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Abstract

An errorless circuit for a boolean function is one that outputs the correct answer or “don’t
know” on each input (and never outputs the wrong answer). The goal of errorless hardness
amplification is to show that if f has no size s errorless circuit that outputs “don’t know” on
at most a δ fraction of inputs, then some f ′ related to f has no size s′ errorless circuit that
outputs “don’t know” on at most a 1 − ǫ fraction of inputs. Thus the hardness is “amplified”
from δ to 1− ǫ. Unfortunately, this amplification comes at the cost of a loss in circuit size. This
is because such results are proven by reductions which show that any size s′ errorless circuit for
f ′ that outputs “don’t know” on at most a 1− ǫ fraction of inputs could be used to construct a
size s errorless circuit for f that outputs “don’t know” on at most a δ fraction of inputs. If the
reduction makes q queries to the hypothesized errorless circuit for f ′, then plugging in a size s′

circuit yields a circuit of size ≥ qs′, and thus we must have s′ ≤ s/q. Hence it is desirable to
keep the query complexity to a minimum.

The first results on errorless hardness amplification were obtained by Bogdanov and Safra.
They achieved query complexity O

(

(1
δ
log 1

ǫ
)2 · 1

ǫ
log 1

δ

)

when f ′ is the XOR of several inde-
pendent copies of f . We improve the query complexity (and hence the loss in circuit size) to
O
(

1

ǫ
log 1

δ

)

, which is optimal up to constant factors for nonadaptive black-box errorless hardness
amplification.

Bogdanov and Safra also proved a result that allows for errorless hardness amplification
within NP. They achieved query complexity O

(

k3 · 1

ǫ2
log 1

δ

)

when f ′ consists of any monotone
function applied to the outputs of k independent copies of f , provided the monotone function
satisfies a certain combinatorial property parameterized by δ and ǫ. We improve the query
complexity to O

(

k

t
· 1

ǫ
log 1

δ

)

, where t ≥ 1 is a certain parameter of the monotone function.
As a side result, we prove a lower bound on the advice complexity of black-box reductions

for errorless hardness amplification.

1 Introduction

Traditionally, an algorithm for solving a computational problem is required to be correct on all
inputs and is judged in terms of its efficiency (the amount of computational resources it uses).
One criticism of this model is that it is too strict: In practice, an algorithm only needs to be
correct on “real-world” inputs and not on contrived worst-case inputs. To address this issue within
the framework of complexity theory, researchers developed the theory of average-case complexity
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(starting with the work of Levin [15]). In this theory, an algorithm is judged in terms of both its
efficiency and the fraction of inputs on which it fails to solve the problem correctly. The topic of
this paper is the relationship between these two measures of the quality of an algorithm.

There are two standard settings for average-case complexity. In the original setting proposed
by Levin [15], one only considers errorless algorithms, which are required to output the correct
answer or “don’t know” on each input.1 An errorless algorithm is judged in terms of both its
efficiency and the fraction of inputs on which it outputs “don’t know”. We refer to this setting as
errorless average-case complexity. In the other setting, one considers arbitrary algorithms which
may output the wrong answer rather than just “don’t know” on an input. We refer to this setting as
non-errorless average-case complexity. Errorless average-case complexity is an intermediate setting
between worst-case complexity and non-errorless average-case complexity.

We first discuss non-errorless average-case complexity. A boolean function is said to be mildly
average-case hard if no efficient algorithm can compute it on almost all inputs. Applications such as
derandomization and cryptography require functions that are strongly average-case hard, meaning
that no efficient algorithm can compute the function on noticeably more than half the inputs. This
motivates hardness amplification, which is the problem of transforming a mildly average-case hard
function into a strongly average-case hard function. A classic result in this area is the XOR Lemma
[16, 11, 6, 13], which states that the XOR of sufficiently many independent copies of a mildly
average-case hard function is strongly average-case hard, for suitable models of computation such
as boolean circuits.

However, the XOR Lemma (as well as the numerous subsequent results on hardness amplifica-
tion) incurs an unfortunate loss in circuit size. Suppose the original function f is mildly average-case
hard in the sense that no size s circuit succeeds on at least a 1− δ fraction of inputs, and we wish
for the new function f ′ to be strongly average-case hard in the sense that no size s′ circuit succeeds
on at least a 1/2 + ǫ fraction of inputs. Then we would like s′ to be as large as possible, but the
XOR Lemma only gives results with s′ smaller than s. This is because such results are proven
by reductions which show that if f ′ is not strongly average-case hard, then a circuit witnessing
this could be used to construct a circuit witnessing that f is not mildly average-case hard. If the
reduction makes q queries to the hypothesized circuit, then plugging in a size s′ circuit yields a
circuit of size ≥ qs′, and thus we must have s′ ≤ s/q. Hence the query complexity q governs the
loss in circuit size. For the XOR Lemma, the query complexity is well-understood (at least in the
case of nonadaptive black-box reductions). The proof due to Impagliazzo [11] and Klivans and
Servedio [14] shows that q = O

(

1
ǫ2
log 1

δ

)

queries are sufficient, and Shaltiel and Viola [20] showed
that q = Ω

(

1
ǫ2
log 1

δ

)

queries are necessary for nonadaptive black-box reductions such as the ones
used to prove the upper bound.

Bogdanov and Safra [3] initiated the study of hardness amplification in Levin’s original setting
of errorless average-case complexity. A boolean function is said to be mildly errorless average-case
hard if no efficient errorless algorithm (say, size s circuit) can compute it on almost all inputs
(say, a 1 − δ fraction). A function is said to be strongly errorless average-case hard if no efficient
errorless algorithm (say, size s′ circuit) can compute it on a noticeable fraction of inputs (say, an ǫ
fraction). Note that in the non-errorless setting, computing a boolean function on half the inputs is
trivial (using constant 0 or constant 1), but in the errorless setting, computing a boolean function

1Actually, Levin proposed considering algorithms that are correct on all inputs but which are efficient “on average”
with respect to a random input. Under a suitable formalization, such algorithms are equivalent to errorless algorithms
that may fail on a small fraction of inputs but are efficient on all inputs.
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on even a small fraction of inputs is nontrivial. The goal of errorless hardness amplification is to
transform a mildly errorless average-case hard function f into a strongly errorless average-case hard
function f ′. Such results suffer from a loss in circuit size for the same reason as in the non-errorless
setting. Bogdanov and Safra [3] showed that q = O

(

(1δ log
1
ǫ )

2 · 1
ǫ log

1
δ

)

queries are sufficient when
f ′ is the XOR of several independent copies of f . The result of Shaltiel and Viola [20] can be
modified without difficulty to show that q = Ω

(

1
ǫ log

1
δ

)

queries are necessary for nonadaptive
black-box reductions. We close the gap by showing that q = O

(

1
ǫ log

1
δ

)

queries are sufficient (via
a nonadaptive black-box reduction).

