
Understanding Space in Proof Complexity:
Separations and Trade-offs via Substitutions

Eli Ben-Sasson∗

Computer Science Department
Technion — Israel Institute of Technology

Haifa, 32000, Israel
eli@cs.technion.ac.il

Jakob Nordström†

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
jakobn@mit.edu

August 10, 2010

Abstract
For current state-of-the-art satisfiability algorithms based on the DPLL procedure and clause learn-

ing, the two main bottlenecks are the amounts of time and memory used. In the field of proof complexity,
these resources correspond to the length and space of resolution proofs for formulas in conjunctive nor-
mal form (CNF). There has been a long line of research investigating these proof complexity measures,
but while strong results have been established for length, our understanding of space and how it relates
to length has remained quite poor. In particular, the question whether resolution proofs can be optimized
for length and space simultaneously, or whether there are trade-offs between these two measures, has
remained essentially open apart from a few results in restricted settings.

In this paper, we remedy this situation by proving a host of length-space trade-off results for resolu-
tion in a completely general setting. Our collection of trade-offs cover almost the whole range of values
for the space complexity of formulas, and most of the trade-offs are superpolynomial or even exponential
and essentially tight. Using similar techniques, we show that these trade-offs in fact extend (albeit with
worse parameters) to the exponentially stronger k-DNF resolution proof systems, which operate with
formulas in disjunctive normal form with terms of bounded arity k. We also answer the open question
whether the k-DNF resolution systems form a strict hierarchy with respect to space in the affirmative.

Our key technical contribution is the following, somewhat surprising, theorem: Any CNF formula
F can be transformed by simple variable substitution into a new formula F ′ such that if F has the right
properties, F ′ can be proven in essentially the same length as F , whereas on the other hand the minimal
number of lines one needs to keep in memory simultaneously in any proof of F ′ is lower-bounded by
the minimal number of variables needed simultaneously in any proof of F . Applying this theorem to
so-called pebbling formulas defined in terms of pebble games on directed acyclic graphs, we obtain our
results.

∗The research leading to these results has received funding from the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 240258 and was supported by the Israeli Science Foundation and by the US-Israel
Binational Science Foundation under grant number 2006104.

†Research supported by the Royal Swedish Academy of Sciences, the Ericsson Research Foundation, the Sweden-America
Foundation, the Foundation Olle Engkvist Byggmästare, the Sven and Dagmar Salén Foundation, and the Foundation Blanceflor
Boncompagni-Ludovisi, née Bildt.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 125 (2010)

1 Introduction

1 Introduction

A central theme in the field of propositional proof complexity is the study of limitations of natural proof
systems. Such a study is typically conducted by considering a complexity measure of propositional proofs
and investigating under which circumstances this measure is large. The most thoroughly examined com-
plexity measure is that of proof size/length. The interest in this measure is motivated by its connections to
the NP vs. co-NP problem (since by [CR79], proving superpolynomial lower bounds for arbitrary proof
systems would separate NP and co-NP), by methods for proving independence results in first order theories
of bounded arithmetic (for an example, see [Ajt88]), and because lower bounds on proof length imply lower
bounds on the running time of algorithms for solving NP-complete problems such as SATISFIABILITY (such
algorithms are usually referred to as SAT solvers).

Proof space This paper focuses on a more recently suggested complexity measure known as space.
The space measure was first defined and studied by Esteban and Torán [ET01] in the context of the fa-
mous resolution proof system introduced by Blake [Bla37], and was generalized to other proof systems by
Alekhnovich et al. in [ABRW02]. Roughly speaking, the space of a proof corresponds to the minimal size of
a blackboard needed to give a self-contained presentation of the proof, where the correctness of each step is
verifiable from what is currently on the blackboard. The interest in space complexity stems from two main
sources that we survey next.

First, there are intricate and often surprising connections between space and length. For resolution, it
follows from the elegant results of Atserias and Dalmau [AD08] that upper bounds on space imply upper
bounds on length. Esteban and Torán [ET01] showed the converse that length upper bounds imply space
upper bounds for the restricted case of tree-like resolution. Recall that the tree-like version of a sequential1

proof system has the added constraint that every line in the proof can be used at most once to derive a sub-
sequent line. In terms of space, a proof is tree-like if any claim appearing on the blackboard must be erased
immediately after it has been used to derive a new claim. Another question which has attracted interest is
whether space and length can display trade-offs, that is whether there are formulas having proofs in both
short length and small space, but for which there are no proofs in short length and small space simulta-
neously. Such length-space trade-offs have been established in restricted settings in [Ben09, Nor09b]2 but
nothing has been known for refutations of explicit formulas in general, unrestricted resolution.

A second motivation to study space is its connection to the memory consumption of SAT solvers. For
instance, the family of backtracking heuristics suggested by [DP60, DLL62] and known as Davis-Putnam-
Logemann-Loveland (DPLL) SAT solvers have the following property. When given as input an unsatisfiable
formula F in conjunctive normal form—called henceforth a CNF formula—the description of the execution
of a DPLL SAT solver corresponds to a tree-like resolution proof refuting F . Thus, lower bounds on tree-like
refutation space imply lower bounds on the memory consumption of DPLL SAT solvers, much like lower
bounds on tree-like refutation length imply lower bounds on the running time of DPLL heuristics. During
the last 10-15 years, a family of SAT solvers known as DPLL with clause learning [SS96, BS97] (denoted
DPLL+) has been put to practical use with impressive success. For instance, an overwhelming majority of
the best algorithms in recent rounds of the international SAT competitions (see [SAT]) belong to this class.
These SAT solvers have the property that an execution trace corresponds to a (non-tree-like) resolution
refutation. Hence, space lower bounds in general resolution translate into memory lower bounds for these
algorithms, and length-space trade-offs could have implications for trade-offs between time efficiency and
memory consumption.

1A proof system is said to be sequential if a proof π in the system is a sequence of lines π = {L1, . . . , Lτ} where each line is
derived from previous lines by one of a finite set of allowed inference rules (See Section 3 for formal definitions).

2A related result, claimed in [HP07], has been later retracted by the authors in [HP10].

1

UNDERSTANDING SPACE IN PROOF COMPLEXITY

We end this discussion by pointing out that there is still much left to explore regarding the connection
between space lower bounds in proof complexity and memory consumption of SAT solvers. On the one
hand, the memory consumption of a “typical” DPLL+ SAT solver can be far greater than the theoretical
upper bounds on refutation space. On the other hand, the theoretical lower bounds on refutation space are
worst-case bounds for non-deterministic algorithms, and hence apply even to the most memory-efficient
proofs theoretically possible, which is not remotely close to the kind of proofs produced by a typical SAT
solver. Understanding what kind of practical implications one can get on the memory consumption of SAT
solvers from refutation space lower bounds remains an interesting open problem.

k-DNF resolution The family of sequential proof systems known as k-DNF resolution was introduced
by Krajı́ček [Kra01] as a intermediate step between resolution and depth-2 Frege. Roughly speaking, for
integers k > 0 the kth member of this family, denoted henceforth by R(k), is only allowed to reason in terms
of formulas in disjunctive normal form (DNF formulas) with the added restriction that any conjunction in
any formula is over at most k literals. For k = 1, the lines in the proof are hence disjunctions of literals, and
the system R(1) = R is standard resolution. At the other extreme, R(∞) is equivalent to depth-2 Frege.

The original motivation to study this family of proof systems, as stated in [Kra01], was to better un-
derstand the complexity of counting in weak models of bounded arithmetic, and it was later observed that
these systems are also related to SAT solvers that reason using multi-valued logic (see [JN02] for a discus-
sion of this point). By now a number of works have shown superpolynomial lower bounds on the length of
R(k)-refutations, most notably for (various formulations of) the pigeonhole principle and for random CNF
formulas [AB04, ABE02, Ale05, JN02, Raz03, SBI04, Seg05]. Of particular relevance to our current work
are the results of Segerlind et al. [SBI04] and of Segerlind [Seg05] showing that the family of R(k)-systems
form a strict hierarchy with respect to proof length. More precisely, they prove that there exists a constant
ε > 0 such that for every integer k > 0 there exists a family of formulas {Fn}∞n=1 of arbitrarily large size
n such that Fn has a R(k + 1)-refutation of polynomial length nO(1) but all R(k)-refutations of Fn require
exponential length 2nε

.
Just as in the case for standard resolution, the understanding of space complexity in k-DNF resolution

has remained more limited. We are aware of only one prior work by Esteban et al. [EGM04] shedding light
on this question. Their paper establishes essentially optimal linear space lower bounds for R(k) and also
prove that the family of tree-like R(k) systems form a strict hierarchy with respect to space. What they show
is that there exist arbitrarily large formulas Fn of size n that can be refuted in tree-like R(k + 1) in constant
space but require space Ω(n/ log2 n) to be refuted in tree-like R(k). It should be pointed out, however,
that as observed in [Kra01, EGM04] the family of tree-like R(k) systems for all k > 0 are strictly weaker
than standard resolution. As was noted above, the family of general, unrestricted R(k) systems are strictly
stronger than resolution, so the results in [EGM04] leave completely open the question of whether there is a
strict space hierarchy for (non-tree-like) R(k) or not.

Definition of length and space As a final point before turning to our results, we briefly and informally
recall what is meant by “length” and “space” (formal definitions will follow in Section 3). We view a refuta-
tion of an unsatisfiable CNF formula F as being presented on a blackboard. The refutation is represented as
a sequence of sets of k-DNF formulas π = {D0, . . . , Dτ}, where Dt is a snapshot of the blackboard at time t.
In particular, D0 should be the empty set, Dτ should contain the contradictory empty formula, and at time t
we can go from from Dt−1 to Dt by (i) writing a clause of F (an axiom) on the blackboard, (ii) erasing a line
from the board, or (iii) inferring a new line from those lines present on the board according to the inference
rules of k-DNF resolution. We do not discuss the details of these rules here, since the exact definitions in
fact do not matter—the lower bounds we prove hold for any arbitrarily strong (but sound) rules. What is
important is that the only new formulas that can be derived are those implied by the set of formulas that are

2

1 Introduction

currently on the blackboard, and that these formulas are all k-DNFs.
The length of a refutation is the number of formulas appearing in the refutation counted with repetitions,

or equivalently (within a factor of 2) the number of derivation steps. There are several different ways to
measure the space of a set Dt in our refutation. The crudest way is to count the number of k-DNF formulas
on the board, i.e., to measure the size of Dt. We call this the formula space, or simply, space of Dt. (For
resolution, i.e., when k = 1, this is the well-studied measure of clause space.) A finer granulation is to
measure the total space—the number of appearances of literals in Dt, counted with repetitions. Formula
space and total space are the two space measures that have received the most attention in previous research,
and they are also the focus of the current paper. A third, closely related, measure that will also be of interest
to us is variable space, defined as the number of distinct variables appearing on the board. It is easily seen
that variable space is a lower bound on total space. For all of these space measures, the space of a refutation
π = {D0, . . . , Dτ} is the maximal space of any k-DNF set Dt in it.

1.1 Our Results in Brief

Space Hierarchy for k-DNF resolution Our first main result is that Krajı́ček’s family of k-DNF res-
olution proof systems form a strict hierarchy with respect to space. More precisely, we separate k-DNF
resolution from (k + 1)-DNF resolution in the sense that we exhibit for every k a family of explicitly con-
structible3 CNF formulas of size n that can be refuted in constant formula space and linear length simul-
taneously in (k + 1)-DNF resolution (i.e., they are very easy with respect to both measures) but have the
property that any k-DNF resolution, no matter how long or short, must by necessity use at least order of
k+1
√

n formula space.

Length-space trade-offs Our second main result is a collection of strong length-space trade-offs for
k-DNF resolution. For k = 1, i.e., standard resolution, these are the first trade-off results for resolution
refutations of explicit formulas in the general, unrestricted resolution proof system, thus eliminating all
technical restrictions in the previous works [Ben09, Nor09b]. For k > 1, to the best of our knowledge no
trade-offs have been known even in restricted settings.

We also want to emphasize two other novel aspects of our results. First, as was discussed above there are
several different ways of measuring space, and previous papers have focused on one particular measure and
proven results specifically for that measure. Our techniques, however, allow us to obtain results that hold for
both total space and formula space (i.e., the largest and smallest space measure) simultaneously. Second,
our upper bounds hold for the standard syntactic version of the proof systems, where new formulas can be
derived from two existing formulas by a limited set of structural rules, whereas the lower bounds hold for
semantic versions where new formulas can be derived from an unlimited set of formulas by arbitrary sound
rules. The reason this is worth pointing out is that in general, semantic k-DNF resolution proof systems are
known to be exponentially stronger than syntactic k-DNF resolution.

We give the formal statements of our trade-offs in Section 2, but a general template for the kind of
trade-off theorems we are able to prove is as follows.

Theorem 1.1 (Trade-off theorem template (informal)). Let K be a fixed positive integer and let slo(n)
and shi(n) be suitable function such that slo(n) � shi(n) = O(n/ log log n). Then there are explicitly
constructible CNF formulas {Fn}∞n=1 of size O(n) and width O(1) (with constants depending on K) such
that the following holds:

• The formulas Fn are refutable in syntactic resolution in (small) total space O(slo(n)).

3A family of formulas is explicitly constructible if there exists a polynomial time algorithm that on input 1n produces the nth
member of the family.

3

UNDERSTANDING SPACE IN PROOF COMPLEXITY

• There are also syntactic resolution refutations πn of Fn in simultaneous length O(n) and (much
larger) total space O(shi(n)).

• However, any resolution refutation, even semantic, in formula space o(shi(n)) must have superpoly-
nomial or sometimes even exponential length.

• Even for the much stronger semantic k-DNF resolution proof systems, k ≤ K, it holds that any
R(k)-refutation of Fn in formula space o

(
k+1
√

shi(n)
)

must have superpolynomial length (or expo-
nential length, correspondingly).

We instantiate this theorem template for a wide range of space functions slo(n) and shi(n) from constant
space all the way up to nearly linear space. This is in contrast to [Nor09b], where the trade-off results are
obtained only for a very carefully selected ratio of space to formula size. Moreover, our trade-offs are robust
in that they are not sensitive to small variations in either length or space (as in [Nor09b]). That is, intuitively
speaking they will not show up only for a SAT solver being unlucky and picking just the wrong threshold
when trying to hold down the memory consumption. Instead, any refutation having length or space in the
same general vicinity will be subject to the same qualitative trade-off behaviour.

1.2 Overview of Technical Contributions

We want to highlight three technical contributions underpinning the results discussed informally above.

Substitution space theorems Our first key technical contribution is a general way to derive strong
space lower bounds in resolution from weak lower bounds on the number of variables that occur simultane-
ously in a proof. Very loosely, we show the following: Suppose we have a formula that has short refutations
but where any such short refutation must mention many variables at some point. Then by making variable
substitutions in this formula and expanding the result into a CNF formula in the natural way, this new for-
mula will still have short refutations, but now any such refutation must use lots of space, in the sense that
lower bounds on variable space will translate into lower bounds on formula space.

We believe that this generic procedure of transforming weak space lower bounds into stronger ones is
an interesting result in its own right that sheds new light on space measures in proof complexity. To support
this point, we strengthen the theorem by showing that not only can we obtain strong resolution lower bounds
in this way, but it is also possible to lift weak resolution lower bounds to strong lower bounds in other more
powerful proof systems, namely k-DNF resolution systems. We remark that this general idea of “hardness
amplification” in proof complexity has also been used in the recent work of Beame et al. [BHP09], although
the actual techniques there appear somewhat orthogonal to ours (and, in particular, incomparable in the
sense that it seems neither paper can be used to derive the results in the other).

Minimally unsatisfiable k-DNF sets One crucial ingredient in the proof of the substitution space
theorem for resolution is analyzing the structure of sets of disjunctive clauses that imply many other clauses.
Intuitively, it seems reasonable that if the set of implied clauses is sufficiently large and disjoint, the set of
clauses implying all these clauses cannot itself be too small. One important special case of this is for clause
sets containing many variables but being minimally unsatifiable—that is, every clause places a necessary
constraint on the variables to enforce unsatifiability and if just one arbitrary clause is removed from the set,
then the rest can be satisfied. It is well known that such a clause set must contain strictly less variables than
clauses, and we can use similar proof techniques to derive the more general result that we need.

When we want to extend our theorem to k-DNF resolution, it becomes essential to understand instead
the structure of sets of k-DNF formulas that imply many other k-DNF formulas. Here there are no previous
results to build on, as the proof techniques that yield tight results for disjunctive clauses can be shown to

4

2 Formal Statements of Results and Outline of Proofs

break down fundamentally. Instead, we have to develop new methods. One important step along the way
is to understand the structure of minimally unsatisfiable sets of k-DNF formulas, which appears to be a
natural combinatorial problems of independent interest. We prove that a minimally unsatisfiable k-DNF set
of size m can contain at most / mk+1 variables, and this bound turns out to be tight up to an additive one
in the exponent in view of recent joint work [NR09] of Razborov and the second author.

Reductions between resolution and pebbling Using the substitution space theorems, we can con-
struct reductions between (k-DNF) resolution on the one hand and so-called pebble games played on di-
rected acyclic graphs (DAGs) on the other. In one direction, this reduction is easy, but the other direction
is nontrivial. Moreover, our reductions are time- and space-preserving. This allows us (modulo some tech-
nical complications which we ignore for the moment) to translate known trade-off results for pebbling into
corresponding trade-offs for resolution. This is done by transforming the pebble game played on a DAG G
into a CNF formula that encodes this particular problem instance of the game, and showing that this formula
has similar trade-off properties in resolution as the DAG G has for the pebble game.

With hindsight, such a correspondence might seem more or less obvious, so let us stress that this is not
the case. Pebble games on graphs and R(k)-refutations of CNF formulas are very different objects. Once we
have translated a pebbling instance into a CNF formula, it is not at all clear why a R(k)-prover refuting this
formula would have to care about how it was constructed. There might be shortcuts in the proof complexity
world that do not correspond to anything meaningful in the pebbling world. And indeed, reading previous
literature on pebbling formulas in proof complexity reveals a few such surprising shortcuts, and there has
been no consensus on what properties these formulas are likely to have in general.

What we show is that for the right flavour of pebbling formulas, any prover refuting such formulas must
in effect reason in terms of pebblings. More precisely, we show that given any R(k)-refutation, no matter
how it is structured, we can extract from it a pebbling of the underlying DAG, and this pebbling has at least
as good time and space properties as the refutation from which it was extracted. In other words, the pebbling
formula inherits the time-space trade-off properties of the DAG in terms of which it is defined. This allows
us to draw on the rich literature on pebbling trade-offs from the 1970s and 1980s, as well as on newer results
by the second author in [Nor10b], to obtain strong trade-offs in proof complexity.

1.3 Organization of the Rest of This Paper

In Section 2, we present formal statements of our main results and—in order not to let all the notation
and terminology obscure what is in essence a clean and simple proof construction—briefly outline some of
the key ingredients in the proofs. Having presented our results and sketched the main ideas in the proof
constructions, in Section 3 we then give the necessary preliminaries for the formal proofs that will follow.
Our first main technical contribution, the substitution space theorem for resolution, is proven in Section 4.
In Section 5, we extend this theorem to k-DNF resolution, along the way establishing upper and lower
bounds on the size of minimally unsatisfiable sets of k-DNF formulas. Our final technical tool, namely
the method for converting strong pebbling trade-offs into length-space trade-offs for resolution, is described
in Section 6. We apply this tool in Section 7 to prove our collection of length-space trade-off results.
Concluding the paper, in Section 8 we briefly discuss some open questions.

2 Formal Statements of Results and Outline of Proofs

In what follows, let us write L(π) to denote the length of a resolution refutation and Sp(π), TotSp(π), and
VarSp(π) to denote the formula space, total space and variable space, respectively. Taking the minimum
over all resolution refutations of F , we let LR(F ` 0) denote the length of a shortest refutation, and

5

UNDERSTANDING SPACE IN PROOF COMPLEXITY

SpR(F ` 0), TotSpR(F ` 0), and VarSpR(F ` 0) are defined completely analogously. These definitions
are also generalized to R(k) for general k. To state our results it will also convenient to use the notation
W(π) for the width of a standard resolution refutation, i.e., the size of a largest clause in it, and WR(F ` 0)
for the minimal width of any standard resolution refutation of F . Again, more formal definitions are given
in Section 3.

2.1 Substitution Space Theorems

If F is a CNF formula over variables x, y, z, . . . and f : {0, 1}d 7→ {0, 1} is a Boolean function over
d variables, we can obtain a new CNF formula by substituting f(x1, . . . , xd) for every variable x and then
expand to conjunctive normal form. We will write F [f] to denote the resulting substitution formula. For
example, for the disjunctive clause C = x ∨ y and the exclusive or function f = x1 ⊕ x2 we have

C[f] = (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2) .

(2.1)

We say that f is k-non-authoritarian if no partial assignment to any subset of k variables can fix the value
of f to true or false and that f is k-authoritarian otherwise. For instance, the XOR function ⊕ on d + 1
variables is d-non-authoritarian, as is the majority function on 2d + 1 variables. If f is 1-non-authoritarian
(1-authoritarian) we say that the function is simply non-authoritarian (authoritarian). For example, non-
exclusive or ∨ of any arity is always authoritarian.

Loosely put, the substitution space theorem for resolution says that if a CNF formula F can be refuted
in resolution in small length and width simultaneously, then so can the substitution formula F [fd]. There is
an analogous result in the other direction as well in the sense that we can translate any refutation πf of F [fd]
into a refutation π of the original formula F where the length of π is almost upper-bounded by the length
of πf (this will be made precise below). So far this is nothing very unexpected, but what is more interesting
is that if fd is non-authoritarian, then the clause space of πf is an upper bound on the number of variables
mentioned simultaneously in π. Thus, the theorem says that we can convert (weak) lower bounds on variable
space into (strong) lower bounds on clause space by making substitutions using non-authoritarian functions.

Theorem 2.1 (Substitution space theorem for resolution). Let F be any unsatisfiable CNF formula and
fd be any non-constant Boolean function of arity d. Then F [fd] can be refuted in resolution in width

WR

(
F [fd] ` 0

)
= O

(
d ·WR(F ` 0)

)
,

length
LR

(
F [fd] ` 0

)
≤ min

π:F ` 0

{
L(π) · exp

(
O(d ·W(π))

)}
,

and total space
TotSpR

(
F [fd] ` 0

)
≤ min

π:F ` 0

{
TotSp(π) · exp

(
O(d ·W(π))

)}
.

In the other direction, any semantic resolution refutation πf : F [fd]` 0 of the substitution formula can be
transformed into a syntactic resolution refutation π : F ` 0 of the original formula such that the number
of axiom downloads4 in π is at most the number of axiom downloads in πf . If in addition fd is non-
authoritarian, it holds that Sp(πf) > VarSp(π), i.e., the clause space of refuting the substitution formula
F [fd] is lower-bounded by the variable space of refuting the original formula F .

4It would have been nice if the bound in terms of number of axiom downloads could have be strengthened to a bound in terms
of length, but this is not true. The reason for this is that the proof refuting F [fd] is allowed to use any arbitrarily strong semantic
inference rules, and this can lead to exponential savings compared to syntactic resolution. To see this, just let F be an encoding of,
say, the pigeonhole principle and let πf be the refutation that downloads all axioms of F [fd] and then derives contradiction in one
step. Luckily enough, though, the bound in terms of axiom downloads turns out to be exactly what we need for our applications.

6

2 Formal Statements of Results and Outline of Proofs

Note that if F is refutable simultaneously in linear length and constant width, then the bound in Theo-
rem 2.1 on L

(
F [fd] ` 0

)
becomes linear in L(F ` 0).

The substitution space theorem for k-DNF resolution extends Theorem 2.1 by telling us that for k-non-
authoritarian functions f, we can translate back and forth between standard resolution refutations of F and
R(k)-refutations of the substitution formula F [f] in a (reasonably) length- and space-preserving way. When
the “proof blackboard” contains k-DNFs instead of disjunctive clauses, the analysis becomes much more
challenging, however, and the bounds we are able to obtain become correspondingly worse. Below, we
state the theorem with asymptotic factors hidden by the asymptotic notation to make it easier to parse. The
complete version is given in Section 5.

Theorem 2.2 (Substitution space theorem for k-DNF resolution). Let F be any unsatisfiable c-CNF for-
mula and fd be any non-constant Boolean function of arity d, and suppose furthermore that c, d, and k are
universal constants. Then the following two properties hold for the substitution formula F [fd]:

1. If F can be refuted in syntactic standard resolution in length L and total space s simultaneously, then
F [fd] can be refuted in syntactic R(d) in length O(L) and total space O(s) simultaneously.

2. If fd is k-non-authoritarian and F [fd] can be refuted by a semantic R(k)-refutation that requires for-
mula space s and makes L axiom downloads, then F can be refuted by a syntactic standard resolution
refutation that requires variable space at most O

(
sk+1

)
and makes at most L axiom downloads.

The proofs of Theorems 2.1 and 2.2 are inspired by our recent work [BN08] and indeed our main
theorem there can be seen to follow from Theorem 2.1. Let us discuss the new aspects of the more general
theorems presented in this paper. First and foremost, our results extend to R(k) for k > 1 whereas the
previous theorem applies only to resolution. Second, our previous statement only hold for a very special
kind of formulas (namely the pebbling formulas discussed above) whereas Theorems 2.1 and 2.2 can be
used to convert any CNF formula requiring large variable space into a new and closely related CNF formula
requiring large formula space. Third, in this paper we get length-preserving as well as space-preserving
reductions, whereas it was unclear how to derive similar reductions from our previous work. And length-
preserving reductions are crucial for our length-space trade-offs described below.

We will return to these theorems and sketch the main ingredients in the proofs in Sections 2.4 and 2.5,
but before that we want to describe why these tools will be so useful for us. We do so next.

2.2 Translating Resolution Refutations to Pebblings

The pebble game played on a DAG G models the calculation described by G, where the source vertices
contain the inputs and non-source vertices specify operations on the values of the predecessors. Placing a
pebble on a vertex v corresponds to storing in memory the partial result of the calculation described by the
subgraph rooted at v. Removing a pebble from v corresponds to deleting the partial result of v from memory.
Black pebbles correspond to deterministic computation and white pebbles to nondeterministic guesses. A
pebbling P of G is a sequence of moves starting with the graph being completely empty and ending with all
vertices empty except for a black pebble on the (unique) sink vertex. The time of a pebbling is the number
of pebbling moves and the space is the maximal number of pebbles needed at any point during the pebbling.

