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Abstract

This paper is our third step towards developing a theory of testing
monomials in multivariate polynomials and concentrates on two problems:
(1) How to compute the coefficients of multilinear monomials; and (2) how
to find a maximum multilinear monomial when the input is a ΠΣΠ poly-
nomial. We first prove that the first problem is #P-hard and then devise a
O∗(3ns(n)) upper bound for this problem for any polynomial represented
by an arithmetic circuit of size s(n). Later, this upper bound is improved
to O∗(2n) for ΠΣΠ polynomials. We then design fully polynomial-time
randomized approximation schemes for this problem for ΠΣ polynomials.
On the negative side, we prove that, even for ΠΣΠ polynomials with terms
of degree ≤ 2, the first problem cannot be approximated at all for any
approximation factor ≥ 1, nor ”weakly approximated” in a much relaxed
setting, unless P=NP. For the second problem, we first give a polynomial
time λ-approximation algorithm for ΠΣΠ polynomials with terms of de-
grees no more a constant λ ≥ 2. On the inapproximability side, we give
a n(1−ε)/2 lower bound, for any ε > 0, on the approximation factor for
ΠΣΠ polynomials. When terms in these polynomials are constrained to
degrees ≤ 2, we prove a 1.0476 lower bound, assuming P 6= NP ; and a
higher 1.0604 lower bound, assuming the Unique Games Conjecture.

1 Introduction

1.1 Background

We begin with two examples to exhibit the motivation and necessity of the
study about the monomial testing problem for multivariate polynomials. The
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first is about testing a k-path in any given undirected graph G = (V,E) with
|V | = n, and the second is about the satisfiability problem. Throughout this
paper, polynomials refer to those with multiple variables.

For any fixed integer c ≥ 1, for each vertex vi ∈ V , define a polynomial pk,i

as follows:

p1,i = xc
i ,

pk+1,i = xc
i


 ∑

(vi,vj)∈E

pk,j


 , k > 1.

We define a polynomial for G as

p(G, k) =
n∑

i=1

pk,i.

Obviously, p(G, k) can be represented by an arithmetic circuit. It is easy to see
that the graph G has a k-path vi1 · · · vik

iff p(G, k) has a monomial xc
i1
· · ·xc

ik
of

degree ck in its sum-product expansion. G has a Hamiltonian path iff p(G,n)
has the monomial xc

1 · · ·xc
n of degree cn in its sum-product expansion. One can

also see that a path with some loop can be characterized by a monomial as well.
Those observations show that testing monomials in polynomials is closely related
to solving k-path, Hamiltonian path and other problems about graphs. When
c = 1, xi1 · · ·xik

is multilinear. The problem of testing multilinear monomials
has recently been exploited by Koutis [21] and Williams [30] to design innovative
randomized parameterized algorithms for the k-path problem.

Now, consider any CNF formula f = f1 ∧ · · · ∧ fm, a conjunction of m
clauses with each clause fi being a disjunction of some variables or negated
ones. We may view conjunction as multiplication and disjunction as addition,
so f looks like a ”polynomial”, denoted by p(f). p(f) has a much simpler ΠΣ
representation, as will be defined in the next section, than general arithmetic
circuits. Each ”monomial” π = π1 . . . πm in the sum-product expansion of p(f)
has a literal πi from the clause fi. Notice that a boolean variable x ∈ Z2 has
two properties of x2 = x and xx̄ = 0. If we could realize these properties
for p(f) without unfolding it into its sum-product, then p(f) would be a ”real
polynomial” with two characteristics: (1) If f is satisfiable then p(f) has a
multilinear monomial, and (2) if f is not satisfiable then p(f) is identical to
zero. These would give us two approaches towards testing the satisfiability of f .
The first is to test multilinear monomials in p(f), while the second is to test the
zero identity of p(f). However, the task of realizing these two properties with
some algebra to help transform f into a needed polynomial p(f) seems, if not
impossible, not easy. Techniques like arithmetization in Shamir [28] may not be
suitable in this situation. In many cases, we would like to move from Z2 to some
larger algebra so that we can enjoy more freedom to use techniques that may not
be available when the domain is too constrained. The algebraic approach within
Z2[Zk

2 ] in Koutis [21] and Williams [30] is one example along the above line. It
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was proved in Bshouty et al. [6] that extensions of DNF formulas over Zn
2 to

ZN -DNF formulas over the ring Zn
N are learnable by a randomized algorithm

with equivalence queries, when N is large enough. This is possible because a
larger domain may allow more room to utilize randomization.

There has been a long history in theoretical computer science with heavy in-
volvement of studies and applications of polynomials. Most notably, low degree
polynomial testing/representing and polynomial identity testing have played in-
valuable roles in many major breakthroughs in complexity theory. For example,
low degree polynomial testing is involved in the proof of the PCP Theorem,
the cornerstone of the theory of computational hardness of approximation and
the culmination of a long line of research on IP and PCP (see, Arora at el. [3]
and Feige et al. [14]). Polynomial identity testing has been extensively stud-
ied due to its role in various aspects of theoretical computer science (see, for
examples, Chen and Kao [12], Kabanets and Impagliazzo [18]) and its applica-
tions in various fundamental results such as Shamir’s IP=PSPACE [28] and the
AKS Primality Testing [2]. Low degree polynomial representing [22] has been
sought for so as to prove important results in circuit complexity, complexity
class separation and subexponential time learning of boolean functions (see, for
examples, Beigel [5], Fu[15], and Klivans and Servedio [20]). These are just a
few examples. A survey of the related literature is certainly beyond the scope
of this paper.

1.2 The First Two Steps

The above two examples of the k-path testing and satisfiability problems, the
rich literature about polynomial testing and many other observations have mo-
tivated us to develop a new theory of testing monomials in polynomials repre-
sented by arithmetic circuits or even simpler structures. The monomial testing
problem is related to, and somehow complements with, the low degree testing
and the identity testing of polynomials. We want to investigate various com-
plexity aspects of the monomial testing problem and its variants with two folds
of objectives. One is to understand how this problem relates to critical prob-
lems in complexity, and if so to what extent. The other is to exploit possibilities
of applying algebraic properties of polynomials to the study of those critical
problems.

As a first step towards testing monomials, Chen and Fu [8] have proved
a series of results: The multilinear monomial testing problem for ΠΣΠ poly-
nomials is NP-hard, even when each clause has at most three terms and each
term has a degree at most 2. The testing problem for ΠΣ polynomials is in
P, and so is the testing for two-term ΠΣΠ polynomials. However, the testing
for a product of one two-term ΠΣΠ polynomial and another ΠΣ polynomial is
NP-hard. This type of polynomial products is, more or less, related to the poly-
nomial factorization problem. We have also proved that testing c-monomials
for two-term ΠΣΠ polynomials is NP-hard for any c > 2, but the same testing
is in P for ΠΣ polynomials. Finally, two parameterized algorithms have been
devised for three-term ΠΣΠ polynomials and products of two-term ΠΣΠ and
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ΠΣ polynomials. These results have laid a basis for further study about testing
monomials.

