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Abstract

The area of derandomization attempts to provide efficient deterministic simulations of random-
ized algorithms in various algorithmic settings. Goldreich and Wigderson introduced a notion
of “typically-correct” deterministic simulations, which are allowed to err on few inputs. In this
paper we further the study of typically-correct derandomization in two ways.

First, we develop a generic approach for constructing typically-correct derandomizations based
on seed-extending pseudorandom generators, which are pseudorandom generators that reveal
their seed. We use our approach to obtain both conditional and unconditional typically-correct
derandomization results in various algorithmic settings. We show that our technique strictly
generalizes an earlier approach by Shaltiel based on randomness extractors, and simplifies the
proofs of some known results. We also demonstrate that our approach is applicable in algo-
rithmic settings where earlier work did not apply. For example, we present a typically-correct
polynomial-time simulation for every language in BPP based on a hardness assumption that is
(seemingly) weaker than the ones used in earlier work.

Second, we investigate whether typically-correct derandomization of BPP implies circuit lower
bounds. Extending the work of Kabanets and Impagliazzo for the zero-error case, we establish a
positive answer for error rates in the range considered by Goldreich and Wigderson. In doing so,
we provide a simpler proof of the zero-error result. Our proof scales better than the original one
and does not rely on the result by Impagliazzo, Kabanets, and Wigderson that NEXP having
polynomial-size circuits implies that NEXP coincides with EXP.

1. Introduction

Randomized Algorithms and Derandomization One of the central topics in the theory of comput-
ing deals with the power of randomness – can randomized procedures be efficiently simulated by
deterministic ones? In some settings exponential gaps have been established between randomized
and deterministic complexity; in some settings efficient derandomizations1 are known; in others

1In this paper the term “derandomization” always refers to “full derandomization”, i.e., obtaining equivalent deter-
ministic procedures that do not involve randomness at all.
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the question remains wide open. The most famous open setting is that of time-bounded computa-
tions, i.e., whether BPP=P, or more modestly, whether BPP lies in deterministic subexponential
time. A long line of research gives “hardness versus randomness tradeoffs” for this problem (see
[Mil01] for an introduction). These are conditional results that give derandomizations assuming a
hardness assumption (typically circuit lower bounds of some kind), where the efficiency of the de-
randomization depends on the strength of the hardness assumption. The latter is used to construct
an efficient pseudorandom generator, which is a deterministic procedure G that stretches a short
“seed” s into a longer “pseudorandom string” G(s) with the property that the uniform distribution
on pseudorandom strings is computationally indistinguishable from the uniform distribution on all
strings. G allows us to derandomize a randomized procedure A(x, r) that takes an input x and a
string r of “coin tosses” as follows: We run the pseudorandom generator on all seeds to produce
all pseudorandom strings of length |r|; for each such pseudorandom string we run A using that
pseudorandom string as “coin tosses”, and output the majority vote of the answers of A. Note that
this derandomization procedure takes time that is exponential in the seed length of the pseudoran-
dom generator. For example, efficient pseudorandom generators with logarithmic seed length imply
that BPP=P, whereas subpolynomial seed length only yields simulations of BPP in deterministic
subexponential time.

Typically-Correct Derandomization Weaker notions of derandomization have been studied, in
which the deterministic simulation is allowed to err on some inputs. Impagliazzo and Wigder-
son were the first to consider derandomizations that succeed with high probability on any ef-
ficiently samplable distribution; related notions have subsequently been investigated in [Kab01,
TV07, GSTS03, SU07]. Goldreich and Wigderson [GW02] introduced a weaker notion in which
the deterministic simulation only needs to behave correctly on most inputs of any given length.
We refer to such simulations as “typically-correct derandomizations”. The hope is to construct
typically-correct derandomizations that are more efficient than the best-known everywhere-correct
derandomizations, or to construct them under weaker assumptions than the hypotheses needed for
everywhere-correct derandomization.

Previous Work on Typically-Correct Derandomization Goldreich and Wigderson [GW02] had the
key idea to obtain typically-correct derandomizations by “extracting randomness from the input”:
extract r = E(x) in a deterministic way such that B(x) = A(x,E(x)) behaves correctly on most
inputs. If this approach works (as such) and E is efficient, the resulting typically-correct derandom-
ization B has essentially the same complexity as the original randomized procedure A. As no more
than n bits of randomness can be extracted from an input of length n, this approach on its own is
limited to algorithms A that use at most this many random bits; in combination with pseudorandom
generators one can try to handle algorithms that use a larger number of random bits. Goldreich
and Wigderson managed to get the approach to work unconditionally for logspace algorithms for
undirected connectivity, a problem which has been fully derandomized by now [Rei08]. Under a
hardness assumption that is not known to imply BPP=P, namely that there are functions that are
mildly hard on average for small circuits with access to an oracle for satisfiability, they showed that
BPP has polynomial-time typically-correct derandomizations that err on very few inputs, namely
at most a subexponential number. Their construction uses well-known explicit constructions of
extractors.

Van Melkebeek and Santhanam [vMS05] gave a different construction that yields the same de-
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randomization conclusion as [GW02] from the (seemingly) weaker uniform hardness condition that
there are functions in P that are mildly hard on average for efficient Merlin-Arthur protocols. Their
argument is an application of the easy-witness method (c.f., [Kab01, IKW02]) combined with very
efficient probabilistically checkable proofs for languages in P (c.f., [BFLS91]) and dispersers.

Zimand [Zim08] showed unconditional typically-correct derandomizations with polynomial over-
head for sublinear-time algorithms, which can be viewed as randomized decision trees that use a
sublinear number of random bits. Zimand’s approach relies on a notion of randomness extractors
called “exposure-resilient extractors” introduced in [Zim06].

Shaltiel [Sha09] described a generic approach to obtain typically-correct derandomization re-
sults. Loosely speaking he showed how to construct a typically-correct derandomization for any
randomized procedure that uses a sublinear amount of randomness when given an extractor with
exponentially small error that extracts randomness from distributions that are “recognizable by
the procedure.” We elaborate on Shaltiel’s approach in Section 5. Using this approach and “off
the shelf” randomness extractors, Shaltiel managed to reproduce Zimand’s result for decision trees
as well as realize unconditional typically-correct derandomizations for 2-party communication pro-
tocols and streaming algorithms.

Shaltiel also combined his approach with pseudorandom generator constructions to handle proce-
dures that require a polynomial number of random bits. He obtained typically-correct derandomiza-
tions with a polynomially small error rate for randomized algorithms computable by polynomial-
sized constant-depth circuits, based on the known hardness of parity for such circuits. He also
derived a conditional typically-correct derandomization result for BPP under a hardness hypoth-
esis that is incomparable to the Goldreich-Wigderson hypothesis (and is also not known to imply
BPP=P), namely that there are functions that are very hard on average for small circuits with-
out access to an oracle for satisfiability. The resulting error rate is exponentially small. For both
results Shaltiel applies the pseudorandom generators that follow from the hardness versus random-
ness tradeoffs twice: once to reduce the need for random bits to sublinear, and once to construct
the required randomness extractor with exponentially small error. Whereas the first pseudoran-
dom generator application can do with functions that are mildly hard on average, the second one
requires functions that are very hard on average.

Our Approach In this paper we develop an alternative generic approach for constructing typically-
correct derandomizations. The approach builds on “seed-extending pseudorandom generators”
rather than “extractors”. A seed-extending pseudorandom generator is a generator G which outputs
the seed as part of the pseudorandom string, i.e., G(s) = (s,E(s)) for some function E.2

An immediate question is whether seed-extending pseudorandom generators exist. In the cryp-
tographic setting they do not. This is because in that setting the adversary is allowed more
computational resources than the generator itself and can therefore distinguish the pseudorandom
distribution (s,E(S)) for uniform s from the true uniform distribution, namely by checking whether
its input (s, r) satisfies r = E(s). In the setting of derandomization, however, the generator can
use more computational resources than the adversary, and the adversary cannot simply execute the
generator. In fact, several pseudorandom generators aimed at derandomization can be made seed-
extending, in particular, the well-known Nisan-Wigderson pseudorandom generator construction

2Borrowing from the similar notion of “strong extractors” in the extractor literature, such pseudorandom generators
have been termed “strong” in earlier papers. In coding-theoretic terms, they could also be called “systematic”.
However, we find the term “seed-extending” more informative.
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[NW94].
We show that whenever a seed-extending pseudorandom generator passes certain statistical tests

defined by the randomized procedure A(x, r), the deterministic procedure B(x) = A(x,E(x)) forms
a typically-correct derandomization of A, where the error rate depends on the error probability of
the original randomized algorithm and on the error of the pseudorandom generator.

Note that this approach differs from the typical use of pseudorandom generators in derandom-
ization, where the pseudorandom generator G is run on every seed. As the latter induces a time
overhead that is exponential in the seed length, one aims for pseudorandom generators that are
computable in time exponential in the seed length. A polynomial-time simulation is achieved only
in the case of logarithmic seed lengths. In contrast, we run G only once, namely with the input x of
the randomized algorithm as the seed. We use the pseudorandom generator to select one “coin toss
sequence” r = E(x) on which we run the randomized algorithm. As opposed to the traditional de-
randomization setting, our approach benefits from pseudorandom generators that are computable
in time less than exponential in the seed length. With a pseudorandom generator computable
in time polynomial in the output length, we obtain nontrivial polynomial-time typically-correct
derandomizations even when the seed length is just subpolynomial.

Our approach has the advantage of being more direct than the one of [Sha09], in the sense that
it derandomizes the algorithm A in “one shot”. More importantly, it obviates the second use of
pseudorandom generators in Shaltiel’s approach and allows us to start from the (seemingly) weaker
assumption that there are functions which are mildly hard on average for small circuits without
access to an oracle for satisfiability.

While our assumption is (seemingly) weaker than both the one in [GW02] and the one in [Sha09],
the error rate of our typically-correct derandomizations is only polynomially small. We can decrease
the error rate by strengthening the hardness assumption. Under the same hardness assumption as
[Sha09] our approach matches the exponentially small error rate in that paper. [vMS05] achieves a
smaller error rate from a hardness assumption that is incomparable to ours – although it is plausible
that P being hard on average for fixed-polynomial time Merlin-Arthur protocols implies being hard
on average for fixed-polynomial size deterministic circuits, this implication remains open.

We can similarly relax the hardness assumption in a host of other settings. In some cases this
allows us to establish new unconditional typically-correct derandomizations, namely for models
where functions that are very hard on average are not known but functions which are only mildly
hard on average are known unconditionally.

We also determine the precise relationship between our approach and Shaltiel’s. We show that in
the range of exponentially small error rates, “extractors for recognizable distributions” are equiva-
lent to seed-extending pseudorandom generators that pass the statistical tests we need. This means
that all the aforementioned results of [Sha09] can also be obtained by interpreting the extractors
used in [Sha09] as seed-extending pseudorandom generators and then using our new approach. We
can also handle situations where [Sha09] does not apply, and therefore our approach is more generic.

Typically-Correct Derandomization and Circuit Lower Bounds Kabanets and Impagliazzo [KI04]
showed that subexponential-time derandomizations of BPP imply circuit lower bounds that seem
beyond the scope of current techniques. We ask whether subexponential-time typically-correct
derandomizations imply such lower bounds. Another contribution of our paper is an affirmative
answer in the case of the error rates considered by Goldreich and Wigderson.

Our result is a strengthening of [KI04] from the everywhere-correct setting to the typically-correct
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setting. In developing it, we also obtain a simpler proof for the everywhere-correct setting. Our
proof scales better than the one in [KI04], yields the same lower bound for a smaller class, and
does not rely on the result from [IKW02] that NEXP having polynomial-size circuits implies that
NEXP coincides with EXP.

The fact that typically-correct derandomization of BPP with very low error rates implies circuit
lower bounds can be viewed as evidence that the former will be difficult to establish. It remains
open whether typically-correct derandomization of BPP with higher error rates implies circuit
lower bounds. However, we provide a different type of indication that establishing such weaker
derandomization of BPP may also be difficult, namely that it cannot be established through an
argument that algebrizes – a notion developed by Aaronson and Wigderson [AW09] that includes
both relativizing proof techniques as well as techniques based on arithmetization.

Organization We start Section 2 with the formal definitions of the notions used throughout the
rest of the paper, and the key lemma that shows how seed-extending pseudorandom generators
yield typically-correct derandomizations. In Sections 3 and 4 we present our conditional and un-
conditional results obtained by applying our approach using the Nisan-Wigderson pseudorandom
generator construction. In Section 5 we compare our approach with Shaltiel’s extractor-based ap-
proach. In Section 6 we develop our results on circuit lower bounds that follow from typically-correct
and everywhere-correct derandomization of BPP, and in Section 7 we show that typically-correct
derandomization of BPP cannot be established through an algebrizing argument.

2. Typically-Correct Derandomization and the PRG Approach

In this section we introduce notation and terminology used throughout the paper, state and prove
the key lemma showing that seed-extending pseudorandom generators yield typically-correct de-
randomization, and introduce the seed-extending pseudorandom generator construction used for
most of our results.

