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Abstract

This paper is our second step towards developing a theory of testing monomials in multi-
variate polynomials. The central question is to ask whether a polynomial represented by an
arithmetic circuit has some types of monomials in its sum-product expansion. The complexity
aspects of this problem and its variants have been investigated in our first paper by Chen and Fu
(2010), laying a foundation for further study. In this paper, we present two pairs of algorithms.
First, we prove that there is a randomized O∗(pk) time algorithm for testing p-monomials in
an n-variate polynomial of degree k represented by an arithmetic circuit, while a determin-
istic O∗(6.4k + pk) time algorithm is devised when the circuit is a formula, here p is a given
prime number. Second, we present a deterministic O∗(2k) time algorithm for testing multilinear
monomials in ΠmΣ2Πt×ΠkΠ3 polynomials, while a randomized O∗(1.5k) algorithm is given for
these polynomials. The first algorithm extends the recent work by Koutis (2008) and Williams
(2009) on testing multilinear monomials. Group algebra is exploited in the algorithm designs,
in corporation with the randomized polynomial identity testing over a finite field by Agrawal
and Biswas (2003), the deterministic noncommunicative polynomial identity testing by Raz and
Shpilka (2005) and the perfect hashing functions by Chen at el. (2007). Finally, we prove that
testing some special types of multilinear monomial is W[1]-hard, giving evidence that testing
for specific monomials is not fixed-parameter tractable.

1. Introduction

1.1. Overview

We begin with two examples to exhibit the motivation and necessity of the study about the monomial
testing problem for multivariate polynomials. The first is about testing a k-path in any given
undirected graph G = (V, E) with |V | = n, and the second is about the satisfiability problem.
Throughout this paper, polynomials refer to those with multiple variables.

For any fixed integer c ≥ 1, for each vertex vi ∈ V , define a polynomial pk,i as follows:

p1,i = xc
i ,

pk+1,i = xc
i


 ∑

(vi,vj)∈E

pk,j


 , k > 1.

We define a polynomial for G as

p(G, k) =
n∑

i=1

pk,i.
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Obviously, p(G, k) can be represented by an arithmetic circuit. It is easy to see that the graph G has
a k-path vi1 · · · vik

iff p(G, k) has a monomial xc
i1
· · ·xc

ik
of degree ck in its sum-product expansion.

G has a Hamiltonian path iff p(G,n) has the monomial xc
1 · · ·xc

n of degree cn in its sum-product
expansion. One can also see that a path with some loop can be characterized by a monomial as well.
Those observations show that testing monomials in polynomials is closely related to solving k-path,
Hamiltonian path and other problems about graphs. When c = 1, xi1 · · ·xik

is multilinear. The
problem of testing multilinear monomials has recently been exploited by Koutis [15] and Williams
[22] to design innovative randomized parameterized algorithms for the k-path problem.

Now, consider any CNF formula f = f1∧· · ·∧fm, a conjunction of m clauses with each clause fi

being a disjunction of some variables or negated ones. We may view conjunction as multiplication
and disjunction as addition, so f looks like a ”polynomial”, denoted by p(f). p(f) has a much
simpler ΠΣ representation, as will be defined in the next section, than general arithmetic circuits.
Each ”monomial” π = π1 . . . πm in the sum-product expansion of p(f) has a literal πi from the clause
fi. Notice that a boolean variable x ∈ Z2 has two properties of x2 = x and xx̄ = 0. If we could
realize these properties for p(f) without unfolding it into its sum-product, then p(f) would be a ”real
polynomial” with two characteristics: (1) If f is satisfiable then p(f) has a multilinear monomial,
and (2) if f is not satisfiable then p(f) is identical to zero. These would give us two approaches
towards testing the satisfiability of f . The first is to test multilinear monomials in p(f), while the
second is to test the zero identity of p(f). However, the task of realizing these two properties with
some algebra to help transform f into a needed polynomial p(f) seems, if not impossible, not easy.
Techniques like arithmetization in Shamir [21] may not be suitable in this situation. In many cases,
we would like to move from Z2 to some larger algebra so that we can enjoy more freedom to use
techniques that may not be available when the domain is too constrained. The algebraic approach
within Z2[Zk

2 ] in Koutis [15] and Williams [22] is one example along the above line. It was proved in
Bshouty et al. [6] that extensions of DNF formulas over Zn

2 to ZN -DNF formulas over the ring Zn
N

are learnable by a randomized algorithm with equivalence queries, when N is large enough. This is
possible because a larger domain may allow more room to utilize randomization.

There has been a long history in theoretical computer science with heavy involvement of studies
and applications of polynomials. Most notably, low degree polynomial testing/representing and
polynomial identity testing have played invaluable roles in many major breakthroughs in complexity
theory. For example, low degree polynomial testing is involved in the proof of the PCP Theorem,
the cornerstone of the theory of computational hardness of approximation and the culmination of a
long line of research on IP and PCP (see, Arora at el. [3] and Feige et al. [11]). Polynomial identity
testing has been extensively studied due to its role in various aspects of theoretical computer science
(see, for examples, Chen and Kao [9], Kabanets and Impagliazzo [13]) and its applications in various
fundamental results such as Shamir’s IP=PSPACE [21] and the AKS Primality Testing [2]. Low
degree polynomial representing [16] has been sought for so as to prove important results in circuit
complexity, complexity class separation and subexponential time learning of boolean functions (see,
for examples, Beigel [5], Fu[12], and Klivans and Servedio [14]). These are just a few examples. A
survey of the related literature is certainly beyond the scope of this paper.

