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Abstract

This paper describes recent results which revolve around the question of the rate attainable
by families of error correcting codes that are locally testable. Emphasis is placed on motivating
the problem of proving upper bounds on the rate of these codes and a number of interesting
open questions for future research are suggested.

1 Introduction

A locally testable code (LTC) is an error correcting code for which membership in the code can be
ascertained, to a high degree of confidence, by a random process that queries a negligible fraction of
a purported codeword. Locally testable codes, first studied by Blum, Luby, and Rubinfeld [1990],
lie at the core of all known constructions of probabilistically checkable proofs (PCPs), from [Arora
and Safra, 1998, Arora et al., 1998] to [Dinur, 2007], their discovery has inspired the study of
property testing [Goldreich, Goldwasser, and Ron, 1998], and the construction of such codes has
been of great interest to theoretical computer science in the recent past. Several surveys describe
the concepts around which these codes revolve [Goldreich, 2005, Trevisan, 2004], and a number of
distinct ways to obtain such codes are known by now (see Section 1.2). The purpose of this brief
survey, which assumes familiarity with the basic notion of an LTC, is to explain what is known
about the limitations of constructions of such codes, or, in plain words, what kinds of LTCs are
mathematically impossible to obtain.

When studying locally testable codes we are interested in both the classically studied parameters
of error correcting codes, such as rate and relative distance, as well as in the local-testability
parameters of the code, the query complexity or number of entries read by the testing process, and
the completeness and soundness which measure the probability of correctness of this process (these
concepts are defined in the next subsection). We intend to study the interplay between these two
kinds of code-related parameters so let us informally explain what kind of trade-offs we expect
to see. Better local-testability parameters, like smaller query complexity and larger completeness
and soundness parameters should be expected to negatively affect the classical coding parameters,
decreasing the rate and/or relative distance of the code. We can show that this intuition does indeed
hold for certain families of codes, as surveyed later on. But for all the effort that has gone into the
study of LTCs, the fundamental question that motivates our study (Question 1.6), regarding the
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existence of an asymptotically good family of LTCs, remains wide open. Before we continue we
pause to recall the definition of a locally testable code and the reader familiar with this definition
and the associated notation is encouraged to skip the following subsection.

1.1 Defining locally testable codes

We assume familiarity with the basic definitions of error correcting codes, which can be found, e.g.,
in MacWilliams and Sloane [1978]. A code C over alphabet Σ of blocklength n, message-length k and
minimal distance d will be called an (n, k, d)Σ-code. It is a subset of Σn of size at least |Σ|k which
satisfies the condition that for any pair of distinct codewords w,w′ ∈ C their Hamming distance,
defined as the number of entries on which w and w′ disagree, is at least d. We shall reserve the
letter w to denote codewords and r to denote “received” words, words which are not known to
belong to C. The ith entry of r will be denoted by ri.

Two fundamental parameters of a code are its rate ρ(C) = k/n which measures the ratio of
message to codeword length and the relative distance δ(C) = d/n which dictates the noise-resilience
of the code. We shall be interested in families of codes {Cn ⊂ Σn | n ∈ Z}. A family of codes is said
to be asymptotically good if all members of it have positive rate and relative distance, i.e., there
exist constants ρ, δ > 0 such that each Cn satisfies ρ(Cn) ≥ ρ and δ(Cn) ≥ δ. Given C and r ∈ Σn

let δC(r) denote the relative (Hamming) distance between r and C, defined as the minimal fraction
of entries of r that need to be changed in order to obtain a word in C. When δC(r) ≥ ε we say r is
δ-far from C and otherwise say r we say ε-close to it.

When Σ is the q-element finite field Fq (when the size of F is known or insignificant we use
F to denote it) and C is a linear code, i.e., a k-dimensional subspace of Fn, we shall say C is an
[n, k, d]F-code. In this case the distance of the code is equal to the minimal weight of a nonzero
codeword, where the weight of a word r ∈ Fn is the number of nonzero entries in r.

A locally testable code is an error correcting code — we expect it to have large relative distance
— which comes with a randomized algorithm, called a tester, that samples a small number of entries
of a received word r ∈ Σn and is capable of distinguishing with nontrivial probability between the
“good” case that r is an uncorrupted codeword, i.e., that r belongs to C (so δC(r) = 0) and the
“bad” case that r is ε-far from C. Since the definition of an LTC is tied to that of a tester we give
both of them together.

Definition 1.1 (Tester and locally testable code). Let C be an (n, k, d)Σ-code. A (q, ε, s, c)-tester
for C is a randomized algorithm T with oracle access to a purported codeword r ∈ Σn which
operates as follows. The tester T uses randomness to sample at most q entries of r and outputs a
verdict which is either accept or reject. Denote by T r[R] the output of T on oracle r and random
coins R. We say that T is a q-query tester, or, simply, a q-tester.

The code C is said to be (q, ε, s, c)-locally testable if it has a q-tester that satisfies the following
completeness and soundness requirements. It the tester satisfies the (stronger) requirement of strong
soundness we say C is a (q, s, c)-strong locally testable code.

Completeness If r ∈ C then
Pr
R

[T r[R] = accept] ≥ c.

Soundness For every r 6∈ C that is ε-far from C

Pr
R

[T r[R] = reject] ≥ s.
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Strong Soundness For every r 6∈ C

Pr
R

[T r[R] = reject] ≥ s · δC(r).

The parameters q, ε, s, c are known respectively as the query complexity, distance threshold, sound-
ness and completeness.

When c = 1 we say the code and tester have perfect completeness and in such cases will often,
for simplicity, omit reference to c.