Another natural goal for hardness amplification is to guarantee that if f represents an NP
language at some input length, then f ′ also represents an NP language at some input length. In
the non-errorless setting this goal has been studied in numerous works [19, 22, 10, 23, 4, 17, 7],
and in the errorless setting this goal has been studied by Bogdanov and Safra [3]. We significantly
improve the query complexity of the Bogdanov-Safra result.

1.1 The Errorless XOR Lemma

Given f : {0, 1}n → {0, 1} we define f⊕k : {0, 1}n×k → {0, 1} as follows: f⊕k(x1, . . . , xk) =
f(x1)⊕ · · · ⊕ f(xk).

Definition 1 (Errorless Average-Case Hardness). We say a circuit A : {0, 1}n → {0, 1,⊥}
is a δ-errorless circuit for f : {0, 1}n → {0, 1} if

(i) A(x) ∈ {f(x),⊥} for all x ∈ {0, 1}n, and

(ii) Prx[A(x) = ⊥] ≤ δ where x ∈ {0, 1}n is chosen uniformly at random.

We say f is (s, δ)-hard if it has no δ-errorless circuit of size ≤ s.

Theorem 1 (Query-Optimal Errorless XOR Lemma). If f is (s, δ)-hard then f ′ = f⊕k is
(s′, 1− ǫ)-hard where s′ = s/

(

4
ǫ ln

2
δ

)

, provided k ≥ 16
δ ln 2

ǫ .

We prove Theorem 1 in Section 2.2 The query complexity of the reduction underlying Theorem 1
corresponds to the ratio s/s′. Bogdanov and Safra [3] proved a version of Theorem 1 where s′ =
s/
(

k2 · 2ǫ ln 2
δ

)

, provided k ≥ 2
δ ln

2
ǫ .

3 For the best value of k, they only achieve O
(

(1δ log
1
ǫ )

2 · 1ǫ log 1
δ

)

query complexity.
We prove Theorem 1 by a reduction similar to the one used in [3]. Our contribution is a new,

tight analysis of the reduction. The crux of the reduction is a randomized procedure that solves f
errorlessly (meaning that for each input x it may output f(x) with some probability and ⊥ with
some probability, but it never outputs f(x)) while making one query to a hypothesized (1 − ǫ)-
errorless circuit A′ for f ′. Suppose for some β > 0 we knew that ≤ δ/2 fraction of inputs x are
bad in the sense that the probability the procedure outputs f(x) is < β. Then by amplifying the
success probability on the good inputs and hard-wiring the randomness appropriately, we obtain
a δ-errorless circuit A for f , via a reduction with query complexity O

(

1
β log 1

δ

)

. The heart of our

2In the statement of Theorem 1, it would be more accurate to say s′ = s/
(

4

ǫ
ln 2

δ

)

−O(1) to account for the trivial
circuitry needed to combine the results of the 4

ǫ
ln 2

δ
queries the reduction makes. Throughout this paper, we ignore

such details. We also ignore details arising from the fact that numbers such as 4

ǫ
ln 2

δ
might not be integers.

3Actually, their proof gives s′ = s/
(

k2
·

2

ǫ
n
)

, provided k ≥
1

δ
ln 2

ǫ
, but a minor tweak to their proof yields the

stated result.
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improvement over the Bogdanov-Safra proof is in arguing that we can take β = ǫ/4. To prove this,
we suppose the fraction of bad inputs is > δ/2 and prove that then A′ must compute f ′ on < ǫ
fraction of inputs. The procedure outputs f(x) if and only if the query is an input on which A′

computes f ′; furthermore the distribution of this query (x1, . . . , xk) is obtained by setting xi = x
for a uniformly random i and picking x1, . . . , xi−1, xi+1, . . . , xk uniformly at random. Consider
the following two distributions on queries to A′: the uniform distribution, and the distribution
obtained by picking a random bad x and running the procedure on input x. We wish to show that
A′ computes f ′ with probability < ǫ under the former distribution, and we know A′ computes f ′

with probability < β = ǫ/4 under the latter. We show the two distributions are “close” in the sense
that the probability of any event under the former is less than twice the probability under the latter
plus ǫ/2: For every query (x1, . . . , xk) with, say, a ν fraction of bad coordinates, its probability
under the former distribution is µ/ν times larger than under the latter distribution, where µ > δ/2
is the fraction of bad inputs. By a Chernoff bound, ν ≥ µ/2 for all but an ǫ/2 fraction of queries.
Our formal proof of Theorem 1 can be viewed as implicitly following the above intuition, though
we rearrange the argument somewhat to highlight the similarity with the (more involved) proof of
our result on errorless hardness amplification within NP.

It can be shown that Ω
(

1
ǫ log

1
δ

)

queries are needed by any nonadaptive black-box reduction
achieving errorless hardness amplification, regardless of how f ′ is constructed from f (see Section 1.3
for the precise statement). Since our proof of Theorem 1 (and the Bogdanov-Safra proof) is by a
nonadaptive black-box reduction, this shows that Theorem 1 is optimal in a sense. Shaltiel and
Viola [20] gave a general technique for lower bounding the query complexity of nonadaptive black-
box reductions, and they applied it to non-errorless hardness amplification (including the XOR
Lemma and the Direct Product Lemma) and to constructions of pseudorandom generators from
average-case hard functions. Similarly, we observe that their technique applies to errorless hardness
amplification. Artemenko and Shaltiel [1] have proven a Ω

(

1
ǫ

)

query lower bound even for adaptive
black-box reductions. The optimal Ω

(

1
ǫ log

1
δ

)

lower bound for adaptive reductions remains open.