In our subsequent paper, Chen at al. [9] present two pairs of algorithms.
First, we prove that there is a randomized O∗(pk) time algorithm for testing
p-monomials in an n-variate polynomial of degree k represented by an arith-
metic circuit, while a deterministic O∗(6.4k + pk) time algorithm is devised
when the circuit is a formula, here p is a given prime number. Second, we
present a deterministic O∗(2k) time algorithm for testing multilinear monomi-
als in ΠmΣ2Πt ×ΠkΠ3 polynomials, while a randomized O∗(1.5k) algorithm is
given for these polynomials. The first algorithm extends the recent work by
Koutis [21] and Williams [30] on testing multilinear monomials. Group alge-
bra is exploited in the algorithm designs, in corporation with the randomized
polynomial identity testing over a finite field by Agrawal and Biswas [1], the de-
terministic noncommunicative polynomial identity testing by Raz and Shpilka
[25] and the perfect hashing functions by Chen at el. [11]. Finally, we prove
that testing some special types of multilinear monomial is W[1]-hard, giving
evidence that testing for specific monomials is not fixed-parameter tractable.

1.3 Contributions

Naturally, testing for the existence of any given monomial in a polynomial can be
carried out by computing the coefficient of that monomial in the sum-product
expansion of the polynomial. A zero coefficient means that the monomial is
not in the polynomial, while a nonzero coefficient implies that it is. Moreover,
coefficients of monomials in a polynomial have their own implications and are
closely related to central problems in complexity. As we shall exhibit later, the
coefficients of multilinear monomials correspond to counting perfect matchings
in a bipartite graph and to computing the permanent of a matrix.

Consider a ΠΣΠ polynomial F . F may not have a multilinear monomial in its
sum-product expansion. However, one can always find a multilinear monomial
via selecting terms from some clauses of F , unless all the terms in each clause
of F are not multilinear or F is simply empty. Here, the real challenging is how
to find a longest multilinear from the prod of a subset of clauses in F . This
problem is closely related to the maximum independent set, MAX-k-2SAT and
other important optimization problems in complexity.

Because of the above characteristics of monomial coefficients, we concentrate
on two problems in this paper:

1. How to compute the coefficients of multilinear monomials in the sum-
product expansion of a polynomial?

2. How to find/approximate a maximum multilinear monomial when the in-
put is a ΠΣΠ polynomial?

For the first problem, we first prove that it is #P-hard and then devise
a O∗(3ns(n)) time algorithm for this problem for any polynomial represented
by an arithmetic circuit of size s(n). Later, this O∗(3ns(n)) upper bound is
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improved to O∗(2n) for ΠΣΠ polynomials. Two easy corollaries are derived
directly from this O∗(2n) upper bound. One gives an upper bound that matches
the best known O∗(2n) deterministic time upper bound, that was due to Ryser
[26] in early 1963, for computing the permanent of an n× n matrix. The other
gives an upper bound that matches the best known O∗(1.415n) deterministic
time upper bound, that was also due to Ryser [26], for counting the number of
perfect matchings in the a bipartite graph

We then design three fully polynomial-time randomized approximation schemes.
The first approximates the coefficient of any given multilinear monomial in a ΠΣ
polynomial. The second approximates the sum of coefficients of all the multilin-
ear monomials in a ΠΣ polynomial. The third finds an ε-approximation to the
coefficient of any given multilinear monomial in a ΠkΣaΠt ×ΠmΣs polynomial
with a being a constant ≥ 2.

On the negative side, we prove that, even for ΠΣΠ polynomials with terms
of degree ≤ 2, the first problem cannot be approximated at all regardless of the
approximation factor ≥ 1. We then consider ”weak approximation” in a much re-
laxed setting, following our previous work on inapproximability about exemplar
breakpoint distance and exemplar conserved interval distance of two genomes
[10, 7]. We prove that, assuming P 6= NP , the first problem cannot be approxi-
mated in polynomial time within any approximation factor α(n) ≥ 1 along with
any additive adjustment β(n) ≥ 0, where α(n) and β(n) are polynomial time
computable.

For the second problem, we first present a polynomial time λ-approximation
algorithm for ΠΣΠ polynomials with terms of degrees no more a constant λ ≥
2. On the inapproximability side, we give a n(1−ε)/2 lower bound, for any
ε > 0, on the approximation factor for ΠΣΠ polynomials. When terms in these
polynomials are constrained to degrees ≤ 2, we prove a 1.0476 lower bound,
assuming P 6= NP . We also prove a higher 1.0604 lower bound, assuming the
Unique Games Conjecture.

1.4 Organization

The rest of the paper is organized as follows. In Section 2, we introduce the nec-
essary notations and definitions. In Section 3, coefficients of multilinear mono-
mials in polynomials are shown to be related to perfect matchings in bipartite
graphs and to the permanents of matrices. Two parameterized algorithms are
devised for computing the coefficient of a multilinear monomial with applica-
tions to counting perfect matchings and computing the permanent of a matrix.
In Section 4, we design three fully polynomial-time randomized approximation
algorithms. Sections 5 and 6 are devoted to inapproximability and weak inap-
proximability for computing multilinear monomial coefficients. Section 7 focuses
on the problem of finding a maximum multilinear monomial in a polynomial.
One approximation algorithm and three lower bounds on approximation factors
are included.
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2 Notations and Definitions

For variables x1, . . . , xn, let P[x1, · · · , xn] denote the communicative ring of all
the n-variate polynomials with coefficients from a finite field P. For 1 ≤ i1 <
· · · < ik ≤ n, π = xj1

i1
· · ·xjk

ik
is called a monomial. The degree of π, denoted

by deg(π), is
∑k

s=1 js. π is multilinear, if j1 = · · · = jk = 1, i.e., π is linear
in all its variables xi1 , . . . , xjk

. For any given integer τ ≥ 1, π is called a τ -
monomial, if 1 ≤ j1, . . . , jk < τ . In the setting of the MAX-Multilinear Problem
in Section 7, we need to consider the length of the a monomial π = xj1

i1
· · ·xjk

ik
as

|π| = ∑k
`=1 log(1 + j`). (Strictly speaking, |π| should be

∑k
`=1 log(1 + j`) log n.

But, the common log n factor can be dropped for ease of analysis.) When π is
multilinear, |π| = k, i.e., the number of variables in it.

For any polynomial F (x1, . . . , xn) and any monomial π, we let c(F, π) denote
the coefficient of π in the sum-product of F , or in F for short. If π is indeed in
F , then c(π) > 0. If not, then c(F, π) = 0. We also let S(F ) denote the sum of
the coefficients of all the multilinear monomials in F . When it is clear from the
context, we use c(π) to stand for c(F, π).

An arithmetic circuit, or circuit for short, is a direct acyclic graph with +
gates of unbounded fan-in, × gates of fan-in two, and all terminals corresponding
to variables. The size, denoted by s(n), of a circuit with n variables is the
number of gates in it. A circuit is called a formula, if the fan-out of every gate
is at most one, i.e., its underlying direct acyclic graph is a tree.

