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Abstract

We describe a reduction from the problem of unordered search (with a unique solution) to the problem
of inverting a permutation. Since there is a straightforward reduction in the reverse direction, the
problems are essentially equivalent.

The reduction helps us bypass the Bennett-Bernstein-Brassard-Vazirani hybrid argument [2] and the
Ambainis quantum adversary method [1] that were earlier used to derive lower bounds on the quantum
query complexity of the problem of inverting permutations. It directly implies that the quantum query
complexity of the problem is in Ω(

√
n ).

1 Introduction

Let n be an even positive integer. The problem Permutationn of inverting a permutation π on the
set [n] = {1, 2, . . . , n} is defined as follows. Given π in the form of an oracle, and n as input, output “yes”
if the pre-image π−1(1) is even and “no” if it is odd. A related problem is that of unordered search: Given
a function f : [n] → {0, 1} as an oracle, and n as input, output “yes” if f−1(1) is non-empty and “no”
otherwise. In other words, determine if f maps any element i ∈ [n] to 1. In this article, we restrict ourselves
to functions f which map at most one element to 1. As we might expect, these constitute the hardest
instances of unordered search. We refer to the corresponding sub-problem as Unique Searchn. For further
background on these problems and the oracle model of computation, we refer the reader to [2, 1].

An algorithm for unordered search (in fact, for Unique Searchn) may be used to solve the inversion
problem Permutationn in the obvious manner, using the same number of oracle queries. Namely, we
define a boolean function f on [n] such that f(i) = 1 iff π(i) = 1 and i is even. This function may be
evaluated with one classical query to an oracle for π. An additional query is required in the quantum case to
“erase” the answer to the first query. Therefore the Grover quantum search algorithm [3] solves this problem
with O(

√
n ) queries to an oracle for π. We describe a reduction in the reverse direction, i.e., we show that

any algorithm that solves Permutationn also solves Unique Searchn/2. More accurately, the reduction
is between distributional versions of the problems, with equal weight on on “yes” and “no” instances, and
with uniform conditional distributions for each kind of instance. Due to the inherent symmetry in the
two problems under consideration, the distributional and worst case versions of the problems are, in fact,
equivalent in query complexity, up to constant factors (for the distributions described above). We elaborate
on this below.

Let µ be the distribution which assigns probability 1/2 to the constant function 0, and probability 1/2n
to each of the “yes” instances of Unique Searchn.

∗The reduction reported in this note was discovered in 2004 and communicated informally to a few people. It is written up
here for wider dissemination.

†Department of Combinatorics and Optimization, and Institute for Quantum Computing, University of Waterloo, 200
University Ave. W., Waterloo, ON N2L 3G1, Canada. E-mail: ashwin.nayak@uwaterloo.ca. Research supported in part by
NSERC Canada, CIFAR, an ERA (Ontario), QuantumWorks, MITACS, and ARO (USA). A.N. is also Associate Faculty,
Perimeter Institute for Theoretical Physics, Waterloo, Canada. Research at Perimeter Institute for Theoretical Physics is
supported in part by the Government of Canada through Industry Canada and by the Province of Ontario through MRI.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 121 (2010)



Theorem 1.1. Let n be an even positive integer. Let A be an (classical or quantum) algorithm that
solves Permutationn with distributional error at most ε < 1/2 on the uniform distribution over per-
mutations on [n], with Q queries to the permutation oracle. Then there is an algorithm of the same kind
as A, that solves Unique Searchn/2 with distributional error at most 1

3−2ε < 1/2 with respect to µ, with
at most Q queries to the search oracle in the classical case, and at most 2Q queries in the quantum case.

An algorithm that is correct with probability 1− ε in the worst case implies an an algorithm with distri-
butional correctness probability 1− ε with respect to any distribution. Conversely, composing a function f :
[n] → {0, 1} with a permutation σ on [n] preserves the “yes” and the “no” instances of Unique Searchn.
Therefore, an algorithm B with distributional error at most ε with respect to the distribution µ gives us an
algorithm with worst case error at most 2ε: We pick a uniformly random permutation σ on [n], and then run
the algorithm B with every oracle query i ∈ [n] replaced by a query to σ(i). Effectively, any single instance
of Unique Searchn is mapped to a uniformly random instance with the same answer. Since B makes an
error with probability at most 2ε on uniformly random “yes” or “no” instances alone, the worst case error
of the new algorithm is at most 2ε.