Remark 1.2 (Distance threshold and high-error, or list-decoding, LTCs). To get nontrivial LTCs
the distance threshold ε should be less than half the relative distance of the code. Otherwise, it
could be the case that there simply are no words ε-far from it, in which case the trivial tester that
accepts all words shows that the code is (0, ε, 1, 1)-LTC. We shall set the distance threshold to be
one third the minimal distance of the code1 and refer to such a (q, δ(C)/3, s, c)-LTCs as a LTC for
the low-error regime, or, simply, a low-error LTC. The choice of this name is because if r ∈ Σn is
accepted by the tester with probability greater than 1− s, we know that r is δ(C)/3-close to C, i.e.,
it has a low fraction of errors. Another common name for such a LTC is a unique decoding LTC
because in the case just described there is a unique codeword that is closest to r.

For values of ε greater than half the minimal distance of C, we say that C is a LTC in the high-
error, or list-decoding regime. This is because a word accepted with probability greater than 1− s,
which is known to be ε-close to C, can in fact be ε-close to list of codewords. In the setting of high-
error LTCs the kind of questions that are of interest revolve around understanding the connection
between the acceptance probability of a received word and its proximity to the code. We shall not
discuss these questions in this survey, due to scarcity of relevant results on rate limitations of such
codes.

Remark 1.3 (Non-adaptivity and perfect completeness). A tester is said to be nonadaptive if the
codeword-entries queried by it depend only on the value of the random coins (in particular, they
do not depend on answers given to earlier queries). All known LTC constructions are nonadaptive,
i.e., the tester associated with them is nonadaptive. For a family of LTCs with perfect completeness
and constant query complexity adaptivity can be assumed without loss of generality, by incurring
at most a constant factor reduction in the soundness parameter. Furthermore, almost all known
LTCs are linear and consequently can be assumed to be nonadaptive and with perfect completeness
(cf. Theorem 2.4), the notable exception to both linearity and perfect completeness is the “long
code” of Bellare et al. [1998].

Remark 1.4 (Soundness and completeness). To get a meaningful definition we must require s
to be greater than 1 − c. Otherwise every code can be seen to be a (0, 0, s, c)-LTC, the tester
associated with it rejects all words with probability s, hence accepts all words, and, in particular,
all codewords, with probability ≥ c.

1Some of the LTC rate limitations surveyed here, like [Ben-Sasson et al., 2003, Babai et al., 2005, Ben-Sasson
et al., 2009], require the distance threshold to be less than one third the minimal distance. This is due to technical
reasons arising in the proofs. In any case, all known LTC constructions work for any sufficiently small distance
parameter and the standard assumption in property testing settings is that the distance threshold is an arbitrarily
small nonzero constant.
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Remark 1.5 (Running time). Our definition of a tester does not put any limitation on the running
time of the tester. For families of codes with constant query complexity this is not a severe restric-
tion because the tester can always be assumed to run in (nonuniform) time that is at most polyno-
mial in the blocklength, and under reasonable assumptions the running time is poly-logarithmic in
the blocklength Meir [2008]. Families of linear codes — almost all known LTCs fall in this category
— can be assumed to require (nonuniform) quasi-linear running time because they can be tested by
“linear testers” (as explained in Section 2.1). The main advantage to not putting a running-time
constraint on the tester is that it allows us to focus on the code structure and avoid questions about
computational complexity.

1.2 A brief survey of known LTC constructions

The purpose of this section is to display the abundance and variance of LTC constructions which
should motivate both the search for a common denominator to all the different ways LTCs are
constructed, as well as the study of limitations of these codes.

LTCs based on low-degree polynomials The first family of locally testable codes, which was
given by Blum, Luby, and Rubinfeld [1990], is the family of homomorphisms from a finite group G
to a subgroup H of G. Formally, C(G,H) ⊂ HG has one codeword corresponding to each group-
homomorphism φ : G → H and this codeword is the evaluation of φ on all elements of G. This
family was shown to be a low-error LTC in [Blum et al., 1990]. The special case of G being the
additive group Fn and H = F for a prime field F was shown by Bellare et al. [1996] to be locally
testable in the high-error, or list-decoding, regime. The codes thus obtained are called Hadamard
codes and correspond to the code of evaluations of n-variate, degree 1, homogenous polynomials.
The generalization to arbitrary degree d polynomials was carried out promptly for the case of
d < |F|. This family of codes, known as Reed-Muller codes, was shown to be locally testable in
the low-error regime in [Babai et al., 1991, Arora et al., 1998], and in the high-error regime by
Raz and Safra [1997], Arora and Sudan [2003]. Later on the case of d ≥ |F| was analyzed for the
low-error regime by [Alon et al., 2005, Kaufman and Ron, 2006] and for the high-error regime by
Samorodnitsky [2007] for the special case of d = 2. High-error LTCs based on polynomials of degree
d ≥ 3 and d ≥ |F| remains as an interesting open problem.

Group invariant LTCs An “invariance-based” approach to the construction of LTCs was implic-
itly suggested by Alon et al. [2005] and explicitly undertaken, for the special case of affine-invariant
codes, by Kaufman and Sudan [2008] (see also [Grigorescu et al., 2008, 2009b, Ben-Sasson and
Sudan, 2010]). More on this approach can be found in Section 3 and in the survey of Sudan [2010].
Roughly speaking, this approach is based on finding codes that are invariant under a “sufficiently
rich” group of permutations, and additionally contain some local constraints that all codewords
satisfy. The group-invariance of the code then implies a multitude of local constraints that all
codewords satisfy, and this leads the way to prove local-testability.