1.2 Monotone Errorless Amplification

Consider the problem of errorless hardness amplification within NP. That is, if f is computable
in nondeterministic polynomial time, then we want f ′ to also be computable in nondeterministic
polynomial time. Taking f ′ = f⊕k does not guarantee this. We instead consider more general
constructions of the form f ′ = C ◦ fk where C : {0, 1}k → {0, 1}, and fk : {0, 1}n×k → {0, 1}k is
defined as fk(x1, . . . , xk) =

(

f(x1), . . . , f(xk)
)

. In the setting of the XOR Lemma, the combiner
function C is the k-bit parity function. If C is monotone (that is, C(y1, . . . , yk) ≤ C(z1, . . . , zk)
whenever yi ≤ zi for all i ∈ [k]) and f and C are both computable in nondeterministic polynomial
time, then f ′ is guaranteed to be computable in nondeterministic polynomial time. This approach
dates back to [19, 10].

Bogdanov and Safra [3] showed that this construction yields errorless hardness amplification
provided the monotone combiner function C satisfies a certain combinatorial property. To describe
this property, we need some definitions from [3] (though we use somewhat different notation). Fix
b ∈ {0, 1}. Given a monotone function C : {0, 1}k → {0, 1} and a string y ∈ {0, 1}k , we say that
coordinate i ∈ [k] is b-sensitive if flipping the ith bit of y causes the value of C to flip from b to b,
and we let σ(C, y, b) denote the set of b-sensitive coordinates. That is,

σ(C, y, b) =
{

i ∈ [k] : C(y) = b and C(y ⊕ ei) = b
}

.
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Note that if C(y) = b then σ(C, y, b) = ∅ and if C(y) = b then by the monotonicity of C, σ(C, y, b)
only contains coordinates i such that yi = b. For p ∈ [0, 1], we use y ∼p {0, 1}k to denote that y is
sampled from the p-biased distribution, that is, each bit is independently set to 1 with probability
p.

Definition 2. For b ∈ {0, 1}, a function C : {0, 1}k → {0, 1} is a (t, ρ, p, b)-amplifier if C is
monotone and

Pr
y∼p{0,1}k

[

∣

∣σ(C, y, b)
∣

∣ ≥ t
]

≥ 1− ρ.

Note that a monotone function C : {0, 1}k → {0, 1} is a (t, ρ, p, b)-amplifier if and only if its
monotone complement C† : {0, 1}k → {0, 1} is a (t, ρ, 1− p, b)-amplifier, where C† is defined as

C†(y1, . . . , yk) = C(y1, . . . , yk).

For reasons discussed in [3], we consider the following one-sided version of Definition 1.

Definition 3 (One-Sided Errorless Average-Case Hardness). For b ∈ {0, 1}, we say a cir-
cuit A : {0, 1}n → {0, 1,⊥} is a (δ, b)-errorless circuit for f : {0, 1}n → {0, 1} if

(i) A(x) ∈ {f(x),⊥} for all x ∈ {0, 1}n, and

(ii) Prx[A(x) = ⊥] ≤ δ where x ∈ f−1(b) is chosen uniformly at random.

We say f is (s, δ, b)-hard if it has no (δ, b)-errorless circuit of size ≤ s.

Note that if f is (s, δ)-hard then f is either (s/2, δ, 0)-hard or (s/2, δ, 1)-hard.

Theorem 2 (Monotone Errorless Amplification Lemma). For b ∈ {0, 1}, if f is (s, δ, b)-
hard and C : {0, 1}k → {0, 1} is a (t, ρ, p, b)-amplifier then f ′ = C ◦ fk is (s′, 1 − ǫ)-hard where
s′ = s/

(

k
t · 4

ǫ ln
2
δ

)

, provided t ≥ 16
δ ln 4

ǫ , ρ ≤ ǫ/4, and p = Prx
[

f(x) = 1
]

.

We prove Theorem 2 in Section 3. The query complexity of the reduction underlying Theorem 2
corresponds to the ratio s/s′. Bogdanov and Safra [3] proved a version of Theorem 2 where s′ =
s/
(

k3 · 64
ǫ2

ln 2
δ

)

, provided t ≥ 4
δ ln

8
ǫ and ρ ≤ ǫ/2. Their argument involves considering the subcubes

of {0, 1}n×k given by fk(x1, . . . , xk) = y for each y individually and then combining the results
for the different subcubes using a nontrivial probabilistic argument. We show how to give a direct
argument that handles all the subcubes simultaneously. This idea alone actually simplifies the
proof and reduces the query complexity to O

(

k2 · 1
ǫ log

1
δ

)

. Combining this idea with the ideas
from our analysis in the proof of Theorem 1 allows us to further reduce the query complexity
to O

(

k
t · 1

ǫ log
1
δ

)

. We believe this bound on the query complexity cannot be improved without
exploiting some non-obvious structural property of (t, ρ, p, b)-amplifiers; however, we could not
come up with a compelling way to formalize this.

Bogdanov and Safra [3] showed how to construct good amplifiers (with large t and small ρ)
and how to use Theorem 2 with these amplifiers to do uniform and nonuniform errorless hardness
amplification within NP. For simplicity in describing their amplifiers, we restrict to the case
p = 1/2 (so only balanced functions f are allowed). Bogdanov and Safra showed that for all
constants α, β ≥ 0 and sufficiently large k, every (t, ρ, 1/2, b)-amplifier with t = kα and ρ = k−β

satisfies α + β ≤ 1/2. They constructed an amplifier they call or-ddnfα (which they view as a
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derandomization of Talagrand’s random DNF [21]) that achieves near-optimal parameters: t = kα

and ρ = O
(

k−(1/2−α) · √log k
)

, but only for b = 0. Of course, or-ddnf
†
α achieves the same

parameters for b = 1, but or-ddnfα is in NP whereas or-ddnf†α is not known to be in NP. Hence
or-ddnf

†
α cannot be used for errorless hardness amplification within NP unless k ≤ O(log n).

Bogdanov and Safra constructed another amplifier they call hol-ampα (based on the “holographic
function” of Benjamini, Schramm, and Wilson [2]). For b = 0 this amplifier achieves t = kα and

ρ = O
(

k−(1/3−α) ·polylog k
)

, and of course hol-amp†α achieves the same parameters for b = 1. These

parameters are worse than for or-ddnfα, but the advantage is that hol-ampα and hol-amp
†
α are

computable in polynomial time, so they can both be used for errorless hardness amplification within
NP.