2.1. Notation and Concepts

We view a randomized algorithm as defined by a deterministic algorithm A(x, r) where x denotes
the input and r the string of “coin tosses”. We typically restrict our attention to one input length n,
in which case A becomes a function A : {0, 1}n×{0, 1}m → {0, 1} where m represents the number of
random bits that A uses on inputs of length n. We say that A : {0, 1}n×{0, 1}m → {0, 1} computes
a function L : {0, 1}n → {0, 1} with error ρ if for every x ∈ {0, 1}n, PrR←Um [A(x,R) 6= L(x]] ≤ ρ,
where Um denotes the uniform distribution over {0, 1}m and R← Um denotes that R is a random
variable with distribution Um. We say that the randomized algorithm A computes a language L
with error ρ(·), if for every input length n, the function induced by A computes the function induced
by L with error ρ(n).

Given a randomized algorithm A for L, our goal is to construct a deterministic algorithm B of
complexity comparable to A that is typically correct for L. By the latter we mean that B and L
agree on most inputs of any given length, or equivalently, that for any input length the relative
Hamming distance between the functions induced by B and L is small.
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Definition 1 (typically-correct behavior). Let L : {0, 1}n → {0, 1} be a function. We say that
a function B : {0, 1}n → {0, 1} is within distance δ of L if PrX←Un [B(X) 6= L(X)] ≤ δ. We say
that an algorithm computes a language L to within δ(·) if for every input length n, the function
computed by the algorithm is within distance δ(n) of the function defined by the language at length
n. For two classes of languages C1 and C2, we say that C1 is within δ(·) of C2 if for every language
L1 ∈ C1 there is a language L2 ∈ C2 that is within δ(·) of L1.

In general, a function G : {0, 1}n → {0, 1}` is ε-pseudorandom for a test T : {0, 1}` → {0, 1}
if |PrR←U`

[T (R) = 1] − PrS←Un [T (G(S)) = 1]| ≤ ε. In this paper we are dealing with tests
T (x, r) that receive two inputs, namely x of length n and r of length m, and with corresponding
pseudorandom functions G of the form G(x) = (x,E(x)), where x is of length n and E(x) of length
m. We call such functions “seed-extending”.

Definition 2 (seed-extending function). A function G : {0, 1}n → {0, 1}n+m is seed-extending
if it is of the form G(x) = (x,E(x)) for some function E : {0, 1}n → {0, 1}m. We refer to the
function E as the extending part of G.

Note that a seed-extending function G with extending part E is ε-pseudorandom for a test T :
{0, 1}n × {0, 1}m → {0, 1} if

| Pr
X←Un,R←Um

[T (X, R) = 1]− Pr
X←Un

[T (X, E(X)) = 1]| ≤ ε. (1)

A seed-extending ε(·)-pseudorandom generator for a family of tests T is a deterministic algorithm
G such that for every input length n, G is a seed-extending ε(n)-pseudorandom function for the
tests in T corresponding to input length n.

2.2. The Seed-Extending Pseudorandom Generator Approach

Our key observation is that good seed-extending pseudorandom generators G for certain simple
tests based on the algorithm A yield good typically-correct derandomizations of the form B(x) =
A(x,E(x)). The following lemma states the quantitative relationship.

Lemma 1 (Main Lemma). Let A : {0, 1}n × {0, 1}m → {0, 1} and L : {0, 1}n → {0, 1} be
functions such that

Pr
X←Un,R←Um

[A(X, R) 6= L(X)] ≤ ρ. (2)

Let G : {0, 1}n → {0, 1}n+m be a seed-extending function with extending part E, and let B(x) =
A(G(x)) = A(x,E(x)).

1. If G is ε-pseudorandom for the test T (x, r) = A(x, r)⊕ L(x), then B is within distance ρ + ε
of L.

2. If G is ε-pseudorandom for tests of the form Tr′(x, r) = A(x, r)⊕A(x, r′) for all r′ ∈ {0, 1}m,
then B is within distance 3ρ + ε of L.
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Note that if A computes L with error ρ then condition (2) of the lemma is met. The two parts
of the lemma differ in the complexity of the tests and in the error bound. The complexity of the
tests plays a critical role for the existence of pseudorandom generators. In the first item the tests
use the language L as an oracle, which may result in too high a complexity. In the second item
we reduce the complexity of the tests at the cost of introducing non-uniformity and increasing the
error bound. The increase in the error bound is often not an issue as we can easily reduce ρ by
slightly amplifying the success probability of the original algorithm A before applying the lemma.

Proof (of Lemma 1). For the first item, notice that a test of the form T (x, r) = A(x, r) ⊕ L(x)
passes iff A(x, r) 6= L(x). If G is ε-pseudorandom for T then |PrX←Un [A(X, E(X)) 6= L(X)] −
PrX←Un,R←Um [A(X, R) 6= L(X)]| ≤ ε. By assumption the latter probability is at most ρ, so
PrX←Un [A(X, E(X)) 6= L(X)] ≤ ρ + ε.

For the second item, pick a string r′ that minimizes PrX←Un [A(X, r′) 6= L(X)]. An averaging
argument shows that the latter probability is at most ρ. By the pseudorandomness of G, we have

| Pr
X←Un

[A(X, E(X)) 6= A(X, r′)]− Pr
X←Un,R←Um

[A(X, R) 6= A(X, r′)]| ≤ ε. (3)

As PrX←Un,R←Um [A(X, R) 6= L(X)] ≤ ρ and PrX←Un [A(X, r′) 6= L(X)] ≤ ρ, the second term of (3)
is at most 2ρ, so PrX←Un [A(X, E(X)) 6= A(X, r′)] ≤ 2ρ + ε. Using again that PrX←Un [A(X, r′) 6=
L(X)] ≤ ρ, we conclude that PrX←Un [A(X, E(X)) 6= L(X)] ≤ 3ρ + ε. �

2.3. Hardness-Based Constructions of Seed-Extending Generators

Some of the constructions of pseudorandom generators in the literature that are geared towards
derandomization are seed-extending or can be easily modified to become seed-extending. The
generators that we consider are hardness-based, i.e., they are procedures G with access to an oracle
for a language H such that the function GH they compute is pseudorandom for a given class of
tests as long as the language H is hard for a related class of algorithms. We first define the notion
of hardness we need and then discuss the hardness-based pseudorandom generator we use, namely
a seed-extending variant of the Nisan-Wigderson construction.

Definition 3 (hardness on average). A language L is δ(·)-hard for a class of algorithms A if
no A ∈ A is within distance δ(n) of L for infinitely many input lengths n.

Notice that worst-case hardness corresponds to setting δ(n) = 1
2n . We use the term “mild hardness”

when δ(n) = 1
nc for some constant c > 0, and the term “very high hardness” when δ(n) = 1

2 −
1

2nε

for some constant ε > 0.
For many of our results the relevant class of algorithms A are circuits or branching programs of

a certain size. We measure the size of a circuit or branching program by the string length of its
standard description as a labeled directed acyclic graph; up to a logarithmic factor, this measure
corresponds to the number of connections in the circuit or branching program. We use the notation
SIZE(s) to refer to Boolean circuits of size s, SIZEO(s) to refer to Boolean circuits of size s that
have access to oracle gates for the language O, and BP-SIZE(s) to refer to branching programs of
size s.

For circuits and branching programs, hardness can be amplified using the XOR lemma. Several
versions of the XOR lemma exist (see [GNW95] for an overview); the following instantiation for
circuits suffices for our purposes.
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Lemma 2 (XOR Lemma for circuits [Imp95]). Let H : {0, 1}n → {0, 1} be a language and
define H ′ : {0, 1}k·n → {0, 1} by H ′(x1, ..., xk) = H(x1)⊕H(x2)⊕ ...⊕H(xk). For any γ > 0, if H
is δ-hard for size s circuits at input length n, then H ′ is δ′-hard for size s′ circuits at input length
k · n, where δ′ = 1

2 − (1− δ)k − γ and s′ = Ω( γ2

log(1/(δγ))) · s.

Nisan and Wigderson [NW94] described a hardness-based pseudorandom generator construction
that can be applied in a wide variety of algorithmic settings. We use a seed-extending variant of the
Nisan-Wigderson construction for all of our results in Sections 3 and 4. We state the properties that
we need for the algorithmic setting of circuits in the following lemma. For completeness, we review
the Nisan-Wigderson construction in the appendix and in particular verify that it can be made
seed-extending in the way stated next. We also refer to the appendix for remarks on algorithmic
settings other than circuits.

Lemma 3 (seed-extending NW-generator for circuits [NW94]). Let n and m be positive
integers and H : {0, 1}b

√
n/2c → {0, 1} a function. There is a seed-extending function NWH;n,m :

{0, 1}n → {0, 1}n+m with the following properties.

1. If H is (1
2−

ε
m)-hard at input length b

√
n/2c for circuits of size s+m ·2O(log m/ log n) and depth

d + 1 then NWH;n,m is ε-pseudorandom for tests T : {0, 1}n × {0, 1}m → {0, 1} computable
by circuits of size s and depth d.

2. For each 1 ≤ j ≤ m, the jth bit in the extending portion of NWH;n,m(x) is equal to H(yj) for
some yj of length b

√
n/2c; there is a Turing machine that outputs yj on input (x, n, m, j) and

that runs in O(log(m + n)) space as long as m(·) is constructible in that amount of space.

Some of our typically-correct derandomization results are unconditional because languages of the
required hardness to use for H have been proven to exist. Others are conditioned on reasonable
but unproven hypotheses regarding the existence of languages H that are hard on average. For
the conditional results, we can assume a mildly hard function and use Lemma 2 to amplify the
hardness to the level required in Lemma 3.

We point out that the construction in Lemma 3 is almost optimal in the following sense: The
existence of an ε-pseudorandom generator for circuits of size s implies the existence of a language
H that is (1

2 − ε)-hard at length n for circuits of size s − O(1), namely for H the function that
outputs the first bit in the extending portion of G.

Remark Our applications do not benefit from seed-extending pseudorandom generator construc-
tions that recover in a blackbox fashion and are based on worst-case rather than average-case
hardness. By definition, whenever such a pseudorandom generator G = GH based on H : {0, 1}` →
{0, 1} fails a test (1), there exists a small oracle circuit C, say of size s, such that CT = H. This
property implies that GH has to query H in at least (1

2− ε)2`/s positions, as can be argued directly
and also follows from [Vio05]. The latter condition rules out the combination of mild hardness
levels (say s = nO(1) and ` = nΩ(1)) and a polynomial running time for G, which we need for our
applications.

8



Theorem Setting Hardness Assumption Conclusion
Thm 1 BPP=BP.P P 1

nc -hard for SIZE(nd) BPP within 1
nc of P

Thm 2 BP.⊕P ⊕P 1
nc -hard for SIZE⊕SAT(nd) BP.⊕P within 1

nc of ⊕P
Thm 3 AM=BP.NP NP ∩ coNP 1

nc -hard for SIZESAT(nd) AM within 1
nc of NP

Thm 4 BP.L L 1
nc -hard for BP-SIZE(nd) BP.L within 1

nc of L

Figure 1: Our conditional typically-correct derandomization results. Each row states that if the
hardness assumption holds for every constant d then the conclusion follows.

3. Conditional Results

In this section we obtain a number of typically-correct derandomization results that are conditioned
on unproven but reasonable hardness hypotheses. These results are summarized in Figure 1.

3.1. Bounded-Error Polynomial Time

The first setting we consider is that of BPP. We use a modest hardness assumption to show that
any language in BPP has a polynomial-time deterministic algorithm that errs on a polynomially
small fraction of the inputs.

Theorem 1 (typically-correct derandomization of BPP). Let L be a language that is com-
puted by a randomized bounded-error polynomial-time algorithm A. For any positive constant c,
there is a positive constant d (depending on c and the running time of A) such that the follow-
ing holds. If there is a language H in P that is 1

nc -hard for circuits of size nd, then there is a
deterministic polynomial-time algorithm B that computes L to within 1

nc .

We compare Theorem 1 to previous conditional typically-correct derandomization results for
BPP after the proof.

Proof (of Theorem 1). Let A be a polynomial-time randomized bounded-error algorithm computing
a language L, and let c > 0 be a constant. We obtain the typically-correct deterministic algorithm
B by using Item (2) of Lemma 1 with the Nisan-Wigderson construction as the generator. More
specifically, we set

B(x) = A′(NWH′;n,nb(x))

where A′ is an error-reduced version of A that uses nb random bits for a constant b depending
on the running time of A and where H ′ is the result of applying a certain amount of hardness
amplification to H. We now analyze how to set the parameters of the various ingredients and
establish the stated properties.

1. Error Reduction.
To keep the error term 3ρ from invoking Item (2) of Lemma 1 less than 1

2nc , we let A′ take
the majority vote of O(log n) independent trials of A so that A′ has error at most 1

6nc .