Composed LTCs Another way to construct LTCs, which among other things leads to the LTCs
achieving the best known rate, relies on the use of probabilistically checkable proofs of proximity
(PCPPs) [Ben-Sasson et al., 2006, Dinur and Reingold, 2006] (see also Meir [2009]). Another
approach that is also described as “combinatorial”, because it relies neither on properties of low-
degree polynomials, nor on group theory, is based on taking a repeated tensor-product of codes
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[Ben-Sasson and Sudan, 2006]. It should be pointed out that the codes arising from these methods
are low-error LTCs and it remains to see what kind of LTCs in the high-error regime can emerge
from high-soundness PCP composition techniques like those of [Moshkovitz and Raz, 2010, Dinur
and Harsha, 2009].

Sparse unbiased LTCs The final family of LTCs we are aware of consists of sparse, unbiased
binary linear codes, i.e., linear codes over Fp for prime p that have a number of codewords that is
only polynomial in the blocklength and for which all nonzero codewords have relative weight that
is very close to 1− 1

p [Kaufman and Sudan, 2007, Kopparty and Saraf, 2010] (see also Ben-Sasson
and Viderman [2010a]).

1.3 Why study limitations of LTCs?

Before explaining why we think LTC limitations are worth pursuing we post the fundamental
problem underlying our quest.

Question 1.6 (Do asymptotically good LTCs exist?). Prove or refute the following statement:
There exists an asymptotically good family of binary error correcting codes {Cn ⊆ {0, 1}n | n ∈ Z}
with relative distance δ that is a family of (q, δ/3, s, c)-LTC, for some integer q and soundness and
completeness parameters satisfying c+ s > 1 (see Remark 1.4).

The main reason to study limits of LTCs is because this seems to be the most meaningful way to
understand the limits of basic PCP-related parameters, most notably the rate of PCP proofs which
we define as the ratio between the length of an NP-witness for an NP-instance φ , and the length
of a probabilistically checkable proof for φ. The problem with the direct approach to bounding the
rate of PCPs is that any nontrivial lower bound on the rate — even one that proves that PCP proof
length is greater than zero — implies P 6= NP. Since all proofs of the PCP theorem make use of
LTCs, and moreover the rate of the LTC is an upper bound on the rate of the PCP constructed from
it, giving a negative answer to Question 1.6 would imply that PCP proofs constructed by current
techniques will not attain constant rate. Anticipating future practical applications use of PCPs in
cryptography and security-related protocols [Kilian, 1992, Micali, 2000, Barak and Goldreich, 2008],
we see that understanding the rate of PCPs is very important not just for theoretical purposes.

More broadly, the study of limitations of locally testable codes can be viewed as a branch
of the study of classical tradeoffs for error correcting codes. When new families of codes are
discovered (e.g., linear, cyclic, maximal distance separable, algebraic geometry, turbo, etc.) it is
of great importance to understand how well they match up with known codes in terms of their
basic coding-related parameters. Locally testable codes possess a highly desirable coding-related
property, namely, the amount of errors in a received word can be estimated by inspecting only a tiny
fraction of the codeword. This leads to the possibility of saving computation time, and the energy
consumption required by the decoding algorithm, by getting a quick and roughly accurate estimate
of the condition of received words and asking for a “re-transmit” in case the word is estimated to
be corrupted beyond repair.

Finally, the concept of “locality of computation” is a theme of great interest in numerous settings
of theoretical computer science. This is witnessed by the large body of work on property testing
and on locally decodable codes. Understanding the limits of LTCs also touches upon questions
related to locality of computation in other settings and one may expect to see more connections
between LTC rate bounds and other areas in which “local computation” is studied.
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1.4 Summary of results appearing in the survey

In the next section we focus on linear codes and ask what limitations can be obtained from studying
the structure of the set of dual codewords of small weight. We shall start with random low density
parity check codes and use the expander-structure of the constraint graph associated with these
codes to argue in Theorem 2.4 that they are not locally testable even when the query complexity
is allowed to be fairly large. Then we shall generalize this result in Theorem 2.6 and show that all
linear LTCs require that their dual code contain many low-weight words and, in Theorem 2.8, that
these words must be nontrivially related. We conclude this section by showing in Theorem 2.11
that if an LTC has far too many redundant small-weight dual words then it has bad rate.

In Section 3 we shall investigate the rate limitations of group invariant codes. These codes
include all known “base-case” LTCs, such as Hadamard and Reed-Muller codes, which serve as
the building blocks in more elaborate LTC constructions (such as PCPP-based LTCs). We shall
see in Theorem 3.3 that affine-invariant codes with small dual weight — the most general class of
group-invariant codes known to be locally testable — has bad rate.

Results not covered by the survey Two lines of work on limits of LTCs are not surveyed here.
The first set contains the results of Ben-Sasson et al. [2008] which show that 3-query LTCs aris-
ing from PCPP-based constructions cannot obtain close-to-optimal soundness in the list decoding
regime without suffering a significant decrease in the code-rate. The second line discusses various
kinds of 2-query LTCs — linear [Ben-Sasson et al., 2003], near-perfect completeness [Guruswami,
2006], “unique” [Kol and Raz, 2009a] and “affine” [Kol and Raz, 2009b] — and shows that there
is at most a finite number of (2-query) LTCs of each kind.