The above two examples of the k-path testing and satisfiability problems, the rich literature
about polynomial testing and many other observations have motivated us to develop a new theory
of testing monomials in polynomials represented by arithmetic circuits or even simpler structures.
The monomial testing problem is related to, and somehow complements with, the low degree testing
and the identity testing of polynomials. We want to investigate various complexity aspects of the
monomial testing problem and its variants with two folds of objectives. One is to understand how
this problem relates to critical problems in complexity, and if so to what extent. The other is to
exploit possibilities of applying algebraic properties of polynomials to the study of those critical
problems. As a first step, Chen and Fu [7] have proved a series of results: The multilinear monomial
testing problem for ΠΣΠ polynomials is NP-hard, even when each clause has at most three terms.
The testing problem for ΠΣ polynomials is in P, and so is the testing for two-term ΠΣΠ polynomials.
However, the testing for a product of one two-term ΠΣΠ polynomial and another ΠΣ polynomial is
NP-hard. This type of polynomial products is, more or less, related to the polynomial factorization
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problem. We have also proved that testing c-monomials for two-term ΠΣΠ polynomials is NP-
hard for any c > 2, but the same testing is in P for ΠΣ polynomials. Finally, two parameterized
algorithms have been devised for three-term ΠΣΠ polynomials and products of two-term ΠΣΠ and
ΠΣ polynomials. These results have laid a basis for further study about testing monomials.

1.2. Contributions and Methods

The major contributions of this paper are two pairs of algorithms. For the first pair, we prove that
there is a randomized O∗(pk) time algorithm for testing p-monomials in an n-variate polynomial of
degree k represented by an arithmetic circuit, while a deterministic O∗(6.4k + pk) time algorithm is
devised when the circuit is a formula, here p is a given prime number. The first algorithm extends
two recent algorithms for testing multilinear monomials, the O∗(23k/2) algorithm by Koutis [15]
and the O(2k) algorithm by Williams [22]. Koutis [15] initiated the application of group algebra
Z2[Zk

2 ] to randomized testing of multilinear monomials in a polynomial. Williams [22] incorporated
the randomized Schwartz-Zippel polynomial identity testing with the group algebra GF(2`)[Zk

p ] for
some relatively small ` in comparison with k to achieve the design of his algorithm. The success
of applying group algebra to designing multilinear monomial testing algorithms is based on two
simple but elegant properties found by Koutis, by which annihilating non-multilinear monomials is
possible via replacements of variables by vectors in Zk

2 . When extending the group algebra from
Z2[Zk

p ] to Zp[Zk
p ] for a given prime p these two properties, as addressed in Section 3, are fortunately

no longer valid. To make the matter worse, the Schwartz-Zippel algorithm is not applicable to the
larger algebra due to the lack of these two properties. Nevertheless, we find new characteristics
about Zp[Zk

p ] and integrate these with a more powerful randomized polynomial identity testing
algorithm by Agrawal and Biswas [1] to accomplish the design of our algorithm. Our deterministic
algorithm is obtained via derandomizing the two random processes involved in the first algorithm:
deterministic selection of a set of linearly independent vectors for an unknown monomial to guarantee
its survivability from vector replacements; and deterministic polynomial identity testing. The first
part is realized with the perfect hashing functions by Chen at el. [8], while the second is carried out
by the Raz and Shpilka [19] algorithm for noncommunicative polynomials.

For the second pair of our algorithms, we present a deterministic O∗(2k) time algorithm for testing
multilinear monomials in ΠmΣ2Πt × ΠkΠ3 polynomials, while a randomized O∗(1.5k) algorithm is
given for these polynomials. It has been proved in Chen and Fu [7] that testing multilinear monomials
in ΠmΣ2Πt or ΠkΠ3 polynomials is solvable in polynomial time. However, the problem becomes
NP-hard for ΠmΣ2Πt×ΠkΠ3 polynomials. Our two algorithms use the quadratic algorithm by Chen
and Fu [7] for testing multilinear monomials in ΠmΣ2Πt polynomials as the base case algorithm.
Both new algorithms improve the O∗(3k) algorithm in [7].

Finally, we prove that testing some special types of multilinear monomials is W[1]-hard, giving
evidence that testing for specific monomials is not fixed-parameter tractable. One shall notice that
difference between the general monomial testing and the specific monomial testing. The former asks
for the existence of ”any one” from a set of possibly many monomials that are needed. The latter
asks for ”a specific one” from the set.

1.3. Organization

The rest of the paper is organized as follows. In Section 2, we introduce the necessary notations
and definitions. In Section 3, we prove new properties about the group algebra Zp[Zk

p ] to help
annihilate any monomials that are not p-monomials. These properties are then integrated with the
randomized polynomial identity testing over a finite field to help design the randomize p-monomial
testing algorithm. In Section 4, the two randomized processes involved in the randomized algorithm
obtained in the previous section will be derandomized for polynomials represented by formulas.
The success is based on combining deterministic construction of perfect hashing functions with
deterministic noncommunicative polynomial identity testing. Section 5 first presents a deterministic
parameterized algorithm for testing multilinear monomials in ΠmΣ2Πt×ΠkΣ3 polynomials, and then
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gives a more efficient randomized parameterized algorithm for the these polynomials. Finally, we
show in Section 5 that testing some special type of multilinear monomials, called k-clique monomials,
is W[1]-hard.