2. Nisan-Wigderson construction.
Setting ρ = 1

6nc in Item (2) of Lemma 1, B computes L to within distance 1
nc if NWH′;n,nb
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is 1
2nc -pseudorandom against tests Tr′ of the form Tr′(x, r) = A′(x, r) ⊕ A′(x, r′) for r′ an

arbitrary string of length nb. Using the standard reduction from Turing machines with advice
to circuits, the tests Tr′ are circuits of size O(n2b) for some constant b depending on the
running time of A. By Lemma 3, NWH′;n,nb is 1

2nc -pseudorandom against the tests Tr′ if H ′

is (1
2 −

1
2nc+b )-hard for circuits of size O(n2b) on inputs of length b

√
n/2c. Thus a sufficient

hardness condition for H ′ is to be (1
2 −

1
na )-hard for circuits of size na on inputs of length n,

for a = 2max(c + b, 2b) + 1.

3. XOR Lemma.
Let H : {0, 1}n → {0, 1} be 1

nc -hard for circuits of size nd and define H ′ : {0, 1}k·n → {0, 1}
by H ′(x1, ..., xk) = H(x1) ⊕ H(x1) ⊕ ... ⊕ H(xk). By Lemma 2, H ′ is (1

2 −
1

na )-hard for
circuits of size na if we can choose k and γ such that (1) (1 − 1

nc )k + γ ≤ 1
(nk)a and (2)

nd · ( γ2

log(nc/γ)) ≥ (nk)a. To satisfy (1), we choose γ = 1
2(nk)a and set k = nc+1 to ensure that

for sufficiently large n, (1− 1
nc )k ≤ e−k/nc

= e−n ≤ 1
2(nk)a . With these choices, (2) simplifies

to nd ≥ 8n3(c+2)a log(2nc+(c+2)a) which can be satisfied by choosing d = 3(c + 2)a + 1.

This establishes the correctness of B, i.e., B computes L to within 1
nc provided H is 1

nc -hard
for circuits of size nd. Now consider the complexity of B. By Item (2) of Lemma 3, NWH′;n,nb is
computable in time polynomial in n provided H ′ is, which in turn is computable in time polynomial
in n provided H is. �

We now compare Theorem 1 to previous conditional typically-correct derandomization results
for BPP. Figure 2 lists the hardness assumptions and error rates of Theorem 1 and previous works
for the setting of polynomial-time simulations of BPP. We claim that the hardness assumption in
Theorem 1 is implied by all the other ones in Figure 2, and is in this sense (seemingly) weaker .

Claim 1. The hardness assumption in Theorem 1 is implied by the hardness assumptions of each
of the rows in Figure 2.

Proof. Second and Fourth Row Our hardness assumption is implied by the ones used by [GW02]
and [Sha09] for obvious reasons.

First Row The [IW97] assumption implies a positive constant ε′ such that E is (1
2 − 2−ε′n)-

hard for SIZE(2ε′n) by the known worst-case to average-case reductions for E [IW97]. For any
constants c and d, a padding argument shows that this in turn implies that P is (1

2 − n−c)-hard
for SIZE(nd), which is in fact stronger than the assumption in the last row. More precisely, we
argue the contrapositive: If every language in P can be computed to within distance (1

2 − n−c) by
a circuit of size nd for infinitely many input lengths n, then every language in E can be computed
to within distance (1

2 − 2−ε′n) by circuits of size 2ε′n for infinitely many input lengths n.
Let L ∈ DTIME(2an) for some positive constant a, and define for any positive integer k a padded

version Lpad,k of L decidable in DTIME(Nk) by setting Lpad,k = {(x, y) |x ∈ L and d2a|x|/ke ≤
|x| + |y| < d2a(|x|+1)/ke}, where we use N to denote the length of the input to Lpad,k. Then, by
assumption, there exists a family of circuits CN of size Nd that infinitely often computes Lpad,k to
within distance 1

2 −N−c. An averaging argument shows that for each such input length N , there
exists a setting for y such that this circuit CN (·, y) computes L correctly on inputs of length n ≈

10



Hardness Assumption # Mistakes
[IW97] E is 1/2n-hard for SIZE(2Ω(n)) 0
[GW02] P is 1/3-hard for SIZESAT(nd) 2nε

[vMS05] P is 1/3-hard for promise-MATIME(nd) 2nε

[Sha09] P is 1
2 − 2−nΩ(1)

-hard for SIZE(nd) 2n

2nΩ(1)

Thm 1 P is 1/nc-hard for SIZE(nd) 2n

nc

Figure 2: Comparison of hardness assumptions that give polynomial-time deterministic simulations
of BPP languages. Each row states that if the hardness condition holds for every constant
d then every language in BPP has a poly-time deterministic simulation that agrees with
it on all except the number of inputs given in the last column for each input length n.

k(log N)/a with the same advantage. Setting k a large enough constant so that 2ε′n ≥ max(N c, Nd)
and fixing y as above yields circuits of size at most 2ε′n computing L to within distance 1

2 − 2−ε′n

on infinitely many input lengths n.

Third Row We show that if P is 1/3-hard for promise-Merlin-Arthur protocols running in time nd′

for all constants d′, then P is 1
nc -hard for circuits of size nd for all constants c and d. We argue the

contrapositive, demonstrating efficient promise-Merlin-Arthur protocols for languages in P that are
within 1/3 infinitely often assuming P can be approximated well by small circuits infinitely often.

Let L ∈ P. We use the probabilistically checkable proofs of [BFLS91] that can be verified in
polylogarithmic time (and are a key component of the argument of [vMS05]). Because two slightly
different inputs may be indistinguishable to a sublinear-time verifier, [BFLS91] first encodes the
input by an efficiently computable error-correcting code E. We consider the language E(L) =
{E(x) |x ∈ L} and the PCP for E(L) with the promise that the input is a valid encoding under
E. The proof system of [BFLS91] for this promise problem has the following properties, where n
denotes the original input length for L. (i) The correct proof is computable in time polynomial in
n. (ii) The verifier runs in polylog(n) time, querying a polylogarithmic number of locations in the
input and the proof. (iii) The proof system is tolerant to errors in the proof itself: given a proof
within distance 15% of a correct proof, the proof system still accepts with high probability. For
our purposes, it is more convenient to consider a padded version of the [BFLS91] proof system in
which we concatenate 2Θ(n/ log n) copies of the original proof such that the new proofs are of length
exactly 2n, and the verifier picks one of the copies uniformly at random to run the original proof
system on. (If the verifier picks the last – possibly incomplete – copy and makes a query outside of
the proof, the verifier accepts.) This modified proof system has the following properties on inputs
of length n. (i’) Each bit of a correct proof can be computed in time polynomial in n. (ii’) The
verifier runs in time O(n). (iii’) Given a proof that is within distance, say 1%, of a correct proof,
the proof system accepts with high probability.

The basic idea is to construct an efficient promise-Merlin-Arthur protocol that approximates L
to within 1/3 by running the modified [BFLS91] PCP for E(L) on the encoded input. The prover
sends a small circuit that, for many inputs x ∈ L, approximates the correct PCP proof for the
membership of E(x) to the promise problem E(L), and the verifier uses that circuit to compute
the bits of the proof it needs. The soundness property, completeness property, and property (iii’)

11



guarantee that even though the circuit may make a small fraction of mistakes, the protocol behaves
correctly on most inputs.

We now provide the details. Let Lproof be a language encoding correct proofs in the modified
[BFLS91] protocol for E(L), namely Lproof = {(x, i, b) |x ∈ L, |x| = |i|, |b| ≤ 1, and the i-th bit of
the correct proof for E(x) being in E(L) is 1 }, where i is written in binary but may have leading
zeroes. The role of b in the definition of Lproof is to make sure that all input lengths N for Lproof

are useful for deciding some related input length n for L, namely n = bN/2c. Note that Lproof ∈
P, so by assumption there is a family of circuits of size Nd that computes Lproof to within distance
1

Nc on infinitely many input lengths N . For each such input length N , we claim that the following
protocol behaves like a Merlin-Arthur protocol for L on most inputs of length n = bN/2c. The
verifier computes the error-correcting encoding E(x) of the input x and runs the modified [BFLS91]
proof system for the promise problem E(L) to check that E(x) ∈ E(L); the prover sends a circuit
of size Nd and the parity of N , and the verifier evaluates that circuit on input (x, i, b) when it needs
the i-th bit of the proof for E(x) belonging to the promise problem E(L). (If N is odd, the verifier
runs the proof system once with b = 0 and once with b = 1 and accepts if at least one of the runs
accepts; if N is even, b is set to the empty string.)

For x /∈ L, the protocol outputs the correct answer by the soundness of the PCP system for the
promise problem. For x ∈ L, the protocol outputs a correct value if the circuit sent by the prover
is correct on at least 99% of the locations in the proof of membership for E(x) to the promise
problem E(L), by property (iii’) of the modified [BFLS91] proof system. For input lengths where
the prover’s circuit is correct on all but 1

Nc of the proof bits, an averaging argument shows the
circuit is correct on 99% of the locations for the proofs of all but a O(1/N c) fraction of inputs x of
length n and at least one value of b. Thus, the protocol behaves like a Merlin-Arthur protocol for
L on all but a fraction O(1/nc) < 1/3 of the inputs of length n.

The running time of the protocol is the time to compute E(x) (which is a fixed polynomial) plus
the time to run the modified PCP for the promise problem, answering each query by evaluating
a circuit of size O(nd). Overall, this gives a running time of O(nd+1polylog(n)) for d sufficiently
large. �

We also point out that plugging our assumption into the hardness versus randomness tradeoffs
of [NW94] (on which [IW97] is based) gives the incomparable result that BPP is in deterministic
subexponential time, i.e., in time 2nε

for every positive constant ε. Note that the latter statement
already follows if we replace P in the hardness assumption by E=DTIME(2O(n)). In contrast, the
approaches to typically-correct derandomization in [GW02], [vMS05], and [Sha09] do not yield any
typically-correct derandomization when starting from the modest hardness assumption that we use.
Under their respective stronger assumptions, these papers do yield typically-correct algorithms that
are closer to L. We remark that we can match the distance in [Sha09] if we are allowed to assume
the same hardness hypothesis.

3.2. Extensions to Other Algorithmic Settings

[KvM02] observed that the Nisan-Wigderson generator can be used to give hardness versus ran-
domness tradeoff results in a number of different algorithmic settings. This approach also works
within our typically-correct derandomization framework. In this section we discuss the last three
applications listed in Figure 1.
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3.2.1. BP.⊕P Algorithms

Our conditional results for BP.⊕P algorithms and Arthur-Merlin protocols rely on the fact that
all the ingredients in the proof of Theorem 1 relativize: error reduction using majority voting,
the Nisan-Wigderson construction relativizes (see the remark after the proof of Lemma 3 in the
appendix), the XOR Lemma, and our main lemma. Thus, we have the following as a corollary to
the proof of Theorem 1.

Theorem 2 (relativized version of Theorem 1). Let O be any language, and let L be a lan-
guage that is computed by a randomized bounded-error polynomial-time algorithm A that has oracle
access to O. For any positive constant c, there is a positive constant d (depending on c and the
running time of A) such that the following holds. If H is a language that is 1

nc -hard for circuits of
size nd that have access to O oracle gates, then there is a polynomial-time algorithm B that uses
oracle access to both H and O that computes L to within 1

nc .

Theorem 2 immediately yields a typically-correct derandomization result for the class BP.⊕P, a
class that is of interest as a key step in the result that any language within the polynomial hierarchy
can be solved with an oracle for counting [Tod91]. Recall that a language L in BP.⊕P is defined by
a deterministic procedure A that on input (x,R, z) with |x| = n runs in time nk for some constant
k and such that

(i) for every x ∈ L, PrR←U
nk

[|{z ∈ {0, 1}nk
s.t. A(x,R, z) = 1}| ≡ 1 (mod 2)] is at least 2

3 , and

(ii) for every x /∈ L, PrR←U
nk

[|{z ∈ {0, 1}nk
s.t. A(x,R, z) = 1}| ≡ 1 (mod 2)] is at most 1

3 .

⊕SAT is a natural ⊕P-complete language consisting of Boolean formulae that have an odd number
of satisfying assignments. Applying Theorem 2 with the oracle O set to ⊕SAT, requiring the hard
function H to lie within ⊕P, and using the facts that BP.⊕P= BPP⊕SAT and P⊕SAT = ⊕P, we
obtain the typically-correct derandomization result for BP.⊕P algorithms listed in Figure 1.

3.2.2. Arthur-Merlin Protocols

Recall that a language L is decidable by a polynomial-time Arthur-Merlin protocol (AM) if there
is a deterministic procedure V (the verification predicate) that on input (x,R, z) with |x| = n runs
in time nk for some constant k such that

(i) for every x ∈ L, PrR←U
nk

[∃z ∈ {0, 1}nk
V (x,R, z) = 1] ≥ 2

3 , and

(ii) for every x /∈ L, PrR←U
nk

[∃z ∈ {0, 1}nk
V (x,R, z) = 1] ≤ 1

3 .