To plug one of these amplifiers into Theorem 2 and minimize the query complexity, one should
pick an 0 ≤ α < 1/2 and then choose the smallest k allowed by the provisions kα = t ≥ 16

δ ln 4
ǫ and

ρ ≤ ǫ/4. For small α, the former provision is more restrictive, and for large α the latter is more
restrictive. The provisions in the original Bogdanov-Safra version of Theorem 2 are the same as
ours (up to constant factors), but the query complexity is a factor k2t/ǫ larger than ours.

Bogdanov and Safra [3] used the hol-ampα and hol-amp
†
α amplifiers to show that if every

problem in NP has polynomial-size errorless circuits that succeed on at least n−2/9+o(1) fraction
of inputs, then every problem in NP has polynomial-size errorless circuits that succeed on at least
1− n−c fraction of inputs (for every constant c). This particular result is only concerned with the
loss in circuit size at the granularity of polynomial versus not polynomial, and our result only gives
a polynomial improvement in the loss in circuit size. Hence our result does not help to improve the
2/9 exponent, which arises from the parameters of the amplifier.

1.3 Black-Box Lower Bounds

We give lower bounds on the query complexity and advice complexity of black-box errorless hardness
amplification proofs. We allow ourselves to identify strings with functions; for example, we identify
{0, 1}2n with the set of all functions from {0, 1}n to {0, 1}.

Definition 4. An (n, n′, δ, ǫ, α)-black-box errorless hardness amplification is a pair (Enc,Dec) with

Enc : {0, 1}2n → {0, 1}2n
′

and Dec : {0, 1,⊥}2n
′

× {0, 1}α → {0, 1,⊥}2n , such that for all f ∈
{0, 1}2n and A′ ∈ {0, 1,⊥}2n

′

there exists an a ∈ {0, 1}α such that the following holds, where
f ′ = Enc(f) and A = Dec(A′, a). If

(i) A′(x′) ∈ {f ′(x′),⊥} for all x′ ∈ {0, 1}n′
, and

(ii) Prx′ [A′(x′) = ⊥] ≤ 1− ǫ,

then

(i) A(x) ∈ {f(x),⊥} for all x ∈ {0, 1}n, and

(ii) Prx[A(x) = ⊥] ≤ δ.

We say it is q-query if there is an algorithm that takes (x, a) as input, makes q (possibly adaptive)
queries to A′, and outputs A(x). We further say it is nonadaptive if the algorithm makes its queries
to A′ nonadaptively.
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In fact, our lower bounds hold even for the following weaker type of reduction.

Definition 5. An (n, n′, δ, ǫ, α)-black-box non-errorless to errorless hardness amplification is a pair

(Enc,Dec) with Enc : {0, 1}2n → {0, 1}2n
′

and Dec : {0, 1,⊥}2n
′

× {0, 1}α → {0, 1}2n , such that

for all f ∈ {0, 1}2n and A′ ∈ {0, 1,⊥}2n
′

there exists an a ∈ {0, 1}α such that the following holds,
where f ′ = Enc(f) and A = Dec(A′, a). If

(i) A′(x′) ∈ {f ′(x′),⊥} for all x′ ∈ {0, 1}n′
, and

(ii) Prx′ [A′(x′) = ⊥] ≤ 1− ǫ,

then Prx[A(x) 6= f(x)] ≤ δ. We say it is q-query if there is an algorithm that takes (x, a) as input,
makes q (possibly adaptive) queries to A′, and outputs A(x). We further say it is nonadaptive if
the algorithm makes its queries to A′ nonadaptively.

In the proof of Theorem 1 we show that there exists a q-query nonadaptive (n, n′, δ, ǫ, α)-black-
box errorless hardness amplification where q = 4

ǫ ln
2
δ , n

′ = kn, and α =
(

log2 k + (k − 1)n+ 1
)

· q,
provided k ≥ 16

δ ln 2
ǫ .

Theorem 3 ([20]). There exists a universal constant c > 1 such that the following holds. If there
exists a q-query nonadaptive (n, n′, δ, ǫ, α)-black-box non-errorless to errorless hardness amplifica-
tion then q ≥ 1

c · 1
ǫ ln

1
δ , provided n ≥ c, n′ ≥ c, 2−n/c ≤ δ ≤ 1/3, 2−n/c ≤ ǫ ≤ 1/3, and α ≤ 2n/c.

Shaltiel and Viola [20] actually proved a similar result for the fully non-errorless setting (with the
conclusion q ≥ 1

c · 1
ǫ2
ln 1

δ ). Their proof involves using noise that flips bits (representing the answers
to queries) with probability either 1/2 − ǫ or 1/2, and they argue that a nonadaptive reduction
can be used to distinguish between the two cases, and this requires Ω

(

1
ǫ2 log

1
δ

)

bits (queries). We
adapt their proof to our errorless setting as follows. The two cases instead involve using noise that
masks the bit with ⊥ with probability 1− ǫ and reveals the correct bit with probability ǫ, or using
“noise” that masks the bit with ⊥ with probability 1. A nonadaptive reduction in our setting can
be used to distinguish between the two cases, and this requires Ω

(

1
ǫ log

1
δ

)

bits (queries). The rest
of the Shaltiel-Viola proof goes through with some minor changes but without major changes, so
we omit the argument.

Building on the techniques of [20], Artemenko and Shaltiel [1] proved the following lower bound,
which applies to adaptive reductions but which falls short of the tight Ω

(

1
ǫ log

1
δ

)

lower bound by
a factor of log 1

δ . Like Theorem 3, the result of [1] holds for “non-errorless to errorless” hardness
amplification, and thus simultaneously applies to both the fully non-errorless setting and the fully
errorless setting.

Theorem 4 ([1]). There exists a universal constant c > 1 such that the following holds. If there
exists a q-query (n, n′, δ, ǫ, α)-black-box non-errorless to errorless hardness amplification then q ≥
1
c · 1

ǫ , provided n ≥ c, n′ ≥ c, δ ≤ 1/3, 2−n/c ≤ ǫ ≤ 1/3, and α ≤ 2n/c.

We now turn our attention to lower bounds on advice complexity.