2 Limiting rate of linear LTCs via the structure of the dual code

This section focuses on limitations on the rate of families of linear LTCs. We shall focus on the
linear space that is dual to the (linear) code C ⊆ Fn, this space is also known as the dual code and
defined as C⊥ = {u ∈ Fn | u ⊥ C} where u ⊥ C if and only if u ⊥ w for all w ∈ C and u ⊥ w denotes
the equality

∑n
i=1 uiwi = 0 (in case of inequality we write u 6⊥ w). We shall take particular interest

in the combinatorial structure of the set of dual codewords of small weight. We start by explaining
why focusing on this structure is all that matters for local testability of linear codes.

2.1 Linear LTCs are testable by linear testers

A natural way to test whether a word r ∈ Fn belongs to an [n, k, d]F linear code C ⊂ Fn is to
project r onto a set of coordinates I ⊂ {1, . . . , n}, |I| ≤ q and accept r if and only if this projection,
denoted by r|I , agrees with a projection w|I of some codeword w ∈ C. Writing C|I = {w|I | w ∈ C}
we can describe this natural test as the test that accepts r if and only if r|I ∈ C|I . The operator
that projects r ∈ Fn onto I is a linear operator, by which we mean that for every a, b ∈ Fn and
α, β ∈ F we have (αa + βb)|I = α(a|I) + β(b|I) and this implies that our natural tester is fact a
linear test — its acceptance predicate, defined as the subset of FI of query-answer tuples accepted
by the test, is a linear space, it is the precisely the linear space C|I .

Accordingly, a linear tester for C is given by a distribution D on subsets I of size at most q.
The following theorem of Ben-Sasson et al. [2005] says that without loss of generality linear codes
are q-query LTCs if and only if they are testable by a linear tester.

6



Theorem 2.1 (Linear LTCs have linear testers). If C ⊆ Fn is a linear (q, ε, s, c)-LTC then C is
a (q, ε, s + (1 − c), 1)-LTC that can be tested by a linear tester. (Notice the difference between
completeness and soundness is maintained when moving from an arbitrary tester to a linear one.)

Given this theorem we can go one step further and describe the subsets I ⊂ {1, . . . , n} which
correspond to nontrivial linear tests. If I is such that C|I = FI then the (linear) test associated
with I is meaningless — all words must be accepted by it. On the other hand if C|I is a subspace
strictly contained in FI we do get a nontrivial test, meaning that some words r ∈ Fn \ C will be
rejected by it. In this case, the space that is dual to C|I , denoted (C|I)⊥, has positive dimension,
so it contains some nonzero words. Any word u ∈ (C|I)⊥ can be extended to a word in Fn that
is dual to C and has its nonzero entries contained in I — set all entries in {1, . . . , n} \ I to 0 and
notice the word thus obtained is dual to C.

Assuming (C|I)⊥ is nontrivial we can think of another way to test wether r|I ∈ C|I . Instead of
querying all entries in I, pick a uniformly random u ∈ (C|I)⊥ and accept r if and only if u ⊥ r. It
is easy to see that this test retains perfect completeness, and we now argue that soundness goes
down by a factor of at most (1 − 1

F). To see this, suppose r 6∈ C|I . The set
{
u ∈ (C|I)⊥

∣∣ r ⊥ u}
is a strict subspace of (C|I)⊥, hence it contains at most a (1/|F|)-fraction of (C|I)⊥, so a random
u ∈ (C|I)⊥ will “reject” r (i.e., u 6⊥ r) with probability at least (1 − 1/|F|) times the probability
that r|I 6∈ C|I . To sum up, if we don’t care too much about the exact soundness constant then we
may assume without loss of generality that a linear LTC is tested by a tester that is defined by a
distribution over C⊥≤q, the set of words in the dual code C⊥ that have weight at most q. We record
this by the following corollary of Theorem 2.4 (cf. [Ben-Sasson et al., 2009, Section 2]). In what
follows we use u ∼ D to denote that u is sampled according to the distribution D.

Corollary 2.2 (Linear codes are testable by a distribution over dual words of small weight). If
C ⊆ Fn is a linear (q, ε, s, c)-LTC then there exists a distribution D over C⊥≤q such that for every
r that is ε-far from C we have Pru∼D[u 6⊥ r] ≥ s + (1 − c)(1 − 1/|F|)). (Notice the soundness is
(1− 1/|F|) times the soundness stated of Theorem 2.4.)

All this leads us to consider the constraint graph of a tester, a concept that will play a pivotal
role in our analysis. Given U ⊆ C⊥≤q (U may be a strict subset of C⊥≤q) we define the constraint
graph induced by U to be the bipartite graph G({1, . . . , n}, U,E) with left vertex set {1, . . . , n},
right vertex set U and an edge between i and u if and only if ui 6= 0. Given a distribution D as in
the corollary above let supp(D) =

{
u ∈ C⊥

∣∣D(u) > 0
}

denote the support of the tester, it is the
set of dual words, or linear tests, actually used by the tester. The constraint graph induced by a
linear tester associated with D is the constraint graph induced by supp(D).

2.2 Random low density parity check codes

Roughly speaking, a linear code whose dual contains many small-weight words should be hard to
construct as the existence of many small-weight words may reduce other parameters of the code,
like its rate. Thus, a good starting point is to examine the local testability of the family of random
low density parity check (LDPC) codes which are known to be asymptotically good [Gallager,
1962]. We shall show that testers achieving constant soundness for these codes require linear query
complexity, and along the way we shall try to explain the way how this negative result about local
testability is related to the structure of the constraint graphs associated with random LDPC codes.