2. Preliminaries

2.1. Notations and Definitions

For variables x1, . . . , xn, let P[x1, · · · , xn] denote the communicative ring of all the n-variate poly-
nomials with coefficients from a finite field P. For 1 ≤ i1 < · · · < ik ≤ n, π = xj1

i1
· · ·xjk

ik
is called a

monomial. The degree of π, denoted by deg(π), is
∑k

s=1 js. π is multilinear, if j1 = · · · = jk = 1,
i.e., π is linear in all its variables xi1 , . . . , xjk

. For any given integer c ≥ 1, π is called a c-monomial,
if 1 ≤ j1, . . . , jk < c.

An arithmetic circuit, or circuit for short, is a direct acyclic graph with + gates of unbounded
fan-in, × gates of fan-in two, and all terminals corresponding to variables. The size, denoted by
s(n), of a circuit with n variables is the number of gates in it. A circuit is called a formula, if the
fan-out of every gate is at most one, i.e., its underlying direct acyclic graph is a tree.

By definition, any polynomial F (x1, . . . , xn) can be expressed as a sum of a list of monomials,
called the sum-product expansion. The degree of the polynomial is the largest degree of its monomials
in the expansion. With this expression, it is trivial to see whether F (x1, . . . , xn) has a multilinear
monomial, or a monomial with any given pattern. Unfortunately, this expression is essentially
problematic and infeasible to realize, because a polynomial may often have exponentially many
monomials in its expansion.

In general, a polynomial F (x1, . . . , xn) can be represented by a circuit or some even simpler
structure as defined in the following. This type of representation is simple and compact and may
have a substantially smaller size, say, polynomially in n, in comparison with the number of all
monomials in the sum-product expansion. The challenge is how to test whether F (x1, . . . , xn) has
a multilinear monomial, or some other needed monomial, efficiently without unfolding it into its
sum-product expansion?

Throughout this paper, the O∗(·) notation is used to suppress poly(n, k) factors in time com-
plexity bounds.

Definition 1. Let F (x1, . . . , xn) ∈ P[x1, . . . , xn] be any given polynomial. Let m, s, t ≥ 1 be
integers.

• F (x1, . . . , xn) is said to be a ΠmΣsΠt polynomial, if F (x1, . . . , xn) =
∏t

i=1 Fi, Fi =
∑ri

j=1 Xij

and 1 ≤ ri ≤ s, and Xij is a product of variables with deg(Xij) ≤ t. We call each Fi a clause.
Note that Xij is not a monomial in the sum-product expansion of p(x1, . . . , xn) unless m = 1.
To differentiate this subtlety, we call Xij a term.

• In particular, we say F (x1, . . . , xn) is a ΠmΣs polynomial, if it is a ΠmΣsΠ1 polynomial. Here,
each clause in f is a linear addition of single variables. In other word, each term has degree 1.

• F (x1, . . . , xn) is called a ΠmΣsΠt × ΠkΣ` polynomial, if F (x1, . . . , xn) = f1 · f2 such that f1

is a ΠmΣsΠt polynomial and f2 is a ΠkΣ` polynomial.

When no confusion arises from the context, we use ΠΣΠ and ΠΣ to stand for ΠmΣsΠt and
ΠmΣs, respectively.

2.2. The Group Algebra F [Zk
p ]

For any prime p and integer k ≥ 2, we consider the group Zk
p with the multiplication · defined as

follows. For k-dimensional column vectors ~x, ~y ∈ Zk
p with ~x = (x1, . . . , xk)T and ~y = (y1, . . . , yk)T ,

~x · ~y = (x1 + y1 (mod p), . . . , xk + yk (mod p)). (1)
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~0 = (0, . . . , 0)T is the zero element in the group. For any field F , the group algebra F [Zk
p ] is defined

as follows. Every element u ∈ F [Zk
p ] is a linear addition of the form

u =
∑

~x∈Zk
p ,a~x∈F

a~x~x. (2)

For any element

v =
∑

~x∈Zk
p ,b~x∈F

b~x~x,

We define

u + v =
∑

a~x,b~x
∈F, ~x∈Zk

p

(a~x + b~x (mod p))~x, and (3)

u · v =
∑

a~x,b~y∈F, and ~x,~y∈Zk
p

(a~xb~y (mod p))(~x · ~y). (4)

For any scalar w ∈ F ,

wu = a


 ∑

~x∈Zk
p , a~x∈F

a~x~x


 =

∑

~x∈Zk
p , a~x∈F

(wa~x (mod p))~x. (5)

The zero element in F [Zk
p ] is the one as represented in expression (2) with zero coefficients in F :

0 =
∑

~x∈Zk
p

0~x = 0~0. (6)

The identity element in F [Zk
p ] is

1 = 1~0 = ~0. (7)

For any vector ~v = (v1, . . . , vk)T ∈ Zk
p , for i ≥ 0, let

(~v)i = (iv1 (mod p), . . . , ivk (mod p))T .

In particular, we have

(~v)0 = (~v)p = ~0.

When it is clear from the context, we will simply use xy and x + y to stand for xy(modp) and
x + y (mod p), respectively.

