ⊆ F, and m-variate polynomials p1, . . . , p|H`| over F of

degree at most d, the following holds. There is an (m+ `)-variate polynomial Qp1,...,p|H`| of degree at

most d+ `(|H| − 1) such that for every ~h = (h1, . . . , h`) ∈ H` the following equality holds

Qp1,...,p|H`|(h1, . . . , h`, x1, . . . , xm) = p~h(x1, . . . , xm).

18

Proof. Let h ∈ H, and define

qh(x) =

∏
h′∈H\{h}(x− h′)∏
h′∈H\{h}(h− h′)

.

Notice that qh(x) is of degree |H|−1, is 1 on h and 0 on any point in H \{h}. Let ~h = (h1, . . . , h`) ∈
H`, and define the polynomial

q~h = qh1(x1) · · · qh`(x`).

Notice that the latter polynomial is of degree `(|H|−1) and is 1 on ~h and 0 on any point in H` \{~h}.
Finally, we define our desired Q as

Qp1,...,p|H`|(h1, . . . , h`, x1, . . . , xm) =
∑
~h′∈H`

[q~h′(h1, . . . , h`)p~h′(x1, . . . , xm)].

Relative Locally Testable Code. We also need one last definition in which we weaken the
definition of “locally testable codes”. Instead of requiring to reject all far words, we require only to
reject words that are in some set C̃. More formally,

Definition 4.10. We say that a tester (C, (A,B,E)) is a γ-Locally Testable Code (LTC) relative to
a set C̃ if for every c ∈ C̃ \ C it holds that Pra∈A(ca ∈ Ca) ≤ γ.

In the following two claims, we present simple testers that are LTC relative to the Reed-Muller
code. Both are based on Schwartz-Zippel Lemma (see Lemma 2.2). First, define the set Indvd,m,F =
{f : Fm → F | degindv(f) ≤ d}.

Claim 4.11. For any field F and integers m, d′ > d, the following holds. There is a graph G, with
left degree m(d+ 2), such that the tester (Indvd,m,F, G) is a d′/|F|-LTC relative to RMF,m,d′.

Proof. We construct a graph G with left side Fm+d+1, right side Fm, and the neighbors of a vertex
(a1, . . . , am−1, a

′
1, . . . , a

′
d+2) ∈ Fm+d+1 are defined in the following way. For every j ∈ {1, . . . ,m}

choose d+2 coordinates in Fm by taking the vector (a1, . . . , am−1) ∈ Fm−1 and in the j th coordinate
put one of the d+ 2 values a′1, . . . , a

′
d+2. Namely,

ΓG(a1, . . . , am−1, a
′
1, . . . , a

′
d+2) = {(a1, . . . , aj−1, a

′
j′ , aj . . . , am−1) | j ∈ {1, . . . ,m}, j′ ∈ {1, . . . , d+2}}.

Notice that the left degree of G is m(d+ 2).

Fix an arbitrary polynomial p ∈ RMF,m,d′ \ Indvd,m,F. We know that there are i ∈ {1, . . . ,m},
k > d and a (m−1)-variate polynomial pj : Fm−1 → F with deg(pj) ≤ d′− j, for every j ∈ {0, . . . , k}
such that

p(x1, . . . , xm) =

k∑
j=0

xjipj(x1, . . . , xi−1, xi+1, . . . , xm),

where pk is not the zero polynomial. For every a1, . . . , am−1 ∈ F, define the univariate polynomial

p′a1,...,am−1
(x) = p(a1, . . . , ai−1, x, ai, . . . , am−1).

19

Notice that deg(p′a1,...,am−1
) ≤ k. We bound the term Pra∈|F|m+d+1(pa ∈ Indvd,m,Fa) by

Pr
a

(pk(a1, . . . , am−1) = 0) + Pr
a

(pk(a1, . . . , am−1) 6= 0 ∧ pa ∈ Indvd,m,Fa)

≤ d′ − k
|F|

+ Pr
a

(deg(p′a1,...am−1
) = k ∧ (p′a1,...,am−1

(a′j′))
d+2
j′=1 ∈ RM

F,1,d
a′1,...,a

′
d+2

)

≤ d′ − k
|F|

+
k

|F|
=

d′

|F|
.

For any field F and integers m′ > m, we define LessDimm,m′,F as the set of all m′-variate
polynomials that are influenced only by the first m variables. I.e., it is the set

{f : Fm
′ → F | ∀x1, . . . , xm′ , ym+1, . . . , ym′ ∈ F, f(x1, . . . , xm′) = f(x1, . . . , xm, ym+1, . . . , ym′)}.

Notice that LessDimm,m′,F is systematic for F|F|
m

, by mapping any f : Fm → F to the m′-variate
polynomial f ′(x1, . . . , xm′) = f(x1, . . . , xm) ∈ LessDimm,m′,F. In the following claim we prove that
LessDimm,m′,F is an LTC relative to RMF,m′,d.

Claim 4.12. For any field F and integers d,m′ > m, the following holds. There is a graph G, with
left degree 2, such that the tester (LessDimm,m′,F, G) is a d/|F|-LTC relative to RMF,m′,d.

Proof. We construct a graph G with left side F2m′−m, right side Fm′ , and the two neighbors of the
vertex (a1, . . . , am′ , a

′
m+1, . . . , a

′
m′) ∈ |F|

2m′−m are

(a1, . . . , am′), (a1, . . . , am, a
′
m+1, . . . , a

′
m′).

Fix an arbitrary polynomial p ∈ RMF,m′,d \ LessDimm,m′,F. We define the polynomial

p′(x1, . . . , xm′ , ym+1, . . . , ym′) = p(x1, . . . , xm′)− p(x1, . . . , xm, ym+1, . . . , ym′).

Notice that deg(p′) ≤ deg(p). Using the assumption that p /∈ LessDimm,m′,F, we have that p′ is not
the zero polynomial. Thus, from Schwartz-Zippel Lemma, we are done.

4.2 The Construction

The proof of Theorem 4.2 is composed of two steps.

1. First, in Lemma 4.13 we construct, for any set C ′ ⊆ Fk that has polynomials that check
membership in it over hm variables, a tester (C,G′) with the following properties. The code C
is a subset of RMF,4m+1,O(hm) and systematic for C ′, the left degree of G is O(mh), and the
tester (C,G) is LTC relative to the RM code. This code is based on the zero propagation test
[5].

2. Second, in Lemma 4.14 we assume a tester (C ⊆ RMF,m,d, G′) is LTC relative to RMF,m,d,
systematic for C ′ ⊆ Fk, and |F| > dL(G′) (dL(G) is the left degree of G′). Then, we construct
graphs {Gi}i∈[k] such that (C, {Gi}i∈[k]) is an LDLE for C ′. This is a modification of Lemma
8.1 from [21].