The pebble game on the graph G can be encoded as an unsatisfiable CNF formula PebG saying that the
sources of G are true and that truth propagates through the graph in accordance with the pebbling rules, but
that the sink is false. Given any black-only pebbling P of G, we can mimic this pebbling in a resolution
refutation of PebG by deriving that a literal v is true whenever the corresponding vertex in G is pebbled
(this was perhaps first observed in [BIW04]).

7

UNDERSTANDING SPACE IN PROOF COMPLEXITY

Lemma 2.3 ([BIW04]). Let G be a DAG with unique sink and bounded vertex indegree. Then given any
complete black pebbling P of G, we can construct a standard resolution refutation π : PebG ` 0 such that
L(π) = O(time(P)), W(π) = O(1), and TotSp(π) = O(space(P)).

In the other direction, we start with the result of the first author [Ben09] that if we take any refutation
of a pebbling contradiction and let positive and negative literals correspond to black and white pebbles
respectively, then we get (essentially) a legal black-white pebbling of the underlying DAG. That is not quite
what we need, however, since it only provides a weak bound in terms of variable space.

This is where Theorems 2.1 and 2.2 come into play. If we make substitutions in PebG with suitably non-
authoritarian functions, the upper bounds in Lemma 2.3 remain true (with adjustments in constant factors),
while the lower bounds are lifted from variable space to formula space. For simplicity, we only state the
lower bounds in the special case for standard resolution below.

Theorem 2.4. Let f be any non-authoritarian Boolean function and G be any DAG with unique sink and
bounded indegree. Then from any standard resolution refutation π : PebG[f]` 0 we can extract a black-
white pebbling strategy Pπ for G such that time(Pπ) = O(L(π)) and space(Pπ) = O(Sp(π)).

2.3 Space Separations and Length-Space Trade-offs

Combining the theorems in Section 2.1 with the reductions between resolution and pebble games in Sec-
tion 2.2, we can now establish our space separation and length-space trade-off results. Let us start by
formally stating the space hierarchy theorem for R(k).

Theorem 2.5 (k-DNF resolution space hierarchy). For every k ≥ 1 there exists an explicitly constructible
family {Fn}∞n=1 of CNF formulas of size Θ(n) and width O(1) such that

• there are R(k + 1)-refutations πn : Fn ` 0 in simultaneous length L(πn) = O(n) and formula space
Sp(πn) = O(1), but

• any R(k)-refutation of Fn requires formula space Ω
(

k+1
√

n/ log n
)
.

The constants hidden by the asymptotic notation depend only on k.

The families {Fn}∞n=1 are obtained by considering pebbling formulas defined in terms of the graphs in
[GT78] requiring pebbling space Θ(n/ log n), and substituting a k-non-authoritarian Boolean function f of
arity k + 1, for instance XOR over k + 1 variables, in these formulas.

Moving on to our length-space trade-offs, in the remainder of this section we try to highlight some of
the results that we find to be the most interesting. A fuller and more detailed account of our collection of
trade-off results is given in Section 7. We reiterate that all of our results are for explicitly constructible
formulas, and that in addition most of the constructions are actually very clean and transparent in that they
are obtainable from pebbling formulas over simple families of DAGs.

From the point of view of space complexity, the easiest formulas are those refutable in constant total
space, i.e., formulas having so simple a structure that there are resolution refutations where we never need to
keep more than a constant number of symbols on the proof blackboard. A priori, it is not even clear whether
we should expect that any trade-off phenomena could occur for such formulas, but it turns out that there are
quadratic length-space trade-offs.

Theorem 2.6 (Quadratic trade-offs for constant space). For any fixed positive integer K there are explic-
itly constructible CNF formulas {Fn}∞n=1 of size Θ(n) and width O(1) such that the following holds (where
all multiplicative constants hidden in the asymptotic notation depend only on K):

• The formulas Fn are refutable in syntactic resolution in total space TotSpR(Fn ` 0) = O(1).

8

2 Formal Statements of Results and Outline of Proofs

• For any shi(n) = O
(√

n
)

there are syntactic resolution refutations πn of Fn in simultaneous length
L(πn) = O

(
(n/shi(n))2

)
and total space TotSp(πn) = O(shi(n)).

• For any semantic resolution refutation πn : Fn ` 0 in formula space (i.e., clause space) Sp(πn) ≤
shi(n) it holds that L(πn) = Ω

(
(n/shi(n))2

)
.

• For any k ≤ K, any semantic k-DNF resolution refutation πn of Fn in formula space Sp(πn) ≤
shi(n) must have length L(πn) = Ω

((
n/
(
shi(n)1/(k+1)

))2). In particular, any constant-space
R(k)-refutation must also have quadratic length.

Theorem 2.6 follows by combining our machinery with the seminal work on pebbling trade-offs by
Lengauer and Tarjan [LT82] and the structural results on simulations of black-white pebblings by resolution
in [Nor10b].

Remark 2.7. Notice that the trade-off applies to both formula space and total space. This is because the
upper bound is stated in terms of the larger of these two measures (total space) while the lower bound is
in terms of the smaller one (formula space). Note also that the upper bounds hold for the usual, syntactic
versions of the proof systems, whereas the lower bounds hold for the much stronger semantic systems, and
that for standard resolution the upper and lower bounds are tight up to constant factors. These properties of
our results are inherited from the substitution space theorems, and they hold for all our trade-offs stated here
and in Section 7. Finally, we remark that we have to pick some arbitrary but fixed limit K for the size of the
terms when stating the results for k-DNF resolution, since for any family of formulas we consider there will
be very length- and space-efficient R(k)-refutation refutations if we allow terms of unbounded size.

Our next result relies on a new pebbling trade-off result in [Nor10b], building on earlier work by Carlson
and Savage [CS80, CS82]. Using this new result, we can derive among other things the rather striking
statement that for any arbitrarily slowly growing non-constant function, there are explicit formulas of such
(arbitrarily small) space complexity that nevertheless exhibit superpolynomial length-space trade-offs.

Theorem 2.8 (Superpolynomial trade-offs for arbitrarily slowly growing space). Let slo(n) = ω(1) be
any arbitrarily slowly growing function5 and fix any ε > 0 and positive integer K. Then there are explicitly
constructible CNF formulas {Fn}∞n=1 of size Θ(n) and width O(1) such that the following holds:

• The formulas Fn are refutable in syntactic resolution in total space TotSpR(Fn ` 0) = O(slo(n)).

• There are syntactic resolution refutations πn of Fn in simultaneous length L(πn) = O(n) and total
space TotSp(πn) = O

((
n/slo(n)2

)1/3
)

.

• Any semantic resolution refutation of Fn in clause space O
((

n/slo(n)2
)1/3−ε

)
must have superpoly-

nomial length.

• For any k ≤ K, any semantic R(k)-refutation of Fn in formula space O
((

n/slo(n)2
)1/(3(k+1))−ε

)
must have superpolynomial length.

All multiplicative constants hidden in the asymptotic notation depend only on K, ε and slo.

5For technical reasons, let us also assume here that slo(n) = O
`
n1/7

´
, i.e., that slo(n) does not grow too quickly. This

restriction is inconsequential since for such fast-growing slo(n) other trade-off results presented below will yield much stronger
bounds.

9

UNDERSTANDING SPACE IN PROOF COMPLEXITY

Observe the robust nature of this trade-off, which is displayed by the long range of space complexity
in standard resolution, from ω(1) up to ≈ n1/3, which requires superpolynomial length. Note also that the
trade-off result for standard resolution is very nearly tight in the sense that the superpolynomial lower bound
on length in terms of space reaches up to very close to where the linear upper bound kicks in.

The two theorems above focus on trade-offs for formulas of low space complexity, and the lower bounds
on length obtained in the trade-offs are somewhat weak—the superpolynomial growth in Theorem 2.8 is
something like nslo(n). We next present a theorem that has both a stronger superpolynomial length lower
bounds than Theorem 2.8 and an even more robust trade-off covering a wider (although non-overlapping)
space interval. This theorem again follows by applying our tools to the pebbling trade-offs in [LT82].

Theorem 2.9 (Robust superpolynomial trade-off for medium-range space). For any positive integer K,
there are explicitly constructible CNF formulas {Fn}∞n=1 of size Θ(n) and width O(1) such that the follow-
ing holds (where the hidden constants depend only on K):

• The formulas Fn are refutable in syntactic resolution in total space TotSpR(Fn ` 0) = O(log2 n).

• There are syntactic resolution refutations of Fn in length O(n) and total space O(n/ log n).

• Any semantic resolution refutation of Fn in clause space Sp(πn) = o(n/ log n) must have length
L(πn) = nΩ(log log n).

• For any k ≤ K, any semantic R(k)-refutation in formula space Sp(πn) = o
(
(n/ log n)1/(k+1)

)
must

have length L(πn) = nΩ(log log n).

Having presented trade-off results in the low-space and medium-space range, we conclude by presenting
a result at the other end of the space spectrum. Namely, appealing one last time to yet another result
in [LT82], we can show that there are formulas of nearly linear space complexity (recall that any formula is
refutable in linear formula space) that exhibit not only superpolynomial but even exponential trade-offs.

We state this final theorem only for standard resolution since it is not clear whether it makes sense
for R(k). That is, we can certainly derive formal trade-off bounds in terms of the (k + 1)st square root
as in the theorems above, but we do not know whether there actually exist R(k)-refutation in sufficiently
small space so that the trade-offs apply. Hence, such trade-off claims for R(k), although impressive looking,
might simply be vacuous. We can obtain other exponential trade-offs for R(k) (see Section 7 for the details),
but they are not quite as strong as the result below for resolution.

Theorem 2.10 (Exponential trade-offs for nearly-linear space). Let κ be any sufficiently large constant.
Then there are CNF formulas Fn of size Θ(n) and width O(1) and a constant κ′ � κ such that:

• The formulas Fn have syntactic resolution refutations in total space κ′ · n/ log n.

• Fn is also refutable in syntactic resolution in length O(n) and total space O(n) simultaneously.

• However, any semantic refutation of Fn in clause space at most κ · n/ log n has length exp
(
nΩ(1)

)
.

To get a feeling for this last trade-off result, note again that the lower bound holds for proof systems with
arbitrarily strong derivation rules, as long as they operate with disjunctive clauses. In particular, it holds for
proof systems that can in one step derive anything that is semantically implied by the current content of the
blackboard. Recall that such a proof system can refute any unsatisfiable CNF formula F with n clauses in
length n + 1 simply by writing down all clauses of F on the blackboard and then concluding, in one single
derivation step, the contradictory empty clause implied by F . In Theorem 2.10 this proof system has space
nearly sufficient for such an ultra-short refutation of the whole formula. But even so, when we feed this
proof system the formulas Fn and restrict it to having at most O(n/ log n) clauses on the blackboard at any
one given time, it will have to keep going for an exponential number of steps before it is finished.

10

2 Formal Statements of Results and Outline of Proofs

2.4 Proof Ingredients for Substitution Space Theorem for Resolution

Before embarking on the formal proofs of our theorems, we want to provide some intuition for the substi-
tution space theorems that are the keys to our results. Let us first focus on the result for standard resolution
and describe the proof structure in some detail. The analogous result for k-DNF resolution is proven in a
similar way, but with the added technical complications that we need to prove size bounds on sets of k-DNF
formulas. These issues, and in particular our result for minimally unsatisfiable sets of k-DNF formulas, are
discussed in Section 2.5.

Thus, let F be any unsatisfiable CNF formla and fd any non-authoritarian Boolean function (as described
in Section 2.1), and let F [fd] denote the CNF formula obtained by substituting f(x1, . . . , xd) for every
variable x in F and expanding the result to conjunctive normal form.

The first part of Theorem 2.1, that any resolution refutation of F can be transformed into a refutation
of F [fd] with similar parameters, is not hard to prove. Essentially, whenever the refutation of the original
formula F writes a clause C on the blackboard, we write the corresponding set of clauses C[fd] on the
blackboard where we are refuting the substitution formula. We make the additional observation that if we
take any resolution refutation π of F and write down the new refutation πf of C[fd] resulting from this
transformation—assuming for concreteness that the function fd is exclusive or, say—it is easy to verify that
the number of variable occurrences in π, i.e., the variable space, translates into a lower bound on the number
of clauses in πf , i.e., the formula space (which as we recall is called clause space for standard resolution).
Equation (2.1) provides an example of this variable-space-to-clause-space blow-up.

It is more challenging, however, to prove the reverse direction that we can get lower bounds on clause
space for F [fd] from lower bounds on variable space for F . Ideally, we would like to claim that any prover
refuting F [fd] had better write down to the blackboard clause sets on the form C[fd] corresponding to
clauses C in some refutation of the original CNF formula F , and that if he or she does not, then we can
analyze the refutation as if that is what is happening anyway, just ignoring the clauses that do not fit into this
framework.

To argue this more formally, we need to specify how sets of clauses in a refutation of F [fd] should
be translated to clauses in a purported refutation of F . We do this by devising a way of “projecting” any
refutation of F [fd] down on a refutation of F . These “projections” are defined in terms of a special kind of
“precise implication” which we describe next. Recall that for Boolean functions F and G, we say that F
implies G, denoted F � G, if any truth value assignment satisfying F must also satify G.

Definition 2.11 (Precise implication and projected clauses (informal)). Suppose that D is a set of clauses
over variables in Vars(F [fd]) and that P and N are (disjoint) subset of variables of F . If any truth value
assignment satisfying D must also satisfy

∨
x∈P fd(~x) ∨

∨
y∈N ¬fd(~y) but this is not the case for strict

subsets P ′ $ P or N ′ $ N , we say that the clause set D implies
∨

x∈P fd(~x) ∨
∨

y∈N ¬fd(~y) precisely.
Let us write any clause C as C = C+ ∨C−, where C+ =

∨
x∈Lit(C) x is the disjunction of the positive

literals in C and C− =
∨

y∈Lit(C) y is the disjunction of the negative literals. Then we say that D projects C
if D implies

∨
x∈C+ fd(~x)∨

∨
y∈C− ¬fd(~y) precisely, and we write projF (D) to denote the set of all clauses

that D projects on F .

Given this definition, we want to take any refutation πf = {D0, D1, . . . , Dτ} of F [fd] and argue that
π = {projF (D0), projF (D1), . . . , projF (Dτ)} is (essentially) the refutation of F that we are looking for.

It is not hard to see that for a “well-behaved” prover refuting F [fd] using a refutation π of the original
formula F as a template but substituting the clause set C[fd] for every clause C appearing on the blackboard,
applying the projection in Definition 2.11 at every step in the derivation will give us back the refutation π
of F that we started with (the reader can check that this is the case for instance for the clause set in (2.1)).
What is more remarkable is that this projection of refutations of F [fd] always works no matter what the
prover is doing, in the sense that the result is always a resolution refutation of the original formula F and

11

UNDERSTANDING SPACE IN PROOF COMPLEXITY

this projected refutation does not only (essentially) preserve length, which is not too complicated to show,
but also space. We refer to Section 4 for the formal statements and proofs.

2.5 Substitution Space Theorem for R(k) and Minimally Unsatisfiable k-DNF Sets

The proof of the first part of Theorem 2.2 is again reasonably straightforward and resembles our proof of
the substitution theorem for the standard resolution proof system. For the second part, however, we require
a result, described next, that bounds the number of variables appearing in a minimally unsatisfiable k-DNF
set of a given size. Since this result addresses a combinatorial problem that appears to be interesting (and
challenging) in its own right, we describe it in some detail below.

We start by recalling that a set of 1-DNF formulas, i.e., a CNF formula, is said to be minimally unsat-
isfiable if it is unsatisfiable but every proper subset of its clauses is satisfiable, and try to generalize this
definition to the case of k > 1. Perhaps the first, naive, idea how to extend this notion is to define D to be
minimally unsatisfiable if it is unsatisfiable but all proper subsets of it are satisfiable. This will not work,
however, and the set of formulas

{x,
(
(x ∧ y1) ∨ (x ∧ y2) ∨ (x ∧ y3) ∨ · · · ∨ (x ∧ yn)

)
} (2.2)

shows why this approach is problematic. The set (2.2), which consists of two 2-DNF formulas, is unsatis-
fiable but every proper subset of it is satisfiable. However, the number of variables appearing in the set can
be arbitrarily large so there is no way of bounding |Vars

(
D
)
| as a function of |D|.

A more natural requirement is to demand minimality not only at the formula level but also at the term
level, saying that not only do all DNF formulas in the set have to be there but also that no term in any
formula can be shrunk to a smaller, weaker term without the set becoming satisfiable. Luckily enough, this
also turns out to be the concept we need for our applications. The formal definition follows next.

Definition 2.12 (Minimal implication and minimally unsatisfiable k-DNF sets). Let D be a set of k-DNF
formulas and let G be a formula. We say that D minimally implies G if D � G and furthermore, replacing
any single term T appearing in a single DNF formula D ∈ D with a proper subterm of T , and calling the
resulting DNF set D′, results in D′ 6� G. If G is unsatisfiable we say D is minimally unsatisfiable.

To see that this definition generalizes the notion of a minimally unsatisfiable CNF formula, notice that
removing a clause C ′ from a CNF formula F is equivalent to replacing a term of C ′, which is a single
literal, with a proper subterm of it, which is the empty term. This is because the empty term evaluates to 1
on all assignments, which means that the resulting clause also evaluates to 1 on all assignments and hence
can be removed from F . With this definition in hand, we are thus interested in understanding the following
problem:

Given a minimally unsatisfiable set of m k-DNF formulas, what is an upper bound on the
number of variables that this set of formulas can contain?

As was noted above, for k = 1 the set D is equivalent to a CNF formula, because it is a set of disjunctions
of literals, and we have the following “folklore” result which seems to have been proved independently on
several different occasions (see [AL86, BET01, CS88, Kul00]).

Theorem 2.13. If D is a minimally unsatisfiable CNF formula, then |Vars(D)| < |D|.

Theorem 2.13 has a relatively elementary proof based on Hall’s marriage theorem, but its importance to
obtaining lower bounds on resolution length and space is hard to overemphasize. For instance, the seminal
lower bound on refutation length of random CNFs given by Chvátal and Szemerédi in [CS88] makes crucial

12

2 Formal Statements of Results and Outline of Proofs

use of it, as does the proof of the “size-width trade-off” of [BW01]. Examples of applications of this theorem
in resolution space lower bounds include [ABRW02, BG03, BN08, Nor09a, NH08].

For sets of k-DNF formulas with k > 1, we are not aware of any upper or lower bounds on mini-
mally unsatisfiable sets prior to our work. The main technical result that we need in order to establish the
k-DNF resolution space hierarchy is the following extension of Theorem 2.13 to the case of k > 1.

Theorem 2.14. Suppose that D is a minimally unsatisfiable k-DNF set. Then the number of variables in D
is at most |Vars(D)| ≤ (k · |D|)k+1.

Proof sketch. Let us sketch the proof for k = 2. (The full proof is given in Section 5.) Suppose that we have
a 2-DNF set D with m formulas mentioning Ω(m3) variables. Then there is at least one 2-DNF formula D∗

mentioning Ω(m2) variables. By the definition of minimality, the set D \ {D} is satisfiable. Let α be some
minimal partial assignment fixing D \ {D} to true, and note that α needs to set at most 2(m− 1) variables
(at most one 2-term per formula).

Consider the 2-terms in D∗. If there are 2m terms over completely disjoint pairs of variables, then there
is some 2-term a∧ b untouched by α. If so, α can be extended to a satisfying assignment for all of D, which
is a contradiction. Hence there are at most O(m) terms over disjoint sets of variables.

But D∗ contains Ω(m2) variables. By counting (and adjusting the implicit constant factors), there must
exist some literal a∗ in D∗ occuring in a lot of terms (a∗ ∧ b1) ∨ (a∗ ∧ b2) ∨ · · · (a∗ ∧ b2m). Again by
minimality, there is a (partial) truth value assignment α′ satisfying D \ {D} and setting a∗ to true. (To see
this, note that shrinking, for instance, a∗ ∧ b1 to a∗ should make the whole set satisfiable). But if we pick
such an α′ of minimal size, there must exist some bi that is not falsified and we can extend α′ to a satisfying
assignment for a∗ ∧ bi and hence for the whole set. Contradiction.

We want to point out that in contrast to Theorem 2.13, which is exactly tight (consider the set{∨n
i=1xi, ¬x1, ¬x2, . . . , ¬xn

}
(2.3)

of n + 1 clauses over n variables), there is no matching lower bound on the number of variables in Theo-
rem 2.14. The best explicit construction that we were able to obtain, stated next, has number of variables
only linear in the number of k-DNF formulas (for k constant), improving only by a factor k2 over the bound
for CNF formulas in Theorem 2.13.

Lemma 2.15. There are minimally unsatisfiable k-DNF sets D with |Vars(D)| ≥ k2(|D| − 1).

Proof sketch. Consider any minimally unsatisfiable CNF formula consisting of n+1 clauses over n variables
(for instance, the one in (2.3)). Substitute every variable xi with(

x1
i ∧ x2

i ∧ · · · ∧ xk
i

)
∨
(
xk+1

i ∧ xk+2
i ∧ · · · ∧ x2k

i

)
∨ · · · ∨

(
xk2−k+1

i ∧ xk2−k+2
i ∧ · · · ∧ xk2

i

)
(2.4)

and expand every clause to a k-DNF formula. Note that this is possible since the negation of (2.4) that we
need to substitute for ¬xi can also be expressed as a k-DNF formula∨

(j1,...,jk)∈[1,k]×...×[(k2−k+1,k2]

(
¬xj1

i ∧ · · · ∧ ¬xjk
i

)
. (2.5)

It is straightforward to verify that the result is a minimally unsatisfiable k-DNF set in the sense of Defini-
tion 2.12, and this set has n + 1 formulas over k2n variables.

In our first preliminary report [BN09] on our results for k-DNF resolution, we stated that we saw no
particular reason to believe that the upper bound in Theorem 2.14 should be tight, hinting that Lemma 2.15

13

UNDERSTANDING SPACE IN PROOF COMPLEXITY

might well be closer to the truth. Surprisingly to us, this turned out to be wrong. In a joint work [NR09]
with Razborov, the second author recently showed that there are minimally unsatisfiable k-DNF sets with
m formulas and ≈ mk variables, which means that Theorem 2.14 is tight up to an additive one in the
exponent.

Concluding this section, we remark that the precise statement required to prove the second part of
Theorem 2.2 is somewhat more involved than Theorem 2.14. However, the two proofs follow each other
very closely. We refer to Section 5 for the details.

3 Preliminaries

In this section we give the basic formal definitions used in this paper and state a few well-known facts that
we will need.

3.1 Formulas, Assignments and Restrictions

For the most part we use standard notation for formulas in conjunctive normal form (CNF) and disjunctive
normal form (DNF). However, we will also use the very convenient, although perhaps slightly less standard,
set notation to treat objects such as clauses, terms, restrictions and CNF and DNF formulas. We explain this
notation and terminology next. Throughout this paper, we let [n] denote the set {1, 2, . . . , n}.

DNF and CNF formulas as sets For x a Boolean variable, a literal over x is either a Boolean variable
x, called a positive literal over x, or its negation, denoted ¬x or x and called a negative literal over x.
Sometimes it will also be convenient to write x1 for unnegated variables and x0 for negated ones. We define
¬¬x to be x. When x is understood from context or unimportant we simply speak of a (positive, negative)
literal. A CNF formula is a set of clauses, i.e., disjunctions of literals, and a DNF formula is a set of terms,
i.e., conjunctions of literals. The variable set of a term T , denoted Vars(T), is the set of Boolean variables
over which there are literals in T and Lit(T) is the set of literals. The variable and literal sets of a clause
are similarly defined and these definitions are extended to CNF and DNF formulas by taking unions. If X is
a set of Boolean variables and Vars(T) ⊆ X we say T is a term over X and similarly define clauses, CNF
formulas, and DNF formulas over X .

We will sometimes think of clauses and terms as sets of literals and borrow set-theoretic notation and
terminology to discuss logical formulas. For instance, we say that the term T ′ is a subterm of T , and write
T ′ ⊆ T to denote that the set of literals of T ′ is contained in the set of literals of T . We similarly speak of,
and denote, subclauses and subformulas. We say the clause C (or term T) is a k-clause (k-term, respectively)
if |C| ≤ k (|T | ≤ k, respectively). A k-DNF formula D is a set of k-terms and a k-CNF formula is a
set of k-clauses. We define the size S (F) of any formula F to be the total number of literals in F counted
with repetitions. More often, we will be interested in the number of clauses |F | of a CNF formula F or the
number of terms in a DNF formula. We write |D| to den ote is the number of terms in a k-DNF formula and
correspondingly for the number of clauses in a CNF formula.

Assignments and restrictions as sets As is the case with CNF and DNF formulas, we prefer to use
in our proof a set-theoretic representation of restrictions and assignments, as defined next.

A restriction ρ over a set of Boolean variables X is a subset of literals over X with the property that for
each variable x ∈ X there is at most one literal over x in ρ. The set of variables assigned by ρ is Vars

(
ρ
)

and the size of ρ is |ρ| = |Vars
(
ρ
)
|. We say the restriction ρ′ extends ρ if ρ′ ⊇ ρ, and in this case we also

say that ρ agrees with ρ′. An assignment α to X is a restriction satisfying |α| = |X|.

14

3 Preliminaries

For a a literal over X and ρ a restriction over X , let the restriction of a under ρ be

a�ρ =

1 a ∈ ρ
0 ¬a ∈ ρ
a otherwise

(3.1)

If a�ρ = 1 we say ρ satisfies a, if a�ρ = 0 we say ρ falsifies a and otherwise we say ρ leaves a unfixed. We
extend the definition of a restriction to a term T = a1 ∧ · · · ∧ as and clause C = a′1 ∨ · · · ∨ a′s as follows.
Let ¬ρ = {¬a|a ∈ ρ} denote the restriction obtained by replacing every literal in ρ by its negation.

T�ρ =

1 T ⊆ ρ
0 T ∩ ¬ρ 6= ∅
T \ ρ otherwise

, C�ρ =

0 C ⊆ ¬ρ
1 C ∩ ρ 6= ∅
C \ ¬ρ otherwise

(3.2)

In words, we say T is satisfied by ρ if ρ satisfies all literals in T , we say T is falsified by ρ if some literal of
ρ is falsified and otherwise T is unfixed by ρ. Dually, C is satisfied if some literal of it is satisfied by ρ, it is
falsified if all its literals are falsified by ρ and otherwise it remains unfixed. Notice that the empty term, i.e.,
the term of size 0, is satisfied by every restriction and the empty clause is falsified by all of them. We extend
the definition of a restriction to a DNF formula D = D1 ∨ · · · ∨Dm = {D1, . . . , Dm} by

D�ρ =

1 ∃i ∈ [m], Di�ρ = 1
0 Di�ρ = 0, i ∈ [m]
{Di�ρ : Di�ρ 6= 0} otherwise,

(3.3)

and to a CNF formula F = C1 ∧ · · · ∧ Cm = {C1, . . . , Cm} by

F�ρ =

0 ∃i ∈ [m], Ci�ρ = 0
1 Ci�ρ = 1, i ∈ [m]
{Ci�ρ : Ci�ρ 6= 1} otherwise.