3. Randomized Testing of p-Monomials

Group algebra Z2[Zk
2 ] was first used by Koutis [15] and later by Williams [22] to devise a random-

ized O∗(2k) time algorithm to test multilinear monomials in n-variate polynomials represented by
arithmetic circuits. We shall extend Z2[Zk

2 ] to Zp[Zd
p ] to test p-monomials for some d > k. Two key

properties in Z2[Zk
2 ], as first found by Koutis [15], that are crucial to multilinear monomial testing

are unfortunately no longer valid in Zp[Zd
p ]. Instead, we establish new properties in Lemmas 4 and

5. Also, the Schwartz-Zippel algorithm [17] for randomized polynomial identity testing adopted by
Williams [22] is not applicable to our case. Instead, we have to use a more advanced randomized
polynomial identity testing algorithm, the Agrawal and Biswas algorithm [1].
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Let p be a prime number. Following conventional notations in linear algebra, for any vectors
~v1, . . . , ~vt ∈ Zk

p with k ≥ 1 and t ≥ 1, let span(~v1, . . . , ~vt) be the linear space spanned by these
vectors. That is,

span(~v1, . . . , ~vt) = {a1~v1 + · · ·+ at~vt|a1, . . . , at ∈ Zp}.
We first give two simple properties about (mod p) operation.

Lemma 2. For any x, y ∈ Zp, we have (x + y)p = xp + yp (mod p).

Proof: (x + y)p =
∑p

i=0(
p
i )x

p−iyi = xp + yp +
∑p−1

i=1 (p
i )x

p−iyi. Since p is prime, (p
i ) has a factor

p, implying (p
i ) = 0 (mod p), 1 ≤ i ≤ p− 1. Hence, (x + y)p = xp + yp (mod p).

Lemma 3. For any x, y ∈ Zp, we have ((p− 1)x + y)p = (p− 1)xp + yp (mod p).

Proof: By Lemma 2, ((p − 1)x + y)p ≡ (p − 1)pxp + yp (mod p). By Fermat’s Little Theorem,
(p− 1)p = (p− 1) (mod p). Thus, ((p− 1)x + y)p = (p− 1)xp + yp (mod p).

The first crucial, though simple, property observed by Koustis [15] about testing multilinear
monomials is that replacing any variable x by (~v +~0) will annihilate xt for any t ≥ 2, where ~v ∈ Zk

2

and ~v0 is the zero vector. This property is not valid in Zp[Zd
p ]. However, we shall prove the following

lemma that helps annihilate any monomials that are not p-monomials.

Lemma 4. Let ~v0 ∈ Zd
p be the zero vector and ~vi ∈ Zd

p be any vector. Then, we have

((p− 1)~vi + ~v0)p = 0, (8)

i.e., the zero element in Zp[Zd
p ].

Proof: By Lemma 3, we have ((p−1)~vi+~v0)p = (p−1)(~vi)p+(~v0)p (mod p) = (p−1)~v0+~v0 = p~v0

(mod p) = 0.

The second crucial property found by Koutis [15] has two parts: (a) Replacing variables xij in
a multilinear monomial xi1 · · ·xik

with (~vij + ~v0) will annihilate the monomial, if the vectors ~vij

are linearly dependent in Zk
2 . (b) If these vectors are linearly independent, then the sum-product

expansion of the monomial after the replacements will yield a sum of all 2k vectors in Zk
2 . However,

neither (a) nor (b) is in general true in Zp[Zk
p ]. Fortunately, we have the following lemma, though

not as ”structurally” perfect as (b).

Lemma 5. Let xm1
1 · · ·xmt

t be any given p-monomial of degree k. If vectors ~v1, . . . , ~vt ∈ Zd
p are

linearly independent, then there are nonzero coefficients ci ∈ Zp and distinct vector ~uj ∈ Zd
p such

that

((p− 1)~v1 + ~v0)m1 · · · ((p− 1)~vt + ~v0)mt = c1
~0 +




(m1+1)(m2+1)···(mt+1)∑

i=2


 ci~ui, (9)

where c1 = 1.

Proof:

((p− 1)~v1 + ~v0)m1 · · · ((p− 1)~vt + ~v0)mt

=

(
m1∑

i1=0

(m1
i1

)(p− 1)i1(~v1)i1

) (
m2∑

i2=0

(m2
i2

)(p− 1)i2(~v2)i2

)
· · ·

(
mt∑

it=0

(mt
it

)(p− 1)it(~vt)it

)

=
m1∑

i1=0

m2∑

i2=0

· · ·
mt∑

it=0

(m1
i1

)(m2
i2

) · · · (mt
it

)(p− 1)i1+t2···+it(~v1)i1(~v2)i2 · · · (~vt)it (10)
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As noted in the previous section, in the vector space Zd
p , we have

(~v1)i1(~v2)i2 · · · (~vt)it = i1~vi + i2~v2 + · · ·+ tt~vt. (11)

Since ~v1, ~v2, . . . , ~vt are linearly independent, by expression (11) we have

(~v1)i1(~v2)i2 · · · (~vt)it = ~0 iff i1 = i2 = · · · = it = 0. (12)

The linear independence of ~v1, ~v2, . . . , ~vt implies that any non-empty subset of these vectors are also
linearly independent. Similar to expression (12), this further implies that, for any 0 ≤ ji ≤ mi,
i = 1, 2, . . . , t,

(~v1)i1(~v2)i2 · · · (~vt)it = (~v1)j1(~v2)j2 · · · (~vt)jt iff i1 = j1, i2 = j2, . . . , and it = jt. (13)

Furthermore, since p is prime and mi ∈ Zp, we have

c(i1, i2, . . . ct) = (m1
i1

)(m2
i2

) · · · (mt
it

)(p− 1)i1+t2···+it (mod p)
6= 0 (mod p) (14)

Combining expressions (13) and (14), we have

((p− 1)~v1 + ~v0)m
i · · · ((p− 1)~vt + ~v0)m

t

= 1~0 +


 ∑

0≤ij≤mj , 0≤j≤t, and i1+i2···+it>0

c(i1, i2, . . . , it) · ((~v1)i1(~v2)i2 · · · (~vt)it)


 . (15)

In the above expression (15), all the coefficients are nonzero, and all the (m1+1)(m2+1)·(mt+1) ≤ pk

vectors are distinct. Hence, expression (9) is obtained.