By definition, any polynomial F (x1, . . . , xn) can be expressed as a sum of a
list of monomials, called the sum-product expansion. The degree of the polyno-
mial is the largest degree of its monomials in the expansion. With this expres-
sion, it is trivial to see whether F (x1, . . . , xn) has a multilinear monomial (or
a monomial with any given pattern) along with its coefficient. Unfortunately,
this expression is essentially problematic and infeasible to realize, because a
polynomial may often have exponentially many monomials in its expansion.

In general, a polynomial F (x1, . . . , xn) can be represented by a circuit or
some even simpler structure as defined in the following. This type of repre-
sentation is simple and compact and may have a substantially smaller size,
say, polynomially in n, in comparison with the number of all monomials in the
sum-product expansion. The challenge is how to test whether F has a multilin-
ear monomial, or some other needed monomial, efficiently without unfolding it
into its sum-product expansion? The challenge applies to finding coefficients of
monomials in F .

Throughout this paper, the O∗(·) notation is used to suppress poly(n, k)
factors in time complexity bounds.

Definition 1 Let F (x1, . . . , xn) ∈ P[x1, . . . , xn] be any given polynomial. Let
m, s, t ≥ 1 be integers.

• F (x1, . . . , xn) is said to be a ΠmΣsΠt polynomial, if F (x1, . . . , xn) =∏t
i=1 Fi, Fi =

∑ri

j=1 Xij and 1 ≤ ri ≤ s, and Xij is a product of vari-
ables with deg(Xij) ≤ t. We call each Fi a clause. Note that Xij is not
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a monomial in the sum-product expansion of F (x1, . . . , xn) unless m = 1.
To differentiate this subtlety, we call Xij a term.

• In particular, we say F (x1, . . . , xn) =
∏t

i=1 Fi is a ΠmΣs polynomial, if
it is a ΠmΣsΠ1 polynomial. Here, each clause in Fi is a linear addition
of single variables. In other word, each term in Fi has degree 1.

• F (x1, . . . , xn) is called a ΠmΣsΠt × ΠkΣ` polynomial, if F (x1, . . . , xn) =
F1 ·F2 such that F1 is a ΠmΣsΠt polynomial and F2 is a ΠkΣ` polynomial.

When no confusion arises from the context, we use ΠΣΠ and ΠΣ to stand
for ΠmΣsΠt and ΠmΣs, respectively.

Similarly, we use ΠΣsΠ and ΠΣs to stand for ΠmΣsΠt and ΠmΣs respec-
tively, emphasizing that every clause in a polynomial has at most s terms or is
a linear addition of at most s single variables.

3 Multilinear Monomial Coefficients, Perfect Match-
ings and Permanents

In this section, we show that the problem of computing the coefficients of mul-
tilinear monomials in a ΠΣΠ polynomial is closely related to the problem of
counting the number of perfect matchings in a bipartite graph and to the per-
manent of a matrix with nonnegative entries. We first shall prove that com-
puting the coefficient of any given multilinear monomial in a ΠΣΠ polynomial
is #P-hard. We then devise a O∗(3n s(n)) time fixed parameter algorithm for
computing coefficients for multilinear monomials in a polynomial represented
by an arithmetic circuit of size s(n). This upper bound is further improved to
O∗(2n) for ΠΣΠ polynomials. As two simply corollaries of this latter upper
bound, we have an O∗(1.45n) to find the number of perfect matchings in any
given bipartite graph, and a O∗(2n) time algorithm for computing the perma-
nent of any n× n matrix.

Theorem 2 Let F (x1, . . . , xn) be any given ΠmΣsΠ2 polynomial. It is #P-hard
to compute the coefficient of any given multilinear monomial in the sum-product
of F .

Proof It is well known (see Valiant [29]) that the problem of counting the
number of perfect matchings in a bipartite graph is #P-hard. We shall reduce
this counting problem to the problem of computing coefficient of a multilinear
monomial in a polynomial. Let G = (V1 ∪ V2, E) be any given bipartite graph.
We construct a polynomial F as follows.

Assume that V1 = {v1, · · · , vt} and V2 = {u1, · · · , ut}. Each vertex vi ∈ V1

is represented by a variable xi, so is ui ∈ V2 by a variable yi. For every vertex
vi ∈ V1, define a polynomial

Fi =
∑

(vi,uj)∈E

xiyj .
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Define a polynomial for the graph G as

F (G) = F1 · · ·Ft.

Let n = 2t, m = t, and s be maximum degree of the vertices in V1. It is easy to
see that F (G) is a n-variate ΠmΣsΠ2 polynomial.

Now, suppose that G has a perfect matching (x1, yi1), . . . , (xt, yit
). Then,

we can choose πj = xjyij
from Fj , 1 ≤ j ≤ t. Thus,

π = π1 · π2 · · ·πt = x1x2 · · ·xty1y2 · · · yt

is a multilinear monomial in F (G). Hence, the number of perfect matchings in
G is at most c(π), i.e., the coefficient of π in F (G). On the other hand, suppose
that F (G) has a multilinear monomial

π = π′1 · · · · · π′t = x1x2 · · ·xty1y2 · · · yt

in its sum-product expansion with π′j being a term from Fj , 1 ≤ j ≤ t. By
the definition of Fj , π′j = xjyij , meaning that vertices vj and uij are directly
connected by the edge (j, ij). Since π′ is multilinear, yi1 , . . . , yit are distinct.
Hence, (x1, yi1), . . . , (xt, yit) constitute a perfect matching in G. Hence, the
coefficient c(π) of π in F (G) is at most the number of perfect matchings in G.
Putting the above analysis together, we have that G has a perfect matching iff
F (G) has a copy of the multilinear monomial π = x1x2 · · ·xty1y2 · · · yt in its
sum-product expansion. Moreover, G has c(π) ≥ 0 many perfect matchings iff
the multilinear monomial π has a coefficient c(π) in the expansion. Therefore,
by Valiant’s #P-hardness of counting the number of perfect matchings in a
bipartite graph [29], computing the coefficient of π in F (G) is #P-hard. 2

Theorem 3 There is a O∗(s(n)3n) time algorithm to compute the coefficients
of all multilinear monomials in a polynomial F (x1, . . . , xn) represented by an
arithmetic circuit C of size s(n).

Proof We consider evaluating F from C via a bottom-up process. Notice that
at most 2n many multilinear monomials can be formed with n variables. For
each addition gate g in C with fan-ins f1, . . . , fs, we may assume that each fi is
a sum of multilinear terms, i.e., products of distinct variables. This assumption
is valid, because we can discard all the terms in fi that are not multilinear since
we are only interested in multilinear monomials in the sum-product expansion
of F . We simply add f1 + · · ·+ fs via adding the coefficients of the same terms
together. Since there are at most 2n many multilinear monomials (or terms),
this takes O(n2n) times.