Theorem 5. If there exists an (n, n′, δ, ǫ, α)-black-box non-errorless to errorless hardness amplifi-

cation then 2α ≥ log3
1
ǫ , provided δ < 1/8 and ǫ ≥ 1/1.011.01

2
n

.
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We prove Theorem 5 in Section 4. In the fully non-errorless setting, lower bounds on advice
complexity correspond to lower bounds on list size for approximately list-decoding error-correcting
codes from flipped bits. Such a lower bound was given in [18] (see also [9]). In the non-errorless
to errorless setting, lower bounds on advice complexity correspond to lower bounds on list size for
approximately list-decoding error-correcting codes from erasures. For exact decoding, such lower
bounds were given in [8, 5]. Our proof of Theorem 5 is simpler and cleaner than the proofs of
the latter results (at the cost of achieving worse constants), and it handles approximate decoding.
Also, the presentation in [8], which is geared toward coding theorists, views the rate, list size, and
fraction of erasures as constants for an infinite family of codes. Our presentation is geared toward
complexity theorists, who are interested more generally in the asymptotic relationships among all
the parameters.

1.4 Preliminaries

We use the following standard Chernoff bound several times.

Theorem 6. If X1, . . . ,Xτ are fully independent indicator random variables each with expectation
µ, then Pr

[
∑τ

j=1Xj < µτ/2
]

< e−µτ/8.

2 Proof of Theorem 1

We prove the contrapositive. Suppose f ′ is not (s′, 1− ǫ)-hard and thus there is a circuit A′ of size
≤ s′ such that

(i) A′(x1, . . . , xk) ∈
{

f ′(x1, . . . , xk),⊥
}

for all x1, . . . , xk, and

(ii) Prx1,...,xk

[

A′(x1, . . . , xk) = ⊥
]

≤ 1− ǫ.

We give a nonuniform reduction that makes 4
ǫ ln

2
δ nonadaptive queries to A′ and combines the

results with some trivial computation, yielding a circuit A that witnesses that f is not (s, δ)-hard.
To start out, we give a randomized algorithm (Algorithm 1) that solves f errorlessly using oracle
access to A′ and oracle access to f . The oracle queries to f only depend on the randomness (and
not on the input), and later we will hard-wire a particular choice of randomness to get a circuit
without oracle access to f .

Input: x ∈ {0, 1}n
Output: f(x) or ⊥
repeat 4

ǫ ln
2
δ times1

pick i ∈ [k] and x1, . . . , xi−1, xi+1, . . . , xk ∈ {0, 1}n uniformly at random2

if A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥ then halt and output3

f(x1)⊕ · · · ⊕ f(xi−1)⊕A′(x1, . . . , xi−1, x, xi+1, . . . , xk)⊕ f(xi+1)⊕ · · · ⊕ f(xk)

end4

halt and output ⊥5

Algorithm 1: Reduction for Theorem 1

8



Define the good set

G =

{

x ∈ {0, 1}n : Pr
i,x1,...,xi−1,xi+1,...,xk

[

A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥
]

≥ ǫ/4

}

,

and define the bad set B = {0, 1}n\G. That is, G is the set of inputs for which each iteration of
the loop has at least an ǫ/4 probability of producing output.

Claim 1. |B| ≤ (δ/2) · 2n.

Proof. Suppose for contradiction that |B| > (δ/2) · 2n. Let γ = |B|/2n+1. We define the event

W =
{

(x1, . . . , xk) ∈ {0, 1}n×k :
∣

∣

{

i : xi ∈ B
}∣

∣ ≥ γk
}

.

That is, W is the event that at least a γ fraction of coordinates are bad. We have

Pr
x1,...,xk

[

A′(x1, . . . , xk) 6= ⊥
]

≤ Pr
x1,...,xk

[

(x1, . . . , xk) 6∈ W
]

+

Pr
x1,...,xk

[

A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ W
]

.

We show that both terms on the right side are < ǫ/2, thus contradicting property (ii) of A′.

Bounding the first term. Applying Theorem 6 with Xi as the indicator variable for xi ∈ B, and
with τ = k and µ = |B|/2n, we have

Pr
x1,...,xk

[

(x1, . . . , xk) 6∈ W
]

< e−k·|B|/2n+3

< e−kδ/16 ≤ ǫ/2

where the middle inequality follows by our assumption on |B| and the last inequality follows by
k ≥ 16

δ ln 2
ǫ .

Bounding the second term. For each S ⊆ [k] we define the event

WS =
{

(x1, . . . , xk) ∈ {0, 1}n×k : ∀i xi ∈ B ⇔ i ∈ S
}

.

Note that the WS ’s are disjoint and

W =
⋃

S : |S|≥γk

WS.

We have

Pr
x1,...,xk

[

A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ W
]

=
∑

S : |S|≥γk

Pr
x1,...,xk

[

A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ WS

]

≤ 1

γk

∑

S⊆[k]

|S| · Pr
x1,...,xk

[

A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ WS

]

=
1

γk

∑

i∈[k]

∑

S∋i

Pr
x1,...,xk

[

A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ WS

]

9



=
1

γk

∑

i∈[k]

Pr
x1,...,xk

[

A′(x1, . . . , xk) 6= ⊥ and xi ∈ B
]

=
1

γk

∑

i∈[k]

∑

x∈B

Pr
x1,...,xk

[

A′(x1, . . . , xk) 6= ⊥
∣

∣ xi = x
]

· Pr
x1,...,xk

[xi = x]

=
1

γk2n

∑

x∈B

∑

i∈[k]

Pr
x1,...,xi−1,xi+1,...,xk

[

A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥
]

=
1

γk2n

∑

x∈B

k · Pr
i,x1,...,xi−1,xi+1,...,xk

[

A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥
]

<
1

γk2n

∑

x∈B

k · ǫ/4

=
ǫ/4

γ2n
· |B|

= ǫ/2

where the second and fifth lines follow by the disjointness of the WS ’s, and the remaining lines
follow by simple rearrangements.

The rest of the proof of Theorem 1 is similar to the argument from [3]. First we note that for
all x ∈ {0, 1}n and all choices of randomness, Algorithm 1 does indeed output either f(x) or ⊥.
This follows trivially from the fact that if A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥ then

A′(x1, . . . , xi−1, x, xi+1, . . . , xk) = f(x1)⊕ · · · ⊕ f(xi−1)⊕ f(x)⊕ f(xi+1)⊕ · · · ⊕ f(xk)

by property (i) of A′. Next we observe that for each x ∈ G, we have

Pr
randomness

[

Algorithm 1 outputs ⊥
]

≤
(

1− ǫ/4
)

4

ǫ
ln 2

δ ≤ δ/2.