To define our codes we need to describe the concept of a random regular bipartite graph. A
bipartite graph is said to be (t, q)-regular if all vertices on the left side have degree at most t and
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all vertices on the right side have degree at most q. A random (t, q)-regular graph with n left-hand
vertices and m = dtn/qe right-hand ones is obtained as follows. Start with a four-layered graph,
the leftmost layer is V , the second and third have tn vertices each, numbered 1, . . . , tn, and the
rightmost layer is U . Connect i ∈ V to the t vertices in the second layer numbered t(i−1)+1, . . . , ti.
Similarly connect vertex number j in U to the q vertices numbered q(j− 1) + 1, . . . , qj in the third
layer. (The mth vertex may have less than q neighbors, in case tn/q is not an integer.) To obtain
a random graph, pick a random permutation on tn elements and use it to construct a matching
between the second and third layers. Finally, collapse each 3-edge-long path between v ∈ V and
u ∈ U to obtain a single edge (collapsing parallel edges when needed), to obtain a random (t, q)-
regular graph with n left vertices.

Definition 2.3 (Random low density parity check code). The family of (t, q)-regular random LDPC
codes is the distribution on families of linear codes obtained by picking the nth member in the family
according to the following process. For integers t < q let G = (V,U,E) be a random (t, q)-regular
bipartite graph over n left vertices and m = dtn/qe right vertices (notice m < n because t < q).
Associate each right-hand side vertex û ∈ U with the vector u = (u1, . . . , un) ∈ Fn2 defined by

ui =

{
1 (i, û) ∈ E
0 otherwise.

The LDPC code based on G is the code C = U⊥.

The rate of C is at least n−m
n ≈ 1 − t

q because dim(C⊥) ≤ m. It is well-known since the work
of Gallager [1962] that a family of random LDPC codes is, with high probability, asymptotically
good (cf. Sipser and Spielman [1996]). At first glance it may seem that such a family is locally
testable. The set of q-query words U characterizes C by which we mean that w ∈ C if and only
if w ⊥ U . And the random graph G is with high probability an expander which implies that for
any set S ⊂ {1, . . . , n}, |S| = εn — think of S as indicating the minimal size set of bits that need
be flipped in r to obtain a codeword — the set of indices of nonzero entries of a random u ∈ U
hits S with probability proportional to ε. In spite of all this C is not q-testable. This much was
conjectured already by Spielman [1995]. Moreover, C is not even testable with any sublinear query
complexity, i.e., a constant fraction of the received word must be queried in order to distinguish
between completely uncorrupted, and severely corrupted, words. This is shown by the following
theorem of Ben-Sasson et al. [2005].

Theorem 2.4 (Random LDPC codes require linear query complexity). For integers t < q and
constants 1/2 > ε > 0, s > 0 there exists µ > 0 such that for sufficiently large n, a random
(t, q)-LDPC code is, with high probability, not (µn, ε, s)-locally testable.

Proof Sketch. Consider a random LDPC code C based on a random (t, q)-regular graph G and
assume that the constraints U that define it are linearly independent, which they are, with high
probability. This linear independence implies that for every u ∈ U there exists a word r(u) ∈ Fn2
such that

r(u) 6⊥ u and r(u) ⊥ U \ {u}. (1)

Appealing to the expansion properties of the graph G — which were used in the first place to
argue that C has constant relative distance — we conclude that the code C−u = (U \ {u})⊥ =
{w | w ⊥ (U \ {u})} has good distance because the constraint graph induced by U \ {u} is still a
good expander. This implies that any word r(u) ∈ C−u \ C is ε-far from C for some constant ε > 0.
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What is the probability with which r(u) is rejected by a q′-query tester? Recall that a linear
q′-tester T is defined by a distribution D over C⊥q′ . Expressing a potential linear test v ∈ C⊥q′ as
a linear combination of elements from U and letting U(v) ⊆ U denote the set of elements that
have nonzero coefficients in this expression, we see from Equation (1) that r(u) 6⊥ v if and only if
u ∈ U(v). The answer to our question is then

Pr
R

[T r(u)[R] = reject] = Pr
v∼D

[v ⊥ r(u)] = Pr
v∼D

[u ∈ U(v)].

Taking one step further, for the tester defined by the distribution D to reject each r(u) for u ∈ U ,
it better be the case that U(v) 3 u for a random v ∼ D and uniformly random u ∈ U . This
implies that a constant fraction of tests in supp(D) are, each, a linear combination of a constant
fraction of U . Alas, with high probability, all words in span(U) that are a linear combination of a
constant fraction of U must have large weight. This should sound reasonable because U is random,
so summing up a constant fraction of its elements should result in a word with pretty large weight.
We conclude that any tester that achieves constant soundness must be a distribution over words
that have weight Ω(n), and this completes the proof (sketch).

2.3 LTCs require redundant testers

Our next result rules out the existence of asymptotically good families of LTCs that lack sufficient
redundancy, a concept we define next. This result can be seen as a generalization of the previous
section to the case of codes that have “too few” dual words of weight q so let us explain how we
quantify the number of such words and define what we mean by “too few” words.

If C⊥≤q does not span all of C⊥ then C cannot be a q-query strong LTC because some non-
codeword will be accepted with probability 1. This by itself does not yet mean that C is not locally
testable, as it could be the case that all r 6∈ C that are accepted with probability 1 are, say, (ε/2)-
close to C. A far more interesting case is when C⊥≤q is a basis for C⊥ but contains no more words.
Random (t, q)-regular codes give one example of such codes because it can be verified that the only
words of weight at most q are those belonging to the linearly independent set U . We have already
seen that such codes are not locally testable but perhaps other codes are? Before we continue let
us formally define the redundancy of a code, which is the way we measure how many dual words
are out there.