Now we consider a multiplication gate g′ in C with fan-ins h1 and h2. As
for the addition gates, we may assume that hi is a sum of multilinear terms,
i = 1, 2. For each term π with degree ` in h1, we only need to multiply it with
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terms in h2 whose degrees are at most n− `. If the multiplication yields a non-
multilinear term then that term is discarded, because we are only interested in
multilinear terms in the expansion of F . This means that a term π of degree `
in h1 can be multiplied with at most 2n−` possible terms in h2. Let mi denote
the number of terms in h1 with degree i, 1 ≤ i ≤ n. Then, evaluating h1 ·h2 for
the multiplication gate g′ takes time at most

O(n (m1 2n−1 + m2 2n−2 + · · ·+ mn−1 21)). (1)

Since there are at most (n
i ) terms with degree i with respect to n variables,

expression (1) is at most

O(n [(n
1 ) 2n−1 + (n

2 ) 2n−2 + · · ·+ (n
n−1) 2n−n])

= O(n
n∑

i=1

(n
i )2n−i) = O(n 3n).

Since C has s(n) gates, the total time for the entire evaluation of F for finding
all its multilinear monomials with coefficients is O(ns(n)3n) = O∗(s(n)3n). 2

The time bound in Theorem 3 can be improved when ΠΣΠ polynomials are
considered.

Theorem 4 Let F (x1, . . . , xn) be any given ΠmΣsΠt polynomial. One can find
coefficients of all the multilinear monomials in the sum-product expansion of F
in O∗(2n) time.

Proof Let F (x1, . . . , xn) =
∏m

i=1 Fi such that Fi =
∑s

j=1 Tij and Tij is a
term of degree at most t. We first consider Fm−1 · Fm. Like what is done for
the multiplication gate in the proof of Theorem 3, we multiply each term in
Fm−1 with every term in Fm. We discard all the resulting terms that are non-
multilinear, because we are only interested in multilinear terms in F . Let Gm−1

be the sum of all the remaining multilinear terms from Fm−1 ·Fm. Then, Gm−1

can have at most s2 ≤ 2n many terms. Also, the time needed to obtain Gm−1 is
O(ts2) = O(ts2n). Next, following the same approach, we do Fm−2 ·Gm−1 and
let Gm−2 be the sum of all the remaining multilinear terms. The time needed
to obtain Gm−2 is O(ts2n). Continue this process to F1 ·G2, we will have G1 as
the sum of all the remaining multilinear terms that constitute all the multilinear
monomials along with their respective coefficients in the sum-product expansion
of F . The time for this last step also O(ts2n). The total time for the entire
process is O(mts2n) = O∗(2n). 2

Corollary 5 There is a O∗(1.415n) time algorithm to compute the exact num-
ber of perfect matchings in a bipartite graph G = (V1 ∪ V2, E) with n = 2|V1| =
2|V2| vertices.
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Proof Let m = n/2, V1 = {v1, . . . , vm} and V2 = {u1, . . . , um}. For each
vertex ui ∈ V2, we define a variable xi. For each vertex vi ∈ V1, construct a
polynomial

Hi = xi1 + xi2 + · · ·+ xi`i
,

where (vi, uij ) ∈ E for j = 1, · · · , `i and vi has exactly `i adjacent vertices in
G. Define

H(G) = H1 · · ·Hn/2.

Then, H(G) is a (n
2 )-variate Πn/2ΣsΠ1 polynomial, where s = max{`i} ≤ n/2.

Following a similar analysis as in the proof of Theorem 2, G has a perfect
matching iff H(G) has the multilinear monomial x1x2 · · ·xn/2 in its sum-product
expansion. Moreover, when there is a perfect matching, the number of perfect
matchings in G is the same as the coefficient of x1x2 · · ·xn/2. Therefore, by
Theorem 4, one can find the exact number of perfect matchings in G in time
O∗(2n/2) = O∗(1.415n). 2

The upper bound in Corollary 5 matches the best known deterministic upper
bound of Ryser [26] for counting perfect matchings in a bipartite graph. The
best known deterministic algorithm to compute the permanent of an n×n matrix
is Ryser Algorithm [26] with O∗(2n) time complexity that was devised almost
50 years ago. A corollary of Theorem 4 implies an algorithm for computing the
permanent of any matrix with the same time bound as Ryser algorithm does.
Notice that when defining ΠΣΠ polynomials in Section 2, we let the coefficients
of all the terms in each clause to be 1 for ease of description. In fact, Theorems
3 and 4 still hold when arbitrary coefficients are allowed for terms in clauses of
the input polynomial.

Corollary 6 permanent The permanent of any given n×n matrix is computable
in time O∗(2n).

Proof Let A = (aij)n×n be an n × n matrix with nonnegative entries aij ,
1 ≤ i, j ≤ n. Design a variable xi for row i and define polynomials in the
following:

Ri = (ai1x1 + · · ·+ ainxn),
P (A) = R1 · · ·Rn.

Let perm(A) denote the permanent of A. It follows from the above definitions
that the coefficient of the multilinear monomial π = x1 · · ·xn is precisely c(π) =
perm(A). Since R(A) is a ΠnΣnΠ1 polynomial, by Theorem 4, we have the
O∗(2n) time bound for computing perm(A). 2

The reduction in the proof of Corollary 5 implies the following result that
somehow strengthens Theorem 2:

Corollary 7 It is #P-hard to computing the coefficient of any given multilinear
monomial in an n-variate ΠmΣs polynomial.
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4 Fully Polynomial-Time Approximation Schemes
for ΠΣ Polynomials

In this section, we show that in contrast to Theorem 2 and Corollary 7, fully
polynomial-time randomized approximation schemes (”FPRAS”) exist for solv-
ing the problem of finding coefficients of multilinear monomials in a ΠΣ poly-
nomial and some variants of this problem as well. An FPRAS A is a ran-
domized algorithm, when given any n-variate polynomial F and a monomial π
together with an accuracy parameter ε ∈ (0, 1], outputs a value A(F, π, ε) in
time poly(n, 1/ε) such that with high probability

(1− ε)c(π) ≤ A(F, π, ε) ≤ (1 + ε)c(π).

Theorem 8 There is an FPRAS for finding the coefficient of any given multi-
linear monomial in a ΠmΣs polynomial F (x1, . . . , xn).

Proof Let F (x1, . . . , xn) =
∏m

i=1 Fi such that Fi =
∑si

j=1 xij with si ≤ s. No-
tice that any monomial in the sum-product expansion of F will have exactly one
variable from each clause Fi. This allows us to focus on multilinear monomials
with exactly m variables. Let π = xi1 · · ·xim be such a multilinear monomial.
We consider how to test whether π is in F , and if so, how to find its coefficient
c(π).

For each Fi, we eliminate all the variables that are not included in π and
let F ′i be the resulting clause and F ′ = F ′1 · · ·F ′m. If one clause F ′i is empty,
then we know that π must not be a in the expansion of F ′, nor in F . Now
suppose that all clauses F ′i , 1 ≤ i ≤ m, are not empty. We shall reduce F ′ to
a bipartite graph G = (V1 ∪ V2, E) as follows. Define V1 = {v1, . . . , vm} and
V2 = {u1, . . . , um}. Here, each vertex vi corresponds to the clause F ′i , and each
vertex uj corresponds to the variable xj . Define an edge (vi, uj) in E if xj is in
Fi.