(3.4)

The notions of a restriction satisfying, falsifying and leaving unfixed a DNF or CNF formula are analogous to
those defined for terms and clauses. If ρ is a restriction satisfying a formula F , yet every proper subrestriction
ρ′ (ρ does not satisfy F , then we say ρ is a minimal satisfying restriction. A minimal falsifying restriction
is analogously defined. We write ρ(¬C) to denote the minimal restriction fixing a clause C to false, i.e.,
ρ(¬C) = {a | a ∈ C}.

When α is a truth value assignment to the variables in a formula F , it will be notationally convenient to
think of α as assigning a truth value to F . We write α(F) to denote this assigned value, or sometimes F�α
when we think of α as a restriction. We will use these two notations interchangeably. We write

αx=ν(y) =

{
α(y) if y 6= x,
ν if y = x,

(3.5)

to denote the truth value assignment that agrees with α everywhere except possibly at x, to which it assigns
the value ν.

A term (clause, respectively) is said to be trivial if it contains both a positive and a negative literal
over the same variable. We may assume without loss of generality that all terms (clauses, respectively)
appearing in our paper are nontrivial, because the value of a DNF (CNF, respectively) remains unchanged
after addition or removal of trivial terms (clauses, respectively). We say that a DNF formula D over X
represents a Boolean function f : X → {0, 1} if and only if for all assignments α ∈ {0, 1}X , we have
f(α) = D(α). The notion of a CNF formula representing f is analogously defined. Clearly, every Boolean
function f can be represented by a DNF formula (for instance, the disjunction of all terms corresponding to
satisfying truth value assignments) as well as by a CNF formula (for instance, the conjunction of all clauses
ruling out falsifying assignments for f).

15

UNDERSTANDING SPACE IN PROOF COMPLEXITY

Implication If C is a set of formulas we say that a restriction (or assignment) satisfies C if and only if it
satisfies every formula in C. For D, C two sets of formulas over a set of variables X , we say that D implies C,
denoted D � C, if and only if every assignment α to X that satisfies D also satisfies C. In particular, D � 0
if and only if D is unsatisfiable, i.e., no assignment satisfies D.

3.2 k-DNF Resolution

We now give a more precise description of the k-DNF resolution proof systems and the proof complexity
measures for these systems that we are interested in studying.

Definition 3.1 (k-DNF-resolution inference rules). The k-DNF-resolution proof systems are a family of
sequential proof systems parameterized by k ∈ N+. Lines in a k-DNF-resolution refutation are k-DNF for-
mulas and the following inference rules are allowed (where A,B, C denote k-DNF formulas, T, T ′ denote
k-terms, and a1, . . . , ak denote literals):

k-cut (a1∧...∧ak′)∨B, ¬a1∨...∨¬ak′ ∨C
B ∨C , where k′ ≤ k.

∧-introduction A∨T, A∨T ′

A∨ (T∧T ′) , as long as |T ∪ T ′| ≤ k.

∧-elimination A∨T
A∨T ′ for any T ′ ⊆ T.

Weakening A
A∨B for any k-DNF formula B.

The formulas above the line are called the inference assumptions and the formula below is called the conse-
quence. For brevity we denote by R(k) the proof system of k-DNF resolution.

When we want to study length and space simultaneously in resolution, we have to be slightly careful
with the definitions in order to capture length-space trade-offs. Just listing the clauses used in a resolution
refutation does not tell us how the refutation was performed, and essentially the same refutation can be
carried out in vastly different time depending on the space constraints (as is shown in this paper). Following
the exposition in [ET01], therefore, we view a resolution refutation as a Turing machine computation, with
a special read-only input tape from which the axioms can be downloaded and a working memory where all
derivation steps are made. Then the length of a proof is essentially the time of the computation and space
measures memory consumption. The following definition is the straightforward generalization to R(k) of
the space-oriented definition of a refutation from [ABRW02].

Definition 3.2 (Derivation). A k-DNF configuration D, or, simply, a configuration, is a set of k-DNF for-
mulas. A sequence of configurations {D0, . . . , Dτ} is said to be a R(k)-derivation from a CNF formula F
if D = ∅ and for all t ∈ [τ], the set Dt is obtained from Dt−1 by one of the following derivation steps:

Axiom Download Dt = Dt−1 ∪ {C} for some C ∈ F .

Inference Dt = Dt−1 ∪{D} for some D inferred by one of the inference rules listed in Definition 3.1 from
a set of assumptions that belongs to Dt−1.

Erasure Dt = Dt−1 \ {D} for some D ∈ Dt−1.

A R(k)-derivation π : F `D′ of a k-DNF set D′ from a formula F is a derivation π = {D0, . . . , Dτ} such
that Dτ = D′. A R(k)-refutation of F is a R(k)-derivation of the empty DNF (denoted by 0), i.e., the DNF
formula with no terms, or, phrased differently, the unsatisfiable empty disjunction.

When the derived k-DNF set D′ contains a single formula D, we will often abuse notation slightly by
writing simply π : F `D instead of π : F ` {D}.

16

3 Preliminaries

Definition 3.3 (Refutation length and space). The formula space, or simply space, of a configuration D
is its size |D|. The variable space6 of D, denoted VarSp(D), is the number of literals appearing in D, i.e.,
VarSp(D) = |Vars(D)| and the total space of D, denoted TotSp(D) is the number of literals appearing in
D counted with repetitions. (Notice that TotSp(D) ≥ VarSp(D).)

The length of a R(k)-derivation π is the number of axiom downloads and inference steps in it.7 The
space (variable space, total space, respectively) of a derivation π is defined as the maximal space (variable
space, total space, respectively) of a configuration in π. If π is a derivation of D from a formula F of length
L and space s then we say D can be derived from F in length L and space s simultaneously.

We define the R(k)-refutation length of a formula F , denoted LR(k)(F ` 0), to be the minimum length
of any R(k)-refutation of it. The R(k)-refutation space of F , denoted SpR(k)(F ` 0), the R(k)-refutation
total space TotSpR(k)(F ` 0), and the R(k)-refutation variable space of F , denoted VarSpR(k)(F ` 0),
are analogously defined by taking minima over all R(k)-refutations of F . (When the proof system R(k) in
question is clear from context, we will drop the subindex in the proof complexity measures.)

Notice that the system R(1) = R is the usual resolution proof system. We remark that in resolution, the
∧-introduction and ∧-elimination rules do not apply, and the cut rule reduces to the familiar resolution rule
saying that the clauses C1 ∨x and C2 ∨¬x can be combined to derive C1 ∨C2. The formula space measure
in resolution is known as clause space. For resolution, it is also convenient to define the auxiliary measure
of width.

Definition 3.4 (Resolution width). The width W(C) of a clause C is the number of literals in it and the
width W(F) of a formula F is the size of a widest clause in F . The width W(π) of a derivation π is defined
in the same way, and W(F ` 0) denotes the minimum width of any resolution refutation of F .

Using the same terminology as in [ABRW02], we also define a stronger version of the k-DNF resolution
proof systems.

Definition 3.5 (Semantic k-DNF resolution). The semantic k-DNF resolution proof systems are defined
as in Definitions 3.1 and 3.2 but with the modification that the inference rule is that any k-DNF formula
implied by Dt can be derived at time t + 1. We refer to the systems in Definitions 3.1 and 3.2 as syntactic to
distinguish them from the semantic ones.

Clearly, semantic systems are much stronger than syntactic ones. In particular, any unsatisfiable CNF
formula with m clauses has a semantic resolution refutation of length m + 1, since we can just list all
clauses in the formula and then derive the empty clause in one step (which is implied since the formula is
unsatisfiable). Note, however, that this refutation also has space m + 1. This is in stark contrast to the fact
that there are exponential lower bounds known on length for k-DNF resolution for any k. The reason that
we distinguish between semantic and syntactic proof systems is that all our upper bounds in the trade-offs
are in terms of syntactic systems (i.e., the usual ones) whereas the lower bounds in the trade-offs hold even
for semantic proof systems.

3.3 Some Structural Results for Resolution

Although the weakening rule is sometimes convenient for technical reasons, for the case of standard resolu-
tion it is easy to show that any weakening steps can always be eliminated from a refutation of an unsatifiable

6We remark that there is some terminological confusion in the literature here. The term “variable space” has also been used in
previous papers (including by the current authors) to refer to what is here called “total space.” The terminology adopted in this paper
is due to Hertel and Urquhart (see [Her08]), and we feel that although this naming convention is as of yet less well-established, it
feels much more natural than the alternative.

7As noted above, the reader who so prefers can instead define the length of a derivation π = {D0, . . . , Dτ} as the number of
steps τ in it, since the difference is at most a factor of 2. We have chosen the definition above for consistency with previous papers
defining length as the number of clauses in a listing of the derivation.

17

UNDERSTANDING SPACE IN PROOF COMPLEXITY

CNF formula without changing anything essential. Thus, while the results in this paper will be stated for
resolution with the weakening rule, they also hold for resolution refutations using only axiom downloads,
resolution rule applications and erasures. Let us highlight this fact in a (somewhat) formal proposition for
the record.

Proposition 3.6. Any resolution refutation π : F ` 0 using the weakening rule can be transformed into a
refutation π′ : F ` 0 without weakening in at most the same length, width, clause space, total space, and
variable space, and performing at most the same number of axiom downloads, inferences and erasures as π.

The proof of Proposition 3.6 is an easy forward induction over the resolution refutation (simply ignoring
all weakening moves and keeping the subclauses instead, which can never increase any measure we are
interested in). We omit the details.

Another convenient fact is that restrictions preserve resolution refutations in the following sense.

Proposition 3.7. If π is a resolution refutation of F and ρ is a restriction on Vars(F), then π�ρ can be
transformed into a resolution refutation of F�ρ in at most the same length, width, clause space, total space,
and variable space as π.

In fact, π�ρ is a refutation of F�ρ (removing all trivially true clauses), but possibly using weakening.
The proof of this is again an easy induction over π.

We will also make use of the implicational completeness of resolution. Formally, this means that if C is
a set of clauses and C is a clause, then C � C if and only if there exists a resolution derivation of C from C.

Proposition 3.8. Suppose C is a set of clauses and C is a clause, both over a set of variables of size n. Then
C � C if and only if there exists a resolution derivation of C from C. Furthermore, if C can be derived from
C then it can be derived in length at most 2n+1 − 1 and total space at most n(n + 2) simultaneously.

Proof sketch. Suppose first that C = 0 is the contradictory empty clause. Build a search tree where all
vertices on level i query the ith variable and where we go to the left, say, if the variable is false under a given
truth value assignment α and to the right if the variable is true. As soon as some clause in C is falsified by
the partial assignment defined by the path to a vertex, we make that vertex into a leaf labelled by that clause.
This tree has height h ≤ n and hence size at most 2h+1 − 1, and if we turn it upside down we can obtain a
legal tree-like refutation (without weakening) of C in this length. This refutation can be carried out in clause
space h + 2 and total space upper-bounded by the clause space times the number of distinct variables, i.e.,
at most n(n + 2). (We refer to, for instance, [Ben09, ET01] for more details.)

If C 6= 0, apply the unique minimal restriction ρ falsifying C. Then C�ρ � C�ρ = 0, and we can
construct a refutation of C�ρ from a search tree of height h < n, since C�ρ contains strictly fewer variables
than C. Removing the restriction ρ from this refutation, and adding at most one extra weakening step for
every other derivation step (this is an example of where the weakening rule comes in handy), we get a
derivation of C from C. (See [BW01] for a formal proof of this fact.) This derivation has length at most
2 · (2h+1 − 1) < 2n+1 − 1 and total space at most n(h + 2) < n(n + 2).

In a resolution refutation of a formula F , there is nothing in Definition 3.2 that rules out that completely
unnecessary derivation steps are made on the way, such as axioms being downloaded and then immediately
erased again, or entire subderivations being made to no use. In our constructions it will be important that we
can rule out some redundancies and enforce the following requirements for any resolution refutation:

• Every clause in memory is used in an inference step before being erased.

• Every clause is erased from memory immediately after having been used for the last time.

18

3 Preliminaries

We say that a resolution refutation that meets these requirements is frugal. The formal definition, which is a
mildly modified version of that in [Ben09], follows.

Definition 3.9 (Frugal refutation). Let π = {C0 = ∅, C1, . . . , Cτ = {0}} be a resolution refutation of
some CNF formula F . The essential clauses in π are defined by backward induction:

• If Ct is the first configuration containing 0, then 0 is essential at time t.

• If D ∈ Ct is essential and is inferred at time t from C1, C2 ∈ Ct−1 by resolution, then C1 and C2 are
essential at time t− 1.

• If D is essential at time t and D ∈ Ct−1, then D is essential at time t− 1.

Essential clause configurations are defined by forward induction over π. The configuration Ct ∈ π is
essential if all clauses D ∈ Ct are essential at time t, if Ct is obtained by inference of an essential clause
from a configuration Ct−1 containing only essential clauses at time t− 1, or if Ct is obtained from an
essential configuration Ct−1 by an erasure step. Finally, π = {C0, . . . , Cr} is a frugal refutation if all
configurations Ct ∈ π are essential.

Without loss of generality, we can always assume that resolution refutations are frugal.

Lemma 3.10. Any resolution refutation π : F ` 0 can be converted into a frugal refutation π′ : F ` 0 with-
out increasing the length, width, clause space, total space, or variable space. Furthermore, the axiom
downloads, inferences and erasures performed in π′ are a subset of those in π.

Proof. The construction of π′ is by backward induction over π. Set s = min{t : 0 ∈ Ct} and C′
s = {0}.

Assume that C′
s, C′

s−1, . . . C′
t+2, C′

t+1 have been constructed and consider Ct and the transition Ct Ct+1.

Axiom Download Ct+1 = Ct ∪ {C}: Set C′
t = C′

t+1 \ {C}. (If C is not essential we get C′
t = C′

t+1.)

Erasure Ct+1 = Ct \ {D}: Ignore, i.e., set C′
t = C′

t+1.

Inference Ct+1 = Ct ∪ {D} inferred from C1, C2 ∈ Ct: If D 6∈ C′
t+1, ignore the step and set C′

t =
C′

t+1. Otherwise (using fractional time steps for notational convenience) insert the configurations
C′

t = C′
t+1 ∪ {C1, C2} \ {D}, C′

t+ 1
3

= C′
t+1 ∪ {C1, C2}, C′

t+ 2
3

= C′
t+1 ∪ {C2}.

Finally go through π′ and eliminate any consecutive duplicate clause configurations.
It is straightforward to check that π′ is a legal resolution refutation. Let us verify that π′ is frugal. By

backward induction, each C′
t for integral time steps t contains only essential clauses. By forward induction,

if C′
t+1 = C′

t ∪ {C} is obtained by axiom download, all clauses in C′
t+1 are essential. Erasures in π are

ignored. For inference steps, C′
t contains only essential clauses by induction, C′

t+ 1
3

is essential by inference,

and C′
t+ 2

3

and C′
t+1 are essential since they are derived by erasure from essential configurations. Finally, it

is clear that π′ performs a subset of the derivation steps in π and that the length, width, and space does not
increase.

3.4 Pebble Games and Pebbling Contradictions

Pebble games were devised for studying programming languages and compiler construction, but have found
a variety of applications in computational complexity theory. In connection with resolution, pebble games
have been employed both to analyze resolution derivations with respect to how much memory they consume
(using the original definition of space in [ET01]) and to construct CNF formulas which are hard for differ-
ent variants of resolution in various respects (see for example [AJPU02, BIW04, BEGJ00, BP03] and the

19

UNDERSTANDING SPACE IN PROOF COMPLEXITY

sequence of papers [Nor09a, NH08, BN08] leading up to this work). An excellent survey of pebbling up to
ca. 1980 is [Pip80]. We also refer the interested reader to the upcoming survey [Nor10a], which contains
some later results and also describes connections between pebbling and proof complexity.

The black pebbling price of a DAG G captures the memory space, i.e., the number of registers, required
to perform the deterministic computation described by G. The space of a non-deterministic computation is
measured by the black-white pebbling price of G. We say that vertices of G with indegree 0 are sources and
that vertices with outdegree 0 are sinks (or targets). In the following, unless otherwise stated we will assume
that all DAGs under discussion have a unique sink and this sink will always be denoted z. The next definition
is adapted from [CS76], though we use the established pebbling terminology introduced by [HPV77].

Definition 3.11 (Black-white pebble game). Suppose that G is a DAG with sources S and a unique sink z.
The black-white pebble game on G is the following one-player game. At any point in the game, there are
black and white pebbles placed on some vertices of G, at most one pebble per vertex. A pebble configuration
is a pair of subsets P = (B,W) of V (G), comprising the black-pebbled vertices B and white-pebbled
vertices W . The rules of the game are as follows:

1. If all immediate predecessors of an empty vertex v have pebbles on them, a black pebble may be
placed on v. In particular, a black pebble can always be placed on any vertex in S.

2. A black pebble may be removed from any vertex at any time.

3. A white pebble may be placed on any empty vertex at any time.

4. If all immediate predecessors of a white-pebbled vertex v have pebbles on them, the white pebble on
v may be removed. In particular, a white pebble can always be removed from a source vertex.

A black-white pebbling from (B0,W0) to (Bτ ,Wτ) in G is a sequence of pebble configurations P =
{P0, . . . , Pτ} such that P0 = (B0,W0), Pτ = (Bτ ,Wτ), and for all t ∈ [τ], Pt follows from Pt−1 by one of
the rules above. A (complete) pebbling of G, also called a pebbling strategy for G, is a pebbling such that
(B0,W0) = (∅, ∅) and (Bτ ,Wτ) = ({z}, ∅).

The time of a pebbling P = {P0, . . . , Pτ} is simply time(P) = τ and the space is space(P) =
max0≤t≤τ{|Bt ∪ Wt|}. The black-white pebbling price (also known as the pebbling measure or pebbling
number) of G, denoted BW-Peb(G), is the minimum space of any complete pebbling of G.

A black pebbling is a pebbling using black pebbles only, i.e., having Wt = ∅ for all t. The (black)
pebbling price of G, denoted Peb(G), is the minimum space of any complete black pebbling of G.

For any DAG G over n vertices with bounded indegree, the black pebbling price (and thus also the
black-white pebbling price) is at most O(n/ log n) [HPV77], where the hidden constant depends on the
indegree. A number of exact or asymptotically tight bounds on different graph families have been proven in
the whole range from constant to Θ(n/ log n), for instance in [GT78, Kla85, LT80, Mey81, PTC77]. As to
time, obviously any DAG G over n vertices can be pebbled in time 2n− 1, and for all graphs we will study
this is also a lower bound, so studying the time measure in isolation is not that exciting. A very interesting
question, however, is how time and space are related in a single pebbling of G if one wants to optimize
both measures simultaneously, and this question turns out to be intimately connected with proof complexity
trade-offs. Time-space trade-offs for pebble games have been studied in a long sequence of papers, but for
our applications we will focus on [CS80, CS82, LT82] and the more recent results in [Nor10b]. Our way of
relating pebbling trade-offs and proof complexity trade-offs goes via the CNF formulas defined next.

A pebbling contradiction over a DAG G is a CNF formula that encodes the pebble game on G by
postulating the sources to be true and the target to be false, and specifying that truth propagates through the
graph according to the pebbling rules. These formulas have previously been studied more or less implicitly
in [RM99, BEGJ00] before being explicitly defined is [BW01].

20

3 Preliminaries

Definition 3.12 (Pebbling contradiction). Suppose that G is a DAG with sources S and a unique sink z.
Identify every vertex v ∈ V (G) with a propositional logic variable v. The pebbling contradiction over G,
denoted PebG, is the conjunction of the following clauses:

• for all s ∈ S, a unit clause s (source axioms),

• For all non-source vertices v with immediate predecessors u1, . . . , u`, the clause u1 ∨ · · · ∨ u` ∨ v
(pebbling axioms),

• for the sink z, the unit clause z (target or sink axiom).

If G has n vertices and maximal indegree `, the formula PebG is an unsatisfiable (1+`)-CNF formula
with n + 1 clauses over n variables.

3.5 Substitution Formulas

Throughout this paper, we will let fd denote any (non-constant) Boolean function fd : {0, 1}d 7→ {0, 1}
of arity d. We use the shorthand ~x = (x1, . . . , xd), so that fd(~x) is just an equivalent way of writing
fd(x1, . . . , xd). Every function fd(x1, . . . , xd) is equivalent to a CNF formula over x1, . . . , xd with at
most 2d clauses. Fix a canonical way to represent functions as CNF formulas and let Cl [fd(~x)] denote
the canonical set of clauses representing fd. Similarly, let Cl [¬fd(~x)] denote the clauses in the canonical
representation of the negation of f.

For instance, we choose to define

Cl [∨2(~x)] = {x1 ∨ x2} and Cl [¬∨2(~x)] = {x1, x2} (3.6)

for logical or of two variables and

Cl [⊕2(~x)] = {x1 ∨ x2, x1 ∨ x2} and Cl [¬⊕2(~x)] = {x1 ∨ x2, x1 ∨ x2} (3.7)

for logical exclusive or of two variables. The general definitions for exclusive or are

Cl [⊕d(~x)] =
{∨d

i=1x
νi
i

∣∣∑d
i=1νi ≡ d (mod 2)

}
(3.8)

and

Cl [¬⊕d(~x)] =
{∨d

i=1x
νi
i

∣∣∑d
i=1νi 6≡ d (mod 2)

}
(3.9)

from which we can see that Cl [⊕d(~x)] and Cl [¬⊕d(~x)] both are d-CNFs. We will also be interested in the
threshold function saying that k out of d variables are true, which we will denote thrk

d. To give an example,
for thr2

4 we have

Cl [thr2
4(~x)] =

x1 ∨ x2 ∨ x3,

x1 ∨ x2 ∨ x4,

x1 ∨ x3 ∨ x4,

x2 ∨ x3 ∨ x4

 (3.10)

and

Cl [¬thr2
4(~x)] =

x1 ∨ x2,

x1 ∨ x3,

x1 ∨ x4,

x2 ∨ x3,

x2 ∨ x4,

x3 ∨ x4

(3.11)

21

UNDERSTANDING SPACE IN PROOF COMPLEXITY

and in general we have

Cl [thrk
d(~x)] =

{∨
i∈Sxi

∣∣S ⊆ [d], |S| = d− k + 1
}

(3.12)

and

Cl [¬thrk
d(~x)] =

{∨
i∈Sxi

∣∣S ⊆ [d], |S| = k
}

. (3.13)

Clearly, thr1
d(x1, . . . , xd) is just another way of writing the function

∨d
i=1 xi, and thrd

d(x1, . . . , xd) =∧d
i=1 xi.

In general, we could construct a canonical representation Cl [fd(~x)] for fd as follows. For a truth value
assignment α : {x1, . . . , xd} 7→ {0, 1} we define the clause Cα = x

1−α(x1)
1 ∨ · · · ∨ x

1−α(xd)
d that is true for

all assignments to x1, . . . , xd except α. Then we could define

Cl [fd(~x)] =
∧

α : α(fd(~x))=0

Cα . (3.14)

But this way of representing the Boolean function can turn out to be unnecessarily involved. For instance,
for binary logical and (3.14) yields Cl [∧2(~x)] = {x1 ∨ x2, x1 ∨ x2, x1 ∨ x2} instead of the arguably more
natural representation Cl [∧2(~x)] = {x1, x2}. Therefore, we want the freedom to choose our own canonical
representation when appropriate. Note, however, that (3.14) constitutes a proof of the fact that without loss
of generality we can always assume that

∣∣Cl [fd(~x)]
∣∣ < 2d, since there are only 2d truth value assignments

and fd is assumed to be non-constant.
The following observation is rather immediate, but nevertheless it might be helpful to state it explicitly.

Observation 3.13. Suppose for any non-constant Boolean function fd that C ∈ Cl [fd(~x)] and that ρ is any
partial truth value assignment such that ρ(C) = 0. Then for all D ∈ Cl [¬fd(~x)] it holds that ρ(D) = 1.

Proof. If ρ(C) = 0 this means that ρ(fd) = 0. Then clearly ρ(¬fd) = 1, so, in particular, ρ must fix all
clauses D ∈ Cl [¬fd(~x)] to true.

We want to define formally what it means to substitute fd for the variables Vars(F) in a CNF formu-
la F . For notational convenience, we assume that F only has variables x, y, z, et cetera, without subscripts,
so that x1, . . . , xd, y1, . . . , yd, z1, . . . , zd, . . . are new variables not occurring in F . We will say that the
variables x1, . . . , xd, and any literals over these variables, all belong to the variable x.

Definition 3.14 (Substitution formula). For a positive literal x and a non-constant Boolean function fd, we
define the fd-substitution of x to be x[fd] = Cl [fd(~x)], i.e., the canonical representation of fd(x1, . . . , xd)
as a CNF formula. For a negative literal ¬y, the fd-substitution is ¬y[fd] = Cl [¬fd(~y)]. The fd-substitution
of a clause C = a1 ∨ · · · ∨ ak is the CNF formula

C[fd] =
∧

C1∈a1[fd]

. . .
∧

Ck∈ak[fd]

(
C1 ∨ . . . ∨ Ck

)
(3.15)

and the fd-substitution of a CNF formula F is F [fd] =
∧

C∈F C[fd].

The reader is reminded that an example of this definition was given in Equation (2.1) on page 6.
We note that F [fd] is a CNF formula over d·|Vars(F)| variables containing strictly less than |F |·2d·W(F)

clauses. (Recall that we defined a CNF formula as a set of clauses, which means that |F | is the number of
clauses in F .) We have the following easy observation, the proof of which is presented for completeness.

Observation 3.15. For any non-constant Boolean function fd : {0, 1}d 7→ {0, 1}, it holds that F [fd] is
unsatisfiable if and only if F is unsatisfiable.

22

4 Substitution Space Theorem for Resolution

Proof. Suppose that F is satisfiable and let α be a truth value assignment such that α(F) = 1. Then we can
satisfy F [fd] by choosing an assignment α′ for Vars

(
F [fd]

)
in such a way that fd

(
α′(x1), . . . , α′(xd)

)
=

α(x). For if C ∈ F is satisfied by some literal ai set to true by α, then α′ will satisfy all clauses Ci ∈ ai[fd]
and thus also the whole CNF formula C[fd] in (3.15).