Definition 2.5 (Redundancy). Given a set U ⊂ Fn let the redundancy of U be redun(U) =
|U | − dim(span(U)). It is the number of elements of U that can be removed from U without
increasing the linear space that is dual to U (which we think of as a code C). Notice redun(U) = 0
if and only if U is linearly independent.

Let C be a [n, k, d]F-linear code. For D a distribution over C⊥ (think of D as a tester for C) let
redun(D) = redun(supp(D)). D is said to be a linearly independent tester if redun(D) = 0 and
if moreover supp(D) spans C⊥ we call D a basis tester for C. Finally, the q-redundancy of C is
redunq(C) = redun(C⊥≤q).

The following theorem of Ben-Sasson et al. [2009] shows that any locally testable code with
sufficiently large rate must be tested by redundant testers.

Theorem 2.6 (Linear LTCs require redundant testers). Let C be an [n, k, d = δ0n]F-code that is a
(q, δ0/3, ε)-LTC. Then

redunq(C) ≥
εk

q
− 1.
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Moreover, if D, the tester’s distribution, is uniformly distributed over supp(D), then

redun(D) ≥ ε− q/k
1− ε

· (n− k).

The first equation above implies that every asymptotically good family of q-query LTCs must
have linear q-redundancy, to see this set k = ρn where ρ is the rate of the family of codes. The second
equation implies that q-query LTCs with super-constant size that are testable by a uniform tester,
i.e., a tester whose distribution is uniform over a subset of C⊥≤q, must have linear redundancy. All
algebraic and affine-invariant codes are testable by uniformly distributed testers, and so are sparse
random unbiased codes but it should be stressed that the LTCs obtained by using composition
techniques, such as PCPP-based and tensor-product ones, are not necessarily uniform. We point
out that both inequalities are known to be nearly tight (cf. [Ben-Sasson and Viderman, 2010a]).

It may seem that the limitation placed by Theorem 2.6 on the minimal redundancy of an LTC
can be easily overcome. Even if there are precisely n − k linearly independent words in C⊥≤q (this

is what happens, for example, with random (t, q)-regular LDPC codes), there are
(
n−k

2

)
words in

C⊥≤2q — take the sumset of C⊥≤q — so clearly this set has superlinear redundancy and for all we
know C may be 2q-testable without contradicting our theorem. The following stronger version
of Theorem 2.6 is immune to the “sumset” trick and seems to say something deeper about the
structure of small weight words of the dual code. To state this theorem we need a more refined
definition of redundancy.

Definition 2.7 (Expected redundancy). For U ⊂ Fn, B = {b1, . . . , bt} a linearly independent set
spanning span(U) (B is not necessarily a subset of U), and u ∈ U let B(u) be the set of elements
of B used to represent u. If u =

∑t
i=1 βibi then this set is

B(u) = {bi ∈ B | βi 6= 0}.

For D a distribution on C⊥≤q (which we view as a q-query tester for C) let its expected q-redundancy
be

Eredunq(D) = min
B

Eu∼D[|B(u)|]

where the minimum is taken over all bases B ⊂ C⊥≤q which span C⊥. (Notice B is not necessarily
a subset of supp(D).) The expected q-redundancy of C, denoted as Eredunq(C), is the minimal
expected q-redundancy of a distribution D on C⊥≤q.

The following is the main theorem of Ben-Sasson et al. [2009].

Theorem 2.8 (LTCs require testers with large expected redundancy). Let C be an [n, k, d = δ0n]F-
code that is a (q, δ0/3, s)-LTC. Then

Eredunq(C) ≥
sk

q
.

Returning to the example discussed above, the example which assumed C⊥≤q is linearly indepen-

dent and suggested to use a 2q-tester distributed over the sumset of C⊥≤q, it is not hard to see that

its expected redundancy is 2 and to see this set B = C⊥≤q. Theorem 2.8 thus rules out this case, as

well as that of taking as our tester any distribution over the Ω(k)-wise sum of C⊥≤q.
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Informally, this theorem says is that in order for a linear code to be q-query testable it must
be the case that for any basis B ⊂ C⊥≤q there exists a linear number of words in C⊥≤q \ B that are
each a linear combination of a constant fraction of B. This means that some nontrivial cancelation
is going on by which many small-weight words — a linear number of them — are each a sum of
many words from B.

2.4 Dense LTCs have small rate

In the previous section we saw that linear codes with too few dual words of small weight are not
locally testable. In this section we discuss the opposite extreme, of codes with too many dual words
of small weight. The following definition will be used to capture the notion of “too many” dual
words.

Definition 2.9 (Dense codes). An [n, k, d]F linear code C is said to be (γ, q)-dense if for every
i ∈ {1, . . . , n} there are at least γnq−2 dual words u of weight q such that ui 6= 0.

For instance, the Hadamard code is (1
2 , 3)-dense because every selection of j ∈ {1, . . . , n} par-

ticipates in a dual word of weight 3 that touches i.

Remark 2.10. A different definition for dense codes can be suggested, one that uses the total
number of weight-q dual words. For instance, we may decide to call a code C (γ, q)-dense’ if
|C⊥≤q| ≥ γnq−1. This definition is problematic, as seen by taking the direct product of the Hadamard
code with blocklength n, denoted Hn, with, say, a [n, k = n/poly log n, d]F2-code C0 that is a (3, ε, s)-
LTC (codes with these parameters are known to exist). The resulting code

C = C0 ×Hn =
{

(c, c′)
∣∣ c ∈ C0, c

′ ∈ Hn

}
is a linear 3-query LTC of blocklength 2n and can easily be seen to be (1/4, 3)-dense’ because H2

is (1/2, 3)-dense’ but the rate of C is at least k/2n. In other words, we can artificially increase the
density’ of an LTC at the price of decreasing its rate by a constant factor.