Notice that we can view AM as BP.NP and that if we remove the randomness from the above
definition we would be left with an NP predicate. Thus, derandomizing AM means obtaining
simulations of AM on nondeterministic machines. Using the fact that AM = BP.NP ⊆ BPPNP, an
immediate application of Theorem 2 with the oracle O set to SAT yields a conditional typically-
correct derandomization of AM into PSAT under the assumption of a language H ∈ PNP that is
mildly hard on average for polynomial-size circuits that have access to SAT oracle gates. By looking
more closely at the proof of Theorem 2 and strengthening the assumption on the complexity of the
hard function H, namely to NP∩ coNP, we obtain a conditional typically-correct derandomization
of AM into NP.
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Theorem 3 (typically-correct derandomization of AM). Let L be a language computable by
a polynomial-time Arthur-Merlin protocol. For every constant c > 0 there is a constant d such that
if NP ∩ coNP contains a language H that is 1

nc -hard for circuits of size nd that have access to
SAT oracle gates, then there is a nondeterministic polynomial-time algorithm B that computes L
to within 1

nc .

Proof. We follow the proofs of Theorems 1 and 2. We define B as the language of all inputs x
for which ∃z ∈ {0, 1}nb

V ′(NWH′;n,nb(x), z), where V ′ is an error-reduced version of the verification
predicate V that uses nb random bits for a constant b depending on the running time of V and
where H ′ is the result of applying some amount of hardness amplification to the assumed hard
function H. We need to verify both the correctness and the complexity of B. Correctness follows
by Theorem 2 and the fact that AM ⊆ BPPSAT, as discussed above.

As for the complexity of B, we first point out that error-reduction can be performed within AM
using parallel repetition, so that an AM protocol with verification procedure V ′ and reduced error
can be given. Now,

B(x) = 1⇔ ∃z ∈ {0, 1}nb
V ′(x,H ′(y1), ...,H ′(ynb), z), (4)

�

where each y1, ..., ynb is some efficiently computable substring of x of length b
√

n/2c. By Item
(2) of Lemma 3 and the fact that H ∈ NP ∩ coNP, V ′(x,H ′(y1), ...,H ′(ynb), z) defines a predicate
on (x, z) that is decidable in PNP∩coNP = NP ∩ coNP, which turns the right-hand side of (4) into
an NP-predicate on x. Thus, B is in NP.

Remark In the context of everywhere-correct derandomization it is known that hardness against
nondeterministic circuits (rather than circuits with access to a satisfiability oracle) is sufficient to
derandomize Arthur-Merlin protocols [MV05, SU05]. In fact, [SU06] shows that the assumption
that EXP contains a language that cannot be computed by small nondeterministic circuits implies
that EXP contains a language that cannot be computed by small circuits that make non-adaptive
calls to a satisfiability oracle. In the context of typically-correct derandomization we need hard
languages that can be computed in PNP or NP∩ coNP and we do not know whether we can replace
hardness for circuits with oracle access to satisfiability by hardness for nondeterministic circuits.

3.2.3. Space-Bounded Setting

We obtain the final result listed in Figure 1 by observing that the proof of Theorem 1 follows
through in the setting of derandomizing BP.L algorithms – randomized algorithms that run in
logarithmic space and are allowed two-way access to their random bits [Nis93].3

Theorem 4 (typically-correct derandomization of BP.L). Let L be a language that is com-
puted by a randomized bounded-error log-space algorithm A that has two-way access to its random
bits. For any positive constant c, there is a positive constant d (depending on c and the space usage

3Recall that BP.L algorithms are potentially much more powerful than randomized space-bounded algorithms that
are given one-way access to their randomness – referred to as BPL algorithms. While it is known that BPL is
contained in DSPACE(log1.5 n) [SZ99], all that is known for BP.L is that BP.L ⊆ BPP ⊆ PSPACE.
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of A) such that the following holds. If there is a language H computable in logarithmic space that
is 1

nc -hard for branching programs of size nd, then there is a deterministic log-space algorithm B
that computes L to within 1

nc .

Proof. We follow the same outline as the proof of Theorem 1. That is, we define B by B(x) =
A′(NWH′;n,nb(x)) where A′ is an error-reduced version of A that uses nb random bits for a constant
b depending on the running time of A and where H ′ is the result of applying the XOR lemma to
H. We need to verify the correctness and the complexity of B.

Correctness follows as in the proof of Theorem 1 with two modifications. First, we make use of
the remark after the proof of Lemma 3 in the appendix to apply the Nisan-Wigderson construction
to branching programs. Second, we use a version of the XOR lemma for branching programs, which
reads the same as Lemma 2 except that we replace “circuits” by “branching programs”, and set
δ′ = 1

2 − (1− δ)k − γ and s′ = Ω( γ4

log2(1/(δγ))
) · s.

As for the complexity of B, we first observe that NWH′;n,nb is computable in logarithmic space by
Item (2) of Lemma 2 and the assumption that H is computable in logarithmic space. As A′ is also
computable in logarithmic space and B is the composition of A′ and NWH′;n,nb , B is computable
in logarithmic space. �

4. Unconditional Results

In this section we obtain unconditional typically-correct derandomization results in a number of
algorithmic settings.

4.1. Constant-Depth Circuits

Nisan [Nis91] used the NW-construction together with the fact that the parity function is (1
2 −

1

2nΩ(1) )-hard for constant-depth circuits [H̊as87] to obtain everywhere-correct derandomization of

uniform randomized constant-depth circuits (BP.AC0) by uniform quasipolynomial-size constant-
depth circuits. The transformation works for various notions of uniformity, including log-space and
polynomial-time uniformity.

[Sha09] obtained a more efficient derandomization of uniform BP.AC0 in the typically-correct
setting, replacing “quasipolynomial-size” by “polynomial-size”. The approach of [Sha09] relies
on certain extractors that have exponentially small error. We elaborate on the extractor-based
approach of [Sha09] in Section 5 and point out that it can only handle randomized algorithms that
use a sublinear number of random bits. In order to handle algorithms that use a polynomial number
of random bits, [Sha09] first uses Nisan’s generator to reduce the randomness of a uniform BP.AC0

circuit to sublinear and then uses the exponentially strong lower bounds for constant-depth circuits
computing parity once more to construct the extractor that is needed.

By using a single application of Nisan’s generator along with Lemma 1, our approach gives a sim-
pler proof of the typically-correct derandomization results for uniform BP.AC0 of [Sha09]. As before,
the result holds for either log-space or polynomial-time uniformity and shows that for any constant
c, uniform BP.AC0 is within distance 1

nc of uniform AC0, the class of uniform polynomial-size
constant-depth circuits. The error can be further reduced by allowing the deterministic algorithm
parity gates: uniform BP.AC0 is within distance 1

2nΩ(1) of uniform AC0[⊕].
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4.2. Constant-Depth Circuits with Few Symmetric Gates

In contrast to the approach of [Sha09], our techniques also yield results in settings where the
best-known lower bounds only yield moderate hardness on average. One such model is that of
constant-depth circuits that are allowed a small number of arbitrary symmetric gates, i.e., gates
that compute functions which only depend on the Hamming weight of the input, such as parity
and majority. In this setting Viola [Vio06] constructed a simple function computable by uniform
constant-depth circuits that have access to parity gates that is (1

2 −
1
s )-hard for circuits of size s

that use log s symmetric gates, for a function s = nΩ(log n). As the approach of [Sha09] requires a
hard function with exponentially strong hardness to build a seedless extractor with exponentially
small error, that approach cannot make use of this hardness result to achieve derandomization of
randomized circuits with few symmetric gates. Our approach can exploit these weaker hardness
results and gives the following for both log-space and polynomial-time uniformity.

Theorem 5. [typically-correct derandomization of AC0 with few symmetric gates] Let L be a lan-
guage and A a uniform randomized circuit of constant depth and polynomial size that uses o(log2 n)
symmetric gates such that A computes L with error at most ρ. Then there is a uniform determinis-
tic circuit B of constant depth and polynomial size that uses exactly the same symmetric gates as A
in addition to a polynomial number of parity gates such that B computes L to within 3ρ+ 1

nΩ(log n) .

We point out that the error term 3ρ can be removed using standard error reduction provided A
uses even fewer symmetric gates. For example, suppose A computes a language L using o(log n)
symmetric gates and let A′ be the randomized algorithm that takes the majority vote of O(log n)
independent trials of A to reduce ρ to 1

4nc for some constant c. Then A′ uses o(log2 n) symmetric
gates and by Theorem 5 there is a uniform deterministic polynomial-size constant-depth circuit that
uses o(log2 n) symmetric gates in addition to a polynomial number of parity gates and computes
L to within 1

nc .

Proof (of Theorem 5). Let A be a uniform circuit of depth d and size nb that uses o(log2 n) sym-
metric gates and computes a language L with error at most ρ on every input, for some constants
d and b. We obtain the typically-correct deterministic algorithm B by using Item (2) of Lemma 1
with the Nisan-Wigderson construction as the generator, i.e., we set

B(x) = A(NWH;n,nb(x))

for some H. We first explain how to set the parameters and choose the hard language H so as to
verify the correctness of B – that B computes L to within distance 3ρ + 1

nΩ(log n) .

1. Nisan-Wigderson construction.
By Item (2) of Lemma 1 B computes L to within distance 3ρ+ε if NWH;n,nb is ε-pseudorandom
against tests Tr′ of the form Tr′(x, r) = A(x, r)⊕A(x, r′), which are circuits of size O(nb) and
depth d + 1 that use o(log2 n) symmetric gates. In a remark following the proof of Lemma
3, we point out that the NW generator is secure with the same parameters given in Item
(1) of Lemma 3 against circuits T that have access to a certain number of symmetric gates
if the hard function H is hard with the same parameters stated in the lemma with respect
to circuits that have access to the exact same symmetric gates. In particular, NWH;n,nb is
ε-pseudorandom against the tests Tr′ if H is (1

2−
ε

nb )-hard on inputs of length b
√

n/2c against
circuits of size O(nb) and depth d + 2 that use o(log2 n) symmetric gates.
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2. Hard language H.
[Vio06] exhibits a function H that is computable by log-space uniform linear-size constant-
depth circuits that have access to parity gates such that H is (1

2 −
1
s )-hard on inputs of

length n for circuits of size s and depth d + 2 that use at most log s symmetric gates, for
s = nα log n where α is a constant depending on d. Then H has the required hardness provided
ε

nb ≥ 1
b
√

n/2cα log(b
√

n/2c) . We can choose ε of the form 1
nΩ(log n) to satisfy this inequality.

This guarantees the correctness of B. Now consider the complexity of B. By Item (2) of Lemma 3
and the complexity of computing H stated above, NWH;n,nb is computable by a log-space uniform
constant-depth polynomial-size circuit that has access to parity gates. Thus B is computable by
a circuit as described in the statement of Theorem 5 and maintains the uniformity of A (either
log-space or polynomial-time). �

4.3. Multi-Party Communication Complexity

Let us first recall the multi-party communication model. We use the number on the forehead model
[BNS92], where the input consists of k strings x1, ..., xk each of length n such that the jth player
sees each string except xj . For a randomized protocol all players also have read-only access to
a publicly shared random string r. The players communicate by taking turns writing messages
on a shared blackboard until one of the players stops the protocol and outputs an answer. A
randomized protocol A using m bits of public randomness computes a language L with error ρ if
for every instance x = (x1, ..., xk), PrR←Um [A(x1, ..., xk;R) 6= L(x)] ≤ ρ. The communication cost
of the protocol is the maximum number of bits written on the blackboard over all possible inputs x
of the above form and random bit sequences R. A protocol is polynomial-time uniform if whenever
a player sends a message, that message can be computed in polynomial time as a function of the
player’s view. We similarly define the notion of log-space uniformity.

[Sha09] proves a typically-correct derandomization result for uniform two-party communication
protocols. The proof of [Sha09] is tailored to the two-party case and does not extend to the general
case of k-party communication. Using our approach we can handle k > 2. We show that every
uniform randomized k-party communication protocol has a corresponding uniform deterministic
k-party communication protocol that is typically correct and has a communication cost that is
larger by a factor roughly equal to the amount of randomness of the original randomized protocol.
The following statement holds for both log-space and poly-time uniformity.

Theorem 6. [typically-correct derandomization of communication protocols] Let L be a language
over k-tuples of n-bit strings and let A be a uniform randomized communication protocol that
computes L with error at most ρ using k players, q bits of communication, and m bits of public
randomness, with k, q, m, and log(1/ε) functions computable within the uniformity bounds. There
is a positive constant α such that for q′ = α · 4k ·m · (q +log(m/ε)) there is a uniform deterministic
communication protocol B using k players and q′ bits of communication that computes L to within
3ρ + ε if q′ ≤ n.