Conversely, suppose F is unsatisfiable and consider any truth value assignment α′ for F [fd]. Then α′

defines a truth value assignment α for F in the natural way by setting α(x) = fd

(
α′(x1), . . . , α′(xd)

)
, and

we know that there is some clause C ∈ F that is not satisfied by α. That is, for every literal ai ∈ C =
a1 ∨ · · · ∨ ak it holds that α(ai) = 0. But then α′ does not satisfy ai[fd], so there is some clause C ′

i ∈ ai[fd]
such that α′(C ′

i) = 0. This shows that α′ falsifies the disjunction C ′
1 ∨ · · · ∨ C ′

k ∈ C[fd], and consequently
F [fd] must also be unsatisfiable.

For our present purposes, a particularly interesting kind of Boolean functions f(x1, . . . , xd) are those
having the property that no subset of k variables can determine the value of f(x1, . . . , xd).

Definition 3.16 (Non-authoritarian function). We say that a Boolean function f over variables X =
{x1, . . . , xd} is k-non-authoritarian8 if no restriction to X of size k can fix the value of f . In other words,
for every restriction ρ to X with |ρ| ≤ k there exist two assignments α0, α1 ⊃ ρ such that f(α0) = 0 and
f(α1) = 1.

Observe that a function on d variables can be k-non-authoritarian only if k < d. As noted above, two
natural examples of d-non-authoritarian functions are exclusive or ⊕ of d + 1 variables and majority of
2d + 1 variables, i.e., thrd+1

2d+1.

4 Substitution Space Theorem for Resolution

We now present the full proof of our first main technical contribution, which describes how the space com-
plexity of a formula in resolution changes under substitution. Let us start by restating the theorem for
reference.

Theorem 2.1 (restated). Let F be any unsatisfiable CNF formula and fd : {0, 1}d 7→ {0, 1} be any non-
constant Boolean function. Then it holds that the substitution formula F [fd] can be refuted in standard
syntactic resolution in width

W
(
F [fd] ` 0

)
= O

(
d ·W(F ` 0)

)
,

length
LR

(
F [fd] ` 0

)
≤ min

π:F ` 0

{
L(π) · exp

(
O(d ·W(π))

)}
,

and total space
TotSpR

(
F [fd] ` 0

)
≤ min

π:F ` 0

{
TotSp(π) · exp

(
O(d ·W(π))

)}
.

In the other direction, any semantic resolution refutation πf : F [fd]` 0 of the substitution formula can be
transformed into a syntactic resolution refutation π : F ` 0 of the original formula such that the number of
axiom downloads in π is at most the number of axiom downloads in πf . If in addition fd is non-authoritarian,
it holds that Sp(πf) > VarSp(π), i.e., the clause space of refuting the substitution formula F [fd] is lower-
bounded by the variable space of refuting the original formula F .

8Although related notions occur in the literature, we have not been able to locate any previous definition that captures what we
require in Definition 3.16. We therefore introduce a (hopefully evocative) new name that decribes the property that we need.

23

UNDERSTANDING SPACE IN PROOF COMPLEXITY

4.1 Two Corollaries of the Substitution Space Theorem

Before embarking on the proof of the theorem, we want to make a couple of quick remarks. Although this
might not be immediately obvious, Theorem 2.1 is remarkably powerful as a tool for understanding space
in resolution. It will take some more work before we can present our main applications of this theorem,
which are the strong time-space trade-off results discussed in Section 7. Let us note for starters, however,
that without any extra work we immediately get lower bounds on space.

Esteban and Torán [ET01] proved that the clause space of refuting F is upper-bounded by the formula
size. In the papers [ABRW02, BG03, ET01] it was shown, using quite elaborate arguments, that there
are polynomial-size k-CNF formulas with lower bounds on clause space matching this upper bound up to
constant factors. Using Theorem 2.1 we can get a different proof of this fact.

Corollary 4.1 ([ABRW02, BG03, ET01]). There are families of k-CNF formulas {F}∞n=1 with Θ(n)
clauses over Θ(n) variables such that Sp(Fn ` 0) = Θ(n).

Proof. Just pick any formula family for which it is shown that any refutation of Fn must at some point in the
refutation mention Ω(n) variables at the same time (e.g., from [BW01]), and then apply Theorem 2.1.

It should be noted, though, that when we apply Theorem 2.1 the formulas in [ABRW02, BG03, ET01]
are changed. We want to point out that there is another, and even more elegant way to derive Corollary 4.1
from [BW01] without changing the formulas, namely by using the lower bound on clause space in terms of
width in [AD08].

For our next corollary, however, there is no other, simpler way known to prove the same result. Instead,
our proof in this paper actually improves the constants in the result.

Corollary 4.2 ([BN08]). There are families {Fn}∞n=1 of k-CNF formulas of size O(n) refutable in linear
length L(Fn ` 0) = O(n) and constant width W(Fn ` 0) = O(1) such that the minimum clause space
required is Sp(Fn ` 0) = Ω(n/ log n).

This follows, just as in [BN08], by considering graphs of size Θ(n) with maximal pebbling price
Θ(n/ log n) and studying refutations of pebbling contradictions over such graphs. Since the variable space
of such refutations is at least the pebbling price, Corollary 4.2 follows immediately from Theorem 2.1 (and,
as noted, with better constants than in [BN08]), by using, say, exclusive or over two variables in the substi-
tution formula.

4.2 Proof of the Substitution Space Theorem—Main Components

We divide the proof of Theorem 2.1 into three parts in Lemmas 4.3, 4.6, and 4.7 below. In this subsection,
we state these three theorems and show how they combine to yield Theorem 2.1. The rest of Section 4 is
then spent proving these three auxiliary lemmas.

Lemma 4.3. For any CNF formula F and any non-constant Boolean function fd, it holds that

W
(
F [fd] ` 0

)
= O

(
d ·W(F ` 0)

)
,

LR

(
F [fd] ` 0

)
≤ min

π:F ` 0

{
L(π) · exp

(
O(d ·W(π))

)}
,

and

TotSpR

(
F [fd] ` 0

)
≤ min

π:F ` 0

{
TotSp(π) · exp

(
O(d ·W(π))

)}
.

24

4 Substitution Space Theorem for Resolution

These upper bounds for resolution refutations of F [fd] are not hard to show. The proof proceeds along
the following lines. Given a resolution refutation π of F , we construct a refutation πf : F [fd]` 0 mimicking
the derivation steps in π. When π downloads an axiom C, we download the exp

(
O(d · W(C))

)
axiom

clauses in C[fd]. When π resolves C1 ∨ x and C2 ∨ x to derive C1 ∨ C2, we use the fact that resolution is
implicationally complete to derive (C1 ∨ C2)[fd] from (C1 ∨ x)[fd] and (C2 ∨ x)[fd] in at most exp

(
O(d ·

W(C1 ∨ C2))
)

steps. We return to the details of the proof in Section 4.3.
Before stating the next lemma, we need to give a slightly more formal description than in Definition 2.11

of how clauses derived from F [fd] are translated into clauses over Vars(F) using projections defined in
terms of precise implication.

Definition 4.4 (Precise implication). Let F be a CNF formula and fd a non-constant Boolean function,
and suppose that D is a set of clauses over Vars(F [fd]) and that P and N are (disjoint) subset of variables
of F . If

D �
∨
x∈P

fd(~x) ∨
∨

y∈N

¬fd(~y) (4.1a)

but for all strict subsets P ′ $ P and N ′ $ N it holds that

D 2
∨

x∈P ′

fd(~x) ∨
∨

y∈N

¬fd(~y) , (4.1b)

and

D 2
∨
x∈P

fd(~x) ∨
∨

y∈N ′

¬fd(~y) , (4.1c)

we say that the clause set D implies
∨

x∈P fd(~x) ∨
∨

y∈N ¬fd(~y) precisely and write

D B
∨
x∈P

fd(~x) ∨
∨

y∈N

¬fd(~y) . (4.2)

Note that P = N = ∅ in Definition 4.4 corresponds to D being unsatisfiable.
Recalling the convention that any clause C can be written C = C+ ∨ C−, where C+ =

∨
x∈Lit(C) x is

the disjunction of the positive literals in C and C− =
∨

y∈Lit(C) y is the disjunction of the negative literals,
and choosing not to write x ∈ Lit

(
C+
)

or y ∈ Lit
(
C−) below, but instead x ∈ C+ and y ∈ C− for brevity

(which is still formally correct since a clause is a set of literals), we define projection of clauses as follows.

Definition 4.5 (Projected clauses). Let F be a CNF formula and fd a non-constant Boolean function, and
suppose that D is a set of clauses derived from F [fd]. Then we say that D projects the clause C = C+∨C−

if there is a subset DC ⊆ D such that

DC B
∨

x∈C+

fd(~x) ∨
∨

y∈C−

¬fd(~y) (4.3)

and we write

projF (D) =
{
C
∣∣∃DC ⊆ D s.t. DC B

∨
x∈C+fd(~x) ∨

∨
y∈C−¬fd(~y)

}
(4.4)

to denote the set of all clauses that D projects on F .

Given Definitions 4.4 and 4.5, which tell us how to translate clauses derived from F [fd] into clauses
over Vars(F), the next step is to show that this translation preserves resolution refutations.

25

UNDERSTANDING SPACE IN PROOF COMPLEXITY

Lemma 4.6. Suppose that πf =
{
D0, . . . , Dτ

}
is a semantic resolution refutation of F [fd] for some arbi-

trary unsatisfiable CNF formula F and some arbitrary non-constant function fd. Then the sets of projected
clauses

{
projF (D0), . . . , projF (Dτ)

}
form the “backbone” of a resolution refutation π of F in the sense

that:

• projF (D0) = ∅.

• projF (Dτ) = {0}.

• All transitions from projF (Dt−1) to projF (Dt) for t ∈ [τ] can be accomplished by axiom downloads
from F , inferences, erasures, and possibly weakening steps in such a way that the variable space in π
during these intermediate derivation steps never exceeds maxD∈πf

{
VarSp(projF (D))

}
.

• The only time π performs a download of some axiom C in F is when πf downloads some axiom
D ∈ C[fd] in F [fd].

Note that by Proposition 3.6, we can get rid of the weakening moves in a postprocessing step, but
allowing them in the statement of Lemma 4.6 makes the proof much cleaner. Accepting Lemma 4.6 on faith
for the moment (deferring the proof to Section 4.4), the final missing link in the proof of the Substitution
Space Theorem is the following lower bound.

Lemma 4.7. Suppose that D 6= ∅ is a set of clauses over Vars(F [fd]) for some arbitrary CNF formula F
and some non-authoritarian function fd. Then Sp(D) = |D| > VarSp(projF (D)).

Combining Lemmas 4.3, 4.6, and 4.7, the substitution space theorem for resolution follows. This is
immediate, but for the convenience of the reader we write out the details.

Proof of Theorem 2.1. The first part of Theorem 2.1, i.e., that any refutation π of F can be converted to a
refutation πf of the substitution formula F [fd], is Lemma 4.3 verbatim. For the second part of Theorem 2.1,
Lemma 4.6 describes how any refutation πf of the substitution formula F [fd] can be translated back into
a refutation π of the original formula F . This is true regardless of what kind of function fd is used for the
substitution. If in addition fd is non-authoritarian, Lemma 4.7 says that the clause space of πf provides an
upper bound for the variable space of π. The theorem follows.

It remains to prove Lemmas 4.3, 4.6, and 4.7. For convenience of notation in the proofs, let us define
the disjunction C ∨ D of two clause sets C and D to be the clause set

C ∨ D = {C ∨D | C ∈ C, D ∈ D} . (4.5)

This notation extends to more than two clause sets in the natural way. Rewriting (3.15) in Definition 3.14
using this notation, we have that

(D ∨ a)[fd] = D[fd] ∨ a[fd] =
∧

C1∈D[fd]

∧
C2∈a[fd]

(
C1 ∨ C2

)
. (4.6)

4.3 Refuting Substitution Formulas F [fd] by Simulating Refutations of F

To prove Lemma 4.3, we show how to construct, given π : F ` 0, a resolution refutation πf : D[fd]` 0 by
maintaining the invariant that if we have C in memory for π, then we have C[fd] in memory for πf and this
configuration has total space at most

∑
C∈C 2d·W(C) ≤ |C|2d·W(π). We get the following case analysis.

Axiom download If π downloads C, we download all of C[fd], i.e., less than 2d·W(C) clauses which all
have width at most d ·W(C).

26

4 Substitution Space Theorem for Resolution

Erasure If π erases C, we erase all of C[fd] in less than 2d·W(C) erasure steps.

Inference This is the only interesting case. Suppose that π infers C1 ∨C2 from C1 ∨x and C2 ∨x. Then
by induction we have (C1 ∨ x)[fd] and (C2 ∨ x)[fd] in memory in πf . It is a straightforward extension
of Observation 3.15 that if C � D, then C[fd] � D[fd], so in particular it holds that (C1 ∨ x)[fd] and
(C2 ∨ x)[fd] imply (C1 ∨ C2)[fd]. By the implicational completeness of resolution, these clauses can all be
derived.

An upper bound (not necessarily tight) for the width of this derivation in πf is d · (W(C1 ∨ x) +
W(C2 ∨ x) + W(C1 ∨ C2)) = O

(
d ·W(π)

)
, as claimed.

To bound the length, note that (C1 ∨ C2)[fd]. contains less than 2d·W(C1∨C2) clauses. For every clause
D ∈ (C1 ∨ C2)[fd], consider the minimal restriction ρ(¬D) falsifying D. Since

(C1 ∨ x)[fd] ∧ (C2 ∨ x)[fd] � D (4.7)

we have that
(C1 ∨ x)[fd]�ρ(¬D) ∧ (C2 ∨ x)[fd]�ρ(¬D) � 0 . (4.8)

The number of variables is at most d · (W(C1∨C2)+1) = N , and by Proposition 3.8 there is a refutation of
(C1 ∨ x)[fd]�ρ(¬D) ∧ (C2 ∨ x)[fd]�ρ(¬D) in length at most 2N+1 − 1 and total space at most 2N+1(2N+1 +
2) = 2O(N). Looking at this refutation and removing the restriction ρ(¬D), it is straightforward to verify
that we get a derivation of D from (C1 ∨ x)[fd] ∧ (C2 ∨ x)[fd] in the same length and same asymptotic
total space (see, for instance, the inductive proof in [BW01]). We can repeat this for every clause D ∈
(C1 ∨ C2)[fd] to derive all of the less than 2d·(W(C1∨C2)) clauses in this set in total length at most

2d·(W(C1∨C2)) · 2d·(W(C1∨C2)+2) ≤ 23d·W(π) = 2O(d·W(π)) . (4.9)

Taken together, we see that we get a refutation πf in length at most L(π) · 2O(d·W(π)) and width at most
O
(
d ·W(π)

)
and total space at most TotSp(π) · exp

(
O(d ·W(π))

)
. Lemma 4.3 follows.

4.4 Translating Refutations of Substitution Formulas F [fd] to Refutations of F

We next prove Lemma 4.6. Let us use the convention that D and D denote clause sets and clauses derived
from F [fd] while C and C denote clause sets and clauses derived from F .

Let us also overload the notation and write D � C, D 2 C, and D B C for C = C+ ∨ C− when
the corresponding implications hold or do not hold for D with respect to

∨
x∈C+fd(~x) ∨

∨
y∈C−¬fd(~y)

(with precise implication B defined as in Definition 4.4). Note that it will always be clear when we use the
notation in this overloaded sense since D and C are defined over different sets of variables.

Recall from Definition 4.5 that projF (D) =
{
C
∣∣∃DC ⊆ D s.t. DC B

∨
x∈C+fd(~x) ∨

∨
y∈C−¬fd(~y)

}
is the set of clauses projected by D. In the spirit of the notational convention just introduced, we will let Ct

be a shorthand for projF (Dt).
Suppose now that πf =

{
D0, . . . , Dτ

}
is a resolution refutation of F [fd] for some arbitrary unsatisfiable

CNF formula F and some arbitrary non-constant function fd.
The first two bullets in Lemma 4.6 are immediate. For D0 = ∅ we have C0 = projF (D0) = ∅, and it is

easy to verify that Dτ = {0} yields Cτ = projF (Dτ) = {0}. As an aside, we note that the empty clause
will have appeared in Ct = projF (Dt) earlier, namely for the first t such that Dt is contradictory.

The tricky part is to show that all transitions from Ct−1 = projF (Dt−1) to Ct = projF (Dt) can be
performed in such a way that the variable space in our refutation under construction π : F ` 0 never exceeds
max

{
VarSp(Ct−1), VarSp(Ct)

}
during the intermediate derivation steps needed in π. The proof is by

a case analysis of the derivation steps. Before plunging into the proof, let us make a simple but useful
observation.

27

UNDERSTANDING SPACE IN PROOF COMPLEXITY

Observation 4.8. Using the overloaded notation just introduced, if Dt � C then C = C+∨C− is derivable
from Ct = projF (Dt) by weakening.

Proof. Pick C+
1 ⊆ C+ and C−

2 ⊆ C− minimal so that D � C+
1 ∨ C−

2 still holds. Then by definition
D B C+

1 ∨C−
2 so C+

1 ∨C−
2 ∈ Ct and C ⊇ C+

1 ∨C−
2 can be derived from Ct by weakening as claimed.

Consider now the rule applied in πf at time t to get from Dt−1 to Dt. We analyze the three possible
cases—inference, erasure and axiom download—in this order.

Inference Suppose Dt = Dt−1 ∪ {D}. Since Dt−1 ⊆ Dt, it is immediate from Definition 4.5 that no
clauses in Ct−1 can disappear at time t, i.e., Ct−1 \ Ct = ∅. There can appear new clauses in Ct, but by
Observation 4.8 all such clauses are derivable by weakening from Ct−1 since Dt−1 implies D and hence
all of Dt. During such weakening moves the variable space increases monotonically and is bounded from
above by VarSp(Ct).

Erasure Since Dt ⊆ Dt−1, it is immediate from Definition 4.5 that no new clauses can appear at time t.
Any clauses in Ct−1 \ Ct can simply be erased, which decreases the variable space monotonically.

Axiom download This is the only place in the case analysis where we need to do some work. Suppose
that Dt = Dt−1 ∪ {D} for some axiom clause D ∈ A[fd], where A in turn is an axiom of F . If C ∈ Ct\Ct−1

is a new projected clause, D must be involved in projecting it so there is some subset D ⊆ Dt−1 such that

D ∪ {D} B C . (4.10)

Also note that if Dt−1 � C we are done since C can be derived from Ct−1 by weakening, so we can assume
that

Dt−1 2 C . (4.11)

We want to show that all clauses C satisfying (4.10) and (4.11) can be derived from Ct−1 = projF (Dt−1)
by downloading A ∈ F , making inferences, and then possibly erasing A, and that this can be done without
the variable space exceeding max

{
VarSp(Ct−1), VarSp(Ct)

}
. The key to our proof is the next lemma.

Lemma 4.9. Suppose that the clause set D over Vars(F [fd]), the clause D ∈ A[fd], and the clause C over
Vars(F) are such that D ∪ {D} B C but D 2 C. Then if we write the clause A as A = a1 ∨ · · · ∨ ak,
it holds for every ai ∈ A \ C that there is a clause subset Di ⊆ D and a subclause Ci ⊆ C such that
Di B Ci ∨ ai. That is, all clauses C ∨ ai for ai ∈ A \C can be derived from C = projF (D) by weakening.

Proof. Consider any truth value assignment α such that α(D) = 1 but α(
∨

x∈C+fd(~x)∨
∨

y∈C−¬fd(~y)) =
0. Such an assignment exists since D 2 C by assumption. Also, since by assumption D ∪ {D} B C we
must have α(D) = 0. If A = a1 ∨ · · · ∨ ak, we can write D ∈ A[fd] on the form D = D1 ∨ · · · ∨ Dk

for Di ∈ ai[fd] (compare with Equation (4.6)). Fix any a ∈ A and suppose for the moment that a = x
is a positive literal. Then α(Di) = 0 implies that α(fd(~x)) = 0. By Observation 3.13, this means that
α(¬fd(~x)) = 1. Since exactly the same argument holds if a = y is a negative literal, we conclude that

D �
∨

x∈(C∨ai)+
fd(~x) ∨

∨
y∈(C∨ai)−

¬fd(~y) (4.12)

or, rewriting (4.12) using our overloaded notation, that

D � C ∨ ai . (4.13)

If ai ∈ C, the clause C ∨ ai is trivially true and thus uninteresting, but otherwise we pick Di ⊆ D and
Ci ⊆ C minimal such that (4.13) still holds (and notice that since D 2 C, the literal ai cannot be dropped
from the implication). Then by Definition 4.5 we have Di B Ci ∨ ai as claimed.

28

4 Substitution Space Theorem for Resolution

We remark that Lemma 4.9 can be seen to imply that Vars(A) ⊆ Vars(Ct) = Vars(projF (Dt)). For
x ∈ Vars(A) ∩ Vars(C) this is of course trivially true, but for x ∈ Vars(A) \ Vars(C) Lemma 4.9
tells us that already at time t− 1, there is a clause in Ct−1 = projF (Dt−1) containing x, namely the
clause Ci ∨ ai found in the proof above. Since Dt ⊇ Dt−1, this clause does not disappear at time t. This
means that if we download A ∈ F in our refutation π : F ` 0 under construction, we have VarSp(Ct−1 ∪
{A}) ≤ VarSp(Ct). Thus, we can download A ∈ F , and then possibly erase this clause again at the end
of our intermediate resolution derivation to get from Ct−1 to Ct, without the variable space ever exceeding
max

{
VarSp(Ct−1), VarSp(Ct)

}
.

Let us now argue that all new clauses C ∈ Ct \ Ct−1 can be derived from Ct−1 ∪ {A}. If A \ C = ∅,
then the weakening rule applied on A is enough. Suppose therefore that this is not the case and let A′ =
A \ C =

∨
a∈Lit(A)\Lit(C) a. Appealing to Lemma 4.9 we know that for every a ∈ A there is a Ca ⊆ C

such that Ca ∨ a ∈ Ct−1. Note that by assumption (4.11) this means that if x ∈ Vars(A) ∩ Vars(C), then
x occurs with the same sign in A and C, since otherwise we would get the contradiction D � C ∨ a = C.
Summing up, Ct−1 contains Ca ∨ a for some Ca ⊆ C for all a ∈ Lit(A) \Lit(C) and in addition we know
that Lit(A) ∩ {a | a ∈ Lit(C)} = ∅. Let us write A′ = a1 ∨ · · · ∨ am and do the following weakening
derivation steps from Ct−1 ∪ {A}:

A C ∨A′

Ca1 ∨ a1 C ∨ a1

Ca2 ∨ a2 C ∨ a2

...

Cam ∨ am C ∨ am

(4.14)

Then resolve C ∨A′ in turn with all clauses C ∨ a1, C ∨ a2, . . . , Cam ∨ am, finally yielding the clause C.
In this way all clauses C ∈ Ct \ Ct−1 can be derived one by one, and we note that we never mention

any variables outside of Vars(Ct−1 ∪ {A}) ⊆ Vars(Ct) in these derivations.

Wrapping up the Proof of Lemma 4.6 We have proven that no matter what derivation step is made
in the transition Dt−1 Dt, we can perform the corresponding transition Ct−1 Ct for our projected
clause sets without the variable space going above max

{
VarSp(Ct−1), VarSp(Ct)

}
. Also, the only time

we need to download an axiom A ∈ F in our projected refutation π of F is when πf downloads some axiom
D ∈ A[fd]. This completes the proof of Lemma 4.6.

4.5 Lifting Variable Space Lower Bounds to Clause Space Lower Bounds

Finally, the turn has come to the proof of Lemma 4.7. Recall the convention that x, y, z refer to variables
in F while x1, . . . , xd, y1, . . . , yd, z1, . . . , zd refer to variables in F [fd]. Also recall that we use overloaded
notation D � C, D 2 C, and D B C for C = C+ ∨ C− (where C+ =

∨
x∈C x and C− =

∨
y∈C y) when

the corresponding implications hold or do not hold for D with respect to
∨

x∈C+fd(~x) ∨
∨

y∈C−¬fd(~y).
We start with an intuitively plausible lemma saying that for all variables x appearing in some clause

projected by D, the clause set D itself must contain at least one of the variables x1, . . . , xd.

Lemma 4.10. Suppose that D is a set of clauses derived from F [fd] and that C ∈ projF (D). Then for all
variables x ∈ Vars(C) it holds that {x1, . . . , xd} ∩ Vars(D) 6= ∅.

Proof. Fix any D′ ⊆ D such that D precisely implies C in the sense of Definition 4.4. By this definition, for
all z ∈ Vars(C) we have D′ 2 C \ {z, z}. Suppose that z appears as a positive literal in C (the case of a
negative literal is completely analogous). This means that there is an assignment α such that α(D′) = 1 but

29

UNDERSTANDING SPACE IN PROOF COMPLEXITY

α
(∨

x∈C+\{z}fd(~x) ∨
∨

y∈C−¬fd(~y)
)

= 0. Since D′ B C, it must hold that α(fd(~z)) = 1. Modify α into
α′ by changing the assignments to z1, . . . , zd in such a way that α′(fd(~z)) = 0. Then α′

(∨
x∈C+fd(~x) ∨∨

y∈C−¬fd(~y)
)

= 0, so we must have α′(D′) = 0. Since we only changed the assignments to (a subset of)
the variables z1, . . . , zd, the clause set D′ ⊆ D must mention at least one of these variables.

With Lemma 4.10 in hand, we are ready to prove Lemma 4.7. Note that everything said so far in
Section 4 (in particular, all of the proofs) applies to any non-constant Boolean function. In the proof of
Lemma 4.7, however, it will be essential that we are dealing with non-authoritarian functions, i.e., functions
fd having the property that no single variable xi can fix the the value of fd(x1, . . . , xd).

Suppose that D is a set of clauses derived from F [fd] and write V ∗ = Vars(projF (D)) to denote the set
of all variables in Vars(F) appearing in any clause projected by D. We want to prove that Sp(D) = |D| >
|V ∗| provided that fd is non-authoritarian.

To this end, consider the bipartite graph with the clauses in D labelling the vertices on the left-hand side
and variables in V ∗ labelling the vertices on the right-hand side. We draw an edge between D ∈ D and
x ∈ V ∗ if Vars(D) ∩ {x1, . . . , xd} 6= ∅. By Lemma 4.10 it holds that Vars(D) ∩ {x1, . . . , xd} 6= ∅ for all
variables x ∈ V ∗, so in particular every variable x ∈ V ∗ is the neighbour of at least one clause D ∈ D. Let
us write N(D) to denote the neighbours of a left-hand vertex D and extend this notation to sets of vertices
by taking unions.