Therefore

Pr
x, randomness

[

Algorithm 1 outputs ⊥
]

≤ Pr
x

[

x ∈ B
]

+

E
x

[

Pr
randomness

[

Algorithm 1 outputs ⊥
]

∣

∣

∣

∣

x ∈ G

]

≤ δ/2 + E
x

[

δ/2
∣

∣ x ∈ G
]

= δ

where the second inequality follows by Claim 1 and by the above observation. It follows that there
exists a setting of the randomness such that

(i) Algorithm 1 outputs f(x) or ⊥ for all x, and

(ii) Prx
[

Algorithm 1 outputs ⊥
]

≤ δ.

To get a circuit A that witnesses that f is not (s, δ)-hard, just hard-wire the randomness and the
values of f(x1)⊕· · ·⊕f(xi−1)⊕f(xi+1)⊕· · ·⊕f(xk) needed for this choice of randomness, and plug
in the hypothesized circuit A′. Since A′ has size ≤ s′ and Algorithm 1 makes 4

ǫ ln
2
δ queries to A′,

A has size ≤ s′ · 4
ǫ ln

2
δ = s. Note that Algorithm 1 can trivially be implemented with nonadaptive

access to A′.
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3 Proof of Theorem 2

Fix an arbitrary bit b. We prove the contrapositive. Suppose f ′ is not (s′, 1 − ǫ)-hard and thus
there is a circuit A′ of size ≤ s′ such that

(i) A′(x1, . . . , xk) ∈
{

f ′(x1, . . . , xk),⊥
}

for all x1, . . . , xk, and

(ii) Prx1,...,xk

[

A′(x1, . . . , xk) = ⊥
]

≤ 1− ǫ.

We give a nonuniform reduction that makes k
t · 4

ǫ ln
2
δ nonadaptive queries to A′ and combines the

results with some trivial computation, yielding a circuit A that witnesses that f is not (s, δ, b)-
hard. To start out, we give a randomized algorithm (Algorithm 2) that solves f errorlessly using
oracle access to A′ and oracle access to f and σ(C, ·, b). The oracle queries to f and σ(C, ·, b) only
depend on the randomness (and not on the input), and later we will hard-wire a particular choice
of randomness to get a circuit without oracle access to f or σ(C, ·, b).

Input: x ∈ {0, 1}n
Output: f(x) or ⊥
repeat k

t · 4
ǫ ln

2
δ times1

pick i ∈ [k] and x1, . . . , xi−1, xi+1, . . . , xk ∈ {0, 1}n uniformly at random2

if A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥ and i ∈ σ(C, y, b) where3

y =
(

f(x1), . . . , f(xi−1), b, f(xi+1), . . . , f(xk)
)

then halt and output A′(x1, . . . , xi−1, x, xi+1, . . . , xk)
end4

halt and output ⊥5

Algorithm 2: Reduction for Theorem 2

Define the good set

G =

{

x ∈ f−1(b) :

Pr
i,x1,...,xi−1,xi+1,...,xk

[

A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥ and i ∈ σ(C, y, b)
]

≥ ǫt/4k

}

where y is as in line 3 of Algorithm 2, and define the bad set B = f−1(b)\G. That is, G is the set of
inputs in f−1(b) for which each iteration of the loop has at least an ǫt/4k probability of producing
output.

Claim 2. |B| ≤ (δ/2) ·
∣

∣f−1(b)
∣

∣.

Proof. Suppose for contradiction that |B| > (δ/2) ·
∣

∣f−1(b)
∣

∣. Let γ = |B|/2
∣

∣f−1(b)
∣

∣. We define the
event

W =

{

(x1, . . . , xk) ∈ {0, 1}n×k :
∣

∣

∣

{

i : xi ∈ B and i ∈ σ
(

C, fk(x1, . . . , xk), b
)

}∣

∣

∣
≥ γt

}

.

11



That is, W is the event that at least a γt/k fraction of coordinates are both bad and b-sensitive.
We have

Pr
x1,...,xk

[

A′(x1, . . . , xk) 6= ⊥
]

≤ Pr
x1,...,xk

[

(x1, . . . , xk) 6∈ W
]

+

Pr
x1,...,xk

[

A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ W
]

.

We show that both terms on the right side are < ǫ/2, thus contradicting property (ii) of A′.

Bounding the first term. We have

Pr
x1,...,xk

[

(x1, . . . , xk) 6∈ W
]

≤ Pr
x1,...,xk

[

∣

∣σ
(

C, fk(x1, . . . , xk), b
)
∣

∣ < t
]

+

Pr
x1,...,xk

[

(x1, . . . , xk) 6∈ W
∣

∣

∣

∣

∣σ
(

C, fk(x1, . . . , xk), b
)∣

∣ ≥ t
]

.

To show that this is < ǫ/2, we show that the first of the two terms on the right side is ≤ ǫ/4 and
the second is < ǫ/4. Since C is a (t, ρ, p, b)-amplifier, we have

Pr
x1,...,xk

[

∣

∣σ
(

C, fk(x1, . . . , xk), b
)
∣

∣ < t
]

= Pr
y∼p{0,1}k

[

∣

∣σ(C, y, b)
∣

∣ < t
]

≤ ρ ≤ ǫ/4.

We have

Pr
x1,...,xk

[

(x1, . . . , xk) 6∈ W
∣

∣

∣

∣

∣σ
(

C, fk(x1, . . . , xk), b
)
∣

∣ ≥ t
]

= E
y∼p{0,1}k

[

Pr
x1,...,xk

[

(x1, . . . , xk) 6∈ W
∣

∣

∣
fk(x1, . . . , xk) = y

]

∣

∣

∣

∣

∣

∣σ(C, y, b)
∣

∣ ≥ t

]

.