For k = 2, Theorem 6 yields a weaker result than that of [Sha09] – which gives a deterministic
protocol with communication complexity O(q + m) rather than O(q ·m + m log m). As we explain
in Section 5 it is possible to recast the argument of [Sha09] in the terminology of seed-extending
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pseudorandom generators, and therefore the approach of this paper can also produce the stronger
result for k = 2.

We point out that the error term 3ρ can be removed by using error reduction. For example,
by using randomness-efficient error reduction [CW89, IZ89], for any constant c the randomized
protocol A can be replaced with a protocol A′ that has error at most 1

nc using m+O(log n) random
bits and O(q · log n) bits of communication.

Proof (of Theorem 6). Let A be a uniform randomized communication protocol that computes a
language L with error at most ρ on every input and uses k players, q bits of communication and
m bits of public randomness. We obtain the typically-correct deterministic protocol B by using
Item (2) of Lemma 1 with the following seed-extending hardness-based pseudorandom generator
GH;n,`,m. The generator simply partitions its inputs into ` disjoint blocks and applies a hard
function H on each block in order to generate the m pseudorandom bits. More precisely, for any
` ≤ bn/mc we define GH;n,`,m as

GH;n,`,m(x1, . . . , xk) = (x1, . . . , xk;H(x1|S1 , . . . , xk|S1), . . . ,H(x1|Sm , . . . , xk|Sm)),

where S1, ..., Sm are disjoint subsets of [n] each of size ` and x|Si is the substring of x of length `
formed by taking the bits of x indexed by Si. We point out that GH;n,`,m is only well-defined when
` ·m ≤ n. G has the property that if H is (1

2 −
ε
m)-hard for non-uniform communication protocols

operating on k-tuples of `-bit inputs that use q bits of communication, then G is ε-pseudorandom
against non-uniform randomized communication protocols that operate on k-tuples of n-bit inputs,
use m bits of randomness, and use q bits of communication. This pseudorandomness guarantee can
be argued directly; it also follows from the remark after the proof of Lemma 3 in the appendix,
where we observe that G can be seen as a degenerate case of the Nisan-Wigderson construction.

We next set the parameters and the language H so as to ensure that the function

B(x1, ..., xk) = A(GH;n,`,m(x1, ..., xk))

is within 3ρ + ε from L (as long as q′ ≤ n).

1. Pseudorandom generator GH;n,`,m.
By Lemma 1, B computes L to within 3ρ + ε if GH;n,`,m is a seed-extending ε-pseudorandom
generator secure against tests Tr′ of the form Tr′(x, r) = A(x1, ..., xk; r) ⊕ A(x1, ..., xk; r′),
which are communication protocols that use at most 2q bits of communication.

2. Hard language H.

By the pseudorandomness property stated above, GH;n,`,m is ε-pseudorandom for tests Tr′ if
H is (1

2 −
ε
m)-hard on k-tuples of `-bit inputs for protocols that use 2q bits of communica-

tion. [BNS92] demonstrate a function, the generalized inner product, which for some positive
constant β and any ε′ > 0 is (1

2 − ε′)-hard for non-uniform k-party communication protocols
on k-tuples of `-bit inputs that use at most β · ( `

4k − log(1/ε′)) bits of communication. Let-
ting H be this function, H has the hardness needed if 2q ≤ β · ( `

4k − log(m/ε)). We choose
` = d4k · (2q

β + log(m/ε))e so that if ` ·m ≤ n then GH;n,`,m is well-defined and H has the
required hardness.
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We conclude that for ` = d4k · (2q
β + log(m/ε)), if ` ·m ≤ n then GH;n,`,m is an ε-pseudorandom

generator against the tests Tr′ and thus B computes L to within 3ρ + ε.
We next exhibit a protocol of the prescribed form to evaluate the function

B(x1, . . . , xk) = A(x1, . . . , xk;H(x1|S1 , . . . , xk|S1), . . . ,H(x1|Sm , . . . , xk|Sm)).

Phase 0: All players calculate the value ` given above and terminate the protocol if ` ·m > n.

Phase 1: Player 1 writes x2|S1 , ..., x2|Sm on the public blackboard.

Phase 2: Player 2 evaluates each of H(x1|S1 , ..., xk|S1), ...,H(x1|Sm , ..., xk|Sm) and writes the
results on the public blackboard.

Phase 3: All players execute the protocol for A on input (x1, ..., xk; r) using the bits written
on the blackboard from Phase 2 as the random bits r.

Phase 1 requires ` ·m bits of communication and guarantees that player 2 has all inputs needed to
evaluate H in Phase 2, Phase 2 requires m bits of communication, and Phase 3 requires q bits of
communication. Altogether we can evaluate B using ` ·m + m + q bits of communication. Taking
α a sufficiently large constant such that q′ = α · 4k ·m · (q + log(m/ε)) ≥ ` ·m + m + q, the protocol
requires at most q′ bits of communication. Noting that q′ > ` · m we also have that GH;n,`,m is
well-defined and B computes L to within 3ρ + ε if q′ ≤ n.

We finally remark on the uniformity of the construction. Each player must determine the block
size `, execute the protocol A, and player 2 must compute H. The latter can be performed in
logarithmic space for H the generalized inner product problem, and the remainder can be done
within the uniformity bounds of A assuming each of the quantities k, q, m, and log(1/ε) are
constructible within the uniformity bounds. �

5. Comparison with the Extractor-Based Approach

We have seen several settings in which seed-extending pseudorandom generators allow us to prove
typically-correct derandomization results that do not follow from the extractor-based approach
of [Sha09]. We now show that the approach of [Sha09] is essentially equivalent to having seed-
extending pseudorandom generators with exponentially small error. This reaffirms our claim that
our approach is more general since we additionally obtain meaningful results from pseudorandom
generators with larger error.

Overview of the Extractor-Based Approach We start with a high-level overview of the approach
of [Sha09] that uses a notion of extractors for recognizable distributions, which we now explain. For
any function f : {0, 1}n → {0, 1}, [Sha09] defines the distribution recognized by f as Un|f = 1, i.e.,
the uniform distribution over f−1(1) = {x ∈ {0, 1}n | f(x) = 1}. A function E : {0, 1}n → {0, 1}m is
a (k, ε)-extractor for distributions recognizable by some collection of functions f : {0, 1}n → {0, 1},
if for every such function f with |f−1(1)| ≥ 2k, the distribution E(Un|f = 1) has statistical distance
at most ε from the uniform distribution on m bit strings, i.e.,∑

r∈{0,1}m
| 1
2m
− Pr

X←Un

[E(X) = r|f(X) = 1]| ≤ ε.
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[Sha09] shows the following general approach towards typically-correct derandomization. Let
A : {0, 1}n × {0, 1}m → {0, 1} be a randomized algorithm that computes some language L with
error ρ at length n. Let ∆ = 100m and let E : {0, 1}n → {0, 1}m be an (n − ∆, 2−∆)-extractor
for distributions recognizable by functions of the form fr1,r2(x) = A(x, r1)⊕A(x, r2) where r1, r2 ∈
{0, 1}m are arbitrary strings. Then B(x) = A(x,E(x)) is within 3ρ + 2−10m of L at length n.

Comparison The above approach requires extractors with error that is exponentially small in
m, and breaks down completely when the error is larger. We now observe that an extractor with
exponentially small error yields a seed-extending pseudorandom generator with exponentially small
error.

Theorem 7. Let T : {0, 1}n × {0, 1}m → {0, 1} be a function. Let ∆ = m + log(1/ε) and let
E : {0, 1}n → {0, 1}m be an (n − ∆, 2−∆)-extractor for distributions recognizable by functions of
the form fr(x) = T (x, r) where r ∈ {0, 1}m is an arbitrary string. Then, G(x) = (x,E(x)) is
ε-pseudorandom for T .

As a consequence the extractors used in [Sha09] can be viewed as seed-extending pseudoran-
dom generators with exponentially small error. More precisely, given a randomized algorithm
A : {0, 1}n × {0, 1}m → {0, 1} the extractor-based approach sets ∆ = 100m and requires an
(n−∆, 2−∆)-extractor for distributions that are recognizable by functions of the form fr1,r2(x) =
A(x, r1)⊕A(x, r2). The pseudorandom generator approach of this paper requires a seed-extending
generator G(x) = (x,E(x)) that fools tests of the form Tr2(x, r1) = A(x, r1)⊕A(x, r2) = fr1,r2(x).
By Theorem 7, an extractor E that can be used to obtain typically-correct derandomization
following the extractor-based approach gives rise to a seed-extending ε-pseudorandom generator
G(x) = (x,E(x)) with ε = 2m−∆ = 2−99m < 2−10m which can be used to obtain typically-correct
derandomization following the approach of this paper.

We remark that in some algorithmic settings, e.g., 2-party communication protocols, [Sha09]
obtains typically-correct derandomizations that are more efficient than the ones that follow from
applying our methodology directly based on the NW-construction and known hardness results.
Nevertheless, by Theorem 7 the extractors used in [Sha09] define seed-extending pseudorandom
generators that yield typically-correct derandomizations matching the efficiency of the extractor-
based approach.

We now prove Theorem 7. The analysis below uses the same approach as the analysis of [Sha09]
showing that extractors yield typically-correct derandomization.

Proof (of Theorem 7). Consider a probability space with two independent random variables X ←
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Un and R← Um. By conditioning on R we have that

|Pr[T (X, R) = 1]− Pr[T (X, E(X)) = 1]|
= |

∑
r∈{0,1}m

Pr[T (X, r) = 1 ∧R = r]− Pr[T (X, r) = 1 ∧ E(X) = r]|

= |
∑

r∈{0,1}m
Pr[T (X, r) = 1] ·

(Pr[R = r |T (X, r) = 1]− Pr[E(X) = r |T (X, r) = 1])|
≤

∑
r∈{0,1}m

Pr[T (X, r) = 1] · (5)

|Pr[R = r |T (X, r) = 1]− Pr[E(X) = r |T (X, r) = 1]|.

We next argue that the contribution of each individual r ∈ {0, 1}m to the right-hand side of (5)
is at most 2−∆. This yields an upper bound of 2m2−∆ = ε on the left-hand side of (5), which by
definition means that G(x) = (x,E(x)) is ε-pseudorandom for T .

We consider two cases. If Pr[T (X, r) = 1] < 2−∆ then the contribution of r to the right-hand
side of (5) is less than 2−∆ because of the first factor. Otherwise, the set f−1

r (1) has size at least
2n−∆ and by the given extractor property of E, | 1

2m − Pr[E(X) = r | fr(X) = 1]| ≤ 2−∆. Since
Pr[R = r |T (X, r) = 1]− Pr[E(X) = r |T (X, r) = 1] = 1

2m − Pr[E(X) = r | fr(X) = 1], the second
factor on the right-hand side of (5) is at most 2−∆, and so is the entire term corresponding to r.�

Conversely, we observe that seed-extending pseudorandom generators with error that is expo-
nentially small in m yield extractors for recognizable distributions.

Theorem 8. Let f : {0, 1}n → {0, 1} be a function and let E : {0, 1}n → {0, 1}m be a function
such that G(x) = (x,E(x)) is ε-pseudorandom for tests T (x, r) of the form Tz(x, r) = f(x)∧(r = z)
where z ∈ {0, 1}m is an arbitrary string. If ε ≤ 2−(m+2∆) then E is an (n−∆, 2−∆)-extractor for
the distribution recognized by f .

Proof (of Theorem 8). Consider the test Tz(x, r) = f(x) ∧ (r = z) for any z ∈ {0, 1}m. By the
given pseudorandomness property we have that for independently chosen X ← Un and R← Um,

|Pr[Tz(X, R) = 1]− Pr[Tz(X, E(X)) = 1]|
= |Pr[f(X) = 1] · Pr[R = z]− Pr[f(X) = 1] · Pr[E(X) = z | f(X) = 1]|
= Pr[f(X) = 1] · |Pr[R = z]− Pr[E(X) = z | f(X) = 1]| ≤ ε.

Letting P denote the distribution recognized by f and setting k = log(|f−1(1)|), we can rewrite
the above inequality as 2k−n · |2−m − Pr[E(P ) = z]| ≤ ε, which implies that∑

z∈{0,1}m
|2−m − Pr[E(P ) = z]| ≤ 2mε/2k−n. (6)

We want to show that the right-hand side of (6) is at most 2−∆ for k ≥ n −∆. This is the case
since ε ≤ 2−(m+2∆). �
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Together, Theorems 7 and 8 essentially say that in many algorithmic settings, (n − cm, 2−cm)-
extractors for a sufficiently large constant c > 1 give seed-extending pseudorandom generators with
error ε = 2−c′m for a constant c′ > 1 and vice versa. As a consequence the approach of [Sha09] is
essentially equivalent to the special case of seed-extending pseudorandom generators with error that
is exponentially small. The results we obtain using seed-extending pseudorandom generators with
larger error, such as the conditional result of Theorem 1 and the unconditional result of Theorem
5, do not seem to follow from the [Sha09] approach.