Similarly, composing a permutation π on [n] with another permutation that permutes odd integers
among themselves and even integers among themselves also preserves the “yes” and the “no” instances
of Permutationn. Therefore, an algorithm with distributional error at most ε with respect to the uniform
distribution for Permutationn implies an algorithm with worst case probability of error at most 2ε.

As Unique Searchn/2 requires Ω(
√

n ) queries [2] (in fact, even in the distributional case), for any
constant probability of error δ < 1/2, Theorem 1.1 implies that any quantum algorithm for Permutationn

with oracle access to the permutation requires Ω(
√

n) queries. The lower bound of Ω(n) in the classical case
is straightforward.

The inversion problem Permutation was originally used by Bennett, Brassard, Bernstein, and Vazi-
rani [2] to show that relative to a random permutation oracle A, with probability 1, NPA ∩ co-NPA 6⊆
BQPA. Using a nested hybrid argument, they showed that the inversion problem requires Ω( 3

√
n ) queries

(for constant probability of error under the uniform distribution). The optimal bound of Ω(
√

n ) was estab-
lished (for worst case query complexity) by Ambainis [1] using the then newly minted quantum adversary
method. The reduction we present bypasses these techniques and shows a direct connection between inversion
and search.

2 The reduction

As it makes no reference to the model of computation (be it classical randomized, or quantum), we skip
ahead to the presentation of the reduction, thereby proving Theorem 1.1. We present it in a non-constructive
“top-down” fashion to elucidate the intuition, and then sketch the reduction.

Given an algorithm for inverting a permutation on [n] (specified by an oracle), we devise an algorithm for
unique unordered search on [n/2]. Assume that the algorithm A identifies uniformly random permutations
chosen from one of the two following sets:

P0 =
{
π : π is a permutation on [n], π−1(1) is odd

}
P1 =

{
π : π is a permutation on [n], π−1(1) is even

}
,

with distributional error ε. We have |P0| = |P1| = n!/2.
We run the algorithm on oracles not in its domain, a device first employed in [4], and in numerous

subsequent works to great effect. These oracles compute functions h : [n] → [n] with a unique collision at 1,
with one odd and one even number in the colliding pair. In other words, the function is such that there are
precisely two distinct elements i, j with the same image under h, this image is 1, and precisely one of i, j is
odd (and the other is even). Let Q denote the set of all such functions. We have |Q| = n

4 n!.
Since the algorithm A distinguishes (on average) a random permutation from P0 from a random permu-

tation from P1, the algorithm necessarily also accomplishes at least one of the following tasks (on average).

Task 1:
Distinguish a uniformly random permutation from P0 from a uniformly random function from Q.
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Task 2:
Distinguish a uniformly random permutation from P1 from a uniformly random function from Q.

Formally, this is a consequence of the triangle inequality for norms; the `1 norm in the case of classical
algorithms and the trace norm in the case of quantum computation. For sake of concreteness, let the
algorithm A be quantum. Let the final states of the algorithm on a uniformly random input from P0, P1

and Q be denoted by ρ0, ρ1 and ρ, respectively. From the correctness of the algorithm, we have

2(1− 2ε) ≤ ‖ρ0 − ρ1‖tr .

From the triangle inequality,

‖ρ0 − ρ1‖tr ≤ ‖ρ0 − ρ‖tr + ‖ρ1 − ρ‖tr ,

whereby at least one of ‖ρa − ρ‖tr, a = 0, 1, is at least (1 − 2ε) > 0. Equivalently, the algorithm solves at
least one of the two tasks above. We show that in either case, we get an algorithm for unique unordered
search.

Consider any fixed permutation π on [n]. Consider also the functions in Q that differ from π in exactly one
point. These are functions h with a unique collision such that the collision is at 1, and

∣∣π−1(1) ∩ h−1(1)
∣∣ = 1.

If π ∈ P0, then the even element that is also mapped to 1 by h is precisely the one on which π and h differ.
Similarly, if π ∈ P1, then the odd element that is also mapped to 1 by h is precisely the one on which π
and h differ. Let Qπ denote the set of such functions h. We have |Qπ| = n/2.

Without loss of generality, assume that the algorithm solves Task 1. If we pick a uniformly random
permutation π ∈ P0, and then pick a uniformly random function h in Qπ, then h is uniformly random in Q.
In particular,

ρ =
1
|Q|

∑
h∈Q

ρh =
2
n!