Suppose that π is a multilinear monomial in F (hence in F ′). Then, each
xij in π is in a distinct clause Ftj , 1 ≤ j ≤ m. This implies that edges (vtj , uij ),
1 ≤ j ≤ m, constitute a perfect matching in G. On the other hand, if edges
(vtj , uij ), 1 ≤ j ≤ m form a perfect matching in G, then we have that xij is in the
clause Ftj . Hence, π = xi1 · · ·xim is a multilinear monomial in F ′ (hence in F ).
This equivalence relation further implies that the number of perfect matchings
in G is the same as the coefficient of the multilinear monomial π in F . Thus,
the theorem follows from any fully polynomial-time randomized approximation
scheme for computing the number of perfect matchings in a bipartite graph,
and such an algorithm can be found in Jerrum em at el. [17]. 2

In the following we shall consider how to compute the sum S(F ) of the
coefficients of all the multilinear monomials in a ΠΣ polynomial F .

Theorem 9 There is an FPRAS, when given any n-variate ΠmΣs polynomial
F (x1, . . . , xn), computes S(F ).
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Proof Let F (x1, . . . , xn) =
∏m

i=1 Fi such that Fi =
∑si

j=1 xij with si ≤ s.
Since every monomial in the sum-product expansion of F consists of exactly one
variable from each clause Fj , if m > n then F must not have any multilinear
in its expansion. Thus, we may assume that m ≤ n, because otherwise F will
have no multilinear monomials. Let H = (x1 + · · ·+ xn). Define

F ′(x1, . . . , xn) = F ·Hn−m = F1 · · ·Fm ·Hn−m.

Then, F ′ is a ΠnΣn polynomial. For any given multilinear monomial

π = xi1 · · ·xim

in F with xij
belonging to the clause Fj , 1 ≤ j ≤ m, let xim+1 , . . . , xin−m

be
the n−m variables that are not included in π, then

π′ = xi1 · · ·xim
· xim+1 · · ·xin−m

= x1x2 · · ·xn

is a multilinear monomial in F ′. Because F ′ have n clauses with n variables,
the only multilinear monomial that may be possibly contained in F ′ is the mul-
tilinear monomial π′ = x1x2 · · ·xn. If F ′ indeed has the multilinear monomial
π′ with xij in the clause Fj , 1 ≤ j ≤ m, then π = xi1 · · ·xim is a multilinear
monomial in F . This relation between π and π′ is also reflected by the relation
between the coefficient c(π) of π in the expansion of F and the efficient c(π′) of
π′ in the expansion of F ′. Precisely, the coefficient c(π) of π in F implies that
there are c(π) copies of xi1 · · ·xim for the choices of the first m variables in π′.
Each additional variable xij , m + 1 ≤ j ≤ n −m, is selected from one copy of
the clause H. Since H = (x1 + · · ·xn), there are (n −m)! ways to select these
(n−m) variables from (n−m) copies of H in F ′. Hence, π contributes a value
of c(π)(n−m)! to the coefficient of π′ in F ′. Adding the contributions of all the
multilinear monomials in F to π′ in F ′ together, we have that the coefficient of
π in F ′ is S(F ) · (n−m)!. By Theorem 8, there is an FPRAS to compute the
coefficient of π′ in F ′. Dividing the output of that algorithm by (n−m)! gives
the needed approximation to S(F ). 2

We now extend Theorem 9 to ΠΣΠ×ΠΣ polynomials.

Theorem 10 Let F (x1, . . . , xn) be ΠkΣaΠt × ΠmΣs polynomial with a ≥ 2
being a constant. There is a O(akpoly(n, 1/ε)) time FPRAS that finds an ε-
approximation for the coefficient of any given multilinear monomial π in the
sum-product F if π is in F , or returns ”no” otherwise. Here, 0 ≤ ε < 1 is any
given approximation factor.

Proof Let F = F1 ·F2 such that F1 is a ΠkΣcΠt polynomial and F2 is a ΠmΣs

polynomial. We first expand F1 into its sum-product expansion. Since we
are only interested in multilinear monomials, all those that are not multilinear
will be discarded from the expansion. We still use F1 to denote the resulting
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expansion. We will have at most ak multilinear monomials in F1 as expressed
in the following

F1 =
ak∑

i=1

biψi, (2)

where bi = c(ψ) is the coefficient of the multilinear monomial ψi in F .
Given any multilinear monomial π, we consider how to test whether π is in

F and if so, how to find its coefficient c(π). Assume that π is a multilinear
monomial in F . Since F = F1 ·F2, π must be divided into two parts π = π1 ·π2

such that π1 is chosen from F1 and π2 is chosen from F2. By expression (2), π1

must be ψij for some 1 ≤ ij ≤ ak. If this not true, then π is not in F , so return
”no”. Now, for each ψij

such that ψij
is a possible candidate for π1, we decide

whether π2 is a multilinear monomial in F2 and if so, we let π2(ψij
) denote the

second part of π with respect to the first part π1 = ψij and find its coefficient
c(π2(ψij

)) in F2. By Theorem 8, there is an FPRAS A to accomplish this task,
since F2 is a ΠmΣs polynomial. Let A(ψij ) denote the approximation to the
coefficient c(π2(πij )) returned by the algorithm A with respect to the candidate
ψij . Let ψi1 , . . . , ψi`

be the list of all the candidates for π1. Then, the algorithm
A returns A(π) as

A(π) = bi1A(ψi1) + · · ·+ bi`
A(ψi`

).

Since A is an FPRAS, we have

A(π) ≤ bi1(1 + ε)c(ψi1 · π2(ψi1)) + · · ·+ bi`
(1 + ε)c(ψi`

· π2(ψi`
))

= (1 + ε)[bi1c(ψi1 · π2(ψi1)) + · · ·+ bi`
c(ψi`

· π2(ψi`
))]

= (1 + ε)c(π).

Similarly, we have

A(π) ≥ bi1(1− ε)c(ψi1 · π2(ψi1)) + · · ·+ bi`
(1− ε)c(ψi`

· π2(ψi`
))

= (1− ε)[bi1c(ψi1 · π2(ψi1)) + · · ·+ bi`
c(ψi`

· π2(ψi`
))]

= (1− ε)c(π).

Thus, A(π) is an ε-approximation to c(π). The time for expanding F1 is
O(tak) = O(nak). The time of the algorithmA, by Theorem 8, is O(poly(n, 1/ε)).
So, the total time of the entire process is O(akpoly(n, 1/ε)). 2

5 Inapproximability

Although in the previous section we have proved that there exist fully polynomial-
time randomized approximation schemes for the problem of computing coeffi-
cients of multilinear monomials in ΠmΣs polynomials, yet in this section we
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shall show that this problem is not approximable at all in polynomial time for
ΠmΣsΠt polynomials with t ≥ 2, unless P=NP. Thus, a clear inapproximability
boundary arises between t = 1 and t = 2 for ΠmΣsΠt polynomials.