20

Now we prove the first step in the construction of an LDLE.

Lemma 4.13. For any field F and a subset H ⊆ F the following holds. Assume a set P of polynomials
on |Hm| variables, m ≤ (|F|−2)/4, each of the form yi1 − yi2yi3 − yi4, that check membership in a set
C ′ ⊆ Fk. Then, there is a tester (C ⊆ RMF,4m+1,d, G′), with d = O(m |H|), that is O(d/|F|)-LTC
relative to RMF,4m+1,d, has left degree O(m |H|), and C is systematic for C ′.

Proof. The motivation of the proof is the following. Recall that our goal is to show a subcode
C ⊆ RM systematic for C ′ and a graph (A′, B,E) such that for any low degree polynomial p /∈ C,
Prv∈A′(pv ∈ Cv) is small. First, for any a ∈ Fk we define a function ha that is zero if and only if
a ∈ C ′. Then we use the low degree extension (see Section 2) to transform the problem to checking
if a low-degree polynomial is zero on a subcube. Then, we use the zero-propagation test to create
a short sequence of polynomials such that a ∈ C ′ if and only if the last polynomial is the zero one.
Our code is obtained by bundling all those polynomials, using Claim 4.9.

Identify the variables with elements of Hm. This allows us to think of any function a : Hm → F
as an assignment to the variables. We say that a function a : Hm → F is a satisfying assignment if
a is a common zero of P .

Denote by P all the set of all the polynomials of the form yi1−yi2yi3−yi4 over the |Hm| variables.
Notice that any polynomial in P all can be represented by a member in (Hm)4 (corresponding to 4
variables). We denote by IP : H4m → F the indicator function of P , mapping each polynomial in
P all to 0 or 1, depending on whether it is in P . We remark that sometimes we refer to an element in
F4m as four elements in Fm and sometimes as 4m elements in F. When we write x̂ we mean x̂ ∈ Fm.

For every function a : Hm → F define the function ha : H4m → F in the following way,

ha(x̂1, x̂2, x̂3, x̂4) = IP (x̂1, x̂2, x̂3, x̂4) · (a(x̂1)− a(x̂2)a(x̂3)− a(x̂4)). (2)

Notice that for every a : Hm → F it holds that a is a satisfying assignment if and only if ha is the
zero function (on H4m).

The next step is to transform the function IP : H4m → F to a low degree polynomial that agrees
with IP on H4m (and similarly for a). We do this by using the low degree extension described in
Section 2. We denote by ā : Fm → F, ĪP : F4m → F the low degree extensions of a and IP with
degrees deg(ā) ≤ |H|m and deg(ĪP) ≤ 4 |H|m. We define h̄a : F4m → F as in Equation 2 with ĪP
and ā instead of IP and a. Note that deg(h̄a) ≤ 6 |H|m. Notice that for every a : Hm → F it holds
that a is a satisfying assignment if and only if h̄a is zero on H4m.

Let π be an arbitrary bijection from H to {0, . . . , |H| − 1}. We define recursively 4m + 1 poly-
nomials p0, . . . , p4m : F4m → F by p0 = h̄a and for 1 ≤ i ≤ 4m as

pi(x1, . . . , x4m) =
∑
a∈H

pi−1(x1, . . . , xi−1, a, xi+1, . . . , x4m)x
π(a)
i

=
∑

a1,...,ai∈H
x
π(a1)
1 · · ·xπ(ai)

i h̄a(a1, . . . , ai, xi+1, . . . , x4m).

Notice that for every i ∈ {0, . . . , 4m} it holds that deg pi ≤ 6 |H|m+ i(|H| − 1), and a is a satisfying
assignment if and only if p4m is the zero polynomial.

21

The code. We map a : Hm → F, a ∈ C ′, to the bundled polynomial of p0 = h̄a, p1, . . . , p4m :
F4m → F and ā : Fm → F, using Claim 4.9. Here we extend ā to a polynomial on F4m that is
in LessDimm,4m,F. Therefore, a is mapped to a (4m + 1)-variate polynomial of degree at most
d = (6 |H|m + 4 |H|m) + (4m + 1) = O(|H|m). Note that if we permute over the coordinates we
get a systematic code for C ′.

The graph. Fix an arbitrary polynomial Q ∈ RMF,4m+1,d. We denote by Q(j, ·) : F4m → F, for
some j ∈ F, the polynomial Q with its first variable evaluated to j. We expand arbitrarily π to a
bijection from F to {0, . . . , |F|−1}. For readability, when it is understood from the context, we omit
π−1.

We interpret Q(4m+ 1, ·) as ā and Q(0, ·), . . . , Q(4m, ·) as p0 = h̄a, p1, . . . , p4m. Notice that Q is
in our code if and only if the following holds for any x = (x̂1, x̂2, x̂3, x̂4) ∈ F4m,

Q(0, ·) ∈ LessDimm,4m,F (3)

Q(0, ·) ∈ Indv|H|−1,4m,F

Q(0, x) = ĪP (x)(Q(4m+ 1, x̂1, 0̂
3)

− Q(4m+ 1, x̂2, 0̂
3)Q(4m+ 1, x̂3, 0̂

3)−Q(4m+ 1, x̂4, 0̂
3))

∀ 1 ≤ i ≤ 4m. Q(i, x) =
∑
a∈H

Q(i− 1, x|i→a)xπ(a)
i

Q(4m,x) = 0

Q(x) = QQ(0,·),...,Q(4m+1,·)(x),

where 0̂3 = (0̂, 0̂, 0̂) and QQ(0,·),...,Q(4m+1,·) is the polynomial constructed in Claim 4.9. The first two
conditions make sure that Q(4m + 1, ·) is indeed the low degree extension of some a : Hm → F.
The first equality states that Q(0, ·) is indeed p0 = h̄a. The next 4m equalities make sure that
Q(1, ·), . . . , Q(4m, ·) are p1, . . . , p4m. The penultimate equality makes sure that Q(4m, ·) is the zero
function (i.e., a is a satisfying assignment). The last equality ensure us that Q is indeed the bundled
polynomial, as defined in Claim 4.9.

Using Claims 4.11,4.12, and Schwartz-Zippel Lemma we can construct a tester that is O(d/|F|)-
LTC relative to Reed-Muller with left degree O(m |H|).