We claim that if V ∗ = Vars(projF (D)) 6= ∅, then there must exist some clause set D′ ⊆ D satisfying
|D′| > N(D′). Suppose on the contrary that |D′| ≤ N(D′) for all D′ ⊆ D. Then by Hall’s marriage theorem
there is a matching of the clauses in D into the variable set V ∗. Assume that C = C+ ∨ C− is any clause
projected by D (such a clause exists since V ∗ 6= ∅). Then surely

D �
∨

x∈C+fd(~x) ∨
∨

y∈C−¬fd(~y) (4.15)

(there is even a subset of D such that this implication is precise). But using the matching between D and V ∗,
we can satisfy D without assigning values to more than one variable xi ∈ Vars(D) corresponding to any
x ∈ Vars(F). Since fd is non-authoritarian, we can then extend this assignment to another assignment
falsifying fd(~x) for all x ∈ C+ and satisfying fd(~y) for all y ∈ C−. This means that our assignment
satisfies the left-hand side of the implication (4.15) but falsifies the right-hand side, which is a contradiction.
The claim follows.

Hence, fix any largest subset D1 ⊆ D such that |D1| > N(D1). Clearly, if D1 = D we are done
(remember that N(D) = V ∗), so suppose D1 6= D. In much the same way as above, we show that this
assumption leads to a contradiction.

Let D2 = D \ D1 6= ∅ and define the vertex sets V ∗
1 = N(D1) and V ∗

2 = V ∗ \ V ∗
1 . Note that we

must have V ∗
2 ⊆ N(D2) since N(D) = N(D1) ∪ N(D2) = V ∗. By the maximality of D1 it must hold

for all D′ ⊆ D2 that |D′| ≤
∣∣N(D′) \ V ∗

1

∣∣, because otherwise D′′ = D1 ∪ D′ would be a larger set with
|D′′| > |N(D′′)|. But this implies that, again by Hall’s marriage theorem, there is a matching M of D2 into
N(D2) \ V ∗

1 = V ∗
2 . Consider any clause C ∈ projF (D) such that Vars(C) ∩ V ∗

2 6= ∅ and let D′ ⊆ D be
any clause set such that

D′ B
∨

x∈C+fd(~x) ∨
∨

y∈C−¬fd(~y) (4.16)

(the existence of which is guaranteed by Definition 4.5). We claim that we can construct an assignment α
that makes D′ true but

∨
x∈C+fd(~x) ∨

∨
y∈C−¬fd(~y) false. This is clearly a contradiction, so if we can

prove this claim it follows that our assumption D1 6= D is false and that it instead must hold that D1 = D
and thus

∣∣N(D)
∣∣ = ∣∣V ∗∣∣ < |D|, which proves the theorem.

To establish the claim, let D′
i = D′ ∩ Di for i = 1, 2 and let Ci = C+

i ∨ C−
i for

C+
i =

∨
x∈C
x∈V ∗

i

x and C−
i =

∨
y∈C
y∈V ∗

i

y (4.17)

30

5 Substitution Space Theorem for k-DNF Resolution

and i = 1, 2. We construct the assignment α satisfying D′ but falsifying
∨

x∈C+fd(~x) ∨
∨

y∈C−¬fd(~y) in
three steps:

1. Since C+
1 ∨ C−

i = C1 $ C by construction (recall that we chose our clause C in such a way that
Vars(C) ∩ V ∗

2 6= ∅), the minimality condition in Definition 4.5 yields that

D′
1 2

∨
x∈C+

1
fd(~x) ∨

∨
y∈C−

1
¬fd(~y) (4.18)

and hence we can find a truth value assignment α1 that sets D′
1 to true, all fd(x1, . . . , xd), x ∈

C+
1 , to false, and all fd(y1, . . . , yd), y ∈ C−

1 , to true. Note that α1 need only assign values to
{z1, . . . , zd | z ∈ Vars(C1)}.

2. For D′
2, we use the matching M into V ∗

2 found above to pick a distinct variable x(D) ∈ Vars(F) for
every D ∈ D′

2 and then a variable x(D)i ∈ Vars(F [fd]) appearing in D, the existence of which is
guaranteed by the edge between D and x(D). Let α2 be the assignment that sets all these variables
x(D)i to the values that fix all D ∈ D′

2 to true. We stress that α2 assigns a value to at most one
variable x(D)i for every x(D) ∈ Vars(F).

3. But since fd is non-authoritarian, this means that we can extend α2 to an assignment to all vari-
ables x(D)1, . . . , x(D)d that still satisfies D′

2 but sets all fd(x1, . . . , xd), x ∈ C+
2 , to false and all

fd(y1, . . . , yd), y ∈ C−
2 , to true.

Hence, α = α1 ∪ α2 is an assignment such that α(D′) = 1 but α(
∨

x∈C+fd(~x) ∨
∨

y∈C−¬fd(~y)) = 0,
which proves the claim. This concludes the proof of Lemma 4.7.

Since Lemmas 4.3, 4.6, and 4.7 have now all been established, the proof of Theorem 2.1 is complete.

5 Substitution Space Theorem for k-DNF Resolution

To extend the substitution space theorem to k-DNF resolution, we construct a proof along very much the
same lines as the proof for standard resolution in Section 4. The details of the proof gets much trickier,
however, since the ideas used to obtain the (essentially tight) analysis for Theorem 2.1 no longer work.
Indeed, they provably break down in view of the recent results in [NR09]. Instead, new, somewhat cruder,
tools have to be developed.

Before proving the theorem, let us state it in its full generality with explicit constants. To parse the
theorem more easily, the reader might be helped by thinking of c, d, and k as constants. (This is the way the
result was stated in Theorem 2.2, and this is also the case that will be of interest in our applications of the
theorem).

Theorem 5.1. Let F be any unsatisfiable c-CNF formula and fd be any non-constant Boolean function of
arity d. Then the following two properties hold for the substitution formula F [fd]:

1. If F can be refuted in syntactic standard resolution in length L and total space s simultaneously, then
F [fd] can be refuted in syntactic R(d) in length L·d4cd ·4cd and total space s·d2d+(cd+2)3·4cd+O(1)
simultaneously.

2. If fd is k-non-authoritarian and F [fd] can be refuted by a semantic R(k)-refutation that requires for-
mula space s and makes L axiom downloads, then F can be refuted by a syntactic standard resolution
refutation that requires variable space at most (2sk)k+1 ·4k2d and makes at most L axiom downloads.

31

UNDERSTANDING SPACE IN PROOF COMPLEXITY

The proof of the first part of Theorem 5.1 is straightforward, if a bit technically involved, and closely
follows the corresponding proof for standard resolution. The second part of the proof is also very similar
up to the point when we need to relate the formula space in R(k)-refutations of the substituted formula to
the variable space of resolution refutations of the original formula. This boils down to bounding how many
different Boolean functions of a particular form can be implied by a small set of k-DNF formulas.

A related, more narrow, problem, although strictly speaking not a special case of this general problem,
is how many variables can appear in a minimally unsatisfiable set of k-DNF formulas of a given size (Defi-
nition 2.12 on page 12). Although there is no formal connection between the two problems as far as we are
aware, the proof for standard resolution in Section 4 relies heavily on the techniques to prove tight bounds
for minimally unsatisfiable CNF formulas. In this section, we find that this is the case for k-DNF resolution
as well, as our techniques for proving bounds on minimally unsatisfiable k-DNF sets carry over to the proof
of the R(k) substitution space theorem. And interestingly enough, the proof in [NR09] that the analysis of
our techniques for R(k) is almost tight, and hence that any further substantial improvements seem to require
fundamentally different ideas, are also derived from bounds on minimally unsatisfiable k-DNF sets.

Hence, minimal unsatisfiability for k-DNF sets appears to be an interesting and useful concept. Since
in addition the underlying combinatorial problem is natural and appealing, we do not focus exclusively on
k-DNF resolution in this section but also discuss our results for this purely combinatorial problem in some
detail below.

5.1 Proof of R(k) Substitution Space Theorem—Main Components

Following the pattern set in Section 4, let us start by presenting the main components of the proof and how
they fit together to yield the theorem. As the reader will see, on a high level the proof is very similar to that
of Theorem 2.1, but there are also some crucial differences in the details that we comment on below.

The first part of Theorem 5.1, which is Lemma 5.2 below, is established in Section 5.2.

Lemma 5.2. Let F be any c-CNF formula and fd : {0, 1}d 7→ {0, 1} be any non-constant Boolean func-
tion. Then it holds that if F can be refuted in standard syntactic resolution in length L and total space s
simultaneously, the substitution formula F [fd] can be refuted in syntactic R(d) in length L · d4cd · 4cd and
total space s · d2d + (cd + 2)3 · 4cd + O(1) simultaneously.

To prove the second part of the theorem, we need to show how to convert a R(k)-refutation πf of F [fd]
into a resolution refutation π of F such that the variable space of π is bounded by the space of πf , raised
to the power of k + 1. This part of the proof splits into two components. In Lemma 5.4 we claim that
each k-DNF set D ∈ πf can be “projected” onto a set of clauses over Vars(F), such that the sequence of
projected clause sets forms the “backbone” of a resolution refutation of F . This is just as in Theorem 2.1,
except that here we lose a constant factor in the space bound when completing the backbone to a full proof.
Then, in Lemma 5.5, we claim that if C is a set of clauses projected by a k-DNF set D, the variable space of
C is at most ≈ |D|k+1.

The reason that we lose a constant factor when filling in the backbone is that the definition of projected
clauses for R(k), though still phrased in terms of precise implications (Definition 4.4 on page 25), is slightly
different from (the stronger) Definition 4.5. This in turn depends on the fact that we cannot get this latter
definition to work in the proof of Lemma 5.5 below.

Definition 5.3 (Projections by R(k)-derivations). Let F be a CNF formula and fd a non-constant Boolean
function, and suppose that D is a k-DNF set over Vars(F [fd]). Writing C = C+ ∨ C− as a disjunction of
the positive and negative literals, respectively, we say that D projects the clause C if D B

∨
x∈C+ fd(~x) ∨∨

y∈C− ¬fd(~y) holds. We let

proj ∗F (D) =
{
C
∣∣D B ∨x∈C+fd(~x) ∨

∨
y∈C−¬fd(~y)

}
(5.1)

32

5 Substitution Space Theorem for k-DNF Resolution

denote the set of all clauses that D projects on F .

The difference from Definition 4.5 is that here, projected clauses are defined in terms of implications by
the whole formula set D and not by arbitrary subsets of D. Definition 4.5 is stronger than Definition 5.3 in
that it gives us more projected clauses, which can be used to prove sharper lower bounds, but as mentioned
above it turns out to be a bit too strong for our techniques to work in the k-DNF resolution case.

Informally, the next lemma states that the projection of a k-DNF resolution refutation of F [fd] is es-
sentially a refutation of the original formula F in standard resolution. The proof of this lemma appears in
Section 5.3.

Lemma 5.4. Let k ≥ 1. Suppose that πf =
{
D0, . . . , Dτ

}
is a R(k)-refutation of F [fd] for some arbitrary

unsatisfiable CNF formula F and some arbitrary non-constant function fd. Then the sets of projected
clauses

{
proj ∗F (D0), . . . , proj ∗F (Dτ)

}
form the “backbone” of a resolution refutation π of F in the sense

that:

• proj ∗F (D0) = ∅.

• proj ∗F (Dτ) = {0}.

• All transitions from proj ∗F (Dt−1) to proj ∗F (Dt) for t ∈ [τ] can be accomplished by axiom downloads
from F , resolution inferences, erasures, and possibly resolution weakening steps in such a way that the
variable space in π during these intermediate steps never exceeds 2 ·maxD∈πf

{
VarSp(proj ∗F (D))

}
.

• The only time π performs a download of some axiom C in F is when πf downloads some axiom
D ∈ C[fd] in F [fd].

The following statement is the main tecnical novelty in the extension of the substitution space theorem
to k-DNF resolution. It is proven in Section 5.4.

Lemma 5.5. Suppose that fd is a k-non-authoritarian function of arity d > k and that D is a k-DNF set
over Vars

(
F [fd]

)
for some CNF formula F . Then it holds that VarSp(proj ∗F (D)) ≤ 4k2d · (k · Sp(D))k+1.

Putting together Lemmas 5.2, 5.4, and 5.5, the R(k) substitution space theorem follows exactly as in
the proof of the corresponding theorem for resolution in Section 4.2. We leave it to the reader to fill in the
details and instead turn to establishing the lemmas.

5.2 Converting Resolution Refutations of F to R(k)-refutations of F [f]

To prove Lemma 5.2, we convert a resolution refutation π of F into a R(d)-refutation of the substituted
formula F [fd] while (roughly) preserving the length and total space simultaneously. This is done in two
steps. First, we substitute each positive literal x appearing in a clause C in π with some d-DNF representing
fd(~x) and similarly substitute ¬x with a d-DNF representing ¬fd(~x). The sequence of sets of clauses that
was π is transformed under this substitution into a sequence of d-DNF sets that forms the “backbone” of
a R(d)-refutation. Then, we convert the backbone into a proper R(d)-refutation by simulating resolution
inferences and axiom downloads. Consider a resolution inference step in π which involved inferring C ∨C ′

from C ∨ x,C ∨ ¬x. After substitution what we need to show is that C[fd] ∨ C ′[fd] can be inferred from
C[fd] ∨ x[fd], C ′[fd] ∨ ¬x[fd] in R(d). This is shown in Lemma 5.6 below. The simulation of an axiom
download is similarly addressed in Lemma 5.7, where we show that we can derive any d-DNF representation
of A[fd] for an axiom A ∈ F via a R(k)-derivation of bounded length and space. Given these two lemmas,
the proofs of which follow below, we can complete the proof of Lemma 5.2.

33

UNDERSTANDING SPACE IN PROOF COMPLEXITY

Lemma 5.6. Suppose D1, D2 are two k-DNF formulas over r variables. If D1∧D2 � 0, then the k-DNF set
{D1, D2} has a R(k)-refutation of length |D1| · |D2| and total space at most 2(TotSp(D1) + TotSp(D2))
simultaneously.

Lemma 5.7. Suppose F is a CNF formula and D is a k-DNF formula and |Vars(F) ∪ Vars(D)| = r. If
F � D then D can be derived from F via a R(k)-derivation of length less than k|D| · 2r+1 and total space
at most ((r + 2)TotSp(D))2 simultaneously.

Postponing the proofs for a moment, let us see how these two lemmas yield Lemma 5.2.

Proof of Lemma 5.2. Let π = {C0, . . . , Cτ} be a resolution refutation of the CNF formula F . Let πf =
{D0, . . . , Dτ} denote the sequence of d-DNF sets obtained by substituting π with fd in the following way.
We start by fixing for each literal a a d-DNF formula representing a[fd]. For a clause C =

∨
i ai appearing

in Ct, construct a d-DNF formula DC which represents C[fd] by taking the disjunction of the d-DNF
formulas representing ai. Finally, set Dt = {DC | C ∈ Ct}. In this way, every clause in Ct turns into a
d-DNF formula in Dt. Notice that the total space of Dt is less than d · 2d times the total space of Ct because
every literal appearing in Ct turns under substitution into a d-DNF with less than 2d terms. To complete the
proof of Lemma 5.2 it suffices to show for 0 ≤ t < τ that Dt+1 can be derived from Dt via a R(d)-derivation
of length ≤ d4cd · 4cd and extra total space (cd + 2)3 · 4cd + O(1). We divide into cases according to the
type of the derivation step at time t.

Erasure If Ct+1 = Ct \ {C} then by construction we have Dt+1 ⊂ Dt, so Dt+1 can be derived in R(d)
from Dt by erasures.

Axiom download Let A ∈ F be the axiom downloaded at time t + 1, i.e., Ct+1 = Ct ∪ {A}. Let A′ be
an arbitrary d-DNF representation of A[fd], recalling that A[fd] is a set of axioms of F [fd]. This set
involves at most c · d many variables and A[fd] � A′. Furthermore, A′ is a DNF formula over 2cd
many literals so it has at most 4c·d many terms and has total space at most cd4cd. Applying Lemma 5.7
we conclude A′ can be derived from A[fd] in length d4cd · 2cd+1 and variable space (cd + 2)3 · 4cd.

Inference Suppose Ct+1 = Ct ∪{C ∨C ′} where C ∨C ′ is derived from C ∨x,C ′ ∨¬x ∈ Ct. Notice that
(C ∨ x)[fd] = (C[fd])∨x[fd] and (C ′ ∨ ¬x)[fd] = C ′[fd]∨¬x[fd]. Since we can bound the number
of terms in a d-DNF formula representing x[fd] by 2d, by Lemma 5.6 we can derive the empty DNF
formula 0 from d-DNF formulas representing x[fd] and ¬x[fd] via a derivation of length at most 22d

and total space at most 22d+1. Applying weakening steps, when necessary, to the formulas involved
in this refutation, we conclude that the d-DNF formula representing (C ∨ C ′)[fd] can be derived from
the d-DNF formulas representing (C ∨ x)[fd] and (C ′ ∨ ¬x)[fd] via a derivation of length at most
22d and 22d+1 extra total space.

Weakening Suppose Ct+1 =Ct∪{C∨C ′} for C ∈ Ct. Then the d-DNF formula representing (C ∨ C ′)[fd]
can be derived in a single step from the d-DNF formula representing C[fd] using weakening.

We have shown how to complete the conversion of πf into a R(d)-refutation of F [fd] that is longer by at
most a factor of d4cd · 2cd and uses at most (cd + 2)3 · 4cd + O(1) extra total space. Taking into account the
upper bound of S · d · 2d on the total space of Dt, the lemma now follows.

It remains to prove Lemmas 5.6 and 5.7. We attend to them in order.

Proof of Lemma 5.6. First we claim that for every term T ∈ D1 and for every term T ′ ∈ D2 we have

T ′ ∩ {¬a | a ∈ T} 6= ∅ . (5.2)

34

5 Substitution Space Theorem for k-DNF Resolution

To see this, assume by way of contradiction that (5.2) fails to hold for T ∈ D1 and T ′ ∈ D2. Consider the
minimal restriction ρ that satisfies T . We see that ρ satisfies D1 and can be extended to an assignment that
satisfies T ′ as well, contradicting the assumption D1 ∧D2 � 0.

The refutation of {D1, D2} proceeds by sequentially removing from D1 all its terms. Let T be a term
of D1 that we wish to remove. By (5.2) each term T ′ ∈ D2 contains a literal ¬a such that a ∈ T . Apply
∧-elimination to replace T ′ by ¬a. Repeating this process for each term T ′ ∈ D2 we derive from D2 in
extra total space at most TotSp(D2) the clause

∨
a∈T ¬a. Resolve this clause with D1 to remove T . This

step requires extra total space at most TotSp(D1)+TotSp(D2). Repeat the process for all T ∈ D1 to obtain
the empty DNF. This process required total space at most 2(TotSp(D1) + TotSp(D2)) and the refutation
length is |D1| · |D2| so the lemma follows.

Before giving the formal proof of Lemma 5.7, we explain the main ideas by working out a concrete
example. Suppose F is the CNF that expresses the exclusive-or function over k variables and let us derive,
in R(k), the DNF formula D that expresses the same exclusive-or over k variables. Recall that F has 2k−1

clauses, each of size k, and similarly D has 2k−1 terms of size k each. Our starting point is the observation
that whenever a CNF F implies a DNF D, it holds that if we pick any one literal from each term of D and
call this set of literals C, viewing it as a clause, then F � C. Indeed, if this were not the case we could find
an assignment that satisfied F but falsified C. But if C is falsified this means we have set one literal in each
term of D to false, hence D is set to false, contradicting F � D.

Now, to derive D from F we proceed as follows. Let us write D for the sake of notational convenience
as

D = (a1 ∧ a2 ∧ . . . ∧ ak) ∨ (b1 ∧ b2 ∧ . . . ∧ bk) ∨ . . . ∨ (z1 ∧ z2 ∧ . . . ,∧zk) ,

where a1, . . . , ak, b1, . . . , bk, . . . , zk are names of literals over the k variables of our exclusive or. (Notice
that many of these names refer to the same literal.) By the discussion in the previous paragraph we know
that

F � (a1 ∨ b1 ∨ . . . ∨ z1) .

By the implicational completeness of resolution we can derive this clause from F in resolution. Similarly,
we can derive each of the clauses

(a2 ∨ b1 ∨ . . . ∨ z1), . . . , (ak ∨ b1 ∨ . . . ∨ z1)

with the only difference being in the value of the very first literal in the clause. So using k − 1 applications
of the ∧-introduction rule we can obtain

((a1 ∧ a2 ∧ . . . ∧ ak) ∨ b1 ∨ . . . ∨ z1) .

Using the same strategy we can obtain the k − 1 formulas

((a1 ∧ a2 ∧ . . . ∧ ak) ∨ b2 ∨ . . . ∨ z1), . . . , ((a1 ∧ a2 ∧ . . . ∧ ak) ∨ bk ∨ . . . ∨ z1)

and once we have them, another sequence of k − 1 applications of ∧-introduction leads to

((a1 ∧ a2 ∧ . . . ∧ ak) ∨ (b1 ∧ b2 ∧ . . . ∧ bk) ∨ c1 ∨ . . . ∨ z1) .

Continuing in this fashion we keep increasing the number of size-k terms in our formula until we obtain all
of D.

Note that using this construction, we get a length bound that is doubly exponential in the number of
variables in downloaded axiom clauses. This happens when the number of terms in the DNF formula D is
exponential in the number of variables r, in which case the resulting length bound is of the form k2Ω(r)

. This

35

UNDERSTANDING SPACE IN PROOF COMPLEXITY

is so since our proof strategy outlined above derives each clause that is obtained by selecting one literal per
term of D. If, as in this example, D is the k-DNF that computes the exclusive or, the number of terms is
2k−1 and each term has size k, thus, we derive k2k−1

clauses in total. We note that this seems very inefficient
given the fact that there are only k underlying variables. Since we are not primarily interesting in optimizing
what in the end will be constant factors, we leave as an open problem the task of reducing the length bound
stated in Lemma 5.7 to a singly-exponential one and instead proceed with the formal proof of the lemma.

Proof of Lemma 5.7. As explained above, we derive from F in resolution a set of clauses that is equivalent
to the k-DNF formula D. From this set of clauses we derive D using a sequence of ∧-introduction inference
rule applications. The key idea is to do all of this in a space-efficient manner by deriving the clauses one
by one in a particular order and “merging” each derived clause into a DNF formula that, at the end of this
process, turns out to be D. Details follow.

Denote |D| by s. Suppose D =
∨s

i=1

∧ki
j=1 ai,j where ki ≤ k and ai,j denotes a literal (belonging to a

set of r variables). By the distributivity of disjunction over conjunction, D is equivalent to the CNF formula

GD :=
∧

j1,...,js∈[k1]×...×[ks]

s∨
i=1

ai,ji . (5.3)

Each clause of GD is implied by F because otherwise there would be an assignment satisfying F but
falsifying GD, thereby falsifying D as well, in contradiction to the assumption F � D. By the implicational
completeness of resolution (Proposition 3.8) there is a resolution derivation of each clause of GD from F .
This derivation has length less than 2r+1 and space at most (r + 2)2 because it involves at most r variables.
We now show how to construct D from the clauses of GD.

For s′ ∈ [s] and ~j = (js′+1, . . . , js) ∈ [ks′+1]× . . .× [ks], let

Ds′,~j =

 s′∨
i=1

ki∧
j=1

ai,j

 ∨
s∨

i=s′+1

ai,ji . (5.4)

We prove by induction on s′ ≥ 0 that Ds′,~j can be derived in total space

(
(r + 2)(TotSp(Ds′,~j))

)2
=

(
(r + 2)

(
s′∑

i=1

ki + (s− s′)

))2

(5.5)

and length less than ks′2r+1. The base case (s′ = 0) follows from the discussion in the previous paragraph
because D0,~j is a single clause that is implied by F . For the inductive step assume the claim holds for s′−1.
We show how to derive, for k′ = 1, . . . , ks′ , the formula

D′
k′ :=

s′−1∨
i=1

ki∧
j=1

ai,j

 ∨

 k′∧
j=1

as′,j

 ∨
s∨

i=s′+1

ai,ji (5.6)

in length less than k′ks′−12r+1 and total space

(
(r + 2)(TotSp(D′

k′))
)2 =

(
(r + 2)

(
s′−1∑
i=1

ki + k′ + (s− s′)

))2

. (5.7)

36

5 Substitution Space Theorem for k-DNF Resolution

This is shown by induction on k′ ≥ 1. For k′ = 1 notice (5.6) is nothing but Ds′−1,(1,js′+1,...,js) so by the
inductive hypothesis with respect to s′ − 1 it can be derived in length less than ks′−12r+1 and total space(

(r + 2)

(
s′−1∑
i=1

ki + (s− (s′ − 1))

))2

=

(
(r + 2)

(
s′−1∑
i=1

ki + k′ + (s− s′)

))2

(5.8)

For the inductive step assume we have derived D′
k′ using at most the total space stated in (5.7). Erase all

formulas in the memory but for D′
k′ and notice this remaining formula has total space

s′−1∑
i=1

ki + k′ + (s− s′) . (5.9)

Using the inductive hypothesis on s′ − 1 again, derive the DNF formulas′−1∨
i=1

ki∧
j=1

ai,j

 ∨ as′,k′+1 ∨
s∨

i=s′+1

ai,ji (5.10)

in total space as in (5.8) and length less than ks′−12r+1. Notice that the total total space used is bounded
by the sum given in (5.8) plus the sum in (5.9) (this latter space is required to save the formula D′

k′) so the
combined total space is at most

(
(r + 2)

(
s′−1∑
i=1

ki + (s− (s′ − 1))

))2

+
s′−1∑
i=1

ki + k′ + (s− s′)

≤

(
(r + 2)

(
s′−1∑
i=1

ki + (k′ + 1) + (s− s′)

))2

. (5.11)

Now combine D′
k′ and (5.10) using a single

∧
-introduction step to obtain Dk′+1. We see that Dk′+1 can be

derived in total space bounded by (5.8) and length less than k′ks′−12r+1. Summing over k′ = 1, . . . , k we
conclude that the derivation of Ds′+1,~j is of length less than k · ks′−12r+1 and total space

(
(r + 2)

(
s′+1∑
i=1

ki + (s− (s′ + 1))

))2

(5.12)

as claimed. Setting s′ = s and noticing TotSp(D) =
∑s

i=1 ki finishes the proof of the lemma.

The following easy corollary of the proofs above will also be useful to us.