Handling algorithms that toss a super-linear number of coins Another advantage of the approach
of this paper is that we can directly handle randomized algorithms that toss a super-linear number
of coins. This is because we can use stretching seed-extending pseudorandom generators, in which
the length of the extending part E(x) is super-linear. In contrast an extractor E(x) cannot have an
output length that is super-linear as it is impossible to extract more random bits than are present
in the input distribution. Indeed, this is why [Sha09] handles randomized algorithms that toss a
super-linear number of coins by first applying a pseudorandom generator to reduce the number of
coins to sub-linear and only then running an extractor.

In some algorithmic settings both the approach of this paper and [Sha09] can only handle sub-
linear randomness. For example, consider the setting of communication protocols from Section 4.3.
We cannot hope for unconditional stretching seed-extending pseudorandom generators that fool
tests A(x1, . . . , xk; r) defined by randomized k-party communication protocols. This is because in
such a protocol we only place limitations on communication complexity and allow the computation
of an arbitrary function of r for free. Therefore, such a protocol can implement any statistical test
at no cost and distinguish a uniformly chosen string r from one that is generated deterministically
from fewer random bits. Even if we restrict our attention to polynomial-time uniform protocols,
we are still allowing each party in the protocol to apply an arbitrary polynomial-time computable
function to the public random coin sequence r. Thus, the existence of a pseudorandom generator
for such protocols presumes the existence of pseudorandom generators for polynomial time, which
we do not know to exist unconditionally.

More generally, what differentiates randomized communication protocols from say randomized
algorithms corresponding to BP.AC0 is the way that they are charged for performing computations
on the random coin sequence r. Communication protocols can compute any function of r for free,
whereas algorithms for BP.AC0 are restricted to functions in AC0. It remains open whether one
can obtain typically-correct derandomizations of communication protocols that toss a super-linear
number of coins.4

6. Circuit Lower Bounds

It is well-known that the existence of pseudorandom generators for polynomial-size circuits (which
yields everywhere-correct derandomization of BPP) implies that EXP does not have polynomial-
size circuits; this is the easy direction of the hardness versus randomness tradeoffs. Impagliazzo et
al. [IKW02] showed that any everywhere-correct derandomization of promise-BPP into NSUBEXP
– using pseudorandom generators or otherwise – implies that NEXP does not have polynomial-size

4[New91] shows that every randomized k-party communication protocol can be simulated by another randomized
k-party protocol which tosses only O(log n) coins. However, the transformation does not preserve uniformity.
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circuits. Building on [IKW02], Kabanets and Impagliazzo [KI04] showed that any everywhere-
correct derandomization of BPP into NSUBEXP implies that NEXP does not have Boolean circuits
of polynomial size or that the permanent over Z does not have arithmetic circuits of polynomial
size. We present a simpler proof of the latter result and show how to extend it to the setting of
typically-correct derandomization.

6.1. Results

We use the following terminology and notation in the statements and proofs of our lower bound
results. We consider both Boolean and arithmetic circuits, where the latter have internal nodes
representing addition, subtraction, and multiplication, and leaves representing variables and the
constants 0 and 1. We measure the size of circuits by the string length of their description, and
assume that the description mechanism is such that the description of a circuit of size s can easily
be padded into the description of an equivalent circuit of size s′ for any s′ > s. For any function
s(n) we denote by SIZE(s(n)) the class of languages L such that L at length n can be decided by
a Boolean circuit of size s(n) for all but finitely many input lengths n. We denote by ASIZE(a(n))
the class of families (pn)n∈N of polynomials over Z where pn has n variables and can be computed
by an arithmetic circuit of size a(n) for all but finitely many n ∈ N. ACZ denotes the language of
all arithmetic circuits that compute the zero polynomial over Z. Perm denotes the permanent of
matrices over Z, and 0-1-Perm its restriction to matrices with all entries in {0, 1}.

Everywhere-Correct Derandomization Our approach yields the following parameterized version
of the main result of [KI04], namely circuit lower bounds that follow from everywhere-correct
derandomization of the specific BPP-language ACZ.

Theorem 9. Let γ(n) denote the maximum circuit complexity of Boolean functions on n inputs.
There exists a constant c > 0 such that the following holds for any functions a(·), s(·), and t(·)
such that a(·) and s(·) are constructible, a(·) and t(·) are monotone, and n ≤ s(n) < γ(n).

If ACZ ∈ NTIME(t(n)) then

(i) (N ∩ coN)TIME (t((s(n))c · a((s(n))c))) 6⊆ SIZE(s(n)), or

(ii) Perm 6∈ ASIZE(a(n)).

In particular, we obtain the following instantiation for the exponential time bounds considered for
part (i) in [KI04].

Corollary 1. There exists a constant c > 0 such that the following holds for any functions a(·),
s(·), and t(·) such that a(·) and s(·) are constructible, a(·) and t(·) are monotone, s(n) ≥ n, and
for sufficiently large n

t ((s(n))c · a((s(n)c))) ≤ 2n. (7)

If ACZ ∈ NTIME(t(n)) then

(i) (N ∩ coN)TIME(2n) 6⊆ SIZE(s(n)), or

(ii) Perm 6∈ ASIZE(a(n)).
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Let us compare Theorem 9 and Corollary 1 to the corresponding results in [KI04]. First, we
point out that part (i) states a lower bound for (N ∩ coN)TIME(·) rather than for NTIME(·),
where we use (N ∩ coN)TIME(·) as a shorthand for NTIME(·)∩ coNTIME(·). Theorem 9 and
Corollary 1 give such a lower bound for the entire range of the parameters; [KI04] only manages
to do so in the case where all the parameters are polynomially bounded. More importantly, due
to the use of the implication that EXP having polynomial-size circuits implies that EXP coincides
with MA [BFNW93], the arguments in [KI04] can only give lower bounds for time bounds on the
left-hand side of (i) that are exponential. This is true even when all of a(n), s(n), and t(n) are
polynomial, in which case our Theorem 9 only needs the time bound in the left-hand side of (i) to
be superpolynomial. Finally, due to its dependence on the result from [IKW02] that NEXP having
polynomial-size circuits implies that NEXP coincides with EXP, the proof in [KI04] only works
when s(n) is polynomially bounded; our proof gives nontrivial results for s(n) ranging between
linear and linear-exponential.5

Typically-Correct Derandomization We initiate the study of whether typically-correct deran-
domization of BPP implies circuit lower bounds. We show that it does in the case of typically-
correct derandomizations that run in NSUBEXP and are of the quality considered by Goldreich
and Wigderson [GW02].

Theorem 10. If for every positive constant ε there exists a nondeterministic Turing machine which
runs in time 2nε

and correctly decides ACZ on all but at most 2nε
of the inputs of length n for all

but finitely many n, then

(i) NEXP does not have Boolean circuits of polynomial size, or

(ii) Perm does not have arithmetic circuits of polynomial size.

Note that Theorem 10 strengthens the main result of [KI04], which establishes the theorem in
the special case where the nondeterministic machines decide ACZ correctly on all inputs. We can
parameterize Theorem 10 in the same way as Theorem 9. However, we only obtain nontrivial
results for polynomially bounded a(n) and s(n), in which case t(n) can be subexponential. For
that reason, we only state the latter special case. The error rate considered in Theorem 10 is the
largest one for which our argument gives nontrivial lower bounds.

We first prove Theorem 10 and then analyze how the argument parameterizes to Theorem 9 and
Corollary 1 in the case of zero error rate. We end with some extensions and variations of both
theorems.

6.2. Proof for the Typically-Correct Setting

The proof of Theorem 10 has two main ingredients. The first ingredient is an unconditional circuit
lower bound for P0-1-Perm[1], the class of languages that can be decided in polynomial time with one
query to an oracle for 0-1-Perm.

Claim 2. For every constant d, P0-1-Perm[1] 6⊆ SIZE(nd).
5Scott Aaronson and we independently came up with a number of alternate arguments that do not rely on [IKW02],

including one that is even more elementary but does not scale as well as the one we describe here. See [AvM10]
for more details.
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The second ingredient gives a conditional simulation of that class in nondeterministic subexponen-
tial time with subpolynomial advice.

Claim 3. If the hypothesis of Theorem 10 holds and Perm has arithmetic circuits of polynomial
size, then

P0-1-Perm[1] ⊆ ∩ε>0NTIME(2nε
)/nε.

By combining both claims we obtain that if the hypothesis of Theorem 10 holds and Perm has
arithmetic circuits of polynomial size, then for every constant d, NTIME(2n)/n 6⊆ SIZE(nd). The
latter implies that for every constant d, NTIME(2n) 6⊆ SIZE(nd). Otherwise, any language in
NTIME(2n)/n can be decided on inputs of length n by a circuit of size (2n)d, namely a circuit
simulating an NTIME(2m)-computation on an input of length m = n + n with its second input
hardwired to an advice string of length n. Since NEXP contains a language that is hard for
NTIME(2n) under linear-time reductions, the statement that NTIME(2n) 6⊆ SIZE(nd) for every
constant d implies that NEXP does not have circuits of polynomial size. This finishes the proof of
Theorem 10 modulo the proofs of both claims.

Proof (of Claim 2). The claim follows because the polynomial-time hierarchy PH does not have cir-
cuits of fixed polynomial size [Kan82], PH is contained in P#P[1] [Tod91], and 0-1-Perm is complete
for #P under reductions that make a single query [Zan91]. �

In the rest of the proof we establish Claim 3.

Proof (of Claim 3). It is enough to consider P0-1-Perm[1]-computations that run in time n. Consider
such a computation, and let M denote the query it makes to its 0-1-Perm-oracle on a given input of
length n. The dimension m of M cannot exceed

√
n as the computation does not have enough time

to generate larger square matrices. By the paddability of 0-1-Perm, we can assume without loss of
generality that M has dimension m =

√
n independent of the input of length n, and maintain a

running time of O(n).
It suffices to design, for every ε > 0, a nondeterministic machine Nε running in time 2nε

and an
advice sequence a(·, ε) where a(n, ε) has length at most nε such that the following holds: On input
an m-by-m 0-1-matrix M , Nε with advice a(n, ε) outputs Perm(M) on every accepting computation
path, and has at least one such computation path. Our machine Nε acts as follows.

1. Guess a polynomial-sized candidate arithmetic circuit C for Perm on matrices of dimension
m.

2. Verify the correctness of C. Halt and reject if the test fails.

3. Use the circuit C to determine the permanent of M in deterministic polynomial time.

The circuit in step 1 exists by virtue of the hypothesis that Perm has polynomial-size arithmetic
circuits. Say the circuit C we guess is of size s ≤ mb and purportedly computes the permanent of
m-by-m matrices over Z. The constant b is chosen large enough so that such a circuit exists. The
crux of the procedure is the second step, which is a nondeterministic test with small advice that
has an accepting computation path on input C iff C does what it is purported to do. Once that
test is passed, we evaluate C modulo m! + 1 on the given 0-1-matrix M . Evaluating C this way
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ensures that the intermediate results remain small so the computations can be done in polynomial
time; since the permanent of M is a non-negative integer no larger than m!, the outcome of the
computation gives the correct value of the permanent of M .

The test in the second step is based on the following well-known translation to ACZ exploiting the
downward self-reducibility of the permanent. For completeness we include a proof in the Appendix.

Lemma 4. There exists a polynomial-time algorithm that takes an arithmetic circuit C and an
integer m, and produces an arithmetic circuit C̃ such that C computes the permanent of m-by-m
matrices over Z iff C̃ ∈ ACZ.

We use Lemma 4 to transform the circuit C into the circuit C̃, and show how to test that C̃ is in
ACZ. We will exploit the fact that ACZ is in coNP and that it is highly paddable to transform the
almost-correct nondeterministic subexponential-time tests given by the hypothesis of Theorem 10
into perfect nondeterministic subexponential-time tests for ACZ with small advice. Let N ′ε denote
the nondeterministic Turing machine from the hypothesis of Theorem 10 corresponding to ε. We
will use N ′ε′ for some ε′ related to ε.

Note that the false positives C̃ of N ′ε′ can be detected nondeterministically by guessing an ac-
cepting computation path of N ′ε′ on input C̃, guessing an input x and a modulus µ, evaluating C̃
on input x modulo µ, and verifying that the result is nonzero. Since the modulus µ never needs
to be larger than 2s̃, where s̃ denotes the size of the circuit C̃, the overhead of the test beyond
running N ′ε′ is only polynomial. Now, suppose that we are given the exact number fp(s̃, ε′) of false
positives of N ′ε′ at length s̃. Then the following nondeterministic test for membership to ACZ is
sound for instances C̃ of length s̃, i.e., if the test accepts C̃ then C̃ is in ACZ for sure.

(a) Guess a list of fp(s̃, ε′) distinct instances of length s̃ and nondeterministically test that they
are all false positives of N ′ε′ . If there is a test that fails, halt and reject.

(b) Accept iff C̃ is not on that list and N ′ε′ accepts C̃.