Fix any y ∈ {0, 1}k such that
∣

∣σ(C, y, b)
∣

∣ ≥ t, and for now let us abbreviate σ(C, y, b) as σ. Then
using (xi)i 6∈σ to denote the sequence of inputs xi (chosen uniformly at random) for indices i 6∈ σ
(and similarly (xi)i∈σ), we have

Pr
x1,...,xk

[

(x1, . . . , xk) 6∈ W
∣

∣

∣
fk(x1, . . . , xk) = y

]

= E
(xi)i6∈σ

[

Pr
(xi)i∈σ

[

(x1, . . . , xk) 6∈ W
∣

∣

∣
f(xi) = b ∀i ∈ σ

]

∣

∣

∣

∣

f(xi) = yi ∀i 6∈ σ

]

since σ ⊆
{

i : yi = b
}

. Now fix any (xi)i 6∈σ such that f(xi) = yi for all i 6∈ σ. Then we have

Pr
(xi)i∈σ

[

(x1, . . . , xk) 6∈ W
∣

∣

∣
f(xi) = b ∀i ∈ σ

]

= Pr
(xi)i∈σ

[

∣

∣

{

i ∈ σ : xi ∈ B
}
∣

∣ < γt
∣

∣

∣
f(xi) = b ∀i ∈ σ

]

≤ Pr
(xi)i∈σ

[

∣

∣

{

i ∈ σ : xi ∈ B
}∣

∣ < γ · |σ|
∣

∣

∣
f(xi) = b ∀i ∈ σ

]

where the inequality follows by t ≤ |σ|. Applying Theorem 6 with Xj as the indicator variable for
xi ∈ B where i is the jth value in σ and xi is chosen uniformly from f−1(b), and with τ = |σ| and
µ = |B|/

∣

∣f−1(b)
∣

∣, we have that the latter quantity is less than

e−|σ|·|B|/8|f−1(b)| < e−|σ|·δ/16 ≤ e−tδ/16 ≤ ǫ/4

12



where the first inequality follows by our assumption on |B|, the middle inequality follows by |σ| ≥ t,
and the last inequality follows by t ≥ 16

δ ln 4
ǫ . This establishes that

Pr
x1,...,xk

[

(x1, . . . , xk) 6∈ W
∣

∣

∣

∣

∣σ
(

C, fk(x1, . . . , xk), b
)
∣

∣ ≥ t
]

< ǫ/4.

Bounding the second term. This is similar to the corresponding part of the analysis in the
proof of Theorem 1. For each S ⊆ [k] we define the event

WS =
{

(x1, . . . , xk) ∈ {0, 1}n×k : ∀i
(

xi ∈ B and i ∈ σ
(

C, fk(x1, . . . , xk), b
)

)

⇔ i ∈ S
}

.

Note that the WS ’s are disjoint and

W =
⋃

S : |S|≥γt

WS .

Using the shorthand y as in line 3 of Algorithm 2, we have

Pr
x1,...,xk

[

A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ W
]

=
∑

S : |S|≥γt

Pr
x1,...,xk

[

A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ WS

]

≤ 1

γt

∑

S⊆[k]

|S| · Pr
x1,...,xk

[

A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ WS

]

=
1

γt

∑

i∈[k]

∑

S∋i

Pr
x1,...,xk

[

A′(x1, . . . , xk) 6= ⊥ and (x1, . . . , xk) ∈ WS

]

=
1

γt

∑

i∈[k]

Pr
x1,...,xk

[

A′(x1, . . . , xk) 6= ⊥ and xi ∈ B and i ∈ σ
(

C, fk(x1, . . . , xk), b
)

]

=
1

γt

∑

i∈[k]

∑

x∈B

Pr
x1,...,xk

[

A′(x1, . . . , xk) 6= ⊥ and i ∈ σ
(

C, fk(x1, . . . , xk), b
)

∣

∣

∣
xi = x

]

· Pr
x1,...,xk

[xi = x]

=
1

γt2n

∑

x∈B

∑

i∈[k]

Pr
x1,...,xi−1,xi+1,...,xk

[

A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥ and i ∈ σ(C, y, b)
]

=
1

γt2n

∑

x∈B

k · Pr
i,x1,...,xi−1,xi+1,...,xk

[

A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥ and i ∈ σ(C, y, b)
]

<
1

γt2n

∑

x∈B

k · ǫt/4k

=
ǫ/4

γ2n
· |B|

≤ ǫ/2

where the second and fifth lines follow by the disjointness of the WS’s, the last line follows by
∣

∣f−1(b)
∣

∣ ≤ 2n, and the remaining lines follow by simple rearrangements. For the seventh line, we
used the fact that x ∈ B implies f(x) = b and thus y = fk(x1, . . . , xi−1, x, xi+1, . . . , xk).
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We now finish the proof of Theorem 2. First we note that for all x ∈ {0, 1}n and all choices of
randomness, Algorithm 2 does indeed output either f(x) or ⊥. This follows trivially from the facts
that A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 6= ⊥ implies

A′(x1, . . . , xi−1, x, xi+1, . . . , xk) = f ′(x1, . . . , xi−1, x, xi+1, . . . , xk)

by property (i) of A′, and i ∈ σ(C, y, b) implies f ′(x1, . . . , xi−1, x, xi+1, . . . , xk) = f(x), where y is
as in line 3 of Algorithm 2. Next we observe that for each x ∈ G, we have

Pr
randomness

[

Algorithm 2 outputs ⊥
]

≤
(

1− ǫt/4k
)

k
t
· 4
ǫ
ln 2

δ ≤ δ/2.

Therefore, picking x ∈ f−1(b) uniformly at random, we have

Pr
x, randomness

[

Algorithm 2 outputs ⊥
]

≤ Pr
x

[

x ∈ B
]

+

E
x

[

Pr
randomness

[

Algorithm 2 outputs ⊥
]

∣

∣

∣

∣

x ∈ G

]

≤ δ/2 + E
x

[

δ/2
∣

∣ x ∈ G
]

= δ

where the second inequality follows by Claim 2 and by the above observation. It follows that there
exists a setting of the randomness such that

(i) Algorithm 2 outputs f(x) or ⊥ for all x ∈ {0, 1}n, and

(ii) Prx
[

Algorithm 2 outputs ⊥
]

≤ δ where x ∈ f−1(b) is chosen uniformly at random.

To get a circuit A that witnesses that f is not (s, δ, b)-hard, just hard-wire the randomness and
the correct responses to the σ(C, ·, b) queries (which only depend on the randomness and not on
x), and plug in the hypothesized circuit A′. In fact, the iterations for which i 6∈ σ(C, y, b) for this
particular choice of randomness can simply be eliminated. Since A′ has size ≤ s′ and Algorithm 2
makes ≤ k

t · 4ǫ ln 2
δ queries to A′, A has size ≤ s′ · kt · 4ǫ ln 2

δ = s. Note that Algorithm 2 can trivially
be implemented with nonadaptive access to A′.