We consider a relaxed setting of approximation in comparison with the ε-
approximation in the previous section. Given any n-variate polynomial F and
a monomial π together with an approximation factor γ ≥ 1, we say that an
algorithm A approximates the coefficient c(π) in F within an approximation
factor γ, if it outputs a value A(F, π) such that

1
γ

c(π) ≤ A(F, π) ≤ γ c(π).

We may also refer A as a γ-approximation to c(π).

Theorem 11 No matter what approximation factor γ ≥ 1 is used, there is
no polynomial time approximation algorithm for the problem of computing the
coefficient of any given multilinear monomial in the sum-product expansion of
a ΠmΣ3Π2 polynomial, unless P=NP.

Proof Let F (x1, . . . , xn) =
∏m

i=1 Fi be a ΠmΣ3Π2 polynomial. With loss of
generality, we may assume that every term Tij in each clause Fi is a product
of two variables. (Otherwise, we can always pad new variables to any given
ΠmΣ3Π2 polynomial to meet the above clean format.) It follows from Chen
and Fu [8] that the problem of testing multilinear monomials in this type of
polynomials is NP-complete.

Let π be any given multilinear monomial. Obviously, π is in F iff its coeffi-
cient c(π) in F is bigger than 0. Thus, testing whether π is in F is equivalent
to determine whether the coefficient of π in F is bigger than 0.

Since every monomial in the expansion of F is a product of exactly one
term from each clause Fi, all monomials in F must have the same degree 2m.
If 2m > n, then there is no multilinear monomials in F . So we only need to
consider the case of 2m ≤ n. Let H = (x1 + x2 + · · ·xn) and define

F ′ = F1 · F2 ·H(n−2m) (3)

Then, the only multilinear monomial that F ′ may possibly have is ψ = x1x −
2 · · ·xn. If π is a multilinear monomial in F with the coefficient c(π) > 0, then
following a similar analysis as we did in the proof of Theorem 9 we have that π
contributes c(π)(n−2m)! to the coefficient c(ψ) of ψ in F ′. This further implies
that F has a multilinear monomial iff F ′ has the only multilinear monomial ψ
with its coefficient c(ψ) = S(F )(n− 2m)!. In other words, F has a multilinear
monomial iff c(ψ) > 0 in F ′.

Assume that there is a polynomial time approximation algorithm A to com-
pute, within an approximation factor of γ ≥ 1, the coefficient of any given
multilinear monomial in a ΠmΣ3Π2 polynomial. Apply A to F ′ for the multi-
linear monomial ψ. Let A(ψ) be the coefficient returned by A for ψ. Then, we
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have

1
γ

c(ψ) ≤ A(ψ) ≤ γ c(ψ).

This means that F have a multilinear monomial iff A(ψ) > 0. Hence, we have a
polynomial time algorithm for testing whether F has any multilinear monomial
via running A on ψ in F ′. However, this is impossible unless P=NP, because
it has been proved in Chen and Fu [8] that the multilinear monomial testing
problem for F is NP-complete. 2

By Theorem 9, there is a fully polynomial-time randomized approximation
scheme for the problem of computing the sum of the coefficients of all the multi-
linear monomials in a ΠmΣs polynomial. However, when ΠmΣsΠt polynomials
are concerned, even if s = 3 and t = 2, this problem becomes inapproximable
at all regardless of the approximation factor.

Theorem 12 Assuming P 6= NP , given any n-variate ΠmΣ3Π2 polynomial F
and any approximation factor γ ≥ 1, there is no polynomial time approximation
algorithm for computing within a factor of γ the sum S(F ) of the coefficients of
all the multilinear monomials in the sum-product expansion of F .

Proof Consider the same n-variate ΠmΣ3Π2 polynomial F (x1, x2, . . . , xn) as
in the proof of Theorem 11. Define F ′ as in expression (3). With a similar
analysis, we have that F has multilinear monomials iff the coefficient of the
multilinear monomial ψ = x1x2 · · ·xn has the coefficient S(F ) (n− 2m)!. That
is, F has multilinear monomials iff the coefficient c(ψ) of ψ is bigger than zero in
F ′. Hence, like the analysis for Theorem 11, any polynomial time approximation
algorithm for computing the coefficient c(ψ) in F ′ can be naturally adopted as
a polynomial time algorithm for the multilinear monomial testing problem for
ΠmΣ3Π2 polynomials. Since the latter problem is NP-complete (see Chen and
Fu [8]), the former algorithm does not exists unless P = NP. 2

6 Weak Inapproximability

In this section, we shall relax the γ-approximation further in a much weak set-
ting. Here, we allow the computed value to be within a factor of the targeted
value along with some additive adjustment. Weak approximation has been first
considered in our previous work on approximating the exemplar breakpoint dis-
tance [10] and the exemplar conserved interval distance [7] between two genomes.
Assuming P 6= NP , it has been shown that the first problem does not admit
any factor approximation along with a linear additive adjustment [10], while
the latter has no approximation within any factor along with a O(n1.5) additive
adjustment [7]. We shall strengthen the inapproximability results of Theorems
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11 and 12 to weak inapproximability for computing the coefficient of any given
multilinear monomial in a ΠΣΠ polynomials. But first let us define the weak
approximation.

Definition 13 Let Z be the set of all nonnegative integers. Given four func-
tions f(x), h(x), α(x) and β(x) from Z to Z with α(x) ≥ 1, we say that h(x) is
a weak (α(x), β(x))-approximation to f(x), if

max
{

0,
f(x)− β(x)

α(x)

}
≤ h(x) ≤ α(x) f(x) + β(x). (4)

Theorem 14 Let α(x) ≥ 1 and β(x) be any two polynomial time computable
functions from Z to Z. There is no polynomial time weak (α(x), β(x))-approximation
algorithm for computing the coefficient of any given multilinear monomial in an
n-variate ΠmΣ3Π2 polynomial, unless P=NP.

Proof Let F (x1, . . . , xn) =
∏m

i=1 Fi be a ΠmΣ3Π2 polynomial. Like in the
proof of Theorem 11, we assume without loss of generality that every term in
each clause Fi is a product of two variables. We further assume that 2m > n,
because otherwise there are no multilinear monomials in F .

Choose k such that k! > 2α(n + k)β(n + k) + β(n + k). Notice that finding
such a k ≤ 2n is possible when n is large enough, because both α and β are
polynomial time computable. Let H = (x1+x2+· · ·xn) and G = (y1+y2+· · · yk)
with yi being new variables. Define

F ′ = F ·Hn−2m ·Gk = F1 · · ·Fm ·Hn−2m ·Hk. (5)

It is easy to see from the above expression (5) that F has a multilinear monomial
iff F ′ has one. Furthermore, the only multilinear monomial that F ′ can possibly
have is ψ = x1 · · ·xn · y1 · · · yk.