Note that this test runs in time fp(s̃, ε′) · 2s̃ε′ · poly(s̃), which is 2O(s̃ε′ ). Note also that we can make
sure that the size s of C as well as the size s̃ of C̃ only depend on m in an easily computable way,
say s̃ = mc for some constant c. This follows from the paddability of circuit descriptions. As a
result, the information fp(s̃, ε′) really takes on the form of an advice.

The above test is sound but not necessarily complete – it may still have false negatives. In order
to remedy that problem, we exploit a further paddability property of circuit descriptions, namely
that we can obtain many different circuits equivalent to a given circuit by adding a little bit of
circuitry that isn’t used in the evaluation of the output gate. Consider the equivalents of C̃ ∈ ACZ
of length ` that we can obtain using this type of padding. If the number of distinct pads exceeds
the total number of errors N ′ε′ makes at length `, we can nondeterministically guess a pad that is
accepted by N ′ε′ and therefore also by the above test when provided with fp(`, ε′) as advice.

How large does ` need to be for this approach to work? There exists a positive constant α such
that the number of padded versions of C̃ of length ` = s̃ + ∆ is at least 2α∆. We need 2α∆ > 2`ε

.
The latter condition is satisfied for every 0 < ε < 1 and sufficiently large s̃ when we set ∆ = s̃, i.e.,
` = 2s̃.

The resulting nondeterministic test for C̃ runs in time

2O(`ε′ ) = 2O(s̃ε′ ) = 2O(mcε′ ), (8)
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and works correctly when provided fp(`, ε′) as advice. The bit length of the advice is bounded by
the logarithm of (8). Plugging in this test as the second step in the three-step approach mentioned
at the beginning of the proof, we obtain a machine Nε with the properties we need for any constant
ε with ε > cε′ by setting a(n, ε) = fp(2mc, ε′). �

6.3. Proofs for the Everywhere-Correct Setting

We establish Theorem 9 by analyzing how the proof of Theorem 10 parameterizes in the case of
zero error rate.

Proof (of Theorem 9). The two ingredients in the proof of Theorem 10 translate as follows given
the parameters of Theorem 9.

Claim 4. There exists a constant c such that for every time constructible function s(·) satisfying
n ≤ s(n) < γ(n), DTIME0-1-Perm[1]((s(n)c)) 6⊆ SIZE(s(n)).

Claim 5. There exists a constant d such that the following holds for any functions a(·) and t(·)
with a(·) constructible and t(·) monotone. If ACZ ∈ NTIME(t(n)) and Perm ∈ ASIZE(a(n)), then

DTIME0-1-Perm[1](n) ⊆ NTIME(t(n · logd n · a(
√

n))).

Given those two claims, we obtain the following by padding Claim 5 to length (s(n))c, exploiting
the closure under complementation of deterministic computations, and combining it with Claim 4:
If ACZ ∈ NTIME(t(n)) and Perm ∈ ASIZE(a(n)), then

(N ∩ coN)TIME
(
t((s(n))c · logd((s(n))c) · a((s(n))c/2))

)
6⊆ SIZE(s(n)).

Theorem 9 follows by simplifying the last expression using the monotonicity of a(·) and t(·) and
the fact that s(n) ≥ n. All that remains are the proofs of the claims.

Proof (of Claim 4). The argument of [Kan82] gives that Σ4TIME(s(n) loga(s(n))) 6⊆ SIZE(s(n))
for some constant a. [Tod91] shows that there exists a constant b and a problem A ∈ #P such
that for any constructible function t(·) with t(n) ≥ n, Σ4TIME(t(n)) ⊆ DTIMEA[1]((t(n))b). The
claim follows by combining the above as before with the completeness of 0-1-Perm for #P under
reductions that make a single query [Zan91].

Proof (of Claim 5). We follow the proof of Claim 3 and set m =
√

n.
The crux is the 3-step construction of a nondeterministic machine N that takes an m-by-m

0-1-matrix M and outputs Perm(M) on every accepting computation path, and has at least one
such computation path. In the first step N guesses an arithmetic circuit of size a(m). By the con-
structibility of a(·), this step takes time O(a(m)). In the second step, we run the nondeterministic
algorithm for ACZ from the hypothesis on the circuit C̃ given by Lemma 4. A careful reading of
the proof of the lemma reveals that C̃ is of size m2 · logd m · a(m) for some constant d, so this step
takes t(m2 · logd m ·a(m)) time. The third step takes time O(m2 · logd m ·a(m)). As we can assume
without loss of generality that t(n) ≥ n and since t(·) is monotone, the three steps combined take
time O(t(m2 · logd m · a(m))). The total running time of the nondeterministic simulation of the
given DTIME0-1-Perm[1](n)-computation is of the same order. �
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This finishes the proof of Theorem 9. �

The proof of Corollary 1 immediately follows from Theorem 9.

Proof (of Corollary 1). Note that condition (7) gives an upper bound of 2n on the time bound
on the left-hand side of (ii) in the statement of Theorem 9. Also, we can assume without loss of
generality that t(n) ≥ n for all but finitely many n; otherwise, the hypothesis of Corollary 1 fails
as a nondeterministic machine deciding ACZ needs to be able to look at its entire input. Thus,
condition (7) implies that s(n) is upper bounded by 2n/c, which is less than γ(n) for c > 1 and n
sufficiently large. Corollary 1 then follows from Theorem 9 verbatim. �

We already discussed how Theorem 9 and Corollary 1 compare to the corresponding results
in [KI04]. We now compare the argument of this paper to the one of [KI04]. The reader is
also referred to [AvM10] for a more detailed discussion. For simplicity we consider the original
statement of [KI04]. Namely, the goal is to obtain a contradiction from the hypotheses that ACZ
is in NP, NEXP has polynomial-size circuits, and Perm has polynomial-size arithmetic circuits.
Both proofs start by using the first and the third hypothesis to collapse P#P into NP. This step is
captured by Claim 5. [KI04] then uses the result from [IKW02] that NEXP having polynomial-size
circuits implies that NEXP coincides with EXP, and the result from [BFNW93] that EXP having
polynomial-size circuits implies that EXP coincides with MA, to conclude that NEXP is in MA,
which is unconditionally contained in P#P. This, in turn, collapses NEXP all the way down to NP,
which contradicts the time hierarchy for nondeterministic machines.

Our proof does not attempt to collapse NEXP into NP. Instead we use the fact that NEXP
having polynomial-size circuits immediately implies that NP has circuits of size nc for some fixed
constant c. Since by [Kan82] and [Tod91] (see Claim 4) we know unconditionally that P#P does
not have the latter property, we obtain a contradiction as we already derived that P#P is in NP.

6.4. Extensions

We observe a few variations of Theorems 9 and 10. First, the theorems also hold when we simul-
taneously replace ACZ by AFZ (the restriction of ACZ to arithmetic formulas), and “arithmetic
circuits” by “arithmetic formulas”.

Second, we can play with the underlying i.o. and a.e. quantifiers. In fact, we can strengthen both
theorems by either relaxing the hypothesis to hold only i.o. rather than a.e. or by improving one
of the lower bound conclusions (i) or (ii) to hold a.e. rather than i.o. This follows because on the
one hand the lower bounds in Claims 2 and 4 hold a.e. rather than just i.o. as stated. On the other
hand, if one of the hypotheses of Claims 3 and 5 holds only i.o., the concluding simulation can be
made to work i.o. when provided with a pointer to a nearby input length where the hypotheses hold.
The latter can be handled with a logarithmic amount of advice, which the rest of the argument
can handle.

As an example, in the case of Theorem 10 it suffices for the nondeterministic machines Nε

to correctly decide ACZ on all but at most 2nε
of the inputs of length n for infinitely many n.

Related to the latter variation, we point out that by [IW01] EXP differs from BPP iff all of BPP
has deterministic typically-correct derandomizations that run in subexponential time and err on no
more than a polynomial fraction of the inputs of length n for infinitely many n. Thus, extending this
i.o.-version of Theorem 10 to the setting with polynomial error rates would show that EXP6=BPP
implies circuit lower bounds.
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7. Relativization and Algebrization

In Section 6, we showed that typically-correct derandomizations of BPP with the parameters con-
sidered by Goldreich and Wigderson [GW02] imply circuit lower bounds (Theorem 10). This can
be seen as evidence that establishing such a typically-correct derandomization will be difficult.
Although we do not know if typically-correct derandomizations of BPP with the weaker param-
eters of say Theorem 1 imply circuit lower bounds, we have other indications that establishing
such weaker derandomizations of BPP will also be difficult – it would require non-relativizing, and
indeed non-algebrizing, techniques.

Algebrization Let us recap the notion of algebrization [AW09], which generalizes the concept
of relativization. A complexity class inclusion C1 ⊆ C2 is said to algebrize if for every oracle A
and every low-degree extension Ã of A, CA

1 ⊆ CÃ
2 . A complexity class separation C1 * C2 is said

to algebrize if for every oracle A and low-degree extension Ã of A, CÃ
1 * CA

2 . An inclusion or
separation is said to relativize if the above holds with Ã replaced by A.

Notice that any statement which relativizes also algebrizes. The converse does not hold. As an
example, the inclusion PSPACE ⊆ IP [Sha92] does not relativize but does algebrize. In fact, [AW09]
observe that all known non-relativizing proofs that are based on arithmetization algebrize. At the
same time [AW09] argues that several open questions in complexity theory require non-algebrizing
techniques to be settled.

Typically-Correct Derandomization and Algebrization We show that the same is true of the
question whether typically-correct derandomizations of BPP exist. On the one hand, a negative
answer cannot algebrize, even for zero error. This is because ruling out typically-correct deran-
domization of BPP in particular implies BPP * P, but for any PSPACE-complete language A and
its multi-linear extension Ã, BPPÃ ⊆ PSPACEÃ ⊆ PA. On the other, we show that a positive
answer cannot algebrize either, even for very large error rates and even if we only want simulations
in nondeterministic subexponential time.

Theorem 11. There exists an oracle B and a multi-quadratic extension B̃ of B such that there is
a language in BPTIMEB(O(n)) that is (1

2 −
1

2n/3 )-hard for NTIMEB̃(2n).

Proof. The construction can be broken up into two main parts.

1. Construct B and a multi-quadratic extension B̃ of B such that any language computable
in NTIMEB̃(2n) can be computed in BPTIMEB(c · n) for some constant c. This follows
from the proof of a result of [AW09] showing that there exists an oracle B and a multi-
quadratic extension B̃ of B such that NTIMEB̃(2n) ⊆ SIZEB(c · n). The proof closely
follows the proof due to [Wil85] of the containment in the plain relativization setting (i.e.,
NTIMEB(2n) ⊆ SIZEB(c · n)) and actually yields a construction such that for some constant
c,

Pr
z∈{0,1}c|x|

[(∀x ∈ {0, 1}n)B(〈x, z〉) = N B̃(x)] ≤ 2/3, (9)

where N B̃ is NEB̃-complete. [AW09] use the implication that NTIMEB̃(2n) ⊆ SIZEB(c ·
n), which follows by hardwiring a value of z for which the predicate on the left-hand side
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of (9) holds. Instead, by picking z uniformly at random we obtain that NTIMEB̃(2n) ⊆
BPTIMEB(c · n).

2. Given B and B̃ construct a hard language L. We derive the hard language L using a rela-
tivizing hierarchy theorem of [GW00] for deterministic machines, which shows that for any
constant c there is a language L ∈ DTIMEB(2O(n)) that is (1

2−
1

2n/3 )-hard for DTIMEB(2c·n).

By the first part NTIMEB̃(2n) ⊆ BPTIMEB(c · n) ⊆ DTIMEB(2c·n), so the language L has
the required hardness. Moreover, L is computable in DTIMEB(2O(n)) ⊆ NTIMEB̃(2O(n)) ⊆
BPTIMEB(O(n)), where the latter inclusion follows from NTIMEB̃(2n) ⊆ BPTIMEB(O(n))
by padding. �

We point out that weaker hierarchy theorems for deterministic time could have been used in
place of the one from [GW00] in order to conclude that a positive answer cannot algebrize. We
stated the result using the [GW00] hierarchy theorem because it holds for all but finitely many
input lengths and achieves hardness very close to 1

2 .

Acknowledgments

We would like to thank Oded Goldreich for suggesting the term “typically-correct derandomiza-
tion,” and Matt Anderson, Valentine Kabanets, Salil Vadhan, and anonymous reviewers for helpful
comments. The third author thanks Salil Vadhan for suggesting this research direction to him and
for collaboration at an early stage of this research.

A preliminary version of this work appeared under the title “Pseudorandom Generators and
Typically-Correct Derandomization” in the 13-th Annual International Workshop on Randomiza-
tion and Computation, held in Berkeley, California 2009.

A significant portion of this work was completed while the first author was a graduate student
at the University of Wisconsin-Madison and while the second author was visiting the University
of Haifa, the Weizmann Institute of Science, and Humboldt University in Berlin. Portions of this
work were completed while the first author was supported by NSF award CCF-0728809 and by a
Cisco Systems Distinguished Graduate Fellowship, while the second author was supported by NSF
award CCF-0728809 and by the Humboldt Foundation, and while the third author was supported
by BSF grant 2004329 and ISF grant 686/07.