Note that two of the polynomials promised to us in Lemma 4.5 are not of the form required for
Lemma 4.13. We can easily fix this problem by increasing the left degree by only 2. Specifically, we
query also the coordinates (4m + 1, ŷ0, 0̂

3), (4m + 1, ŷ1, 0̂
3), where ŷ0, ŷ1 are the appropriate values

in Hm for the variables y0, y1. Now, for p ∈ RM \C one of the polynomials {y0, y1 − γ} ∪P are not
zero. It the polynomial that is not zero is y0 or y1 − γ then for every v ∈ A′ it holds that pv /∈ Cv.
Else, by Lemma 4.13, Prv∈A′(pv ∈ Cv) is small.

Notice that we used the zero propagation test instead of the sum check protocol as in [10]. The
latter requires bundling of many polynomials and therefore the last condition in Equation 3 cannot
be tested with O(m |H|) queries.

We continue with the second step in the construction of an LDLE. Recall that δm,d,|F|,|F| was
defined in Section 2.

22

Lemma 4.14. Assume C ⊆ RMF,m,d is a systematic code for C ′ ⊆ Fk, and assume a tester
(C,G′ = (A′, B,E′)), with left degree q where (q + 2)(d + 3) < |F|, is γ-LTC relative to RMF,m,d.
Then, for any δ ≥ δm,d(q+2),|F|,|F| there exists a set of regular graphs {Gi = (Ai, B,Ei)}i∈[k] such that

(C, {Gi}i∈[k]) is a (O(δ + γ/δ), 2
δ)-LDLE for C ′ with left degree at most |F|4 and |Ai| = |A′| |F|3m for

every i.

Proof. We first describe the idea of the proof. Corollary 4.8 shows a construction of an LLE for
the RM code that queries a random 3-dimensional subspace. This construction is, unfortunately,
not an LDLE as above, for the following two reasons. First, the list guaranteed by the robustness
condition contains Reed-Muller codewords but these are not necessarily codewords of C. Second, it
does not decode. We reduce the first problem to the second one by using the assumption that we can
locally check if a word is in the code. Hence, all we need is to decode while preserving the robustness
condition.

To perform decoding we pass a random curve through the points we wish to decode, as in Claim
4.3. Then, by that claim, we know that each point on the curve (except the fixed ones) is uniform.
Finally, through each point in the curve we query a random 3-dimensional subspace. This means we
are choosing uniformly at random a 3-dimensional subspace and from Corollary 4.8 we are done.

We proceed with the formal proof. Define arbitrarily a bijection π from {0, . . . , |F| − 1} to F.

The Graphs. Fix an arbitrary index i ∈ [k] ⊆ Fm. For every a ∈ A′, x ∈ Fm denote by ci,a,x the
unique curve of degree at most q + 1 that when evaluated on π(0), . . . , π(q + 1) attains ΓG′(a), i, x,
where the elements of ΓG′(a) appear in some fixed order. We denote the set Q = {π(0), . . . , π(q+1)}.
We define Ai = A′ × F3m. For any a ∈ A′, x, y, z ∈ Fm, consider the manifold µi,a,x,y,z : F4 → Fm of
degree at most q + 2,

µi,a,x,y,z(t0, t1, t2, t3) = t1ci,a,x(t0) + t2y + t3z.

We define the multiset of neighbors of a vertex (a, x, y, z) ∈ Ai as a subset of the latter manifold.
Namely,

ΓG(a, x, y, z) = {µi,a,x,y,z(t0, t1, t2, t3) | t0 ∈ F \Q, t1 ∈ F \ {0}, t2, t3 ∈ F}.

Notice that |ΓG(a, x, y, z)| = (|F| − (q + 2))(|F| − 1) |F|2.

Decodability. We now prove that each v = (a, x, y, z) ∈ Ai decodes ΓG′(a) ∪ {i}. For any two
codewords p, q ∈ C ⊆ RMF,m,d recall that the (total) degree of the polynomials p|µi,a,x,y,z , q|µi,a,x,y,z :

F4 → F is bounded by (q + 2)d. Using our assumption on |F| it follows that |F|3 (q + 2)d < |ΓG(v)|.
By the Schwartz-Zippel Lemma (see Lemma 2.2) if pv = qv then p|µi,a,x,y,z and q|µi,a,x,y,z must agree
on the entire F4, and in particular on ΓG′(a) ∪ {i}.

Since the code C is systematic for C ′ we achieve the decodability requirement of the LDLE definition
(see Definition 3.9).

For any v = (a, x, y, z) ∈ Ai, let c1, c2 ∈ Cv. Thus, from the assumption that C ⊆ RMF,m,d, we
have that there exist two polynomials p1, p2 ∈ RMF,m,d such that p1

v = c1 and p2
v = c2. Recall that

deg(p1|µi,a,x,y,z),deg(p2|µi,a,x,y,z) ≤ (q + 2)d. Therefore, since |ΓG(v)| = (|F| − (q + 2))(|F| − 1) |F|2 ≥
1/2 |F|4, it holds that agr(p1

v, p
2
v) ≤ 2 · agr(p1|µi,a,x,y,z , p2|µi,a,x,y,z) ≤ 2 · (q+2)d/|F|. As a result, we have

that 4(Cv) ≥ 1− 2(q+2)d/|F|.

Robustness. For every word w ∈ Fm let LP(w) ⊆ RMF,m,d be the set given by Corollary 4.8
satisfying

∣∣LP(w)
∣∣ ≤ 2

δ . We will prove that L(w) = LP(w) ∩C fulfills the robustness property. Since

23

for any two sets A,B it holds that agr(w,A ∪B) ≤ agr(w,A) + agr(w,B), we have that

Ev∈Ai [agr(wv, (Cv \ L(w)v))] ≤ Ev∈Ai [agr(wv, Cv \ LP(w)v)]

+ Ev∈Ai [agr(wv, (Cv ∩ LP(w)v) \ L(w)v)].

To bound the first expectation we denote by cv = τ(wv, Cv \ LP(w)v) and by v(s0), for s0 ∈ F \ Q,
the multiset {µi,a,x,y,z(s0, t1, t2, t3) | t1 ∈ F \ {0}, t2, t3 ∈ F}. Notice that (v(s0))s0∈F\Q is a partition
of ΓG(v) and all the parts have the same size. The following inequalities hold,

Ev∈Ai [agr(wv, (Cv \ LP(w)v)] = Ev∈Ai [agr(wv, c
v)]

= Ev∈Ai,s0∈F\Q[agr(wv(s0), c
v
v(s0))]

= Ev∈Ai,s0∈F\Q[agr(wv(s0), c
v
v(s0))Icvv(s0)∈L

P(w)v(s0)
]

+ Ev∈Ai,s0∈F\Q[agr(wv(s0), c
v
v(s0))Icvv(s0) /∈L

P(w)v(s0)
]

≤ Pr
v∈Ai,s0∈F\Q

(cvv(s0) ∈ L
P(w)v(s0))

+ Ev∈Ai,s0∈F\Q[agr(wv(s0), Cv(s0) \ LP(w)v(s0))]

≤ 2

δ
· 2(q + 2)d

|F|
+O(δ) ≤ O(δ),

where the penultimate inequality follows from the bound on 4(Cv), Corollary 4.8, and Claim 4.3.