It turns out that it is sufficient to consider the density of weight-3 and weight 4 words, due
to the following claim because (γ, q)-density for q ≥ 3 implies either (3, γ′)- or (4, γ′)-density for
γ′ > 0 depending only on γ. The main theorem of Ben-Sasson and Viderman [2010b] shows that
dense codes have small rate:

Theorem 2.11 (Dense codes have small rate). For every γ > 0 and integer q there exists ` > 0
depending only on γ and q such that the following holds. If C is a linear [n, k, d]F2 code that is
(γ, q)-dense, then the dimension k of C is at most log` n.

The proof relies on results from additive combinatorics and we give a sketch of it next.

Proof Sketch. Take a generating matrix A ∈ Fn×k2 for C, a matrix satisfying C =
{
Ax
∣∣ x ∈ Fk2

}
.

Let A = {Ai | i ∈ {1, . . . , n}} ⊂ Fk2 denote the set of rows of the matrix. The density assumption
implies

Pr
a,a′∈A

[a+ a′ ∈ A] ≥ γ.

The Balog-Szemerédi-Gowers theorem [Balog and Szemerédi, 1994, Gowers, 1998], together with
the Freiman-Ruzsa theorem [Freiman, 1973, Ruzsa, 1999], imply that A contains a subset A′ of
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size at least η|A| that is an η-fraction of some linear subspace of Fk2, where η = γpoly(1/γ). In
other words, the set of rows A′ can be viewed, after an appropriate change of basis, as resulting
from taking a constant fraction of the rows of a generating matrix of the Hadamard code, which is
known to have very bad rate. Consider the residual set A′′ = A \ A′. The assumption that each
i ∈ {1, . . . , n} touches many weight-3 words is now used to argue that A′′ is also (γ′, 3)-dense, for
γ′ > 0 that depends only on γ, so our argument can be repeated. Continuing in this manner we
reach the conclusion that the generating matrix A can be written, after a proper change of basis, as
a block-diagonal matrix where each block is a constant fraction of a Hadamard code and Hadamard
codes are known to have bad rate. Consequently, C has small rate and this completes the proof
sketch.

2.5 Question: Narrow the gap between redundant and dense LTC limitations

The rate limitations we have showed regarding both redundant, and dense, LTCs, suggest an
interesting avenue for future research — to narrow the gap between these two cases. For simplicity
consider the case of an asymptotically good family of smooth 3-query LTCs, i.e., LTCs that have
a tester which queries each codeword entry with the same probability. The results on redundancy
show that each member of the family should have at least a linear number of redundant weight-3
dual words. The result on dense codes shows that the overall number of such words is o(n2). Here
is a seemingly simpler question that is currently open:

Question 2.12 (Number of small weight dual words of a linear LTC). Prove or refute the following
conjecture. Suppose {Cn ⊂ {0, 1}n | n ∈ Z} is an asymptotically good family of linear (3, δ/3, s > 0)-
LTCs of relative distance at least δ > 0. Suppose furthermore that Cn is testable by a tester
associated with the uniform distribution on (Cn)⊥≤3, the set of weight-3 words in C⊥. Then |(Cn)⊥≤3| =
ω(n).

3 Limitations on group-invariant codes

We have seen in Section 2.3 that linear LTCs must have dual codes whose small-weight words show
a large degree of nontrivial redundancy. Constructing codes that have large rate and such a level
of redundancy seems like a hard problem, and one way to get around it is to use codes that are
invariant under a “sufficiently rich” group (a concept we explain next), for which the existence of
even a single small-weight dual word immediately implies a large number of such words.

A code C of blocklength n induces a group of automorphisms aut(C), this is the group of
permutations π : {1, . . . , n} → {1, . . . , n} under which the code is invariant, by which we mean that
for every w = (w1, . . . , wn) ∈ C the π-permuted word π(w) = (wπ(1), . . . , wπ(n)) also belongs to C. It

is not hard to verify that aut(C) is indeed a group and that aut(C⊥) = aut(C). Consequently, if C⊥
contains a word u of weight q then C⊥≤q contains {π(u) | π ∈ aut(C)}. Thus, if aut(C) is sufficiently

rich we can hope for C⊥≤q to be large and redundant and, if all stars align properly, C will be a
q-query LTC and moreover have large rate and relative distance.

Two notable families of groups that should be mentioned in this context are doubly transitive
and affine-invariant ones. A group of permutations G over n elements is said to be doubly transitive,
or 2-wise transitive, if for every i 6= j and i′ 6= j′ ∈ {1, . . . , n} there exists π ∈ G such that
π(i) = i′ and π(j) = j′. A conjecture attributed2 to Alon et al. [2005] is that all codes which

2We use the term “attributed” because in [Alon et al., 2005, Section 5] it appears as an open question.
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are invariant under a doubly transitive group (call them doubly transitive codes) are testable with
query complexity q′ that depends only on the smallest q for which C⊥≤q spans C⊥. In particular, this
query complexity is conjectured to be independent of the blocklength of C. (The requirement that
C⊥≤q span C⊥, cannot be replaced by the weaker assumption that q is the minimal distance of C⊥.
Grigorescu et al. [2009a] showed that if one opts for the weaker assumption then the conjecture
is false.) It is shown by Kaufman and Viderman [2010] that doubly transitive codes with small
dual distance are so-called locally correctable codes. These codes are a stronger analog of locally
decodable codes (cf. [Goldreich, 2005, Trevisan, 2004]), and this implies a polynomial upper bound

on their rate of the form of the form ρ(C) = O

(
log n

(
logn
n

) 2
q+1

)
, as shown by Woodruff [2007].