∑
π∈P0

2
n

∑
h∈Qπ

ρh,

where ρg denotes the final state of the algorithm on oracle input g.
Since the algorithm A solves Task 1, it also distinguishes ρπ from a uniformly random h ∈ Qπ for at least

one π. Formally,

1− 2ε ≤ ‖ρ0 − ρ‖tr ≤ 2
n!

∑
π∈P0

∥∥∥∥∥∥ρπ −
2
n

∑
h∈Qπ

ρh

∥∥∥∥∥∥
tr

,

so we have that for at least one π ∈ P0,

1− 2ε ≤

∥∥∥∥∥∥ρπ −
2
n

∑
h∈Qπ

ρh

∥∥∥∥∥∥
tr

.

Finally, we note that for any fixed permutation π ∈ P0, distinguishing π from a function from Qπ is
equivalent to Unique Searchn/2. Given an oracle f for the latter, defined on [n/2], we define a func-
tion hπ,f : [n] → [n] as follows. Let hπ,f (i) = π(i) for all odd i, and also for those even i with f(i/2) = 0.
For the lone even i, if any, with f(i/2) = 1, set hπ,f (i) = 1. The function hπ,f coincides with π if f−1(1) is
empty, and belongs to Qπ otherwise. Moreover, hπ,f may be evaluated with two queries to an oracle for f .
So the algorithm A for inverting a permutation on [n] may be used to solve unique unordered search on [n/2]
with probability of correctness at least 1

2 + 1
4 (1− 2ε) under the distribution µ.

While the above argument suffices to prove a query lower bound for Permutationn, it only gives us a
non-constructive proof of existence of an algorithm for Unique Searchn/2. We may however easily convert
the proof into a reduction in the formal sense. Suppose we are given an algorithm A as in the statement
of Theorem 1.1 that takes as input an even integer n ≥ 1, and an oracle g : [n] → [n]. Then the reduction
presented as Algorithm 1 solves Unique Searchn/2 with probability 1

3−2ε .
We may calculate the probability of error of this algorithm by considering “yes” and “no” instances

separately. The output of Algorithm 1 on the lone “no” instance of Unique Searchn/2 is “yes” with
probability α, is A(n, π) for a uniformly random π ∈ P0 with probability 1−α

2 , and is ¬A(n, π) for a

3



Algorithm 1: An algorithm for Unique Searchn/2 using A, an algorithm for Permutationn.

Input : An even integer n ≥ 1.
Oracle : A function f : [n/2] → {0, 1} with

∣∣f−1(1)
∣∣ ≤ 1.

Output: “yes”, if f−1(1) 6= ∅, “no” otherwise.

With probability α = 1−2ε
3−2ε return yes ;

// so as to maintain symmetry in the probability of correctness on "yes" and "no"
instances

Implicitly define an “oracle” hπ,f : [n] → [n] for some permutation π as follows ;
// We compute hπ,f only on demand

With probability 1−α
2 = 1

3−2ε do
Pick a uniformly random permutation π ∈ P0 ;
forall the i ∈ [n] do

if i is even and f(i/2) = 1 then define hπ,f (i) = 1 ;
else define hπ,f (i) = π(i) ; // i is odd, or i is even and f(i/2) = 0

end

return A(n, hπ,f ) ;
end

With probability 1−α
2 = 1

3−2ε do
Pick a uniformly random permutation π ∈ P1 ;
forall the i ∈ [n] do

if i is odd and f((i + 1)/2) = 1 then define hπ,f (i) = 1 ;
else define hπ,f (i) = π(i) ; // i is even, or i is odd and f((i + 1)/2) = 0

end

return ¬A(n, hπ,f ) ;
end
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uniformly random π ∈ P1 otherwise. Let ε0 be the probability of error of A on a uniformly random oracle
from P0, and let ε1 be the corresponding quantity for P1. We have ε0 + ε1 = 2ε. The probability of error on
the “no” instance is

α +
(

1− α

2

)
ε0 +

(
1− α

2

)
ε1 = α + (1− α)ε .

The output of Algorithm 1 on a uniformly random “yes” instance of Unique Searchn/2 is “yes” with
probability α, is A(n, h) for a uniformly random h ∈ Q with probability 1−α

2 , and is ¬A(n, h) for a uniformly
random h ∈ Q otherwise. If p denotes the probability that the output A(n, h) is “no” for a uniformly
random h ∈ Q, the probability of error on a uniformly random “yes” instance of Unique Searchn/2 is(

1− α

2

)
p +

(
1− α

2

)
(1− p) =

1− α

2
.

The choice of α = 1−2ε
3−2ε makes the two expressions for error probability equal to 1

3−2ε .
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