Now consider that F has a multilinear monomial π with its coefficient c(π) >
0. Since the degree of π is 2m, let xi1 , . . . , xin−2m be the variables that are
not included in π. Then, the concatenation of π with each permutation of
xi1 , . . . , xin−2m selected from Hn−2m and each permutation of y1, . . . , yk chosen
from Gk will constitute a copy of the only multilinear monomial ψ in F ′. Thus,
π contributes c(π)(n− 2m)! k! to the coefficient c(ψ) of ψ in F ′. When all the
possible multilinear monomials in F are considered, the coefficient of c(ψ) in F ′

is S(F )(n− 2m)!k!. If F ′ has a multilinear monomial, i.e., the only one ψ, then
F has at least one multilinear monomial. In this case, the above analysis also
yields c(ψ) = S(F )(n− 2m)!k! in F ′.

Assume that there is a polynomial time weak (α, β)-approximation algorithm
A to compute the coefficient of any given the multilinear monomial in a ΠmΣ3Π2

polynomial. Apply A to F ′ for the multilinear monomial ψ. Let A(ψ) be the
coefficient returned by A for ψ. Then, by expression (4) we have

A(ψ) ≤ α(n + k) c(ψ) + β(n + k)
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= α(n + k) S(F ) (n− 2m)! k! + β(n + k), (6)

A(ψ) ≥ c(ψ)− β(n + k)
α(n + k)

=
S(F ) (n− 2m)! k!− β(n + k)

α(n + k)
. (7)

When F does not have any multilinear monomials, then F ′ does not either,
implying S(F ) = 0. In this case, by the relation (6), we have

A(ψ) ≤ β(n + k). (8)

When F has multilinear monomials, then F ′ does as well. By the relation (7),
we have

A(ψ) ≥ S(F ) (n− 2m)! k!− β(n + k)
α(n + k)

≥ k!− β(n + k)
α(n + k)

>
(2α(n + k)β(n + k) + β(n + k))− β(n + k)

α(n + k)
= 2β(n + k). (9)

Since there is a clear gap between (−∞, β(n+k)] and (2β(n+k), +∞), inequal-
ities (8) and (9) provide us with a sure way to test whether F has a multilinear
monomial or not: If A(ψ) > 2β(n + k), then F has multilinear monomials. If
A(ψ) ≤ β(n+k) then F does not. Since A runs in polynomial time, β(n+k) is
polynomial time computable and k ≤ 2n, this implies that one can test whether
F has a multilinear monomial in polynomial time. Since it has been proved in
Chen and Fu [8] that the problem of testing multilinear monomials a ΠmΣ3Π2

polynomial is NP-complete, such an algorithm A does not exist unless P=NP. 2

Combining the analysis for proving Theorems 12 and 14, we have the fol-
lowing weak inapproximability for computing the sum of coefficients of all the
multilinear monomials in a ΠΣΠ polynomial.

Theorem 15 Let α(x) ≥ 1 and β(x) be any two polynomial time computable
functions from Z to Z. Assuming P 6= NP , there is no polynomial time weak
(α(x), β(x))-approximation algorithm for computing the sum S(F ) of the co-
efficients of all the multilinear monomials in the sum-product expansion of a
ΠmΣ3Π2 polynomial F .

7 The Maximum Multilinear Problem and Its
Approximation

Given any ΠΣΠ polynomial F (x1, . . . , xn) = F1 · · ·Fm, F may not have any
multilinear monomial in its sum-product expansion. But even if this is the case,
one can surely find a multilinear monomial by selecting terms from a proper
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subset of the clauses in F , unless all the terms in F are not multilinear or F
is simply empty. In this section, we consider the problem of finding the largest
(or longest) multilinear monomials from subsets of the clauses in F . We shall
investigate the complexity of approximating this problem.

Definition 16 Let F (x1, . . . , xn) = F1 · · ·Fm be a ΠmΣsΠt polynomial. Define
MAX-SIZE(F ) as the maximum length of multilinear monomials π = pii1 · · ·πik

with πij
in Fij

, 1 ≤ j ≤ k and 1 ≤ i1 < · · · < ik. Let MAX-MLM(F ) to be
a multilinear monomial π such that |π| = MX-SIZE(F ), and we call such a
multilinear monomial as a MAX-multilinear monomial in F .

The MAX-MLM problem for an n-variate ΠΣΠ polynomial F is to find
MAX-MLM(F ). Sometimes, we also refer the MAX-MLM problem as the prob-
lem of finding MAX-SIZE(F). We say that an algorithm A is an approximation
scheme within a factor γ ≥ 1 for the MAX-MLM problem if, when given any
ΠΣΠ polynomial F , A outputs a multilinear monomial denoted as A(F ) such
that MAX-SIZE(F ) ≤ γ|A(F )|.
Theorem 17 Let λ ≥ 2 be a constant integer. Let F be any given n-variate
ΠmΣsΠλ polynomial with s ≥ 2. There is a polynomial time approximation
algorithm that approximates the MAX-MLM problem for F within a factor of
λ.

Proof Let F (x1, . . . , xn) = F1 · · ·Fm such that each clause Fi has at most s
terms with degrees at most λ. Let M = M1 ·M2 · · ·Mk be a MAX-multilinear
monomial in F . Without loss of generality, assume |M1| ≥ |M2| ≥ · · · |Mk|.
We shall devise a simple greedy strategy to find a multilinear monomial π to
approximate M .

We first find the longest term π1 from a clause Fi1 . Mark the clause Fi1 off
in F . Let π = π1. From all the unmarked clauses in F , find the longest term
π2 from a clause Fi2 such that π2 has no common variables in π. Mark Fi2 off
and let π = π1 · π2. Repeat this process until no more terms can be found. At
this point, we obtain a multilinear monomial π = π1 · π2 · · ·π`.

Notice that each term in F has at most λ variables. Each πi may share
certain common variables with some terms in M . If this is the case, then πi will
share common variables with at most λ terms in M . This means that we can
select at least ` ≥ d k

λe terms for π. The greedy strategy implies that

|πi| ≥
∣∣Mλ(i−1)+1

∣∣ ≥
∣∣Mλ(i−1)+1

∣∣ + · · ·+
∣∣Mλ(i−1)+λ

∣∣
λ

, 1 ≤ i ≤
⌊

k

λ

⌋
,

∣∣∣πd k
λ e

∣∣∣ ≥
∣∣∣Mλb k

λ c+1

∣∣∣ ≥

∣∣∣Mλb k
λ c+1

∣∣∣ + · · ·+ |Mk|
λ

, if
⌊

k

λ

⌋
=

⌈
k

λ

⌉
− 1.

Thus,

|π| ≥ |π1|+ · · ·+
∣∣∣πd k

λe
∣∣∣
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≥ |M1|+ · · ·+ |Mk|
λ

=
|M |
λ

.

Hence,

MAX-SIZE(F ) = |M | ≤ λ |π| .