To bound the second expectation we use the following two facts. First, recall that for every
window v = (a, x, y, z) we decode ΓG′(a). Second, the tester (C,G′) is γ-LTC relative to RM,

Ev∈Ai [agr(wv, (Cv ∩ LP(w)v) \ L(w)v)] ≤ Pr
v∈Ai

((Cv ∩ LP(w)v) \ L(w)v 6= φ)

≤ Pr
v∈Ai

(∃p ∈ LP(w) \ C such that pv ∈ Cv)

≤
∑

p∈LP(w)\C

Pr
v∈Ai

[pv ∈ Cv]

≤ 2

δ
γ.

Notice that we prove a stronger notion of robustness. Namely, we prove the robustness for every
index i instead of the required expectation on i.

Right Regularity. In the same way we proved the right regularity of GLDT,K we prove that the
LDLE we constructed is right regular.

Theorem 4.2 now follows from Lemmas 4.14, 4.13, and 4.5.

Note that the sizes of the left and right sides depend only on k and not on the set C ′.

24

5 Combinatorial Operations on Distance Estimators

In this section we describe three combinatorial operations on distance estimators: alphabet reduction
(Section 5.2), right degree reduction (Section 5.3), and query reduction (Section 5.4). All three
operations take as input an ELLE, and improve one parameter of it (while only slightly effecting the
other parameters) by somehow combining it with a “small” tester. The resulting tester is an LLE in
the first two operations and a punctured estimator in the case of query reduction.

5.1 Summary of Parameters

In Table 5.1 we summarize the parameters of all three operations. For any ε > 0, we perform the
operations on a (γ, s1, s2, L)-ELLE and as a result we get an LLE (or in the query reduction operation
we get a punctured estimator) with error γ+ ε. In all three operations the list size remains the same
(the list size changes when using the reduction from LLE to ELLE, Lemma 3.6).

In this paragraph we discuss the parameters of the inner code/graph/tester used in the three
operations. For the alphabet reduction operation we use the code described in Claim 5.4 with
distance 1− δin ≥ 1− (ε/2)2 (note that we can use a code with larger distance). For the right degree
reduction operation we use the graph described in Corollary 2.8 with degree 1/εO(1). For the query
reduction operation, we use the LDLE constructed in Section 4 (see Theorem 4.2). Note that for
the construction of the LDLE we assumed that the alphabet is a field and every local code has an
arithmetic circuit that checks membership in it with hm − |F| variables.

(γ, s1, s2, L)-ELLE (γ + ε, L)-LLE (γ + ε, L)-punctured estimator

Parameters Notations alpha. red degree red. query reduction

length b bk bDr a |Σ|4m+1

queries q qk qd |Σ|4Dr

alphabet size |Σ| 1/ε4 |Σ| |Σ|
distance δ δ(1− (ε/2)2) δ δ(1− mh/|Σ|)

left size a a a b |Σ|O(m)

right degree Dr Dr d q |Σ|O(m)

conditions k = log|Σ|/ε4 d = 1/εO(1) |Σ| ≥ (mh/ε)O(1)

s1 ≥ 2/ε s1 ≥ 3/ε s1 ≥ 8/ε2

δin ≤ (ε/2)2 s2 ≥ 4/ε

Table 1: Parameters of the combinatorial operations. Some O(·) notations are omitted. The first
row indicates the error and list sizes of the input/output testers.

5.2 Alphabet Reduction

Let Cout ⊆ Σn
out and Cin ⊆ Σn′

in be two codes and assume there exists a bijection Ein : Σout → Cin.
We define the concatenation (see [11]) of the outer code Cout with the inner code Cin as

Cout � Cin = {Ein(c1) ◦ · · · ◦ Ein(cn) | (c1, . . . , cn) ∈ Cout} ⊆ Σnn′
in .

25

Notice that Cout � Cin is a code over the alphabet of the inner code.

The alphabet reduction operation takes as an input a tester (C,G) and inner code Cin of block
length k, and outputs the tester (C �Cin, G′), each query in G is replaced by k queries to the encoded
symbol. More formally,

Definition 5.1 (alphabet reduction). The tester obtained by applying the alphabet reduction oper-
ation to a tester (C, (A,B,E)) using an inner code Cin of length k is the tester (C � Cin, (A,B ×
[k], Etarg)) where (a, (b, l)) ∈ Etarg ⇔ (a, b) ∈ E.

Proposition 5.2 (correctness). Let (C,G = (A,B,E)) be a (γ, s, 1, L)-ELLE and Cin be a code of
distance 1− δin, and assume that s ≥ 1√

δin
. Then the tester (C ′, G′) obtained by performing alphabet

reduction on C using Cin is a (2
√
δin + γ, L)-LLE.

Proof. Denote by Ein the encoding function of the inner code. For every S ⊆ B we can define a
partial encoding function Ein(CS) and decoding function E−1

in (C ′S) in the natural way (i.e., encoding
or decoding each coordinate in B separately). Fix an arbitrary word w′ ∈ Σn′

targ. For every b ∈
B we define Wb to be the decoding of all close codewords of Cin to w′b. Formally, Wb = {c ∈
E−1
in (Cin) | agr(w′b, Ein(c)) > 2

√
δin}. By Lemma 2.1 we know that |Wb| ≤ 1√

δin
≤ s. We define

L(w′) = E(L(W)), where E : C → C ′ is the encoding function.

For every a ∈ A, ca ∈ C ′a, and b ∈ ΓG(a) we denote by cab the block of coordinates that are in the
coordinate b. The following inequalities holds,

agr(w′a, c
a) = Eb∈ΓG(a)[agr(w′b, c

a
b)]

= Eb∈ΓG(a)[agr(w′b, c
a
b) · IE−1

in (cab)/∈Wb
] + Eb∈ΓG(a)[agr(w′b, c

a
b) · IE−1

in (cab)∈Wb
]

≤ 2
√
δin + Pr

b∈ΓG(a)
(E−1

in (cab) ∈Wb)

= 2
√
δin + agr(Wa, E

−1
in (ca)),

where the inequality follows from the definition of Wb and the fact that agr(·) is at most 1. To
complete the proof notice that if ca ∈ C ′a \ L(w′)a then E−1

in (ca) ∈ Ca \ L(W)a.