Corollary 5.8. Let F be any c-CNF formula and fd : {0, 1}d 7→ {0, 1} be any non-constant Boolean func-
tion. Then it holds that if F can be refuted in standard syntactic resolution in length L and formula space s
simultaneously, the substitution formula F [fd] can be refuted in syntactic R(d) in length L · d4cd · 4cd and
formula space s + 2d + O(1) simultaneously.

Proof. This follows from inspection of the proofs of Lemmas 5.6 and 5.7, noting that every clause in the
standard resolution proof can be represented by a single corresponding d-DNF formula in the R(d)-proof.
We omit the details.

37

UNDERSTANDING SPACE IN PROOF COMPLEXITY

5.3 Projected R(k)-refutations Are (Essentially) Resolution Refutations

We next prove the converse of Lemma 5.2, namely that R(k)-refutations of substituted formulas can be
translated back to standard resolution refutations of the original formulas as claimed in Lemma 5.4.

This part of the substitution space theorem for k-DNF resolution is the one that is the most similar to
the theorem for standard resolution, and the proof of Lemma 5.4 closely follows the structure of that of the
corresponding Lemma 4.6. We note, though, that there are a few subtle differences between the two proofs
due to the fact that our definition of precise implication (Definition 5.3) is somewhat different than the one
used in the substitution space theorem for resolution (Definition 4.5). Definition 4.5 appears to be “the right
definition” and yields tighter results for standard resolution, but for technical reasons we are forced to relax
it a bit in order to obtain the results for k-DNF resolution.

We first fix some notation. In analogy with Section 4.4, we use the convention that D and D denote
k-DNF sets and k-DNF formulas over Vars(F [fd]) while C and C denote clause sets and clauses over
Vars(F). Let us also overload the notation and write D � C, D 2 C, and D B C for C = C+ ∨ C− when
the corresponding implications hold or do not hold for D with respect to

∨
x∈C+fd(~x) ∨

∨
y∈C−¬fd(~y).

Finally, let Ct be a shorthand for proj ∗F (Dt).
Suppose now that πf =

{
D0, . . . , Dτ

}
is a k-DNF resolution refutation of F [fd] for some arbitrary un-

satisfiable CNF formula F and some arbitrary non-constant function fd. The first two bullets in Lemma 5.4
are immediate. The hard part is to show that all transitions from Ct−1 = proj ∗F (Dt−1) to Ct = proj ∗F (Dt)
can be carried out in such a way that the variable space never exceeds VarSp(Ct−1) + VarSp(Ct) ≤
2 ·maxs∈[τ]

{
VarSp(Cs)

}
during the intermediate derivation steps needed. The proof is by a case analysis

of the derivation steps. In the case analysis we will again need Observation 4.8, which is easily seen to hold
in this context as well with exactly the same proof.

Consider now the rule applied in πf at time t to get from Dt−1 to Dt. We analyze the three possible
cases—inference, erasure and axiom download—in this order.

Inference Note that Dt−1 � Dt since all inference rules are sound. Moreover, since Dt ⊇ Dt−1 we have
Dt � Dt−1. It follows from Definition 5.3 that the set of projected clauses does not change, i.e., Ct−1 = Ct,
and nothing needs to be done.

Erasure If C ∈ Ct \ Ct−1 is a new projected clause appearing at time t as a result of an erasure Dt =
Dt−1 \ {D}, it clearly holds that Dt−1 � C. Hence, all such clauses C ∈ Ct \ Ct−1 can be derived by
weakening from Ct−1 by Observation 4.8, after which all clauses in Ct−1 \ Ct can be erased. During these
intermediate steps the variable space is upper-bounded by VarSp(Ct−1∪Ct) ≤ VarSp(Ct−1)+VarSp(Ct).

Axiom download This is the place in the case analysis where we need to do some serious work. Suppose
that Dt = Dt−1 ∪ {D} for some axiom clause D ∈ A[fd], where A in turn is an axiom of F . If C ∈ Ct\Ct−1

is a new projected clause then we must have Dt−1 2 C and Dt−1 ∪ {D} B C.
We want to show that all such clauses C can be derived from Ct−1 = proj ∗F (Dt−1) by downloading

A ∈ F , making inferences, and then possibly erasing A, and that this can be done without the variable space
exceeding VarSp(Ct−1) + VarSp(Ct). Our tool for proving this is the next technical lemma, which is the
analogue of Lemma 4.9.

Lemma 5.9. Let D be a k-DNF set derived from D ∈ F [fd], D ∈ A[fd] be an axiom clause of F [fd], and C
be a clause over Vars(F). If D, D, and C are such that D ∪ {D} B C but D 2 C. Then if A = a1∨· · ·∨ak,
for every ai ∈ A \ C there is a subclause Ci ⊆ C such that D B Ci ∨ ai. That is, all clauses C ∨ ai for
ai ∈ A \ C can be derived from C = proj ∗F (D) by weakening.

38

5 Substitution Space Theorem for k-DNF Resolution

Proof. Consider any assignment α such that α(D) = 1 but α(
∨

x∈C+fd(~x) ∨
∨

y∈C−¬fd(~y)) = 0. Such
an assignment exists since D 2 C by assumption. Also, since by assumption D ∪ {D} B C we must have
α(D) = 0. If A = a1∨· · ·∨as, we can write D ∈ A[fd] on the form D = D1∨· · ·∨Ds for Di ∈ ai[fd]. Fix
any a ∈ A and suppose a = x is a positive literal. Then α(Di) = 0 implies that α(fd(~x)) = 0 which means
that α(¬fd(~x)) = 1. Since exactly the same argument holds if a = y is a negative literal, we conclude
(using our overloaded notation) that

D � C ∨ ai . (5.13)

If ai ∈ C, the clause C ∨ ai is trivially true, but otherwise we pick Ci ⊆ C minimal such that (5.13) still
holds (where since D 2 C, the literal ai cannot be dropped from the implication). Then by Definition 5.3
we have D B Ci ∨ ai as claimed.

Lemma 5.9 tells us that every x ∈ Vars(A) \Vars(C) appears in some clause at time t− 1, namely, in
the clause Ci ∨ ai found in the proof above. Since in addition obviously Vars(A) ∩ Vars(C) ⊆ Vars(Ct)
this means that if we download A ∈ F in our refutation π : F ` 0 under construction, we have Vars(A) ⊆
Vars(Ct−1) ∪ Vars(Ct) and hence VarSp(Ct−1 ∪ {A}) ≤ VarSp(Ct−1) + VarSp(Ct).

Thus, we can download A ∈ F , and then possibly erase this clause again at the end of our intermediate
resolution derivation to get from Ct−1 to Ct, without the variable space ever exceeding VarSp(Ct−1) +
VarSp(Ct). The concluding argument that all new clauses C ∈ Ct \Ct−1 can be derived from Ct−1 ∪ {A}
is exactly as in Section 4.4, but using Lemma 5.9 instead of Lemma 4.9, and it is easily verified that we
never mention any variables outside of Vars(Ct−1) ∪ Vars(A) ∪ Vars(C) in these derivations.

Concluding the proof of Lemma 5.4, we have established that no matter what derivation step is made in
the transition Dt−1 Dt, we can perform the corresponding transition Ct−1 Ct for our projected clause
sets without the variable space going above VarSp(Ct−1)+VarSp(Ct) ≤ 2·maxD∈πf

{
VarSp(proj ∗F (D))

}
.

Also, the only time we need to download an axiom A ∈ F in our projected refutation π of F is when πf

downloads some axiom D ∈ A[fd]. This completes the proof of Lemma 5.4.

5.4 On the Size of Minimally Unsatisfiable and Minimally Implicating k-DNF Sets

We now prove the third and final lemma in Section 5.1, namely Lemma 5.5 bounding the number of vari-
ables appearing in a k-DNF set that minimally implies a formula. We first deal with the “special case” of
minimally unsatisfiable sets (Theorem 2.14 on page 13). The actual result in Lemma 5.5 needed to prove
the substitution space theorem follows the outline of this simpler case.

The following simple but important lemma will be used both in the proof of Theorem 2.14 and of
Lemma 5.5.

Lemma 5.10. Suppose that D is a k-DNF set that minimally implies a formula G. Then for every literal a
appearing in any term T in a k-DNF formula D ∈ D there exists a restriction ρ to Vars(D) satisfying

• |ρ| ≤ k|D|.

• D′�ρ = 1 for all D′ ∈ D \ {D}.

• (T \ {a})�ρ = 1.

• G�ρ 6= 1.

The point here is that, intuitively speaking, the restriction ρ is very nearly satisfying the k-DNF set D
(except for a single literal in a single term) but still has not fixed the formula G implied by D to true. Also,
ρ assigns values to comparatively few variables.

39

UNDERSTANDING SPACE IN PROOF COMPLEXITY

Proof of Lemma 5.10. By Definition 2.12, there exists an assignment α to Vars(D) such that α(D′) = 1
for all D′ ∈ D′ \ {D} and α(T \ {a}) = 1 but α(G) = 0. Let ρ be a restriction of minimal size that
agrees with α and satisfies the second and third bullet in the statement of the lemma. Such a restriction can
be found by selecting one term T ′ satisfied by α in each D′ ∈ D′ \ D and setting ρ to agree with α on⋃

j Vars(Tj) ∪ Vars(T \ {a}) and be unfixed elsewhere. Since |T ′| ≤ k we see ρ has size ≤ k|D′|. The
last bullet stated above holds because G(α) = 0 and ρ agrees with α on all variables fixed by ρ.

Let us now restate and then prove Theorem 2.14.

Theorem 2.14 (restated). Suppose that D is a minimally unsatisfiable k-DNF set. Then the number of
variables in D is at most |Vars(D)| ≤ (k · |D|)k+1.

Proof. Let D = {D1, . . . , Dm} be a k-DNF formula set with m = |D|. For S a set of literals, let Di(S) be
the set of terms in Di that contain S (recall that we identify a term with the set of literals appearing in it).
Formally,

Di(S) = {T ∈ Di : T ⊇ S} . (5.14)

Let Vars(Di(S)) denote the set of variables appearing in the set of terms Di(S). Our theorem follows from
the next claim.

Claim 5.11. If S is a set of literals and |S| = k − r then |Vars(Di(S))| ≤ k · (km)r.

Before proving the claim, let us complete the proof of the theorem. Take S = ∅ for which we get r = k
and notice that Di(∅) = Di. Claim 5.11 gives

|Vars(Di)| = |Vars(Di(∅))| ≤ k(km)k (5.15)

and summing over all all m formulas in the set we get

|Vars(D)| ≤
∑m

i=1|Vars(Di)| ≤ m · k(km)k = (km)k+1 = (k|D|)k+1 (5.16)

which concludes the proof.

Proof of Claim 5.11. By induction on r ≥ 0. For the base case of r = 0 notice |S| = k so there can be at
most one term in Di that contains all literals in S implying |Vars(Di(S))| is either 0 or k.

For the inductive step we may assume the existence of some term T ∈ Di that strictly contains S,
because otherwise S appears at most once as a term in Di and the claim holds as in the base case. Assuming
T) S, let a be a literal in T \S. Lemma 5.10 guarantees the existence of a restriction ρ of size at most km
such that Dj�ρ = 1 for all j ∈ [m], j 6= i and (T \ {a})�ρ 6= 0. By the unsatisfiability of D we conclude ρ

falsifies every term T ′ ∈ Di for which T ′) S. Since (T \ {a})�ρ = 1 and (T \ {a}) ⊇ S we conclude that
every term in Di that contains S must also contain a literal set to false by ρ, because otherwise ρ could be
extended to an assignment satisfying D. Recall that ¬ρ is the set of literals set to false by ρ. We have just
shown that

Di(S) =
⋃

a′∈¬ρ Di(S ∪ {a′}) . (5.17)

So to bound Vars(Di(S)) we need only bound Vars(Di(S ∪ {a′})) for all a′ ∈ ¬ρ. We use the inductive
hypothesis. Notice (¬ρ)∩S = ∅ because ρ satisfies S. Thus, for a′ ∈ ¬ρ we have |S ∪ {a′}| = k−(r−1).
Apply the inductive hypothesis to S ∪ {a′} to conclude

|Vars(Di(S))| ≤
∑

a′∈¬ρ|Vars(Di(S ∪ {a′}))| ≤ k(km)r−1 . (5.18)

Summing over all a ∈ ¬ρ and recalling that |¬ρ| = |ρ| ≤ km establishes the claim.

40

5 Substitution Space Theorem for k-DNF Resolution

To prove Lemma 5.5, we need to address two issues that did not appear in the previous proof. First,
our starting point is a k-DNF set D that is satisfiable and implies a set of projected clauses. We deal with
this by constructing a formula (to be denoted G′) that is the conjunction of all clauses projected by D. The
second issue, which is more subtle, is that D is a set of formulas defined over Vars(F [fd]) whereas the
clauses projected by D are over the different variable set Vars(F). The following definition provides some
convenient notation for connecting the two sets of variables.

Definition 5.12 (Shadow). For a a literal over a variable y ∈ Vars(F [fd]) let the shadow of a, denoted
V(a), be the variable x ∈ Vars(F) to which a belongs, i.e., the shadow of y is the variable x such that
y ∈ Vars(x[fd]). For T a set of literals (which we will later identified with a term or a restriction) let its
shadow be V(T) =

⋃
a∈T V(a) and for D a set of terms we define its shadow as V(D) =

⋃
T∈D V(T).

The following technical lemma, which will be proven later on, is the analog of Claim 5.11, accounting
for the needed modifications which were discussed in the beginning of this subsection. The claim in this
lemma is also the central point in our proof of Lemma 5.5. We now state the lemma and promptly use it to
prove Lemma 5.5.

Lemma 5.13. Suppose D = {D1, . . . , Dm} is a k-DNF set over Vars(F [fd]) and G is a CNF formula
over Vars(F) such that D minimally implies the substituted formula G′ = G[fd]. Suppose furthermore that
S ⊆ Vars(F) and |S| = k − r for r ≥ 0. Then, letting Di(S) = {T ∈ Di | V(T) ⊇ S} denote the set of
terms in Di whose shadow contains S, we have |V(Di(S))| ≤ k ·

(
4kd · k|D|

)r
..

Proof of Lemma 5.5. Let D = {D1, . . . , Dm} and G′ =
∧

C∈proj ∗F (D) C[fd]. Notice that by Definition 5.3,
G′ is of the form G′ = G[fd] for some CNF formula G over Vars(F) so G′ conforms to the assumptions of
Lemma 5.13.

First we argue that we may assume without loss of generality that D minimally implies G′. If this is not
the case, there must exist a term T appearing in Di ∈ D and a proper subterm T ′ $ T such that replacing
T by T ′ and calling the replaced k-DNF set by D′, we still have D′ � G′. In this case set D′ = D and repeat
the process. Notice that repeating the process does not increase the size of D (in fact, the size can shrink
if some k-DNF formula includes an empty term). Since each repetition of this process strictly shrinks the
number of literals in D (counted with repetitions), we see it must terminate. Upon termination the remaining
k-DNF set, denoted D̂, which is of size at most m, minimally implies G′.

Our next observation is that for every variable x appearing in G there must exist a literal a belonging to
it that appears in D̂. To see this, argue by way of contradiction. Let C = C ′ ∨ x be a clause appearing in G
and assume for simplicity that x is a positive literal (the case of a negative literal is identical). Conditions
(4.1a) and (4.1b) of Definition 5.3 imply that there exists an assignment α to Vars(F [fd]) such that α(D) =
α(x[fd]) = 1 but α(C ′[fd]) = 0. By construction, D � D̂ so α(D̂) = 1 as well. By assumption, no variable
belonging to x appears in D̂, so by changing the value of α on Vars(x[fd]) as to falsify x[fd] we reach an
assignment that satisfies D̂ but falsifies G[fd], contradiction. To simplify notation from here on we assume
without loss of generality that D minimally implies G′ and note for the record that

VarSp(G) = |Vars(G)| ≤ |V(D)| . (5.19)

Next, for D ∈ D we bound |V(D)| using Lemma 5.13 and get

|V(D)| = |V(D(∅))| ≤ k ·
(
4kd · k|D′|

)k ≤ k ·
(
4kd · k|D|

)k
. (5.20)

Summing over all D ∈ D gives

|V(D)| ≤
∑
D∈D

|V(D)| ≤ |D| · k ·
(
4kd · k|D|

)k = 4k2d ·
(
k|D|

)k+1 (5.21)

and this, together with (5.19), establishes Lemma 5.5.

41

UNDERSTANDING SPACE IN PROOF COMPLEXITY

Hence, all that remains now to complete the proof of Theorem 5.1 is to show Lemma 5.13. We end this
section by presenting a proof of this final technical lemma.

Proof of Lemma 5.13. By induction on r ≥ 0. For the base case of r = 0 we have |S| = k. Since Di is a
k-DNF formula then any term T for which V(T) ⊇ S must have V(T) = S. Thus, |V(Di(S))| = k and
the inequality claimed in the lemma holds.

For the inductive case of r > 0, let S̄ denote the set of literals that belong to S, and let terms(S)
denote the set of terms over S̄. We bound the number of terms by |terms(S)| = 22|Vars(S̄)| ≤ 4dk because
each term is a set of literals coming from a set of literals of size 2|Vars(S̄)|. Partition the terms in Di(S)
according to their intersection with S̄. Formally, for every s ∈ terms(S) let

Di(s) = {T ∈ Di(S) | T ∩ S̄ = s} . (5.22)

We have partitioned Di(S) into 4kd partitions so to prove the claim in the lemma it is sufficient to show for
each partition that

|V(Di(s))| ≤ km
(
k ·
(
4kdkm

)r−1
)

. (5.23)

Consider one term s ∈ terms(S). If V(Di(s)) = S then clearly (5.23) holds so we assume V(Di(s)) % S.
In this case there exists T ∈ Di such that V(T) % S which implies the existence of a literal a ∈ T \ S̄. Let
ρ be a restriction satisfying the properties of Lemma 5.10 with respect to a, T, D′ and G′.

Proposition 5.14. Every term T ′ appearing in Di(s) must include a literal a 6∈ S̄ whose shadow belongs to
the shadow of ρ as well. Formally, (V(T ′) \ S) ∩ (V(ρ) \ S) 6= ∅.

Proof of Proposition 5.14. By way of contradiction. Assume T ′ falsifies the proposition. By assumption T ′

has the same set of literals as T within S̄ and the third property of ρ listed in Lemma 5.10 implies ρ satisfies
all literals of T ′ inside S̄. Assuming that the intersection in the statement of the proposition is empty, we
can extend ρ to a restriction ρ′ that satisfies T ′ by setting at most k “new” variables on top of those set by
ρ. The crucial observation is that none of the “new” variables set by ρ′ have their shadow in V(ρ). More
to the point, suppose xi is a “new” variable whose value is set by ρ′ but is not set by ρ. Let x denote the
shadow of xi and let ~x = {x1, . . . , xd} be the set of variables whose shadow is x. Our crucial observation,
restated in different words, is that ρ does not set the value of any variable x1, . . . , xk. This is where the
k-non-authoritarianism of fd comes into play, because it implies that ρ′ cannot fix the value of fd(~x) by just
setting a single variable xi. But this means that we can extend ρ′ so that fd(~x) will obtain any truth value
we find fit. We conclude that the fourth property listed in Lemma 5.10 holds for ρ′ as well as for ρ. This
property implies that ρ′ can be extended to an assignment α′ such that G′(α′) = 0. So α′ is an assignment
that satisfies D′ but falsifies G′. We have reached a contradiction, and the proposition follows.

We continue with the proof of the inequality (5.23). The second property of Lemma 5.10 implies that
|V(ρ)| ≤ km. Thus, Proposition 5.14 shows that there exists a set Vs ⊆ Vars(F) \ S of size at most km
such that

V(Di(s)) ⊆
⋃

v∈Vs

V(Di(S ∪ {v})) . (5.24)

Since v 6∈ S we have |S ∪ {v}| = k − (r − 1) so we may apply the inductive hypothesis of the inequality
in Lemma 5.13 to S ∪ {v} which gives

|V(Di(s))| ≤
∑
v∈Vs

|V(Di(S ∪ {v}))| ≤ km
(
k ·
(
4kd · km

)r−1
)

. (5.25)

We have shown that the inequality (5.23) holds for all s ∈ terms(S). Summing over all terms, there are at
most 4kd of them. The lemma follows.

42

6 Reductions Between k-DNF Resolution and Pebbling

6 Reductions Between k-DNF Resolution and Pebbling

It is not hard to see how a black pebbling P of a DAG G can be used to construct a resolution refutation
of the pebbling contradiction PebG in Definition 3.12 in length and space upper-bounded by time(P) and
space(P), respectively. It is straightforward to show that this translation from pebblings to refutations
works even if we do an fd-substitution in the pebbling contradiction. We present a proof of this fact in
Section 6.1.

Using our new results in Section 4, we can prove the more surprising fact that there is also a fairly tight
reduction in the other direction: provided that the function fd is non-authoritarian, any resolution refutation
of PebG[fd] translates into a black-white pebbling of G with the same time-space properties (adjusting for
constant factors depending on the function fd and the maximal indegree of G). This new reduction is given
in Section 6.2.

In Section 6.3, corresponding versions of both theorems are given for k-DNF resolution. Finally, in
Section 6.4 we put everything together to prove a meta-theorem saying that for DAGs G having the right
time-space trade-off properties, we can prove that pebbling contradictions defined over such DAGs inherit
(roughly) the same trade-off properties. This will allow us to use pebbling time-space trade-offs to obtain
a wealth of strong trade-offs for both formula space and total space for standard resolution and R(k) in
Section 7.

6.1 From Black Pebblings to Resolution Refutations

In Lemma 2.3 we recalled that given any black-only pebbling P of a DAG G, we can mimic this pebbling
in a resolution refutation of PebG by deriving that a literal v is true whenever the corresponding vertex in G
is pebbled. This construction carries over also to substitution formulas PebG[fd] and we have the following
theorem.

Theorem 6.1. Let fd be a non-constant Boolean function of arity d and let G be a DAG with indegree at
most ` and unique sink. Then given any complete black pebbling P of G, we can construct a resolution
refutation π : PebG[fd]` 0 such that

L(π) ≤ time(P) · exp
(
O(d(` + 1))

)
,

W(π) ≤ d(` + 1) , and

TotSp(π) ≤ space(P) · exp
(
O(d(` + 1))

)
.

Proof. Follows directly from Lemma 2.3 and Theorem 2.1.

We note that in our applications we will have the function arity d and the DAG indegree ` fixed (for
standard resolution, we can pick d = ` = 2), which means that the bounds on length and space above turns
into L(π) = O

(
time(P)

)
and TotSp(π) = O

(
space(P)

)
. We also remark that for concrete functions fd,

such as for instance XOR over two variables, we can easily compute explicit upper bounds on the constants
hidden in the asymptotic notation if we so wish, and these constants are small.

6.2 From Resolution Refutations to Black-White Pebblings

In the other direction, i.e., from resolution refutations to pebbling strategies, the current paper establishes
the following correspondence for resolution (which is a slightly more general version of the statement made
in Theorem 2.4).

Theorem 6.2. Let f be any non-authoritarian Boolean function and G be any DAG with unique sink and
bounded indegree `. Then from any resolution refutation π : PebG[f]` 0 we can extract a black-white
pebbling strategy Pπ for G such that time(Pπ) ≤ (` + 1) · L(π) and space(Pπ) ≤ Sp(π).

43

UNDERSTANDING SPACE IN PROOF COMPLEXITY

Before proving this theorem, we want to highlight the fact that Theorems 6.1 and 6.2 are far from
being perfect converses of one another. This is so since the reduction in one direction uses black pebbling
(Theorem 6.1) while the reduction in the other direction is in terms of black-white pebbling (Theorem 6.2). It
was shown in [KS91] that there can be a quadratic gap in pebbling price depending on whether white pebbles
may be used or not. At first sight this might not look to bad, since [Mey81] proved that the gap can never
be worse than quadratic. However, the translation given in [Mey81] of a black-white pebbling in space s to
a black-only pebbling in space O

(
s2
)

incurs an exponential blow-up in pebbling time, destroying all hope
of obtaining nontrivial tradeoff results in this way. Hence, to get meaningful tradeoffs from Theorems 6.1
and 6.2 we need a graph family where either the trade-off properties with respect to black-white and black-
only pebbling are closely related, or where we can translate not only black but also black-white pebbling
strategies into resolution refutations in a way that preserves both time and space.

In this paper, we will use both of these approaches to get tight trade-off results. Some pebbling results
in the literature, notably several results in the monumental paper [LT82], have been shown to hold asymp-
totically for both black-white and black-only pebbling, and we also appeal to [Nor10b] to get some new
such graphs. Also, in certain limited settings it turns out to be possible to simulate black-white pebblings
in resolution, and for such graphs we can again get tight proof complexity trade-offs drawing on structural
results in [Nor10b]. These results hold only for a particular type of black-white pebblings, however, and it
remains an interesting open problems whether or not black-white pebblings can be simulated efficiently in
resolution in general.

Proof of Theorem 6.2. The proof is in three steps:

1. First, we convert π : PebG[f]` 0 to a refutation π′ of PebG such that VarSp(π′) ≤ Sp(π) and the
number of axiom downloads in π′ is upper-bounded by the number of axiom downloads in π. This is
Theorem 2.1.

2. The refutation π′ : PebG ` 0 can contain weakening moves, which we do not want, so we appeal
to Proposition 3.6 to get a refutation π′′ : PebG ` 0 without any weakening steps. By Lemma 3.10,
without loss of generality we can assume that π′′ is frugal (Definition 3.9). This part of the proof
just uses standard techniques, and the number of axiom downloads and the variable space can only
decrease when going from π′ to π′′.

3. Finally, we show that π′′ corresponds to a black-white pebbling strategy P for G such that time(P) is
upper-bounded by the number of axiom downloads and space(P) is upper-bounded by the maximal
number of variables occurring simultaneously in π′′. This final part was essentially proven by the first
author in [Ben09], but since we need a more detailed result than can be read off from that paper, we
present the full construction below for completeness.

Putting together these three steps, Theorem 6.2 clearly follows.

What remains is thus to show the following, slightly more detailed version of a lemma in [Ben09], which
serves to establish part 3 in the proof above.

Lemma 6.3 ([Ben09]). Let G be any DAG with unique sink and bounded indegree `, and suppose that
π is any resolution refutation of PebG without weakening that is also frugal. Then there is a black-white
pebbling strategy Pπ for G such that space(Pπ) ≤ VarSp(π) and time(Pπ) is at most (` + 1) times the
number of axiom downloads in π.