Therefore, The greedy strategy finds the monomial π that approximates the
MAX-multilinear monomial M within the factor λ. 2

Theorem 18 Let F (x1, . . . , xn) be any given n-variate ΠmΣsΠt polynomial.
Unless P = NP, there can be no polynomial time algorithm that approximates
MAX-MLM(F ) within a factor of n(1−ε)/2, for any ε > 0.

Proof We shall reduce the maximum independent set problem to the MAX-
MLM problem. Let G = (V,E) be any given indirected graph with V =
{v1, . . . , vn}. For each edge (vi, vj) ∈ E, we design a variable xij represent-
ing this edge. For each vertex vi ∈ V , let d(vi) denote the number of edges
connecting to it and define a term T (vi) as follows:

T (vi) =

{ ∏
(vi,vj)∈E xij , if d(vi) = n− 1,(∏

(vi,vj)∈E xij

)
·
(∏n−1−d(vi)

j=1 yij

)
, if d(vi) < n− 1.

We now define a polynomial F (G) for the graph G as

F (G) = (T (v1) + · · ·+ T (vn))n.

From the above definitions we know that all terms T (vi), 1 ≤ i ≤ n, have the
same length n − 1. The number of new variables added to define F (G) is at
most n(n− 1).

Suppose that G has an independent set of k vertices vi1 , . . . , vik
. Then

there is no edge to connect vij and vi`
for 1 ≤ j, ` ≤ k and j 6= `. This

means that terms T (vij ) and T (vi`
) do not have any common variables, so π =

T (vi1) · · ·T (vik
) is multilinear with length k(n−1). On the other hand, suppose

that we can choose terms T (vt1), . . . , T (vtf
) such that π′ = T (vt1) · · ·T (vtf

) is
multilinear. Then, there are no edges connecting any two pairs of vertices vtj

and vt`
for 1 ≤ j, ` ≤ k and j 6= `. This further implies that vertices vt1 , . . . , vtf

form an independent set of size f in G. Notice that |π′| = f(n− 1).
It follows from the above analysis that G has a maximum independent set

of size K iff F (G) has a MAX-multilinear monomial of length K(n−1). Assume
that for any ε > 0, there is a polynomial time algorithm A to approximate the
MAX-MLM problem within an approximation factor of n(1−ε)/2. On the input
polynomial F (G), we can use A to find a multilinear monomial A(F (G)) that
satisfies

K(n− 1) ≤ [n + n(n− 1)](1−ε)/2 A(F (G)) = n1−ε A(F (G)). (10)
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It follows from above (10) that

K ≤ n1−ε A(F (G))
n− 1

. (11)

By (11), we have a factor n1−ε polynomial time approximation algorithm for the
maximum independent set problem. By Zuckerman’s inapproximability lower
bound of n1−ε [31] on the maximum independent set problem, this is impossible
unless P=NP. 2

Hȧstad [16] proved that there is no polynomial time algorithm to approx-
imate the MAX-2-SAT problem within a factor of 22

21 . By this result, we can
derive the following inapproximability about the MAX-MLM problem for the∏

m

∑
2

∏
2. Notice that Chen and Fu proved [8] that testing multilinear mono-

mials in a
∏∑

2

∏
polynomial can be done in quadratic time.

Theorem 19 Unless P=NP, there is no polynomial time algorithm to approx-
imate MAXM-MLM(F ) within a factor 1.0476 for any given

∏
m

∑
2

∏
2 poly-

nomial F .

Proof We reduce the MAX-2-SAT problem to the MAX-MLM problem for∏
m

∑
2

∏
2 polynomials. Let F = F1 ∧ · · · ∧ Fm be a 2SAT formula. Without

loss of generality, we assume that every variable xi in F appears at most three
times, and if xi appears three times, then xi itself occurs twice and x̄i once. (It
is easy to see that a simple preprocessing procedure can transform any 2SAT
formula to satisfy these properties.) The reduction is similar to, but with subtle
differences from, the one that was used in [8] to reduce a 3SAT formula to a∏

m

∑
3

∏
2 polynomial.

If xi (or x̄i) appears only once in F then we replace it by yi1yi2. When xi

appears twice, then we do the following: If xi (or x̄i) occurs twice, then replace
the first occurrence by yi1yi2 and the second by yi3yi4. If both xi and x̄i occur,
then replace both occurrences by yi1yi2. When xi occurs three times with xi

appearing twice and x̄i once, then replace the first xi by yi1yi2 and the second
by yi3yi4, and replace x̄i by yi1yi3.

Let G = G1 · · ·Gm be the polynomial resulted from the above replace-
ment process. Here, Gi corresponds to Fi with boolean literals being replaced.
Clearly, F is a ΠmΣ2Π2 polynomial and every term in each clause has length 2.
For each literal x̃i in F , let t(x̃i) denote the replacement of new variables for x̃i.
For each term T in G, t−1(T ) denotes the literal such that T is the replacement
of new variables for it. From the definitions of the replacements, it is easy to
see that the clauses Fi1 , . . . , Fis in F are satisfied by setting literals x̃ij ∈ Fij

true, 1 ≤ j ≤ s, iff π = t(x̃i1) · · · t(x̃is) is multilinear with t(x̃ij ) being a term in
Gij , 1 ≤ j ≤ s. This implies that the maximum number of the clauses in F can
be satisfied by any true assignment is K iff a MAX-multilinear monomial in G
has length 2K.
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Now, assume that there is a polynomial time approximation algorithm A
to find a MAX-multilinear monomial in G within a factor of 1.0476 Apply the
algorithm A to G and let A(G) denote the MAX-multilinear monomial returned
by A. We have

2K ≤ 1.0476 A(G) ≤ 22
21

A(G),

K ≤ 22
21

A(G)
2

.

Thus, we have a polynomial time algorithm that approximates the MAX-2-SAT
problem within a factor of 22

21 . By Hȧstad’s inapproximability lower bound on
the MAX-2-SAT problem [16], this is not possible unless P=NP. 2

Khot at el. [19] proved that assuming the Unique Games Conjecture, there is
no polynomial time algorithm to approximate the MAX-2-SAT problem within
a factor of 1

0.943 . Notice that 1
0.943 > 1.0604 > 22

21 > 1.0476. This tighter lower
bound and the analysis in the proof of Theorem 19 implies the following tighter
lower bound on the inapproximability of the MAX-MLM problem.

Theorem 20 Assuming the Unique Games Conjecture, there is no polynomial
time algorithm to approximate MAXM-MLM)(F ) within a factor 1.0604 for any
given

∏
m

∑
2

∏
2 polynomial F .

Remark. When the MAX-MLM problem is considered for ΠmΣ2Π2 polyno-
mials, Theorem 17 gives an upper bound of 2 on the approximability of this prob-
lem, while a lower bound of 1.0476 is given by Theorem 19 assuming P 6= NP ,
and a stronger 1.0604 lower bound is derived by Theorem 20 assuming the
Unique Games Conjecture. There are two gaps between the upper bound and
the respective lower bounds. It would be interesting to investigate how much
these two gaps can be closed.
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