Claim 5.3 (sampler property). Assume the graph G = (A,B,E) is a (ε, ε′)-sampler. Then, the
graph Gtarg = (A,Btarg, Etarg) obtained by performing alphabet reduction on (C,G) for some code
C is a (2ε, ε

′

ε)-sampler.

Proof. Denote by k the length of the inner code. Denote by dA the left degree of G. Let T ⊆
B × [k] = Btarg. For every 1 ≤ i ≤ k define Ti = T ∩ (B × {i}), and define the set of vertices in A
that estimate correctly Ti,

estimate(i) =

{
v ∈ A |

(
|Ti|
|B|
− ε
)
dA ≤ |ΓG(v) ∩ Ti| ≤

(
|Ti|
|B|

+ ε

)
dA

}
.

Also define the vertices that do not estimate correctly at least ε of the Ti’s,

bad-estimateε = {v ∈ A | Pr
i∈[k]

(v /∈ estimate(i)) ≥ ε}.

26

We denote by dtargA = kdA the left degree of Gtarg. For v /∈ bad-estimate

|ΓGtarg(v) ∩ T | ≤
k∑
i=1

(
|Ti|
|B|

+ ε

)
dA + (εk)dA =

(
|T |
|Btarg|

+ 2ε

)
dtargA .

In the same way we can lower bound the left term.

From the sampler property of (A,B,E) we know that for every i, Prv∈A(v /∈ estimate(i)) ≤ ε′,
which mean that |bad-estimateε| εk ≤ ε′(k |A|). Hence, Prv∈A(v ∈ bad-estimate) ≤ ε′

ε .

As an inner code for the alphabet reduction operation we can use the code stated in the next
claim. We use this code as it has large distance and short length. See Remark 5.6 in [10] for the
proof.

Claim 5.4. For any δ ∈ (0, 1) and alphabet Σ, there is a code C : Σ→ σk, |σ| = O(1
δ2

), k = O(log|Σ|
δ2

).
This code has relative distance 1− δ.

We can now state the following corollary.

Corollary 5.5. For any δin ∈ (0, 1), ε ≥ 2
√
δin assume a tester T = (C ⊆ Σn, (A,B,E)) is a

(γ, 2
ε , 1, L)-ELLE and the distance of C is 1− δ. Then, the tester (Ctarg, Gtarg) obtained by applying

the alphabet reduction operation to T is a (γ + ε, L)-LLE. Also, Ctarg has distance (1 − δin)(1 − δ)
and the alphabet size is O(1/δ2in). The length and the number of queries increased by a factor of
O(log|Σ|/δ2in).

5.3 Right Degree Reduction

Given a code C ⊆ Σn we define the k repetition code as the set

repk(C) = {
k︷ ︸︸ ︷

c · · · c | c ∈ C} ⊆ Σnk.

The distance of C is equal to the distance of repk(C).

The right degree reduction operation takes as an input a tester (C,G = (A,B,E)) with right
degree dB and uses a bipartite graph Gin = (Ain, Bin, Ein) with

∣∣Ain∣∣ = dB,
∣∣Bin

∣∣ = k, left degree
dinA and right degree dinB to get the new tester (repk(C), G′) with right degree dinB . The graph G′ is
created by first defining for every b ∈ B a matching between ΓG(b) and Ain. Then, each query in G
is replaced by dinA queries according to Gin. More formally,

Definition 5.6 (right degree reduction). The tester obtained by applying right degree reduction
operation to a tester (C,G = (A,B,E)) using a bipartite graph Gin = (Ain, Bin, Ein) with

∣∣Ain∣∣ = dB
and

∣∣Bin
∣∣ = k is the tester (repk(C), Gtarg = (A,B ×Bin, Etarg)) where (a, (b, l)) ∈ Etarg ⇔ (a, b) ∈

E ∧ (πb(a), l) ∈ Gin and πb is a bijection between ΓG(b) and Ain. Each query is now replaced with
dinA queries according to Gin.

Proposition 5.7 (correctness). For any 0 < α, assume a tester (C,G = (A,B,E)) that is (γ, s, 1, L)-
ELLE with s ≥ 1

α . Then, after right degree reduction with (ε, ε′)-strong-sampler the resulting tester

(C ′ ⊆ Σn′ , G′ = (A,B′, E′)) is a (α+ ε′ + ε+ γ, L)-LLE.

27

Proof. Denote by Enc the encoding function of repk(C). Fix an arbitrary word w′ ∈ Σn′ . We
construct 1

α -extended word W, in the following way. For each b ∈ B we define Wb to be all the
α-popular symbols in w′b. Formally, Wb = {σ ∈ Σ | Pri∈b(w

′
i = σ) ≥ α}. By a counting argument

we get that |Wb| ≤ 1
α ≤ s. For every a ∈ A and for every ca ∈ Ca and b ∈ ΓG(a) denote by cab the

coordinates of ca that are in the block of b. Denote by ca,b their value for b. Denote by w′a,b the

coordinates of block b ∈ ΓG(a). Notice that Enc−1(ca) is defined and Enc−1(ca)b = ca,b. It holds
that

Ea[agr(w′a, c
a)] = Ea,b∈ΓG(a)[agr(w′b, c

a
b)]

= Ea,b∈ΓG(a)[agr(w′b, c
a
b)Ica,b /∈Wb

] + Ea,b∈ΓG(a)[agr(w′b, c
a
b)Ica,b∈Wb

]

≤ α+ ε+ ε′ + Ea,b∈ΓG(a)[agr(w′b, c
a
b)Ica,b∈Wb

]

≤ α+ ε+ ε′ + Pr
a,b∈ΓG(a)

(ca,b ∈Wb)

= α+ ε+ ε′ + agr(Wa, Enc
−1(ca)).

The first inequality follows from Claim 5.8 since we know that for every b and σ /∈ Wb if we denote
by Tσ = {i ∈ b |w′i = σ} then |Tσ| ≤ dAα and for every a ∈ A agr(w′b, c

a
b) = |ΓGtarg (a)∩T

ca,b |/dA. We
are done from the assumption that (C,G) is an ELLE.

Claim 5.8. For any α > 0, assume a graph G = (A,B,E) with left degree dA is a (ε, ε′)-strong-
sampler. Also assume pairwise disjoint sets {Ti}i ⊆ B such that for every i it holds that |Ti|/|B| ≤ α.
Then,

Pr
a∈A

(
∃i. |Γ(a) ∩ Ti|

dA
> α+ ε

)
≤ ε′.