Proof. Given a refutation π =
{
C0 = ∅, C1, . . . , Cτ = {0}

}
of PebG, we translate every clause set Ct into

a black-white pebble configuration Pt = (Bt,Wt) using a slightly modified version of the ideas in [Ben09],
and then show that P = {P0, . . . , Pτ} is essentially a legal black-white pebbling of G as in the statement

44

6 Reductions Between k-DNF Resolution and Pebbling

of the lemma. The translation will satisfy the invariant that Bt ∪ Wt = Vars(Ct) which yields the upper
bound on pebbling space in terms of variable space. The first configuration C0 = 0 is thus translated into
P0 = (∅, ∅).

Suppose inductively that (Bt−1,Wt−1) has been constructed from Ct−1 and consider all the variables
x ∈ Vars(Ct) one by one. If x ∈ Vars(Ct) ∩ Bt−1, keep x in Bt. Otherwise, if x ∈ Lit(Ct) appears as a
positive literal, add x to Bt. Otherwise, if x ∈ Lit(Ct), add x to Wt. This is our translation of Ct into black
pebbles Bt and white pebbles Wt. To see that this translation yields a legal pebbling, consider the derivation
rule applied to get from Ct−1 to Ct.

Axiom download Suppose that we download the pebbling axiom or source axiom for a vertex v with imme-
diate predecessors u1, . . . , u`′ (where we have `′ = 0 for a source v). All predecessors ui not having
pebbles on them at time t − 1 get white pebbles. Then v gets a black pebble, if it did not already
have one. Note that this is a legal pebble placement since all immediate predecessors of v (if any)
have pebbles at this point. We remark that to black-pebble v, we might have to remove a white pebble
from v first, but since all immediate predecessors have pebbles on them this poses no problems. Also,
downloading the sink axiom places a white pebble on the sink z if this vertex is empty, which is a
legal pebbling move. By the bound on the indegree, this step involves placing at most ` + 1 pebbles.

Inference In this case Vars(Ct−1) = Vars(Ct), so nothing happens.

Erasure Suppose that the clause erased in C. Just apply the translation function. Suppose that this results
in a pebble on x disappearing. Then we have x ∈ Vars(C) but x /∈ Vars(Ct). Before being erased,
C has been resolved with some other clause (recall that π is frugal). But as long as we did not resolve
over the variable x, we will still have x ∈ Vars(Ct), and hence C must have been resolved over x at
some time t′ < t. At this time x appeared both positively and negatively in Ct′ , and in view of how
we defined the translation from clauses to pebbles, this means that the vertex x has contained a black
pebble in the interval [t′, t − 1]. Thus the pebble disappearing at time t is black, and black pebbles
can always be removed freely.

To conclude the proof, note that during the course of the refutation all axioms must have been down-
loaded at least once, since PebG is easily seen to be minimally unsatisfiable. In particular, this means that
the sink z is black-pebbled at some time during the proof, and we can decide to keep the black pebble on
z from that moment onwards. (This potentially adds one pebble extra to the pebbling space, but this is fine
since the inequality in Theorem 2.1 is strict so there is margin for this.)

Since every time an axiom is downloaded it must also be erased at some later time, we get the time
bound of (` + 1) times the number of axiom downloads (and in fact it is easy to see that this bound can be
improved by taking into account the inference steps, when nothing happens in the pebbling). The lemma
follows.

6.3 Reductions Between Pebbling and k-DNF Resolution

For k-DNF resolution, we get the following, slightly different, reductions. The next theorem is particularly
interesting when we have d = K +1, which we can get, for instance, by picking fd(x1, . . . , xd) =

⊕d
i=1xi.

Theorem 6.4. Let K be any fixed positive integer. Suppose that fd : {0, 1}d 7→ {0, 1} is any K-non-
authoritarian Boolean function and that G is any DAG with unique sink of size Θ(n) and bounded vertex
indegree `. Then the following holds.

1. The formula PebG[fd] is refutable in syntactic R(d) in length O(n) and formula space O(1).

45

UNDERSTANDING SPACE IN PROOF COMPLEXITY

2. For any k ≤ K, from any semantic R(k)-refutation π of PebG[fd] we can extract a black-white
pebbling Pπ of G such that time(Pπ) = O(L(π)) and space(Pπ) = O

(
Sp(π)k+1

)
.

Any constants hidden in the asymptotic notation depends only on K, d, and `.

Proof. Part 2 of the theorem follows just as in the proof of Theorem 6.2, but appealing to Theorem 5.1
for R(k) instead of Theorem 2.1 for standard resolution. For part 1, we use the result in [Ben09] that any
formula PebG can be refuted in linear length and constant clause space simultaneously, and then appeal to
Corollary 5.8.

6.4 Obtaining Resolution Trade-offs from Pebbling

Combining the theorems above, we can now prove that if we can find DAGs G with appropriate pebbling
trade-off properties, such DAGs immediately yield trade-off results in resolution. And as we will see in
Section 7, there are (explicitly constructible) DAGs with the needed properties.

In order not to clutter the statement of the next theorem, we assume that the indegree ` of the DAGs, the
arity d of the Boolean functions f, and the maximal size of terms K in the k-DNF resolution proof systems
that we consider are all fixed, so that any dependence on K, d and ` can be hidden in the asymptotical
notation. (This is not much of a restriction since we will always be able to choose ` = 2, and also we will
have d = K + 1 in the applications that we care about.)

Theorem 6.5 (R(k)-trade-offs from pebbling). Let K, d, and `, be arbitrary but fixed positive integers
such that K < d, and let f : {0, 1}d 7→ {0, 1} be some K-non-authoritarian function. Suppose that G is a
DAG with n vertices, unique sink, and bounded indegree `, and that g, h : N+ 7→ N+ are functions satisfying
the following properties:

• For every s ≥ Peb(G) there is a black pebbling P of G with space(P) ≤ s and time(P) ≤ g(s).

• For every s ≥ BW-Peb(G) and every black-white pebbling P of G with space(P) ≤ s it holds that
time(P) ≥ h(s).

Then the following holds for the substitution pebbling formula PebG[f]:

1. PebG[f] is a CNF formula of size Θ(n) and width O(1).

2. PebG[f] is refutable in standard syntactic resolution in length LR(PebG[f] ` 0) = O(n) and width
W(PebG[f] ` 0) = O(1) simultaneously, and is also refutable in syntactic resolution in total space
TotSpR(PebG[f] ` 0) = O

(
Peb(G)

)
.

3. PebG[f] is refutable in syntactic R(d) in length LR(d)(PebG[f] ` 0) = O(n) and formula space
SpR(d)(PebG[f] ` 0) = O(1) simultaneously.

4. For every s ≥ Peb(G) there is a standard syntactic resolution refutation πs : PebG[f]` 0 in length
L(πs) = O(g(s)) and total space TotSp(πs) = O(s).

5. The clause space of any semantic resolution refutation is lower-bounded by SpR(PebG[f] ` 0) ≥
BW-Peb(G), and for every s ≥ BW-Peb(G) and every semantic refutation πs : PebG[f]` 0 in
clause space Sp(πs) ≤ s, it holds that L(πs) = Ω(h(s)).

6. For every s ≥ BW-Peb(G) and every k ≤ K, the formula space of any semantic R(k)-refutation is
lower-bounded by SpR(k)(PebG[f] ` 0) = Ω

(
k+1
√

BW-Peb(G)
)
, and any semantic R(k)-refutation

πs : PebG[f]` 0 in formula space Sp(πs) = o
(

k+1
√

s
)
, it holds that L(πs) = Ω(h(s)).

46

7 Separation and Trade-off Results for k-DNF Resolution

All hidden constants in the asymptotical notation depend only on K, d, and `, and are independent of G.

Proof. Item 1 on the list is an easy consequence of Definition 3.14. The rest is just a matter of putting
together all the theorems proven in this section. Hence, items 2 and 4 both follow from Theorem 6.1 (to get
item 2, consider the trivial pebbling that black-pebbles all vertices of G in topological order). Theorem 6.2
yields item 5. Finally, items 3 and 6 follow from Theorem 6.4.

This theorem will be of particular interest when we can find graph families {Gn}∞n=1 with Peb(Gn) =
Θ
(
BW-Peb(Gn)

)
having trade-off functions gn(s) = Θ(hn(s)). For such families of DAGs, Theorem 6.5

yields asymptotically tight trade-offs in standard resolution. As we can see, these trade-offs hold for both
clause space and total space simultaneously with respect to length, since the upper bounds are in terms of
total space and the lower bounds in terms of clause space.

For k-DNF resolution, k ≥ 2, the trade-offs obtained by using Theorem 6.5 are not tight, since there is
a gap of a (k + 1)st root between the upper and lower bounds on space. We do not know what the “correct”
result for R(k) is, and a priori it could well be the case that qualitatively the same trade-offs should hold for
R(k) as for standard resolution. Such a strengthening of Theorem 6.5 provably cannot be obtained by our
methods, however. In view of the recent results in [NR09], our techniques will always leave at least a kth
root gap, so in order to make any more substantial improvements to Theorem 6.5 it seems that fundamentally
new ideas would be needed.

7 Separation and Trade-off Results for k-DNF Resolution

We have finally reached the point where we can state and prove our time-space trade-off results for standard
resolution and R(k). Given all the work done so far, the proofs are all variations of the following pattern:
pick some suitable graph family, make the appropriate choices of parameters, consider the corresponding
pebbling contradiction CNF formulas, do f-substitution for some non-authoritarian function f, and ap-
ply Theorem 6.5 (which we obtained with the help of the “substitution space theorems” in Theorems 2.1
and 5.1).

7.1 More Detailed Discussion of Previous Trade-off Results for Resolution

For completeness, we start this section by a slightly more detailed discussion than in Section 1 of previous
work in this area. The question of length-space trade-offs in resolution was first studied by the first author
in [Ben09] and more recently by the second author in [Nor09b]. (A proceedings version work of Hertel and
Pitassi [HP07] claimed a trade-off result that was simplified and improved by [Nor09b]. The journal version
[HP10] retracted this claim due to an error in the proof.) Let us describe these works and how they compare
to our results.

The paper [Ben09] contains a number of results for general resolution. For instance, it shows a strong
trade-off between clause space and width, establishing that there are formulas refutable in constant clause
space as well as constant width, but where for any particular refutation π it holds that Sp(π) · W(π) =
Ω(n/ log n). However, the lengths-space trade-offs in [Ben09] are limited to the very restricted case of
tree-like resolution, and do not extend to general resolution.

In contrast, [Nor09b], studies general, unrestricted resolution. The results therein apply to resolution
refutation of bounded-width formulas, but again every theorem is restricted to dealing with a particular
space measure. An unsatisfying aspect of all results in [Nor09b] is that they use quite artificial constructions
of formulas “glued together” from two different unsatisfiable subformulas over disjoint variable sets. In
particular, these constructions are non-explicit. Moreover, in [Nor09b] the length-space trade-off results

47

UNDERSTANDING SPACE IN PROOF COMPLEXITY

apply only for a very carefully selected ratio of space to formula size, and display an abrupt decay of proof
length when space is increased even by small amounts.

In contrast, all trade-off results presented in the current paper have the following properties:

• They apply to general, unrestricted resolution, and even extend to k-DNF resolution.

• They are stated for explicitly constructible formulas that have bounded width and are (minimally)
unsatisfiable.

• They apply simultaneously to both total space and clause space (formula space for k-DNF resolution),
since the upper bounds are in terms of total space and the lower bounds in terms of clause/formula
space. Moreover, recalling Definition 3.5 on page 17, we stress that all our upper bounds are in terms
of syntactic proof systems (i.e., the usual ones) whereas the lower bounds in the trade-offs hold even
for the much stronger semantic versions of the proof systems.

• Finally, the trade-offs are very robust in the sense that they are not sensitive to small perturbations of
either length or space.

In the rest of this section, we state and prove our collection of separation and trade-off results.

7.2 Space Hiearchy for k-DNF Resolution

We gave a sketch of the proof of the space hierarchy for k-DNF resolution already in Section 2.3, and the
missing details in this sketch are easily filled in from the material in Section 6. Let us nevertheless write out
the details here for the convenience of the reader.

Theorem 2.5 (restated). For every k ≥ 1 there exists an explicitly constructible family of (3(k + 1))-CNF
formulas {Fn}∞n=1 of size Θ(n) such that

1. there are R(k + 1)-refutations πn : Fn ` 0 in simultaneous length L(πn) = O(n) and formula space
Sp(πn) = O(1), but

2. any R(k)-refutation of Fn requires formula space Ω
(

k+1
√

n/ log n
)
.

The constants hidden by the asymptotic notation depend only on k.

The theorem is established with the help of the following graph family.

Lemma 7.1 ([GT78]). There is an explicitly constructible family of DAGs {Gn}∞n=1 of size Θ(n) having a
unique sink and vertex indegree 2 such that BW-Peb(Gn) = Θ(n/ log n).

Proof of Theorem 2.5. Take the pebbling formulas defined in terms of the graphs in Lemma 7.1, substitute
a k-non-authoritarian Boolean function f of arity k + 1, say XOR over k + 1 variables for concreteness,
and appeal to Theorem 6.5. The size and width of the formula follows from part 1 (and Definition 3.14), the
upper bound on formula space is part 3, and the lower bound follows from part 6 of Theorem 6.5.

We note that for standard resolution, it is possible to get rid of the square root in the separation and
prove that any resolution refutation of Fn requires formula space Θ(n/ log n) (as was done in [BN08]).
This follows by appealing to part 5 of Theorem 6.5 instead.

48

7 Separation and Trade-off Results for k-DNF Resolution

7.3 Trade-offs for Constant Space

Shifting focus to our length-space trade-offs, which occupy the bulk of this section, our first result is that
trade-offs can occur even for formulas refutable in constant space. What is more, there are such formulas for
which we can prove not only a trade-off threshold, but (in the case of standard resolution) even specify the
whole trade-off curve. We establish this by studying the following family of graphs (referred to in [LT82]
as bit reversal graphs).

Lemma 7.2 ([LT82]). There are explicitly constructible DAGs Gn of size Θ(n) with a single sink and vertex
indegree 2 having the following pebbling properties:

1. The black pebbling price of Gn is Peb(Gn) = 3.

2. Any black pebbling strategy Pn for Gn that optimizes time given space constraints9 O(n) exhibits a
trade-off time(Pn) = Θ

(
n2/space(Pn)

)
.

3. Any black-white pebbling strategy Pn for Gn that optimizes time given space constraints O
(√

n
)

exhibits a trade-off time(Pn) = Θ
(
(n/space(Pn))2

)
.

What we would like to do now is to plug this theorem right into Theorem 6.5 and be done. Unfortunately,
although this will prove to be a simple and successful strategy in general, it will not work for this particular
family of formulas if we want to get tight trade-offs. This is so since there is a quadratic gap between
the black-white and black-only pebbling trade-offs (see the discussion immediately after Theorem 6.2).
However, analyzing the strcture of the proof of Lemma 7.2 a little bit closer, it turns out that in this particular
case it is possible to simulate optimal black-white pebblings in resolution in a time- and space-preserving
way. (This is a special case of a more general theorem proven in [Nor10b], and we refer to that paper for
the details.)

Lemma 7.3 ([Nor10b]). Let Fn be pebbling substitution formulas over the graphs Gn in Lemma 7.2. Then
for any s = O

(√
n
)

there are syntactic standard resolution refutations in length O
(
(n/s)2

)
and clause

space O(s).

Using both Lemma 7.2 and Lemma 7.3, we can establish the results stated next, which are tight for
resolution.

Theorem 7.4 (More detailed version of Theorem 2.6). For any fixed positive integer K there are explicitly
constructible CNF formulas {Fn}∞n=1 of size Θ(n) and width 3(K +1) such that the following holds (where
all multiplicative constants hidden in the asymptotic notation depend only on K):

1. The formulas Fn are refutable in syntactic resolution in total space TotSpR(Fn ` 0) = O(1).

2. For any s(n) = O
(√

n
)

there are syntactic resolution refutations πn of Fn in simultaneous length
L(πn) = O

(
(n/s(n))2

)
and total space TotSp(πn) = O(s(n)).

3. There are syntactic R(K + 1)-refutations πn of Fn in simultaneous length L(πn) = O
(
n
)

and for-
mula space Sp(πn) = O(1).

4. For any semantic resolution refutation πn : Fn ` 0 in clause space Sp(πn) ≤ s(n) it holds that
L(πn) = Ω

(
(n/s(n))2

)
.

9The reason for including the upper bounds on space in the statement of the theorem is that no matter how much space is
available, it is of course never possible to do better than linear time. Thus the trade-offs cannot hold when length dips below linear.

49

UNDERSTANDING SPACE IN PROOF COMPLEXITY

5. For any k ≤ K, any semantic R(k)-refutation πn : Fn ` 0 in formula space Sp(πn) ≤ s(n) must
have length L(πn) = Ω

((
n/
(
s(n)1/(k+1)

))2). In particular, any constant-space R(k)-refutation
must also have quadratic length.

¿From now on and for the rest of this section, we will assume unless stated otherwise that d = K + 1
and that f = fd(x1, . . . , xd) =

⊕d
i=1xi is the exclusive or function over d variables (although we will

redundantly repeat this from time to time for increased clarity).

Proof of Theorem 7.4. Consider the pebbling formulas PebGn
[f] defined over the bit reversal DAGs in

Lemma 7.2. Combining Lemma 7.2 with Theorem 6.5, and improving the upper bounds by appealing
to Lemma 7.3, the theorem follows.

Since this is our first trade-off proof, let us write it out in detail. Thus, the upper bound on total space
in part 1 of Theorem 7.4 follows from the pebbling space upper bound in part 1 of Lemma 7.2 combined
with the reduction from pebbling to resolution in part 2 of Theorem 6.5. As noted above, the upper bound
on the length-space trade-off in Part 2 of Theorem 7.4 does not follow from Theorem 6.5, but is obtained
by applying Lemma 7.3. The constant upper bound on R(K + 1)-formula space in part 3 is part 3 of
Theorem 6.5. The lower bound on the length-space trade-off for resolution in part 4 follows from the black-
white pebbling trade-off in part 3 of Lemma 7.2 combined with the reduction from resolution to pebbling
in part 5 of Theorem 6.5. Finally, the weaker bound on R(k)-tradeoffs in part 5 of Theorem 7.4 is what
follows when we apply the weaker reduction from k-DNF resolution to pebbling in part 6 of Theorem 6.5
instead.

7.4 Superpolynomial Trade-offs for any Non-constant Space

It is clear that we can never get superpolynomial trade-offs from DAGs pebblable in constant space, since
such graphs must have constant-space pebbling strategies in polynomial time by a simple counting argu-
ment. However, perhaps somewhat surprisingly, as soon as we study arbitrarily slowly growing space, we
can obtain superpolynomial trade-offs for formulas whose refutation space grows this slowly. This is a
consequence of the following recent pebbling trade-off result from [Nor10b], extending a construction by
Carlson and Savage [CS80, CS82].

Lemma 7.5 ([Nor10b]). There is an explicitly constructible graph family Γ(c, r), for c, r ∈ N+, with a
unique sink and vertex indegree 2, having the following properties:

1. The graphs Γ(c, r) are of size
∣∣V (Γ(c, r)

)∣∣ = Θ
(
cr3 + c3r2

)
.

2. Γ(c, r) has black-white pebbling price BW-Peb(Γ(c, r)) = r + O(1) and black pebbling price
Peb(Γ(c, r)) = 2r + O(1).10

3. There is a black-only pebbling of Γ(c, r) in time linear in the graph size and in space O(c + r).

4. Suppose that P is a black-white pebbling of Γ(c, r) with space(P) ≤ r + s for 0 < s ≤ c/8. Then
the time required to perform P is lower-bounded by

time(P) ≥
(

c− 2s

4s + 4

)r

· r! .

The graph family in Lemma 7.5 turns out to be surprisingly versatile and will occur several times below
with different parameter settings. We now use it to prove the following theorem

10Note that item 2 says that the pebbling price grows linearly with r but is independent of c. Thus, the parameter s in item 4 can
be thought of as the extra pebbling space “slack” governing how severe the time-space trade-off will be.

50

7 Separation and Trade-off Results for k-DNF Resolution

Theorem 7.6 (More detailed version of Theorem 2.8). Let g(n) be any arbitrarily slowly growing mono-
tone function ω(1) = g(n) = O

(
n1/7

)
, and fix any ε > 0 and positive integer K. Then there are explicitly

constructible CNF formulas {Fn}∞n=1 of size Θ(n) and width 3(K + 1) such that the following holds:

1. The formulas Fn are refutable in syntactic resolution in total space TotSpR(Fn ` 0) = O(g(n)).

2. There are syntactic resolution refutations πn of Fn in simultaneous length L(πn) = O(n) and total
space TotSp(πn) = O

((
n/g2(n)

)1/3
)

.

3. There are syntactic R(K + 1)-refutations πn of Fn in simultaneous length L(πn) = O
(
n
)

and for-
mula space Sp(πn) = O(1).

4. Any semantic resolution refutation of Fn in clause space O
((

n/g2(n)
)1/3−ε

)
must have superpoly-

nomial length.

5. For any k ≤ K, any semantic R(k)-refutation in formula space O
((

n/g2(n)
)1/(3(k+1))−ε

)
must

have superpolynomial length.

All multiplicative constants hidden in the asymptotic notation depend only on K, ε and g.

We remark that the upper-bound condition g(n) = O
(
n1/7

)
is very mild and is there only for technical

reasons in this theorem. If we allow the minimal space to grow as fast as nε for some ε > 0, then there are
other pebbling trade-off results that can give even stronger results for resolution than the one stated above.
(see, in particular, Section 7.6). Thus, the interesting part is that g(n) is allowed to grow arbitrarily slowly.

Proof of Theorem 7.6. Consider the graphs Γ(c, r) in Lemma 7.5. We want to choose the parameters c and
r in a suitable way so that we get a family of graphs in size n = Θ

(
cr3 + c3r2

)
. If we set

r = r(n) = g(n) (7.1)

for g(n) = O
(
n1/7

)
, this forces

c = c(n) = Θ
(

3
√

n/g2(n)
)

. (7.2)

Consider the graph family {Gn}∞n=1 defined by Gn = Γ(c(n), r(n)) as in (7.1) and (7.2), which is a family
of size Θ(n). Consider the pebbling formulas Fn = PebGn

[f], substitute a k-non-authoritarian Boolean
function f of arity k + 1, say XOR over k + 1 variables for concreteness, and appeal to the translation
between pebbling and resolution in Theorem 6.5.

Part 2 of Lemma 7.5 yields that TotSpR(Fn ` 0) = O(g(n)). Also, the black pebbling of Gn in part 3
yields a linear-time refutation πn : Fn ` 0 with TotSp(πn) = O

(
3
√

n/g2(n)
)
.

Now set the parameter s in part 4 of Lemma 7.5 to s = c1−ε′ for ε′ = κε where κ is chosen large enough
(depending on K). Then for large enough n we have s ≤ c/8 and the trade-off in part 4 applies. Combining
the pebbling trade-off there with Theorem 6.5, we get that if the clause space is less than

(
n/g2(n)

)1/3−ε,

then the required length of the resolution refutation grows as
(
Ω
(
cε′
))r =

(
Ω
(
n/g2(n)

))εg(n) which is
superpolynomial in n for any g(n) = ω(1). The rest of the theorem follows in a similar fashion. In
particular, to get Part 5 above use Part 6 of Theorem 6.5 which gives a bound that is a (k + 1)-root of the
bound we get for semantic resolution.

51

UNDERSTANDING SPACE IN PROOF COMPLEXITY

7.5 Robust Superpolynomial Trade-offs

We now know that there are polynomial trade-offs in resolution for constant space, and that going ever so
slightly above constant space we can get superpolynomial trade-offs. The next question we want to focus on
is how robust trade-offs we can get. That is, over how large a range of space does the trade-off hold? Given
minimal refutation space s, how much larger space is needed in order to obtain the linear length refutation
that we know exists for any pebbling contradiction?

The answer is that we can get superpolynomial trade-offs that span almost the whole range between
constant and linear space. We present two different results illustrating this.

Theorem 7.7. For any fixed positive integer K, there are explicitly constructible CNF formulas {Fn}∞n=1

of size Θ(n) and width 3(K + 1) such that:

1. Every formula Fn is refutable in syntactic resolution in total space TotSpR(Fn ` 0) = O(log n).

2. There is a syntactic resolution refutation πn : Fn ` 0 in simultaneous length L(πn) = O(n) and total

space TotSp(πn) = O
(

3

√
n/ log2 n

)
.

3. There are syntactic R(K + 1)-refutations πn of Fn in simultaneous length L(πn) = O
(
n
)

and for-
mula space Sp(πn) = O(1).

4. There is a constant κ > 0 such that any semantic resolution refutation πn : Fn ` 0 in clause space

Sp(πn) ≤ κ 3

√
n/ log2 n must have length L(πn) = nΩ(log log n).

5. For any k ≤ K, any semantic k-DNF resolution refutation πn : Fn ` 0 in formula space Sp(πn) =
o
(
(n/ log2 n)1/(3(k+1))

)
must have length L(πn) = nΩ(log log n).

The constant κ as well as the constants hidden in the asymptotic notation are independent of n.

Proof. Consider the graphs Γ(c, r) in Lemma 7.5 with parameters chosen so that c = 2r. Then the size
of Γ(c, r) is Θ

(
r223r

)
. Let r(n) = max{r : r223r ≤ n} and define the graph family {Gn}∞n=1 by

Gn = Γ(2r, r) for r = r(n). Finally, consider the pebbling formulas Fn = PebGn
[f] with the help of

Theorem 6.5.
Translating from Gn back to Γ(c, r) we have parameters r = Θ(log n) and c = Θ

(
(n/ log2 n)1/3

)
, so

Lemma 7.5 yields that TotSpR(Fn ` 0) = O(log n). Also, the black pebbling of Gn in Lemma 7.5 yields
a linear-time refutation πn : Fn ` 0 with TotSp(πn) = O

(
(n/ log2 n)1/3

)
.

Setting s = c/8 in the trade-off in part 4 of Lemma 7.5 shows that there is a constant κ such that if the
clause space of a refutation πn : Fn ` 0 drops below κ · (n/ log2 n)1/3 ≤ (r + 2) + s, then we must have

L(πn) ≥ O(1)r · r! = nΩ(log log n) (7.3)

(where we used that r = Θ(log n) for the final equality). The rest of the theorem follows in an analogous
fashion. In particular, to get Part 5 above use Part 6 of Theorem 6.5 which gives a bound that is a (k+1)-root
of the bound we get for semantic resolution.

Sacrificing a square at the lower end of the interval, we can improve the upper end to n/ log n.