Remark. Lemma 5 guarantees that replacing variables in a p-monomial by linearly independent
vectors will prevent the monomial from being annihilated. Note that the total number of distinct
vectors in expression 9 is at most pk.

Lemmas 4 and 5 have laid a basis for designing randomized algorithms to test p-monomials. One
additional help will be drawn from randomized polynomial identity testing over a finite field. We are
ready to present the algorithm and show how to integrate group algebra with polynomial identity
testing to aid our design. To simplify description, we assume, like in Koutis [15] and Williams
[22], that the degree of p-monomials in a polynomial is at least k, provided that such monomials
exist. Otherwise, we can simply multiply some new variables to the given polynomial to satisfy the
requirement.

Theorem 6. Let p be a prime number. Let F (x1, x2, . . . , xn) be an n-variate polynomial of degree
k represented by an arithmetic circuit C of size s(n). There is a randomized O∗(pk) time algorithm
to test with high probability whether F has a p-monomial of degree k in its sum-product expansion.

Proof: Let d = k + logp k + 1, we consider the group algebra Zp[Zd
p ]. As in Williams [22],

we first expand the circuit C to a new circuit C ′ as follows. For each multiplication gate gi,
we attach a new gate g′i that multiplies the output of gi with a new variable yi, and feed the
output of g′i to the gate that reads the output of gi. Assume that C has h multiplications gates.
Then, C ′ will have h new multiplications gates corresponding to new variables y1, y2, . . . , yh. Let
F ′(y1, y1, . . . , yh, x1, x2, . . . , xn) be he new polynomial represented by C ′. The algorithm for testing
whether F has a p-monomial of degree k is given in the following.

Algorithm RT-MLM (Randomized Testing of Multilinear Monomials):

i. Select uniform random vectors ~v1, . . . , ~vn ∈ Zd
p − {~0}.

ii. Replace each variable xi with (~vi + ~v0), 1 ≤ i ≤ n.
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iii. Use C ′ to calculate

F ′(y1, . . . , yh, (~v1 + ~v0), . . . , (~vn + ~v0)) =
2d∑

j=1

fj(y1, . . . , yh) · ~zj , (16)

where each fj is a polynomial of degree k over the finite field Zp, and ~zj with
1 ≤ j ≤ 2d are the 2d distinct vectors in Zd

p .
iv. Perform polynomial identity testing with the Agrawal and Biswas algorithm [1] for

every fj over Zp. Return ”yes” if one of them is not identical to zero, or ”no”
otherwise.

It follows from Lemma 4 that all monomials that are not p-monomials in F (and hence in F ′)
will become zero, when variables xi is replaced by (~vi + ~v0) at Step ii. We shall estimate that with
high probability some p-monomials will survive from those replacements, i.e., will not become the
zero element 0 in Zp[Zd

p ].
Consider any given p-monomial π = xm1

i1
· · ·xmt

it
of degree k with 1 ≤ mi < p and k = m1 + · · ·+

mt, i = 1, . . . , t. For any 1 ≤ j ≤ t,

Pr
[
~vj ∈ span(~vi1 , . . . , ~vij−1)

]
=

pj−1

pd
,

since |span(~vi1 , . . . , ~vij−1)| = pj−1 and |Zd
p | = pd. Hence,

Pr
[
(∃j ∈ {1, . . . , t})[~vij ∈ span(~vi1 , . . . , ~vij−1)]

]

= Pr
[
[~v1 = ~0] ∨ [~vi2 ∈ span(~vi1)] ∨ · · · ∨ [~vit ∈ span(~vi1 , . . . , ~vit−1)]

]

≤ Pr[~v1 = ~0] + Pr[~vi2 ∈ span(~vi1)] + · · ·+ Pr[~vit ∈ span(~vi1 , . . . , ~vit−1)]

=
p0

pd
+

p1

pd
+ · · ·+ pt−1

pd
≤ t

pt−1

pd

≤ k
pk−1

pk+logp k+1
≤ 1

p2
≤ 1

4
. (17)

Because ~vi1 , . . . , ~vit are linearly independent iff there is no ~vij ∈ span(~vi1 , . . . , ~vij−1), by expression
(17) the probability that ~vi1 , . . . , ~vit are linearly independent is at least 3

4 . This implies, by Lemma
5, that the monomial π will survive from the replacements at Step ii with probability at least 3

4 .
Furthermore, by expression (9) in Lemma 5,

((p− 1)~v1 + ~v0)mi · · · ((p− 1)~vt + ~v0)mt =
pk∑

i=1

c(π)i~ui(π), (18)

where c(π)i are coefficients in Zp such that (m1 + 1)(m2 + 1) · · · (mt + 1) of them are nonzero, and
~ui(π) are distinct vectors in Zd

p . Let ψ(π) be the product of the new variables yj that are added with
respect to the gates in C such that those gates produce the monomial π. Then, ψ(π) is a monomial
that is generated by C ′. Hence, at Step iii, by expression (18) F ′ will have monomials respect to π
as given in the following expansion:

φ(π) = ψ(π) · ((p− 1)~v1 + ~v0)mi · · · ((p− 1)~vt + ~v0)mt

=
pk∑

i=1

c(π)i · ψ(π) · ~ui(π). (19)

Let S be the set of all those p-monomials that survive from the variable replacements. Then,

F ′(y1, . . . , yh, (~v1 + ~v0), . . . , (~vn + ~v0)) =
∑

π∈S
φ(π)

8



=
∑

π∈S




pk∑

i=1

c(π)i · ψ(π) · ~ui(π)




=
2d∑

j=1


 ∑

π∈S and ~zj=~ui(π)

c(π)i · ψ(π)


 · ~zj (20)

Let

fj(y1, . . . , yh) =
∑

π∈S and ~zj=~ui(π)

c(π)i · ψ(π),

then the degree k polynomial with respect to ~zj is obtained for F ′ in expression (16).
Recall that when constructing the circuit C ′, each new gate is associated with a new variable.

This means that for any two monomials π′ and π′′ in F , we have ψ(π′) 6= ψ(π′′). This implies that
we cannot add c(π′) ·ψ(π′) to c(π′′) ·ψ(π′′) in fj . Thus, the possibility of a ”zero-sum” of coefficients
from different surviving monomials is completely avoided during the construction of fj . Therefore,
conditioned on that S is not empty, F ′ must not be identical to zero, i.e., there exists at least one fj

that is not identical to zero. At Step iv, we use the randomized algorithm by Agrawal and Biswas [1]
to test whether fj is identical to zero. It follows from Theorem 4.6 in Agrawal and Biswas [1] that
this testing can be done with probability at least 5

6 in time polynomially in s(n) and log q. Since S
is not empty with probability at least 3

4 , the probability of overall success of testing whether F has
a p-monomial is at least 5

8 .
Finally, we address the issues about how to calculate F ′ and the time needed to do so. Naturally,

every element in the group algebra Zp[Zd
p ] can be represented by a vector in Zpd

p . Adding two
elements in Zp[Zd

p ] is equivalent to adding the two corresponding vectors in Zpd

p , and the latter
can be done in O(pd log p) time via component-wise sum. In addition, multiplying two elements in
Zp[Zd

p ] is equivalent to multiplying the two corresponding vectors in Zpd

p , and the latter can be done
in O(dpd log2 p) with the help of a similar Fast Fourier Transform style algorithm as in Williams
[22]. Calculating F ′ consists of s(n) arithmetic operations of either adding or multiplying two
elements in Zp[Zd

p ] based on the circuit C or C ′. Hence, the total time needed is O(s(n)dpdlog2p).
At Step iv, we run the Agrawal and Biswas [1] algorithm to F ′ to simultaneously testing whether
there is one fj such that fj is not identical to zero. We choose a probability 5

6 , the by Theorem
4.6 in Agrawal and Biswas [1], this testing can be done in O∗((s(n))4n4log2p) time, suppressing a
poly(log s(n), log n, log log p) factor. Recall that d = k + logpk + 1. The total time for the entire
algorithm is O∗(pk).

4. Derandomization

In this section, we turn our attention to formulas instead of general arithmetic circuits and shall
design a deterministic algorithm to test p-monomials for polynomials represented by a formula.
Recall that the algorithm RT-MLM has only two randomized processes at Step i to select n uniform
random variables and at Step iv to test whether one fj from F ′ is identical to zero over Zp. In
this section, we shall derandomize these two randomized processes respectively with the help of two
advanced techniques of perfect hashing by Chen at al. [8] and Naor at el. [18] and noncommunicative
multivariate polynomial identity testing by Raz and Shpilka [19].

Let n and k be two integers such that 1 ≤ k ≤ n. Let A = {1, 2, . . . , n} and K = {1, 2, . . . , k}. A
k-coloring of the set A is a function from A to K. A collection F of k-colorings of A is a (n, k)-family
of perfect hashing functions if for any subset W of k elements in A, there is a k-coloring h ∈ F that
is injective from W to K, i.e., for any x, y ∈ W , h(x) and h(y) are distinct elements in K.

9



Theorem 7. Let p be a prime number. Let F (x1, x2, . . . , xn) be an n-variate polynomial of degree
k represented by a formula C of size s(n). There is a deterministic O(6.4k + pk) time algorithm to
test whether F has a p-monomial of degree k in its sum-product expansion.

Proof: As in the proof of Theorem 6, we consider the group algebra Zp[Zk
p ]. Here, we do not

need to expand the dimension k to d > k. We also construct a new formula C ′ from C by adding new
variable yi for each multiplication gate gi in the same way as what we did for Theorem 6. Assume
that C has h many multiplication gates, then C ′ will have h new multiplication gates corresponding
to new variables y1, y2, . . . , yh. The algorithm for testing whether F has a p-monomial of degree k
is given as follows.

Algorithm DT-MLM (Deterministic Testing of Multilinear Monomials):

i. Construct with the algorithm by Chen at el. [8] an (n, k)-family of perfect hashing
functions H of size O(6.4k log2 n).

ii. Select k linearly independent vectors ~v1, . . . , ~vk ∈ Zk
p . (No randomization is needed

at this step.)

iii. For each perfect hashing function τ ∈ H do

a. For each variable xi, replace it by (~vτ(i) + ~v0).
b. Use C ′ to calculate

F ′(y1, . . . , yh, (~v1 + ~v0), . . . , (~vn + ~v0))

=
2k∑

j=1

fj(y1, y2, . . . , yh) · ~zj , (21)

where each fj is a polynomial of degree k over the finite field Zp, and
vectors ~zj with 1 ≤ j ≤ 2k are the 2k distinct vectors in Zk

p .
c. Perform polynomial identity testing with the Raz and Shpilka algorithm
[19] for every fj over Zp. Stop and return ”yes” if one of them is not
identical to zero.

iv. If all perfect hashing functions in H have been tried without returning ”yes”, then
stop and output ”no”.