References

[AvM10] Scott Aaronson and Dieter van Melkebeek. A note on circuit lower bounds from de-
randomization. Electronic Colloquium on Computational Complexity (ECCC), 17(105),
2010.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory.
ACM Transactions on Computation Theory, 1(1):1–54, 2009.
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A. Analysis of the Nisan-Wigderson Construction

Our typically-correct derandomization results use the Nisan-Wigderson generator construction
[NW94]. Lemma 3 states that given a sufficiently hard function, the construction gives a seed-
extending pseudorandom generator. In this section we review this well-known construction to
verify that the original analysis carries through when the generator outputs its seed.

Definition of NW-Generator When taking a seed of length n and outputting m bits, the generator
makes use of the following combinatorial object.

Definition 4 (combinatorial design). A (k, `) design of size m over [n] is a sequence S1, S2, . . . , Sm

of subsets of [n] such that (a) |Si ∩ Sj | ≤ k for 1 ≤ i < j ≤ m, and (b) |Si| = ` for 1 ≤ i ≤ m.

The following construction suffices for our results. It has been (re)derived and used in several
contexts, including in [NW94]. We provide a proof for completeness.

Lemma 5. For any positive integers n, k, `, m, and n such that ` ≤
√

n/2 and k ≥ log m
log ` there is

a (k, `) design of size m over [n]. Further, there is a Turing machine that on input (k, `, m, n, i)
outputs the ith set and uses O(log(m + n)) space.
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Proof. For q a positive integer, let GF(2q) denote the finite field of size 2q. The main idea is to
view the elements of [n] as points in GF(2q)×GF(2q), let the sets Si correspond to the graphs of
polynomials of degree at most k over GF(2q), and use the fact that two distinct such polynomials
can intersect in at most k points.

Now we provide the details. Let q be the integer such that
√

n/2 < 2q ≤
√

n. We identify the
elements of GF(2q) with the bit strings of length q. Since under the given conditions m ≤ 2(k+1)q,
we can view i ∈ [m] as defining a sequence of k + 1 strings of length q (by padding with 0’s as
needed), and thus as a sequence of k + 1 elements over GF(2q). We interpret this sequence as the
successive coefficients of a polynomial pi of degree at most k over GF(2q). We take the first ` points
y1, ..., y` in GF(2q), say in lexicographic order, and define Si as

Si = {(y1, pi(y1)), ..., (y`, pi(y`))}.

Note that GF(2q) contains at least ` elements as ` ≤
√

n/2 < 2q, and that |Si| = `. The intersection
size |Si ∩ Sj | equals the number of y’s on which pi and pj agree. For distinct i and j, that number
is upper bounded by the maximum degree k.

Finally, consider the complexity of generating the set Si. We must (a) perform arithmetic
of O(log(m + n)) bit numbers to determine q, keep counters, etc., (b) determine an irreducible
polynomial of degree q over GF(2), and (c) using the irreducible polynomial perform arithmetic
over GF(2q). (b) can be performed in O(q) = O(log n) space by exhaustive search, and both (a)
and (b) can be performed in O(log(m + n)) space as well. �

Given such a design, we define the NW-generator as follows based on a presumed hard Boolean
function H. Our definition differs from the original one [NW94] only in that the generator addi-
tionally outputs its seed.

Definition 5 (seed-extending NW generator [NW94]). Let n and m be integers, and S1, S2, . . . , Sm

the (k, `)-design of size m over [n] with ` = b
√

n/2c and k = d log m
log ` e provided by Lemma 5. Given

a function H : {0, 1}` → {0, 1} the Nisan-Wigderson generator NWH;n,m : {0, 1}n → {0, 1}n+m is
defined as

NWH;n,m(x) = (x,H(x|S1), ...,H(x|Sm)),

where x|Si denotes the substring of x of length ` formed by taking the bits of x indexed by Si.

The NW-construction has the property that if the function H is hard on average for a certain
class of algorithms, then NWH;n,m is pseudorandom for related tests. Lemma 3 formalizes this
property in the case of circuits. We include a proof sketch for reasons of completeness, where we
focus on verifying that the argument given in [NW94] goes through with our modification of the
generator. The proof sketch also gives us an opportunity to point out how the argument translates
to other types of algorithms we consider; we provide these observations following the proof sketch.

Proof (sketch of Lemma 3). The argument goes by contradiction: we assume a test T computable
by a circuit of size s and depth d that ε-distinguishes the output of NWH;n,m from uniform in the
sense that

| Pr
X←Un,R←Um

[T (X, R) = 1]− Pr
X←Un

[T (NWH;n,m(X)) = 1]| ≥ ε.
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We use T to construct a circuit that is not much larger and that computes H well on average,
contradicting the assumed hardness of H. There are two parts to the argument, namely the
construction of a predictor T̃ , and the construction of a circuit that uses T̃ to compute H well on
average.

Construction of a predictor A circuit T̃ is an ε′-predictor for NWH;n,m if there is an index j
such that when given the first j − 1 bits of a sample from NWH;n,m, T̃ predicts the jth bit with
success at least 1

2 + ε′. The transformation from an ε-distinguisher to an ε′-predictor with ε′ = ε
m is

a standard step in hardness-based pseudorandom generators. The key observation for our purposes
is that the first n bits of NWH;n,m are uniform at random and so cannot be predicted with any
advantage. Thus the bit j has to fall within the extending part of NWH;n,m, which means that
the original analysis carries through without any change in the parameters. Let us go through the
analysis in some detail.

We consider the behavior of T on hybrid distributions Di that output their first n + i bits
according to NWH;n,m and output their remaining m − i bits uniformly, for i = 0, ...,m. Notice
that D0 ≡ Un+m and Dm ≡ NWH;n,m so that we have by assumption |PrZ←D0 [T (Z) = 1] −
PrZ←Dm [T (Z) = 1]| ≥ ε. Using this fact we have that

ε ≤ | Pr
Z←D0

[T (Z) = 1]− Pr
Z←Dm

[T (Z) = 1]|

= |
m∑

i=1

Pr
Z←Di

[T (Z) = 1]− Pr
Z←Di−1

[T (Z) = 1]|

≤
m∑

i=1

| Pr
Z←Di

[T (Z) = 1]− Pr
Z←Di−1

[T (Z) = 1]|,

so there must exist an index i for which |PrZ←Di [T (Z) = 1] − PrZ←Di−1 [T (Z) = 1]| ≥ ε
m . From

this point, an averaging argument shows that there is a way to fix the last m − i + 1 bits so that
either T or ¬T with these bits fixed indeed predicts the (n+ i)th bit of NWH;n,m with success 1

2 + ε
m

when given the first n + i− 1 bits. We let T̃ be this circuit, so we have that

Pr
X←Un

[T̃ (X, H(X|S1), ...,H(X|Si−1)) = H(X|Si)] ≥
1
2

+
ε

m
.

Using T̃ to compute H In this part of the argument, we use T̃ to construct a circuit not much
larger than the circuit for T that computes H well on average. An averaging argument shows that
there is a way to fix the bits in X that are outside of Si to preserve the prediction probability of
T̃ . Let Ỹ denote a string of length n that has these positions of X fixed to these values and with
X|Si = Y . Then we have that

Pr
Y←U`

[T̃ (Ỹ ,H(Ỹ |S1), ...,H(Ỹ |Si−1)) = H(Y )] ≥ 1
2

+
ε

m
. (10)

Consider H(Ỹ |Sj ) for some 1 ≤ j ≤ i− 1. Notice that Ỹ has all bits fixed except those indexed by
Si, so for each 1 ≤ j ≤ i−1, the function H(Ỹ |Sj ) is a function that depends on only |Sj ∩Si| many
bits – which by construction is most k = O(log m/ log n). We plug in either a DNF or CNF into
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T̃ for each of these functions, and we are left with a circuit that computes H on inputs of length
` = b

√
n/2c with success at least 1

2 + ε
m .

Parameters Consider the size and depth of the circuit that we have created. T̃ has the same
size and depth as T , and to this we have added at most m circuits for the functions H(Ỹ |Sj ), each
of which is a CNF or DNF of size 2O(k) = 2O(log m/ log n). Choosing either a CNF or DNF for each
to ensure the depth increases only by one, this yields the parameters stated in Item (1) of Lemma
3. The efficiency of constructing the generator, Item (2), follows by the efficiency of the designs of
Lemma 5. �

Remark The argument in the proof of Lemma 3 can be adapted for (non-uniform) models of
computation other than circuits. We point out the modifications and observations about the above
proof we need for the models we consider.

◦ Relativized circuits.
The above argument carries through when both the circuits underlying the hardness hypoth-
esis and the circuits underlying the tests can have gates that compute some fixed oracle O.
Such oracle gates contribute their number of inputs to the size of the circuit. In particular,
if H has the stated hardness against circuits that have oracle gates for an oracle O, then
NWH;n,m is ε-pseudorandom for tests T with the stated parameters that have access to O
oracle gates.

◦ Circuits with a limited number of special gates.
If the tests T of Item (1) of Lemma 3 are allowed a certain number of special gates (e.g., gates
for arbitrary symmetric functions), then NWH;n,m is ε-pseudorandom for T provided H has
the stated hardness against circuits that have access to the same exact number and type of
special gates as the tests T . This follows from the argument above because the circuit that
approximates H consists of a single copy of the test circuit T or its negation, with some of
its input bits fixed and others computed by small regular circuits without special gates.

◦ Branching programs.
The correctness argument carries over as such for branching programs instead of circuits. The
size parameter in Item (1) becomes slightly different. Each of the functions H(Ỹ |Sj ) can be
computed by a branching program of size 2O(k). Incorporating those into the branching pro-
gram for T̃ means replacing some edges of the branching program for T̃ with a branching pro-
gram of size 2O(k), resulting in an overall blowup in size of 2O(k) for k = O(log m/ log n). Thus,
if H is (1

2 −
ε
m)-hard at input length b

√
n/2c for branching programs of size s · 2O(log m/ log n)

then NWH;n,m is ε-pseudorandom for tests T : {0, 1}n × {0, 1}m → {0, 1} computable by
branching programs of size s.

◦ Communication protocols.
In the proof of Theorem 6 in Section 4.3 we use a hardness-based pseudorandom generator
GH;n,`,m that can be seen as a degenerate form of the Nisan-Wigderson construction with the
sets Si pairwise disjoint. The above proof carries through for this generator as well. Namely,
let T be a randomized communication protocol taking k-tuples of n bit inputs and using
m bits of randomness and q bits of communication that ε-distinguishes the output of the
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generator. Then the approximation to H given in (10) is within 1
2 + ε

m of H on k-tuples of
`-bit strings. The approximation can be computed by running the protocol T or its negation
with certain input bits fixed and others set to the outcome of H(Ỹ |Sj ) for some j < i. As
the Sj are chosen disjointly for the generator GH;n,`,m, H(Ỹ |Sj ) is a function with all input
bits fixed and therefore does not require any additional communication between the players.
Altogether, the approximation given in (10) can be computed by a non-uniform protocol that
uses q bits of communication.

We conclude that if H is (1
2−

ε
m)-hard for non-uniform protocols operating on k-tuples of `-bit

inputs that use q bits of communication then GH;n,`,m is ε-pseudorandom for non-uniform
randomized communication protocols that operate on k-tuples of n-bit inputs, use m random
bits, and q bits of communication.

B. The Permanent and Arithmetic Circuit Zero Testing

For completeness we include a proof of Lemma 4 showing how to reduce the correctness of an
arithmetic circuit for the permanent over Z to an instance of ACZ.

Proof (of Lemma 4). We use the following notation. Let M be an m-by-m matrix M , 0 ≤ k ≤ m,
and 1 ≤ i, j ≤ k. We denote by M (k) the matrix obtained by taking the m-by-m identity matrix
and replacing the top left k-by-k submatrix by the corresponding submatrix of M . By M

(k−1)
−i,−j

we denote the same for k − 1 but starting from the matrix M with the i-th row and j-th column
deleted.

We have that C correctly computes the permanent of m-by-m matrices over Z iff for each 1 ≤
k ≤ m, the polynomial

C̃k = C(X(k))−
k∑

j=1

C(X(k−1)
−k,−j) · xkj

is identically zero, as well as the polynomial C̃0 = C(X(0))−1, where X denotes an m-by-m matrix
of variables (xij)m

i,j=1. By introducing one more variable x0, those conditions can be expressed
equivalently as whether the following polynomial is identically zero: C̃ =

∑m
k=0 C̃k · xk

0. The
straightforward implementation of C̃ given C yields an arithmetic circuit that consists of O(m2)
copies of C and some simple additional circuitry. That arithmetic circuit is in ACZ iff C correctly
computes the permanent on m-by-m matrices over Z. �
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