Theorem 7.8 (More detailed version of Theorem 2.9). For any positive integer K, there are explicitly
constructible CNF formulas {Fn}∞n=1 of size Θ(n) and width 3(K +1) such that the following holds (where
the hidden constants depend only on K):

52

7 Separation and Trade-off Results for k-DNF Resolution

1. The formulas Fn are refutable in syntactic resolution in total space TotSpR(Fn ` 0) = O(log2 n).

2. There are syntactic resolution refutations πn of Fn in simultaneous length L(πn) = O(n) and total
space TotSp(πn) = O(n/ log n).

3. There are syntactic R(K + 1)-refutations πn of Fn in simultaneous length L(πn) = O
(
n
)

and for-
mula space Sp(πn) = O(1).

4. Any semantic resolution refutation of Fn in clause space Sp(πn) = o(n/ log n) must have length
L(πn) = nΩ(log log n).

5. For any k ≤ K, any semantic R(k)-refutation in formula space Sp(πn) = o
(
(n/ log n)1/(k+1)

)
must

have length L(πn) = nΩ(log log n).

For this theorem we need the following graph family from [LT82], which is built as stacks of supercon-
centrators, i.e., by placing graphs with very good connectivity properties on top of one another.

Lemma 7.9 ([LT82]). There is a family of explicitly constructible graphs Φ(m, r) with a unique sink and
vertex indegree 2 such that the following holds:

1. Φ(m, r) has size Θ(rm).

2. Peb
(
Φ(m, r)

)
= O(r log m).

3. There is a linear-time black pebbling strategy P for Φ(m, r) with space(P) = O(m).

4. If P is a black-white pebbling strategy for Φ(m, r) in space s ≤ m/20, then time(P) ≥ m ·
(

rm
64s

)r.

Proof of Theorem 7.8. As usual, pick f = fd(x1, . . . , xd) =
⊕d

i=1xi for d = K + 1, and consider the
pebbling formulas PebΦ(m,r)[f] defined over stacks of superconcentrators Φ(m, r) as in Lemma 7.9 with
m = 20T and r = bn/T c for T = Θ(n/ log n). Theorem 7.8 now follows by combining Lemma 7.9 with
Theorem 6.5.

We remark that the results in Theorem 7.8 are perhaps slightly stronger than those in Theorem 7.7 since
they span a much larger (although non-overlapping) space interval. However, they require a very much
more involved graph construction with worse hidden constants than the very simple and clean construction
underlying Theorem 7.7.

7.6 Exponential Trade-offs

Superpolynomial trade-offs are all fine and well, but can we get exponential trade-offs? We conclude this
section by giving strong answers in the affirmative to this question.

The same counting argument that was mentioned in the beginning of Section 7.4 tells us that we can
never expect to get exponential trade-offs from DAGs with polylogarithmic pebbling price. However, if we
move to graphs with pebbling price Ω(nε) for some constant ε > 0, pebbling formulas over such graphs can
exhibit exponential trade-offs.

We obtain our first such exponential trade-off, which also exhibits a certain robustness, by again studying
the DAGs in Lemma 7.5.

Theorem 7.10. For any positive integer K set ε = 1
3K+8 and δ = (K + 2)ε. Then there is a constant

0 < γ < 1 (depending only on K) and explicitly constructible CNF formulas {Fn}∞n=1 of size Θ(n) and
width 3(K + 1) such that the following holds:

53

UNDERSTANDING SPACE IN PROOF COMPLEXITY

1. The formulas Fn are refutable in syntactic resolution in total space TotSpR(Fn ` 0) = O(nε).

2. There are syntactic resolution refutations πn of Fn in simultaneous length L(πn) = O(n) and total
space TotSp(πn) = O

(
nδ
)
.

3. There are syntactic R(K + 1)-refutations πn of Fn in simultaneous length L(πn) = O
(
n
)

and for-
mula space Sp(πn) = O

(
nδ
))

.

4. Any semantic resolution refutation of Fn in clause space nδ/10 must have length at least nε!.

5. For any k ≤ K, any semantic R(k)-refutation in formula space γnδ/(k+1) must have exponential
length, i.e., length at least nε!.

All multiplicative constants hidden in the asymptotic notation depend only on K.

Note that since δ > (k + 1)ε the tradeoff we get for k-DNF resolution is nontrivial. By this we mean
that although there exist refutations requiring space O(nε), as long as we use space that is somewhat smaller
than nδ/(k+1) the refutation length is exponential.

Proof of Theorem 7.6. Consider again the graphs Γ(c, r) in Lemma 7.5. Set r = r(n) = nε and c = c(n) =
nδ. The graph family {Gn}∞n=1 defined by Gn = Γ(c(n), r(n)) as in (7.1) and (7.2), is a family of size Θ(n).
Consider the pebbling formulas Fn = PebGn

[f], where f is a k-non-authoritarian Boolean function f of
arity k + 1, say XOR over k + 1 variables for concreteness, and appeal to the translation between pebbling
and resolution in Theorem 6.5.

Part 2 of Lemma 7.5 yields that TotSpR(Fn ` 0) = O(nε). Also, the black pebbling of Gn in part 3
yields a linear-time refutation πn : Fn ` 0 with TotSp(πn) = O

(
nδ
)
.

Now if s < nδ/10 inspection of part 4 of Lemma 7.5 shows that for large enough n we get an exponential
lower bound on the pebbling time of nε!. Combining this with Theorem 6.5 gives our time lower bound for
semantic resolution. Finally, to get the lower bound for semantic k-DNF resolution we apply Part 6 of
Theorem 6.5 which gives a bound that is a (k + 1)-root of the bound we get for semantic resolution.

We remark that there is nothing magic in our particular choice of parameters in the proof of Theo-
rem 7.10. Other parameters could be plugged in instead and yield slightly different results.

Now that we know that there are robust exponential trade-offs for resolution and k-DNF resolution,
we want to obtain exponential trade-offs for formulas with their minimal refutation space being as large as
possible.

The higher the lower bound on space is, the more interesting the trade-off gets. It seems reasonable that
to look at and analyze a CNF formula, a SAT solver will at some point use at least linear space. If so, it
is not immediate to argue why the SAT solver would later work hard on optimizing lower order terms in
the memory consumption and thus get stuck in a trade-off for relatively small space. Ideally, therefore, we
would like to obtain trade-offs for linear or even superlinear space (if there are such trade-offs, that is). For
such formulas, we would be more confident that the trade-off phenomena should also show up in practice.11

It is clear that pebbling contradictions can never yield any trade-off results in the superlinear regime,
since they are always refutable in linear length and linear space simultaneously. Also, all trade-offs obtain-
able from the graphs in Lemma 7.5 will be for space far below linear. However, using the following two

11Having said that, we also want to point out that the case can certainly be made that even sublinear space trade-offs might be very
relevant for real life applications. Intriguingly enough, pebbling contradictions over so-called pyramid graphs ([Coo74, Kla85])
might in fact be an example of this. We know that these formulas have short, simple refutations, but in [SBK04] it was shown that
state-of-the-art clause learning algorithms can have serious problems with even moderately large pebbling contradictions. (Their
“grid pebbling formulas” are exactly our pebbling contradictions using substitution with binary, non-exclusive or.) We wonder
whether the high lower bound on clause space can be part of the explanation behind this phenomenon.

54

8 Concluding Remarks

results we can get exponential trade-offs for space almost linear, or more precisely for space as large as
Θ(n/ log n).

Lemma 7.11 ([LT82]). For every directed acyclic graph G with n vertices and bounded indegree `, and for
every space parameter s satisfying (3` + 2)n/ log n ≤ s ≤ n, there is a black pebbling strategy P for G

with space(P) ≤ s and time(P) ≤ s · 22O(n/s)
.

Lemma 7.12 ([LT82]). There exist constants ε, κ > 0 such that for all sufficiently large integers n, s
satisfying κn/ log n ≤ s ≤ n, we can find an explicitly constructible single-sink DAG G with indegree 2
and number of vertices at most n such that any black-white pebbling strategy P for G with space(P) ≤ s

must have time(P) ≥ s · 22εn/s
.

Note that the graph G in Lemma 7.12 depends on the pebbling space parameter s. Lengauer and
Tarjan conjecture that no single graph gives an exponential time-space tradeoff for the whole range of
s ∈ [n/ log n, n], but to the best of our knowledge this problem is still open.

Theorem 2.10 (restated). Let κ be any sufficiently large constant. Then there are k-CNF formulas Fn of
size O(n) and a constant κ′ � κ such that:

1. The formulas Fn have syntactic resolution refutations in total space κ′ · n/ log n.

2. Fn is also refutable in syntactic resolution in length O(n) and total space O(n) simultaneously.

3. However, any semantic refutation of Fn in clause space at most κ · n/ log n has length exp
(
nΩ(1)

)
.

Proof. Appeal to Lemmas 7.11 and 7.12 in combination with Theorem 6.5 in the same way as in previous
proofs in this section.

We remark that Lemma 7.12 in combination with Lemma 7.11 can be used to obtain DAGs (and thus
CNF formulas) with other superpolynomial trade-offs as well for different space parameters in the range
above n/ log n up to n/ log log n. For simplicity and conciseness, however, we only state the special case
above.

As was discussed in Section 2.3, Theorem 2.10 does not yield any provably nontrivial trade-offs for
R(k), since the space range where the trade-off kicks in is so low that we do not know whether there
actually exist any R(k)-refutation in such small space. We do get weaker, though exponential (and provably
non-vacuous) trade-offs for R(k) in Theorem 7.10.

8 Concluding Remarks

We end this paper by discussing some open questions related to our reported work.

Resolution For the length, width, and clause space measures in resolution, there are known upper and
lower worst-case bounds that essentially match modulo constant factors. This is not the case for total space,
however.

Open Question 1. Are there polynomial-size CNF formulas of width O(1) which require total resolution
refutation space TotSpR(F ` 0) = Ω

(
(size of F)2

)
?

The answer has been conjectured by [ABRW02] to be “yes”, but as far as we are aware, there are no
stronger lower bounds on total space known than those that follow trivially from corresponding linear lower
bounds on clause space. Thus, a first step would be to show superlinear lower bounds on total space.

55

UNDERSTANDING SPACE IN PROOF COMPLEXITY

One way of interpreting the results of the current paper is that time-space trade-offs in pebble games
carry over more or less directly to the resolution proof system (modulo the technical restrictions discussed
in Section 6). The resolution trade-off results obtainable by this method are inherently limited, however,
in the sense that pebblings in small space can be seen never to take too much time by a simple counting
argument. For resolution there are no such limitations, at least not a priori, since the corresponding counting
argument does not apply. Thus, one can ask whether it is possible to demonstrate even more dramatic
time-space trade-offs for resolution than those obtained via pebbling.

To be more specific, we are particularly interested in what trade-offs are possible at the extremal points
of the space interval, where we can only get polynomial trade-offs for constant space and no trade-offs at all
for linear space.

Open Question 2. Are there superpolynomial trade-offs for formulas refutable in constant space?

Open Question 3. Are there formulas with trade-offs in the range space > formula size? Or can every
refutation be carried out in at most linear space?

We find Open Question 3 especially intriguing. Note that all bounds on clause space proven so far,
inlcuding the trade-offs in the current paper, are in the regime where the space is less than formula size
(which is quite natural, since by [ET01] we know the size of the formula is an upper bound on the minimal
clause space needed). It is unclear to what extent such lower bounds on space are relevant to state-of-the-art
SAT solvers, however, since such algorithms will presumably use at least a linear amount of memory to
store the formula to begin with. For this reason, it seems to be a highly interesting problem to determine
what can be said if we allow extra clause space above linear. Are there formulas exhibiting trade-offs in
this superlinear regime, or is it always possible to carry out a minimal-length refutation in, say, at most a
constant factor times the linear upper bound on the space required for any formula? As was noted above,
pebbling formulas cannot help answer these two questions, since they are always refutable in linear time and
linear space simultaneously by construction, and since constant pebbling space implies polynomial pebbling
time.

A final problem related specifically to standard resolution is that it would be interesting to investigate
the implications of our results for applied satisfiability algorithms.

Open Question 4. Do the trade-off phenomena we have established in this paper show up “in real life” for
state-of-the-art DPLL based SAT-solvers, when run on the appropriate pebbling contradictions (or varia-
tions of such pebbling contradictions)?

A stronger space separation for k-DNF resolution We have proven a strict separation between
k-DNF resolution and (k+1)-DNF resolution by exhibiting for every fixed k a family of CNF formulas of
size n that require space Ω

(
k+1
√

n/ log n
)

for any k-DNF resolution refutation but can be refuted in constant
space in (k+1)-DNF resolution. This shows that the family of R(k) proof systems form a strict hierarchy
with respect to space.

As has been said above, however, we have no reason to believe that the lower bound for R(k) is tight. In
fact, it seems reasonable that a tighter analysis should be able to improve the bound to at least Ω

(
k
√

n/ log n
)

and possibly even further. The only known upper bound on the space needed in R(k) for these formulas is
the O(n/ log n) bound that is easily obtained for standard resolution. Closing, or at least narrowing, the gap
between Ω

(
k+1
√

n/ log n
)

and O(n/ log n) is hence an open question.

Understanding minimally unsatisfiable k-DNF sets It seems that the problem of getting better
lower bounds on space for k-DNF resolution is related to the problem of better understanding the structure
of minimally unsatisfiable sets of k-DNF formulas. Although the correspondence is more intuitive than

56

References

formal, it would seem that progress on this latter problem would probably translate into sharper lower
bounds for R(k) as well. The reason for this hope is that the asymptotically optimal results for standard
resolution in this paper can in some sense be seen to follow from (the proof technique used to obtain) the
tight bound for CNF formulas in Theorem 2.13.

What we are able to prove in this paper is that any minimally unsatisfiable k-DNF set D (for k a fixed
constant) must have at least Ω

(
k+1
√
|D|
)

variables (Theorem 2.14) but the only explicit constructions of
such sets that we where able to obtain had O(|D|) variables (Lemma 2.15). As has already been mention,
the recent work [NR09] unexpectedly improved the lower bound to roughly O

(
k
√
|D|
)
. This appears to be

a natural and interesting combinatorial problem in its own right, and it would be very nice to close the gap
between the upper and lower bound.

We have the following conjecture, where for simplicity we fix k to remove it from the asymptotic
notation.

Conjecture 5. Suppose that D is a minimally unsatisfiable k-DNF set for some arbitrary but fixed positive
integer k. Then the number of variables in D is at most O(|D|)k.

Proving this conjecture would establish asymptotically tight bounds for minimally unsatisfiable k-DNF
sets (ignoring factors involving the constant k).

Generalizations to other proof systems We have presented a “substitution space theorem” for res-
olution as a way of lifting lower bounds on the number of variables to lower bounds on (clause) space, and
have then extended this result by lifting lower bounds on the number of variables in resolution to lower
bounds on formula space in the much stronger k-DNF resolution proof systems. It is a natural question to
ask whether our techniques can be extended to other proof systems as well.

We remark that the translations in Sections 4 and 5 of refutations of substitution formulas in some other
proof system P via projection to resolution refutations of the original formula seem extremely generic and
robust in that they do not at all depend on which derivation rules are used by P nor on the class of formulas
with which P operates. The only place where the particulars of the proof system come into play is when we
actually need to analyze the content of the proof blackboard. As described in the introduction, this happens
at some critical point in time when we know that the blackboard of our translated (projected) resolution
proof mentions a lot of variables, and want to argue that this implies that the blackboard of the P-proof must
contain a lot of formulas (or possibly some other resource that we want to lower-bound in P). This part of
the analysis is the (essentially tight) result for resolution in Lemma 4.7 and the (likely not tight) bound for
k-DNF sets in Lemma 5.5 in this paper. Any corresponding result for some other proof system P would
translate into lower bounds for P in terms of lower bounds on variable space in resolution.

References

[AB04] Albert Atserias and Maria Luisa Bonet. On the automatizability of resolution and related propo-
sitional proof systems. Information and Computation, 189(2):182–201, March 2004. Prelimi-
nary version appeared in CSL ’02.

[ABE02] Albert Atserias, Maria Luisa Bonet, and Juan Luis Esteban. Lower bounds for the weak pi-
geonhole principle and random formulas beyond resolution. Information and Computation,
176(2):136–152, August 2002. Preliminary version appeared in ICALP ’01.

[ABRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space
complexity in propositional calculus. SIAM Journal on Computing, 31(4):1184–1211, 2002.
Preliminary version appeared in STOC ’00.

57

UNDERSTANDING SPACE IN PROOF COMPLEXITY

[AD08] Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolution width. Jour-
nal of Computer and System Sciences, 74(3):323–334, May 2008. Preliminary version appeared
in CCC ’03.

[AJPU02] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An exponential
separation between regular and general resolution. In Proceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC ’02), pages 448–456, May 2002.

[Ajt88] Miklós Ajtai. The complexity of the pigeonhole principle. In Proceedings of the 29th Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’88), pages 346–355, October
1988.

[AL86] Ron Aharoni and Nathan Linial. Minimal non-two-colorable hypergraphs and minimal unsat-
isfiable formulas. Journal of Combinatorial Theory, 43:196–204, 1986.

[Ale05] Michael Alekhnovich. Lower bounds for k-DNF resolution on random 3-CNFs. In Proceedings
of the 37th Annual ACM Symposium on Theory of Computing (STOC ’05), pages 251–256, May
2005.

[BEGJ00] Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. On the relative
complexity of resolution refinements and cutting planes proof systems. SIAM Journal on Com-
puting, 30(5):1462–1484, 2000. Preliminary version appeared in FOCS ’98.

[Ben09] Eli Ben-Sasson. Size space tradeoffs for resolution. SIAM Journal on Computing,
38(6):2511–2525, May 2009. Preliminary version appeared in STOC ’02.

[BET01] Sven Baumer, Juan Luis Esteban, and Jacobo Torán. Minimally unsatisfiable CNF formu-
las. Bulletin of the European Association for Theoretical Computer Science, 74:190–192, June
2001.

[BG03] Eli Ben-Sasson and Nicola Galesi. Space complexity of random formulae in resolution. Ran-
dom Structures and Algorithms, 23(1):92–109, August 2003. Preliminary version appeared in
CCC ’01.

[BHP09] Paul Beame, Trinh Huynh, and Toniann Pitassi. Hardness amplification in proof complex-
ity. Technical Report TR09-72, Electronic Colloquium on Computational Complexity (ECCC),
September 2009.

[BIW04] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of treelike
and general resolution. Combinatorica, 24(4):585–603, September 2004.

[Bla37] Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis, University of Chicago,
1937.

[BN08] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal separation
of space and length in resolution. In Proceedings of the 49th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’08), pages 709–718, October 2008.

[BN09] Eli Ben-Sasson and Jakob Nordström. A space hierarchy for k-DNF resolution. Technical
Report TR09-047, Electronic Colloquium on Computational Complexity (ECCC), April 2009.

[BP03] Joshua Buresh-Oppenheim and Toniann Pitassi. The complexity of resolution refinements. In
Proceedings of the 18th IEEE Symposium on Logic in Computer Science (LICS ’03), pages
138–147, June 2003.

58

References

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve real-
world SAT instances. In Proceedings of the 14th National Conference on Artificial Intelligence
(AAAI ’97), pages 203–208, July 1997.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple. Journal
of the ACM, 48(2):149–169, March 2001. Preliminary version appeared in STOC ’99.

[Coo74] Stephen A. Cook. An observation on time-storage trade off. Journal of Computer and System
Sciences, 9:308–316, 1974.

[CR79] Stephen A. Cook and Robert Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44(1):36–50, March 1979.

[CS76] Stephen A. Cook and Ravi Sethi. Storage requirements for deterministic polynomial time
recognizable languages. Journal of Computer and System Sciences, 13(1):25–37, 1976.

[CS80] David A. Carlson and John E. Savage. Graph pebbling with many free pebbles can be difficult.
In Proceedings of the 12th Annual ACM Symposium on Theory of Computing (STOC ’80),
pages 326–332, 1980.

[CS82] David A. Carlson and John E. Savage. Extreme time-space tradeoffs for graphs with small
space requirements. Information Processing Letters, 14(5):223–227, 1982.

[CS88] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of the ACM,
35(4):759–768, October 1988.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of
the ACM, 7(3):201–215, 1960.

[EGM04] Juan Luis Esteban, Nicola Galesi, and Jochen Messner. On the complexity of resolution with
bounded conjunctions. Theoretical Computer Science, 321(2-3):347–370, August 2004. Pre-
liminary version appeared in ICALP ’02.

[ET99] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. In Proceedings of the 16th
International Symposium on Theoretical Aspects of Computer Science (STACS ’99), volume
1563 of Lecture Notes in Computer Science, pages 551–560. Springer, 1999.

[ET01] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and Computa-
tion, 171(1):84–97, 2001. Based on the conference papers in STACS ’99 [ET99] and CSL ’99
[Tor99].

[GT78] John R. Gilbert and Robert Endre Tarjan. Variations of a pebble game on graphs. Tech-
nical Report STAN-CS-78-661, Stanford University, 1978. Available at the webpage
http://infolab.stanford.edu/TR/CS-TR-78-661.html.

[Her08] Alexander Hertel. Applications of Games to Propositional Proof Complex-
ity. PhD thesis, University of Toronto, May 2008. Available at the webpage
http://www.cs.utoronto.ca/˜ahertel/.

59

UNDERSTANDING SPACE IN PROOF COMPLEXITY

[HP07] Philipp Hertel and Toniann Pitassi. Exponential time/space speedups for resolution and the
PSPACE-completeness of black-white pebbling. In Proceedings of the 48th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS ’07), pages 137–149, October 2007.

[HP10] Philipp Hertel and Toniann Pitassi. The PSPACE-completeness of black-white pebbling.
SIAM Journal on Computing, 39(6):2622–2682, April 2010. Preliminary version appeared
in FOCS ’07.

[HPV77] John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. Journal of the ACM,
24(2):332–337, April 1977.

[JN02] Jan Johannsen and N. S. Narayanaswamy. An optimal lower bound for resolution with
2-Conjunctions. In Proceedings of the 27th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS ’02), volume 2420 of Lecture Notes in Computer Science,
pages 387–398. Springer, August 2002.

[Kla85] Maria M. Klawe. A tight bound for black and white pebbles on the pyramid. Journal of the
ACM, 32(1):218–228, January 1985. Preliminary version appeared in FOCS ’83.

[Kra01] Jan Krajı́ček. On the weak pigeonhole principle. Fundamenta Mathematicae,
170(1-3):123–140, 2001.

[KS91] Balasubramanian Kalyanasundaram and George Schnitger. On the power of white pebbles.
Combinatorica, 11(2):157–171, June 1991. Preliminary version appeared in STOC ’88.

[Kul00] Oliver Kullmann. An application of matroid theory to the SAT problem. In Proceedings of the
15th Annual IEEE Conference on Computational Complexity (CCC ’00), pages 116–124, July
2000.

[LT80] Thomas Lengauer and Robert Endre Tarjan. The space complexity of pebble games on trees.
Information Processing Letters, 10(4/5):184–188, July 1980.

[LT82] Thomas Lengauer and Robert Endre Tarjan. Asymptotically tight bounds on time-space trade-
offs in a pebble game. Journal of the ACM, 29(4):1087–1130, October 1982. Preliminary
version appeared in STOC ’79.

[Mey81] Friedhelm Meyer auf der Heide. A comparison of two variations of a pebble game on graphs.
Theoretical Computer Science, 13(3):315–322, 1981.

[NH08] Jakob Nordström and Johan Håstad. Towards an optimal separation of space and length in
resolution (Extended abstract). In Proceedings of the 40th Annual ACM Symposium on Theory
of Computing (STOC ’08), pages 701–710, May 2008.

[Nor09a] Jakob Nordström. Narrow proofs may be spacious: Separating space and width in resolu-
tion. SIAM Journal on Computing, 39(1):59–121, May 2009. Preliminary version appeared in
STOC ’06.

[Nor09b] Jakob Nordström. A simplified way of proving trade-off results for resolution. Information
Processing Letters, 109(18):1030–1035, August 2009. Preliminary version in ECCC report
TR07-114, 2007.

[Nor10a] Jakob Nordström. New wine into old wineskins: A survey of some pebbling classics with
supplemental results. Manuscript in preparation. Current draft version available at the webpage
http://people.csail.mit.edu/jakobn/research/, 2010.

60

References

[Nor10b] Jakob Nordström. On the relative strength of pebbling and resolution (Extended abstract). In
Proceedings of the 25th Annual IEEE Conference on Computational Complexity (CCC ’10),
pages 151–162, June 2010.

[NR09] Jakob Nordström and Alexander Razborov. On minimal unsatisfiability and time-space trade-
offs for k-DNF resolution. Technical Report TR09-100, Electronic Colloquium on Computa-
tional Complexity (ECCC), October 2009.

[Pip80] Nicholas Pippenger. Pebbling. Technical Report RC8258, IBM Watson Research Center, 1980.
Appeared in Proceedings of the 5th IBM Symposium on Mathematical Foundations of Com-
puter Science, Japan.

[PTC77] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a game on
graphs. Mathematical Systems Theory, 10:239–251, 1977.

[Raz03] Alexander A. Razborov. Pseudorandom generators hard for k-DNF resolu-
tion and polynomial calculus resolution. Manuscript. Available at the webpage
http://people.cs.uchicago.edu/˜razborov/research.html, 2002-2003.

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinatorica,
19(3):403–435, March 1999. Preliminary version appeared in FOCS ’97.

[SAT] The international SAT Competitions web page. http://www.satcompetition.org.

[SBI04] Nathan Segerlind, Samuel R. Buss, and Russell Impagliazzo. A switching lemma for
small restrictions and lower bounds for k-DNF resolution. SIAM Journal on Computing,
33(5):1171–1200, 2004. Preliminary version appeared in FOCS ’02.

[SBK04] Ashish Sabharwal, Paul Beame, and Henry Kautz. Using problem structure for efficient clause
learning. In 6th International Conference on Theory and Applications of Satisfiability Testing
(SAT ’03), Selected Revised Papers, volume 2919 of Lecture Notes in Computer Science, pages
242–256. Springer, 2004.

[Seg05] Nathan Segerlind. Exponential separation between Res(k) and Res(k + 1) for k ≤ ε log n.
Information Processing Letters, 93(4):185–190, February 2005.

[SS96] João P. Marques Silva and Karem A. Sakallah. GRASP—a new search algorithm for satisfia-
bility. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD ’96), pages 220–227, November 1996.

[Tor99] Jacobo Torán. Lower bounds for space in resolution. In Proceedings of the 13th International
Workshop on Computer Science Logic (CSL ’99), volume 1683 of Lecture Notes in Computer
Science, pages 362–373. Springer, 1999.

61

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