Proof. For every set Ti define the set Ai =
{
a ∈ A | |Γ(a)∩Ti|

dA
> α+ ε

}
, Ai contains the vertices in A

that is connected to more than (α+ ε)dA vertices in Ti. Notice that∑
i

|Ai|
|A|
≤ ε′

∑
i

|Ti|
|B|
≤ ε′

where the first inequality follows from the assumption that G is a (ε, ε′)-strong-sampler and the last
inequality follows since T ′is are pairwise disjoint sets.

5.4 Query Reduction

The query reduction operation, as the name suggests, takes as an input an ELLE tester (C ⊆ Σn, G =
(A,B,E)) and constructs a punctured estimator with fewer queries (i.e., reduces the left degree of G).
The operation uses for every a ∈ A an LDLE for Ca with left side rin, length k, and encoding function
Encin,a. The resulting tester is (Ctarg ⊆ Σn′ , Gtarg = (B × [rin], A × [k], Etarg)). The code Ctarg is
created by taking every c ∈ C, encoding ca according to the appropriate LDLE, for every a ∈ A, and
concatenating all these encodings. I.e., Ctarg = {Encin,a1(ca1)◦. . .◦Encin,a|A|(ca|A|) | (ca1 , . . . , ca|A|) ∈
C}. The a th part of this concatenation is called the block a.

The neighbors of every (b, r) ∈ B × [rin] in Gtarg is a union of queries to a few blocks. In each
block a ∈ A we query according to the LDLE for Ca. This is done in order to guarantee that close

28

codewords to w′a, for any word w′ ∈ Σn′ , be in the short list L(w′a)— using the robustness property
of an LDLE.

We want to be certain that all the short lists L(w′a) are a part of the same global short list
L(w′) ⊆ Ctarg. We do this by showing that the lists L(w′a) are encoding of the short list L(W)a,
for an extended word W ∈ P(Σ)n. We set Wb to be the most frequent symbols among the multiset
∪a∈ΓG(b)L(w′a)b, where L(w′a)b is the set of symbols L(w′a) assigns to b. We define the set of blocks
that (b, r) reads to be ΓG(b). More formally,

Definition 5.9 (query reduction). Let T = (C,G = (A,B,E)) be a tester with left degree dA. For
every a ∈ A let T in,a = (Cin,a, {(Ain, Bin, Ein,ab)}b∈ΓG(a)) be an LDLE for Ca with

∣∣Ain∣∣ = rin, length∣∣Bin
∣∣ = k, and encoding function Encin,a. The tester T targ obtained by applying query reduction

operation to T using (T in,a)a∈A is defined as follows. T targ = (Ctarg, (B× [rin], A× [k], Etarg)), where
((b, r), (a, l)) ∈ Etarg ⇔ (a, b) ∈ E ∧ (r, l) ∈ Ein,ab . The code is defined as Ctarg = {Encin,a1(ca1) ◦
. . . ◦ Encin,a|A|(ca|A|) | (ca1 , . . . , ca|A|) ∈ C}.

Proposition 5.10 (correctness). Assume the following. A tester T = (C,G = (A,B,E)) is a
(γ, s1, s2, L)-ELLE with s1 ≥ Lin

γin
, and s2 ≥ Lin. The graph G is regular. For every a ∈ A,

T in,a = (Cin,a, {Gin,ab }b∈ΓG(a)) is a (γin, Lin)-LDLE for Ca. Then, the tester (Ctarg ⊆ Σn′ , Gtarg =
(Atarg, Btarg, Etarg)) obtained by applying query reduction to T using (T in,a)a∈A is a (γ + 2γin, L)-
punctured estimator.

Proof. Fix an arbitrary word w′ ∈ Σn′ and define the following notations. For every a ∈ A,

• w′a— the word w′ restricted to block a.

• w′b,r— the word w′ restricted to the window (b, r).

• (w′b,r)a— w′b,r restricted to block a (sometimes be written as (w′a)b,r).

• Lin(w′a)— the promised list from the assumption that T in,a is an LDLE for Ca.

• (Lin(w′a))b— for b ∈ ΓG(a), the set of symbols L(w′a) assigns to b.

• L(w′a)b,r— for b ∈ ΓG(a), r ∈ [rin], the set L(w′a), restricted to window (b, r).

The first three notations can be used also for any extended word c ∈ P(Σ)n
′

and for the code
Ctarg. We denote by Enc : C → Ctarg the encoding function from C to Ctarg. Notice that for any
completion of a local codeword ca ∈ Ctarga to a global codeword c ∈ Ctarg, (Enc−1(c))a is the same.
Thus, we allow ourselves to write Enc−1(ca) for ca ∈ Ctarga .

We construct an s1-extended word W in the following way. For each b ∈ B define Wb to be the
γin-popular symbols among (Lin(w′a))b, for a ∈ ΓG(b). Namely,

Wb = {σ ∈ Σ | Pr
a∈ΓG(b)

(σ ∈ (Lin(w′a))b) ≥ γin}.

By a counting argument we get that |Wb| ≤ Lin
γin
≤ s1. Let L(W) be the list defined by the assumption

that (C,G) is an ELLE. Set L(w′) to be the set Enc(L(W)). Define c ∈ (Ctarg)�L to be the extended

29

word created from L(w′). We now want to show that this c fulfills the requirement of a punctured
estimator.

We briefly describe the three steps of the proof. First, for a uniform random window, if a
local codeword cb,r ∈ Ctargb,r has high agreement with w′b,r (i.e., agr(w′b,r, c

b,r) is high), then for most

a ∈ ΓG(b) it holds that (cb,r)a ∈ L(w′a)b,r. The reason is that cb,r is close to w′b,r in blocks too (i.e., for

most a ∈ ΓG(b), agr((w′b,r)a, (c
b,r)a) is high) and we use the assumption that T in,a is an LDLE (second

condition). Second, using the assumption that T in,a is an LDLE (first condition), any completion of
(cb,r)a to a codeword in Ctarga (and in particular to a codeword in L(w′a)) gives a unique value and we
can easily show that this value is in Wb. Third, the last step implies that Wa has high agreement with
Enc−1(L(w′a)). Using the assumption that T is an ELLE, it follows that (cb,r)a ∈ (Enc(L(W))b,r)a.
Notice that we only prove that the resulting tester is a punctured estimator and not LLE. This is due
the fact that we prove that (cb,r)a ∈ (L(w′)b,r)a, for most a ∈ ΓG(b), and not that (cb,r) ∈ L(w′)b,r.