This raises the following open problem:

Question 3.1 (Polynomial rate doubly transitive LTCs). Does there exist a family {Cn ⊆ Fn | n ∈ Z}
of doubly transitive (q, ε > 0, s, 1)-LTCs that has inverse polynomial rate, i.e., ρ(Cn) ≥ 1/nO(1)?

A group is said to be affine-invariant if {1, . . . , n} can be identified with a vector space Km

over a finite field K and G is then isomorphic to the group of invertible affine transformations3

over Km. The family of affine-invariant codes includes the Hadamard and Reed-Muller codes as
well as dual-BCH codes. Kaufman and Sudan [2008] showed that, when |K| is small, every affine-
invariant family of codes over Km, whose dual contains a small-weight word, is locally testable.
Since every affine group is doubly transitive, the work of Kaufman and Sudan [2008] shows that
the double-transitivity conjecture does hold in certain interesting special cases. Later on we shall
see that affine-invariant codes have small rate, and this answers negatively the question above for
this special case.

A third and final family of group invariant codes considered in the literature is that of cyclic
codes, i.e., codes invariant under a cyclic group. All affine invariant codes (including Hadamard
and Reed-Muller) are, in particular, cyclic. Babai et al. [2005] showed that a family of cyclic LTCs
cannot be asymptotically good, either its rate or its distance must be less than 1/

√
log n log log n.

A long-standing open problem in coding theory is whether there exists an asymptotically good
family of cyclic codes (cf. [MacWilliams and Sloane, 1978, Open Problem 9.2]). The result above
shows that when local testability is thrown in as a requirement, then indeed asymptotically good
codes do not exist.

3.1 Affine invariant LTCs have small rate

In this section we discuss rate limitations of affine-invariant locally testable codes. More information
on this topic can be found in the survey of Sudan [2010]. Recall that if C is an [n, k, d]F-code affine-
invariant code it means we can identify {1, . . . , n} with Km for some field K which is a finite
extension4 of F and such that the automorphism group of C contains the affine (semi-)group over
Km. The study of affine invariant LTCs was initiated by Kaufman and Sudan [2008], as a first
step towards characterizing the class of “algebraic” properties which are testable. This class is also

3The work of Kaufman and Sudan [2008] actually talks about the semi-group of all affine transformations, including
the non-invertible ones.

4The more general case of K being an arbitrary field, not necessarily extending F, has not been addressed so far.
However, it seems reasonable to expect that such codes should not have good rate, regardless of their local testability
properties. This is because Km-affine invariance and F-linearity do not mix well when K is not an extension of F.
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an interesting special case of the doubly transitive conjecture of Alon et al. [2005]. Indeed, for
such codes Kaufman and Sudan [2008] showed that local testability exists as long as the field K is
sufficiently small and the dual code has constant distance, as seen from their main theorem:

Theorem 3.2 (Affine invariant codes over small fields with constant dual distance are locally
testable). For fields F ⊆ K let C be an [n = |Km|, k, d]F affine-invariant code such that C⊥ contains
a word of weight q0. Then C is(

q = (|K|2q0)|K|
2
, s =

1

2(2q + 1)(q + 1)

)
-strongly locally testable

by which we mean that there exists a q-query linear tester that rejects noncodewords r 6∈ C with
probability at least s · δC(r).

Now we discuss the rate of such codes. Since affine invariant codes are cyclic, one could get an
inverse logarithmic bound on the rate of affine invariant LTCs from what is known on cyclic LTCs.
A tighter, inverse polynomial, bound on the rate follows from the result of Kaufman and Viderman
[2010] which says that such codes are locally decodable (and locally correctable) and the result of

Woodruff [2007] which bounds the rate of locally decodable codes by O

(
log n

(
logn
n

) 2
q+1

)
. The

following result of Ben-Sasson and Sudan [2010] gives a stronger bound, showing that the dimension
of affine-invariant codes is merely polylogarithmic in the blocklength of the code.

Theorem 3.3 (Affine invariant LTCs have small rate). Let p be a prime and r, n,m be positive
integers and let F be the field of size pr and K be its degree `-extension, which is of size pr`. Any
affine invariant [n = |Km|, k, d]F-code C such that C⊥ contains a word of weight q > 0 satisfies

k ≤ (logp n)q−1.

Notice the theorem shows exponential rate even for large fields K, which are not known to be
locally testable. We point out that the theorem as stated in [Ben-Sasson and Sudan, 2010] gives
more information on affine-invariant codes with small dual distance, showing they are subcodes of
low-degree polynomials (Reed-Muller codes). We shall not describe this result, nor shall we go into
details of the proof because quite a lot of algebra is needed to describe it. Instead, we point the
interested reader to the survey [Sudan, 2010] and the relevant papers [Kaufman and Sudan, 2008,
Ben-Sasson and Sudan, 2010].

We end this section by pointing out the following interesting question which addresses the rate
of a natural family of codes invariant under a linear group (in particular, Theorem 3.3 does not
apply to such codes):

Question 3.4 (Rate of linear invariant codes with small dual distance). Let K be a finite extension
of a finite field F. Let GL(m,K) denote the general linear group over K, containing all invertible
m-dimensional linear transformations over K. Let C be an [n = |K|m, k, d]F-linear code that is
invariant under GL(m,K) and suppose C⊥ contains a word of weight q > 0. How large can k be as
a function of the field size |K| and code distance d?
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