By Chen at el.[8], Step i can be done in O(6.4kn log2 n) times. Step ii can be easily done in
O(k2 log p) time.

It follows from Lemma 4 that all those monomials that are not p-monomials in F , and hence in
F ′, will be annihilated, when variables xi are replaced by (~vi + ~v0) at Step iii.a.

Consider any given p-monomial π = xm1
i1
· · ·xmt

it
of degree k with 1 ≤ mi < p and k = m1 +

· · · + mt, i = 1, . . . , t. Because of the nature of H, there is at least one perfect hashing function τ
in H such that τ(ij′) 6= τ(ij′′) if ij′ 6= ij′′ , 1 ≤ j′, j′′ ≤ t ≤ k. This means that ~vτ(i1), . . . , ~vτ(it) are
distinct and hence linearly independent. By Lemma 5, π will survive from the replacements at Step
iii.a. Let S be the set of all surviving p-monomials. Following the same analysis as in the proof of
Theorem 6, we have F ′ that is not identical to zero if S is not empty. That is, there is at least one
fj that is not identical to zero, if S is not empty. Moreover, the time needed for calculating F ′ is
O(kpk log2 p).

We now consider imposing noncommunicativity on C ′ as follows. Inputs to an arithmetic gate
are ordered so that the formal expressions yi1 · yi2 · · · · · yir and yj1 · yj2 · · · · · yjl

are the same iff r = l
and iq = jq for q = 1, . . . , r. Finally, we use the algorithm by Raz and Shpilka [19] to test whether
fj(y1, . . . , yh) is identical to zero of not. This can be done in time polynomially in s(n) and n, since
fj is a non-communicative polynomial represented by a formula.

Combining the above analysis, the total time of the algorithm DT-MLM is O(6.4kn log2 n +
kpk(s(n)n)O(1) log2 p) = O∗(6.4k + pk).
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5. ΠmΣ2Πt × ΠkΣ3 Polynomials

It has been proved by Chen and Fu [7] that the problem of testing monomials in ΠmΣs polynomials
is solvable in (ms

√
m + s) time, and in ΠmΣ2Πt polynomials is in O((mt)2) time. On the other

hand, it has also been proved by in [7] that the problem for ΠmΣ3 and ΠmΣ2Πt×ΠkΣ3 polynomials
is respectively NP-complete. Moreover, a O(tm21.7751m) time algorithm was obtained for ΠmΣ3Πt

polynomials, and so was a O((mt)23k) algorithm obtained for ΠmΣ2Πt×ΠkΣ3 polynomials. In this
section, we shall devise two parameterized algorithms, one deterministic and the other randomized,
for testing multilinear monomials in ΠmΣ2Πt×ΠkΣ3 polynomials, improving the O((mt)23k) upper
bound in [7].

Theorem 8. There is a deterministic algorithm of time O(((mt + k)2 + k)2k) to test whether any
ΠmΣ2Πt ×ΠkΣ3 polynomial has a multilinear monomial in its sum-product expansion.

Proof: Let F = F1 · F2 such that F1 = f1 · · · fm is a ΠmΣ2Πt polynomial and F2 = g1 · · · gk is a
ΠkΣ3 polynomial, where fi = (Ti1 + Ti2) and gj = (xj1 + xj2 + xj3), 1 ≤ i ≤ m, 1 ≤ j ≤ k.

Consider variable x11 in the clause g1. We devise a branch and bound process to divide the
testing for F into the testing for two new polynomials. We eliminate all x11 in gj for j = 1, . . . , k.
Let g′j be the clause resulted from gj after the eliminating process. Let h1 = F1 · g′1, h2 = F1 · x11,
q = g′2 . . . g′k. Note that exactly one of the three variable x11, x12 and x13 in the clause g1 must be
selected to form a monomial (hence a multilinear monomial) for F in the sum-product expansion of
F . We have two cases concerning the selection of x11:

(1) x11 can not be selected to help form any multilinear monomial. In this case, F has a
multilinear monomial, iff h1 · q has a multilinear monomial.

(2) x11 can be selected to form a multilinear monomial. Thus, F has a multilinear monomial, iff
h2 · q has a multilinear monomial.

In either case, the new polynomial is a product of two polynomials with the first being a
Πm+1Σ2Πt polynomial and the second a ΠkΣ3 polynomial. Furthermore, the second is the common
q, which has one fewer clause than F2.

Let T (k) denote the time for testing multilinear monomials in F . Notice that the eliminating
process for x11 takes O(k) time. Then, T (k) is bounded as follows

T (k) ≤ 2T (k − 1) + O(k) ≤ 2k(T (0) + O(k)).

T (0) is the time to test multilinear monomials in a Πm+kΣ2Πt polynomial with a size of O(mt+ k).
By the algorithm in [7] for this type of polynomials, T (0) = O((mt + k)2). Therefore, T (k) =
O(((mt + k)2 + k)2k).

We now show that the upper bound in the above theorem can be further improved via random-
ization.