For the formal proof, note that, using the regularity of G, the following two distributions (that we
define by a random process) are equal. First, choose uniformly at random a ∈ A, b ∈ ΓG(a). Second,
choose uniformly at random b ∈ B, a ∈ ΓG(b). Denote by cb,r = τ(w′b,r \ cb,r, C

targ
b,r). We notice that

for any a ∈ ΓG(b) if cb,ra ∈ (L(w′)a)b,r then agr((w′b,r)a \ (cb,r)a, (c
b,r)a) = 0. Note that for any two

completions of cb,r to two codewords c1, c2 it holds that Enc−1(c1)b = Enc−1(c2)b, by the definition
of LDLE (first condition). We denote this value by Db(c

b,r). By the definition of agreement, the
regularity of G, and linearity of expectation, the following equalities holds,

Eb,r[agr(w′b,r \ cb,r, C
targ
b,r)] = Eb,r[agr(w′b,r \ cb,r, cb,r)]

= Eb,r,a∈ΓG(b)[agr((w′b,r)a \ (cb,r)a, (c
b,r)a)]

= Ea,r,b∈ΓG(a)[agr((w′b,r)a \ (cb,r)a, (c
b,r)a)]

= Ea,r,b∈ΓG(a)[agr((w′b,r)a) \ (cb,r)a, (c
b,r)a)I(cb,r)a∈Lin(w′a)b,r∧Db(cb,r)∈Wb

]

+ Ea,r,b∈ΓG(a)[agr((w′b,r)a \ (cb,r)a, (c
b,r)a)I(cb,r)a∈Lin(w′a)b,r∧Db(cb,r)/∈Wb

]

+ Ea,r,b∈ΓG(a)[agr((w′b,r)a \ (cb,r)a, (c
b,r)a)I(cb,r)a /∈Lin(w′a)b,r

].

The third expectation in the last equality is bounded by γin, using the second condition of the
LDLE and the fact that agr((w′b,r)a, (c

b,r)a)I(cb,r)a /∈Lin(w′a)b,r
≤ agr((w′b,r)a, (Ca)b,r \ Lin(w′a)b,r). The

second expectation is also bounded by γin, using the facts that agr(·) ≤ 1, and that for every
(b, r) ∈ B × [rin] if Db(c

b,r) /∈ Wb then Pra∈ΓG(b)((c
b,r)a ∈ Lin(w′a)b,r) < γin. To bound the first

expectation, notice that

agr((w′b,r)a \ (cb,r)a, (c
b,r)a)I(cb,r)a∈Lin(w′a)b,r∧Db(cb,r)∈Wb

≤ I(cb,r)a∈Lin(w′a)b,r\(L(w′)a)b,r∧Db(cb,r)∈Wb

≤ IWb∩cextb 6=φ
,

where cext ∈ (Ca \L(W)a)
�s2 is the s2-extended word created from the set Enc−1(Lin(w′a)\L(w′)a).

Hence, using the assumption that the tester (C,G) is (γ, s1, s2, L)-ELLE, the first expectation is
bounded by Ea[agr(Wa, Enc

−1(Lin(w′a) \ L(w′)a))] ≤ γ.

30

RM is
distance

estimator
LLE ELLE

alphabet
red.

LLE

inner
code

Clm.
5.4 distance

estimator

Lm. 3.4 Lm. 3.6 Pro. 5.2

Lm. 3.3

Figure 2: Structure of the proof of Theorem 1.2.

6 Putting the Pieces Together

In this final section we use what we constructed in previous sections to prove Theorems 1.2 and 1.3.
See Figures 2 and 3 for the structure of the constructions.

In both theorems, given a message length k, we choose parameters m, d such that k =
(
m+d
m

)
. We

start with the tester (RMF,m,d, GLDT,K). Let h = d/m + 1 and notice that k =
(
mh
m

)
and therefore

hm ≤ k ≤ (eh)m. The distance of RMF,m,d is, by Lemma 2.2, 1 − δagr, where δagr = d/|F|. Number
of queries is at most |F|3 = (d/δagr)3 ≤ (mh/δagr)3. The length of the code is |F|m = (d/δagr)m ≤
(m/δagr)m · k. We will consider two choices of m: (i) m = log k/log log k; this choice yields polynomial
length. (ii) m = (log k)α for some constant α < 1; this choice yields almost linear length.

We then transform the initial tester into an ELLE. Using Corollary 4.8 and Lemma 3.6 we can
establish the next corollary.

Corollary 6.1 (Low Degree Testing Theorem-III). For every field F, a subfield K ⊆ F, for all
integers s1, s2 > 0, and δ ≥ δm,d,|K|,|F|, the following holds. The tester (RMF,m,d, GLDT,K) is a

(O(δs1s2), s1, s2, s1
2
δ)-ELLE.

We continue with proving each theorem separately. For ease of readability, we first repeat the
statements of the theorems.

Theorem 1.2. For any k ≥ 1 and for any 1/log1/17 k < ε < 1 there is an ε-distance estimator with
message length k, alphabet size poly(1

ε), and distance 1 − O(ε2). The other parameters are either

(i) polynomial length and poly(log k) number of queries, or (ii) almost linear length (i.e., k1+o(1))
and ko(1) number of queries.

Proof. Fix an arbitrary 1/log1/17 k < ε < 1. Choose the minimal |F| , |K| such that δm,d,|K|,|F| ≤ ε2.

Note that, |F| , |K| ≤ mO(1)h · ε−16. Notice that δagr ≤ ε2 and the length is at most mO(m)kε−O(m) ≤
mO(m)k1+o(1). In this theorem we use the two choices of m mentioned above.

Apply Corollary 6.1 to (RMF,m,d, GLDT,K) with δ = ε2 and s1 = 2/ε to obtain an (O(ε), 2/ε, 1, 4/ε3)-
ELLE. We perform alphabet reduction operation with δin = (ε/2)2 and get a (O(ε), 4/ε3)-LLE (see

31

RM is
distance

estimator

LLE ELLE
alphabet

red.
LLE

inner
code

Clm.
5.4

ELLE

right
degree
red.

strong-
sampler

Cor.
2.8

LLEELLE
query
red.

LDLE
Th.
4.2

punctured
estimator

distance
estimator

Lm. 3.4

Lm. 3.6 Pro. 5.2 Lm. 3.6

Pro. 5.7Lm. 3.6Pro. 5.10

Lm. 3.8

Figure 3: Structure of the proof of Theorem 1.3.

32

Corollary 5.5). The alphabet size is O(1/ε4) and distance is 1 − O(ε2). The length and the number
of queries increased by a factor of O(log |F| /ε4).

In [19, Corollary 5.9] we can find the proof that GLDT,K is a sampler. More formally,

Claim 6.2. For any β > 0, GLDT,K is a (O(β), 1
β2 · (1

|K| + 1
|F|))-sampler.