4 Proof of Theorem 5

Let (Enc,Dec) be an (n, n′, δ, ǫ, α)-black-box non-errorless to errorless hardness amplification with

δ < 1/8 and ǫ ≥ 1/1.011.01
2
n

. We use the notation ∆(f1, f2) for the relative Hamming distance
between bit strings f1 and f2. We begin with a completely standard claim that asserts the existence
of a good error-correcting code. We include the proof for completeness.

Claim 3. There exists an F ⊆ {0, 1}2n such that

(1) ∀f1, f2 ∈ F : if f1 6= f2 then ∆(f1, f2) > 2δ, and

(2) |F | = 4 log3
1
ǫ .
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Proof. Pick F ⊆ {0, 1}2n randomly by choosing f1, . . . , f4 log3 1

ǫ
∈ {0, 1}2n independently uniformly

at random and setting F =
{

f1, . . . , f4 log3 1

ǫ

}

. To prove (1) and (2), it suffices to show that

Pr
[

∃i1, i2 ∈ {1, . . . , 4 log3 1
ǫ} : i1 6= i2 and ∆(fi1 , fi2) ≤ 2δ

]

< 1.

For each pair i1 6= i2, since δ < 1/8 we have

Pr
[

∆(fi1 , fi2) ≤ 2δ
]

≤ Pr
[

∆(fi1 , fi2) < 1/4
]

< e−2n/16

by applying Theorem 6 with Xj as the indicator variable for fi1(x) 6= fi2(x) where x is the jth
string in {0, 1}n, and with τ = 2n and µ = 1/2. By a union bound, the probability in question is

at most
(

4 log3
1
ǫ

)2 · e−2n/16 < 1 since ǫ ≥ 1/1.011.01
2
n

.

For the rest of the proof of Theorem 5 we fix a set F as in Claim 3.

Claim 4. There exists an E ⊆ F and an A′ ∈ {0, 1,⊥}2n
′

such that

(i) ∀f ∈ E : A′(x′) ∈ {f ′(x′),⊥} for all x′ ∈ {0, 1}n′
, where f ′ = Enc(f), and

(ii) Prx′ [A′(x′) = ⊥] ≤ 1− ǫ, and

(iii) |E| = log3
1
ǫ .

Proof. For each x′ ∈ {0, 1}n′
let mx′ = majorityf∈F Enc(f)(x′), breaking a tie arbitrarily, and

define
Mx′ =

{

f ∈ F : Enc(f)(x′) = mx′

}

.

For any set E ⊆ F , define
M−1

E =
{

x′ ∈ {0, 1}n′

: E ⊆ Mx′

}

.

We construct a sequence of sets E0 ⊆ E1 ⊆ E2 ⊆ · · · ⊆ Elog3
1

ǫ
⊆ F such that for all i, |Ei| = i and

∣

∣M−1
Ei

∣

∣ ≥ 2n
′
/3i. Then we can take E = Elog3

1

ǫ
and

A′(x′) =

{

mx′ if x′ ∈ M−1
E

⊥ otherwise

and (i), (ii), and (iii) all follow immediately. We do the construction inductively. The base case
i = 0 is trivial. Now assume i ∈

{

0, 1, . . . , log3
1
ǫ − 1

}

and we have a set Ei ⊆ F with |Ei| = i and
∣

∣M−1
Ei

∣

∣ ≥ 2n
′
/3i. For each x′ ∈ M−1

Ei
, since i ≤ |F |/4 we have

Pr
f∈F\Ei

[f ∈ Mx′ ] =
|Mx′\Ei|
|F\Ei|

≥
1
2 |F | − i

|F | − i
≥ 1/3

where f is chosen uniformly at random. Thus for some f ∈ F\Ei we have Prx′∈M−1

Ei

[f ∈ Mx′ ] ≥ 1/3

where x′ is chosen uniformly at random. For this fixed f , setting Ei+1 = Ei ∪ {f} we have
|Ei+1| = |Ei|+ 1 = i+ 1 and

∣

∣M−1
Ei+1

∣

∣ =
∣

∣

{

x′ ∈ M−1
Ei

: f ∈ Mx′

}
∣

∣ =
∣

∣M−1
Ei

∣

∣ · Pr
x′∈M−1

Ei

[f ∈ Mx′ ] ≥
∣

∣M−1
Ei

∣

∣/3 ≥ 2n
′

/3i+1.

This finishes the induction step.
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Now to prove Theorem 5, suppose for contradiction that 2α < log3
1
ǫ . Then by the pigeonhole

principle there must exist f1, f2 ∈ E such that f1 6= f2 and the advice string corresponding to
f1 and A′ equals the advice string corresponding to f2 and A′. Call this advice string a, and
let A = Dec(A′, a). By Definition 5, we must have ∆(A, f1) ≤ δ and ∆(A, f2) ≤ δ. But this is
impossible because ∆(f1, f2) > 2δ by property (1) in Claim 3.

5 Open Problems

There remains a multiplicative log 1
δ gap between the known upper and lower bounds on query

complexity for adaptive black-box reductions for errorless hardness amplification.
It is an open problem to prove some sort of uniform version of the Errorless XOR Lemma.

Impagliazzo et al. [12] proved a sort of uniform version of the (non-errorless) XOR Lemma, but
their techniques do not seem to apply to the errorless setting.

Another open problem concerns a version of the Errorless XOR Lemma where k different mildly
errorless average-case hard functions are XORed together. The original Bogdanov-Safra proof can
be used to show that this construction does yield a strongly errorless average-case hard function,
but our proof does not seem to apply, so it is not known if this more general hardness amplification
can be done with query complexity O

(

1
ǫ log

1
δ

)

.
It remains open to construct polynomial-time computable (t, ρ, 1/2, b)-amplifiers that achieve

near-optimal tradeoff between t and ρ. (The optimal tradeoff would be t/ρ = k1/2.) The functions

hol-ampα (for b = 0) and hol-amp
†
α (for b = 1) are suboptimal (with t/ρ ≈ k1/3). The function

or-ddnfα (for b = 0) is near-optimal, but not known to be polynomial-time computable (though
it is in NP, which is good enough for hardness amplification within NP). For b = 1, it is not even
known how to achieve near-optimal tradeoff with a function in NP.
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