Theorem 9. There is a O((mt+k)21.5k)) time randomized algorithm that finds a multilinear mono-
mial for any ΠmΣ2Πt ×ΠkΣ3 polynomial with probability at least 1− 1

e if such monomials exist, or
returns ”no” otherwise.

Proof: Like in Theorem 8, let F = F1 ·F2 such that F1 = f1 · · · fm is a ΠmΣ2Πt polynomial and
F2 = g1 · · · gk is a ΠkΣ3 polynomial with fi = (Ti1 + Ti2) and gj = (xj1 + xj2 + xj3).

Assume that F has a multilinear monomial π. Then, one of the three variables in gj must be
included in π, 1 ≤ j ≤ k. We uniformly select two distinct variables yj1 and yj2 from gj , then
g′j = (yj1 + yj2) contains a desired variable for π with a probability at least 2/3. Let

F ′ = F1 · (g′1 · · · g′k),

then F ′ has a multilinear monomial with a probability at least (2
3 )k. On the other hand, if F

does not have any multilinear monomials in its sum-product expansion, then F ′ must not have any
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multilinear monomials. Notice that F ′ is a Πm+kΣ2Πt polynomial with a size of O(mt + k). By the
algorithm for this type of polynomials by Chen and Fu in [7], one can find a multilinear monomial in
F ′ in time O((mt+k)2). In other words, the above randomized process will fail to find a multilinear
monomial in F with a probability of at most 1 − (

2
3

)k if such monomials exist, or return ”no”
otherwise.

Repeat the above randomized process
(

3
2

)k many times. If F has multilinear monomials, then
these processes will fail to find one with a probability of at most

[
1−

(
2
3

)k
]( 3

2 )
k

<
1
e
.

Hence, the processes will find a multilinear monomial in F with a probability of at least 1− 1
e . If F

does not have any multilinear monomial, then none of these repeated processes will find one in F .
The total time of all the repeated processes is O((mt + k)21.5k).

It is justified in [7] that the resemblance of ΠΣΠ and ΠΣ polynomials with SAT formulas is
”superficial”. For example, The multilinear monomial testing problem for ΠmΣ3Π1 polynomials is
in P, but 3SAT is NP-complete. As another example to show such superficial resemblance, one might
consider to apply Schöning’s algorithm for 3SAT [20] to the multilinear monomial testing problem.
However, this is problematic. For the 3SAT problem, it is easy to find an unsatisfied 3-clause. On
the other hand, for the multilinear monomial testing problem, we do not know which term in which
clause leads to a confliction. Therefore, it is difficult to decide the change of the hamming distance
between the current solution and any target solution. This difficulty constitutes a major barrier
towards applying the Schöning’s algorithm to monomial testing.

6. W[1]-Hardness

Although deterministic and randomized parameterized algorithms have been devised for testing
monomials in previous three sections as well as in [15, 22, 7], yet we shall prove in this section
that testing some special type of monomials in polynomials represented by arithmetic circuits is not
fixed-parameter tractable, unless some unlikely collapse occurs in the fixed parameter complexity
theory.

One shall notice that difference between the general monomial testing and the specific monomial
testing. The former asks for the existence of ”any one” from a set of possibly many monomials that
are needed. The latter asks for ”a specific one” from the set. For example, there may be 2n − 1
multilinear monomials in the sum-product expansion of a n-variate polynomials. Testing for any
one from these many monomials is certainly different from testing for a specific one, say, x1x3x7x11.

Downey and Fellows [10] have established a hierarchy of parameterized complexity, named the
W hierarchy, and proved that the k-Clique problem is W[1]-hard.

Definition 10. Let C = {i1, i2, . . . , ik} be a set of k positive integers. A k-clique monomial with
respect to C is the multilinear monomial

∏
1≤j<`≤k xiji`

of degree k(k−1)
2 .

Theorem 11. It is W[1]-hard to test whether any given n−variate polynomial of degree k(k−1)
2

represented by an arithmetic circuit has a k-clique monomial in its sum-product expansion.

Proof: We shall reduce the k-clique problem to the k-clique monomial testing problem. Let
G = (V, E) be an undirected graph and k an integer parameter. V = {v1, v2, . . . , vm} is the set of
vertices. Each (i, j) ∈ E represents the edge connecting vertices vi and vj . For each edge (i, j) ∈ E,
we define a variable xij . Let n = |E|. We construct a polynomial f with n variables.

f(G, 1) = 1,
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f(G, 2) =
∑

(i,j)∈E

xij ,

f(G, t + 1) =
m∑

i=1


 ∑

(i,j)∈E

xij




t

· f(G, t)

As followed from the above definition, f(G, k) has n = |E| variables and its degree is k(k−1)
2 . It is

easy to see that f(G, k) can be computed by an arithmetic circuit.
If G has a k-clique A = {i1, i2 . . . , ik}, then there are k(k−1)

2 edges connecting any two vertices
in A. By definition, f(G, k) has a term (xi1i2 + · · · + xi1ik

+ · · · + xik−1ik
)k−1 · f(G, k − 1). So, we

can select π1 = xi1i2 · · ·xi1ik
from the first factor of this term. By simple induction, we can select

a (k − 1)-clique monomial of degree (k−1)(k−2)
2 with respect to A− {i1}. Then, π1 · π2 is a k-clique

monomial with respect to A. On the other hand, it f(G, k) has a k-clique monomial with respect
to A, then by definition, A is a k-clique for G.
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