Using the claim, with β = ε, and Claim 5.3 we know that the graph of the tester, after performing
alphabet reduction, is a (O(ε), ε4)-sampler. After using Lemma 3.3 we know that the tester we
constructed is an O(ε)-distance estimator. We obtain the result by properly choosing ε.

Theorem 1.3. For any k ≥ 1, for any constant 0 < c < 1, exists c′ = O(c) such that for any
1/logc

′
k < ε < 1 there is an (ε,poly(1

ε))-distance estimator with message length k, almost linear
length, logc k number of queries, poly(log k) alphabet size, and distance 1− 1/poly(log k).

Proof. Let 0 < c < 1 be a constant and 1/logO(c) k < ε < 1. We choose m = (log k)α for some constant
α to be chosen latter, and we choose |F| and |K| such that δm,d,|K|,|F| ≤ ε16. Note that |F| = mO(1)h ·
ε−4·16, and |K| = mO(1)ε−8·16. Notice that δagr ≤ 1/poly log k, the length is mO(m)kε−O(m) ≤ k1+o(1)

and the left side size is |F|m |K|2m = k1+o(1). By Corollary 4.8, we know that (RMF,m,d, GLDT,K) is
an (εstart, O(ε−1

start))-LLE, for large enough εstart.

Then, perform the combinatorial operations: alphabet reduction with added error εalpha and
alphabet size poly log k (see Corollary 5.5), right degree reduction with added error εdeg and query
reduction with added error εquery (see Table 5.1). Before using any of the operations, we use Lemma
3.6 to make the tester ELLE and not just LLE. The error, after performing all three operations, is
(the O(·) notation is omitted):((

εstart
εalpha

+ εalpha

)
1

εdeg
+ εdeg

)
1

ε3
query

+ εquery.

We want the error to be at most O(ε). For this, we choose εquery = ε, εdeg = ε4, εalpha = ε8, and
εstart = ε16.

We investigate the values of the other parameters after performing the combinatorial operations.
The list size has multiplied by O(1/ε4). The alphabet size is at most poly log k. The length is almost

linear. The distance is 1 − 1/poly log k. The query size is at most poly log|F|
ε ≤ logc k, for appropriate

α. We get the result by properly choosing ε. We use Lemma 3.8 to get a distance estimator.

Acknowledgements. I would like to thank my advisors. Oded Regev, for long talks on this
subject that helped me gain another perspective and for his many comments making this paper
more readable. Amir Shpilka, for his encouragement and helpful comments.

I would like to thank Irit Dinur and Prahladh Harsha for helpful discussions.

I am deeply indebted to my sister, Dana Moshkovitz, for introducing me to the PCP world,
suggesting this problem to me, and for helping me overcome problems that arose through this paper.
I would like to thank my brother, Guy Moshkovitz, for many illuminating conversations.

33

References

[1] N. Alon, J. Bruck, J. Naor, M. Naor, and R. M. Roth. Construction of asymptotically good low-
rate error-correcting codes through pseudo-random graphs. IEEE Transactions on Information
Theory, 38(2):509–516, 1992.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness
of approximation problems. J. ACM, 45(3):501–555, 1998.

[3] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. J. ACM,
45(1):70–122, 1998.

[4] S. Arora and M. Sudan. Improved low-degree testing and its applications. Combinatorica,
23(3):365–426, 2003.

[5] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. P. Vadhan. Robust PCPs of proximity,
shorter PCPs, and applications to coding. SIAM J. Comput., 36(4):889–974, 2006.

[6] E. Ben-Sasson and M. Sudan. Robust locally testable codes and products of codes. Random
Struct. Algorithms, 28(4):387–402, 2006.

[7] E. Ben-Sasson, M. Sudan, S. P. Vadhan, and A. Wigderson. Randomness-efficient low degree
tests and short PCPs via epsilon-biased sets. In STOC, pages 612–621, 2003.

[8] I. Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007.

[9] I. Dinur and E. Goldenberg. Locally testing direct product in the low error range. In FOCS,
pages 613–622, 2008.

[10] I. Dinur and P. Harsha. Composition of low-error 2-query PCPs using decodable PCPs. In
FOCS, pages 472–481, 2009.

[11] G. D. Forney. Concatenated Codes. MIT Press, 1966.

[12] O. Goldreich and M. Sudan. Locally testable codes and PCPs of almost-linear length. J. ACM,
53(4):558–655, 2006.

[13] V. Guruswami. List Decoding of Error-Correcting Codes, volume 3282 of Lecture Notes in
Computer Science. Springer, 2005.

[14] V. Guruswami and A. Rudra. Tolerant locally testable codes. In APPROX-RANDOM, pages
306–317, 2005.

[15] R. Impagliazzo, V. Kabanets, and A. Wigderson. New direct-product testers and 2-query PCPs.
In STOC, pages 131–140, 2009.

[16] J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting
codes. In STOC, pages 80–86, 2000.

[17] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. J. ACM, 39(4):859–868, 1992.

34

[18] D. Moshkovitz. Mini-course on projection PCPs, Lecture 4, 2009. [online] http://www.math.
ias.edu/~hdanam/courses/projection/index.html.

[19] D. Moshkovitz and R. Raz. Sub-constant error low degree test of almost-linear size. SIAM
Journal on Computing, 38(1):140–180, 2008.

[20] D. Moshkovitz and R. Raz. Sub-constant error probabilistically checkable proof of almost linear
size. Computational Complexity, 2009.

[21] D. Moshkovitz and R. Raz. Two query PCP with sub-constant error. J. ACM, 57(5), 2010.

[22] R. Raz and S. Safra. A sub-constant error-probability low-degree test and a sub-constant error-
probability PCP characterization of NP. In Proc. 29th ACM Symp. on Theory of Computing,
pages 475–484, 1997.

A An alternative Proof of the Schwartz-Zippel Lemma

In this section we show a proof of a slightly weaker form of Lemma 2.2 (d/(|F|−1) instead of d/|F|).

From the assumption that p is not the zero polynomial we know that there is a point v ∈ Fm
such that p(v) 6= 0. Notice that the restriction of p to any line is a univariate polynomial of degree
at most d. The |F|

m−1/|F|−1 lines that pass through v form a partition of Fm \ {v}. Hence,

|{x ∈ Fm | p(x) = 0}| ≤ |F|
m − 1

|F| − 1
d < |F|m d

|F| − 1
.

35

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

http://www.math.ias.edu/~hdanam/courses/projection/index.html
http://www.math.ias.edu/~hdanam/courses/projection/index.html

