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Abstract

We study the relation between locally testable and locally decodable codes. Locally testable codes
(LTCs) are error-correcting codes for which membership of a given word in the code can be tested
probabilistically by examining it in very few locations. Locally decodable codes (LDCs) allow to recover
each message entry with high probability by reading only a few entries of a slightly corrupted codeword.
A linear code C ⊆ Fn

2 is called sparse if n ≥ 2Ω(dim(C)).
It is well-known that LTCs do not imply LDCs and that there is an intersection between these two

families. E.g. the Hadamard code is both LDC and LTC. However, it was not known whether LDC
implies LTC. We show the following results.

• Two-transitive codes with a local constraint imply LDCs, while they do not imply LTCs.

• Every non-sparse LDC contains a large subcode which is not LTC, while every subcode of an LDC
remains LDC. Hence, every non-sparse LDC contains a subcode that is LDC but is not LTC.

The above results demonstrate inherent differences between LDCs and LTCs, in particular, they imply
that LDCs do not imply LTCs.
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1 Introduction

A linear code over a finite field F is a linear subspace C ⊆ Fn. The dimension of C is its dimension as
a vector space, and its rate is the ratio of its dimension to n. The distance of C is the minimal Hamming
distance between two different codewords. Typically, we are interested in codes whose distance is a linear
to the block length n, i.e., Ω(n).

Locally testable codes (LTCs) are error-correcting codes for which membership of a given word in the
code can be tested probabilistically by examining it in very few locations. More precisely such a code has
a tester, which is a randomized algorithm with oracle access to the received word x. The tester reads at
most q symbols from x and based on this local view decides if x ∈ C or not. It should accept codewords
with probability one, and reject words that are far (in Hamming distance) from the code with noticeable
probability.

In recent years, starting with the work of Goldreich and Sudan [12], several surprising constructions
of LTCs have been given (see [10] for an extensive survey of some of these constructions). The principal
challenge is to understand the largest asymptotic rate possible for LTCs, and to construct LTCs approaching
this limit. We now know constructions of LTCs of dimension n/ logO(1) n which can be tested with only
three queries [5, 7], [21]. The main open question in the subject is whether there are asymptotically good
LTCs, i.e., LTCs that have dimension Ω(n) and distance Ω(n).

The only negative results on LTCs concern binary codes testable with just 2-queries [2, 15] (which is a
severe restriction), random LDPC codes [4], cyclic codes [1] 1, Solvable codes [19] and codes with small
redundancy in the small weight dual words [3].

On the other hand, locally decodable codes (LDCs) allow to recover each message entry with high
probability by reading only a few entries of the codeword even if a constant fraction of it is adversely
corrupted.

The best construction of LDCs was initiated by the breakthrough results of Yekhanin [26] who showed
a (conditional) subexponential construction of 3-query LDCs. Later Efremenko [9] showed unconditional
subexponential construction of LDCs. Gopalan showed that these codes can be considered as a sub-family
of Reed-Muller codes [13].

Katz and Trevisan [16] were first who defined formally LDCs and showed that LDCs have superlinear
blocklength. Goldreich et al. [11] showed that linear 2-query LDCs have exponential blocklength. This
result was generalized by Dvir and Shpilka [8] for all arbitrarily large fields. Obata [22] and then Shiowat-
tana and Lokam [23] showed asymptotically tight (exponential) lower bounds on the blocklength of 2-query
LDCs. Kerenidis and de Wolf [20] showed exponential lower bounds for 2-query LDC and improved super-
linear lower bound for q-query LDCs, where q ≥ 3. Then Woodruff [25] improved this result for odd q and
showed that q-query LDCs (q ≥ 3) with k message bits and blocklength n have n ≥ Ω(k

1+ 1
dq/2−1e )/ log(k)

and for 3-query linear LDCs showed that n ≥ Ω(k2/ log log(k)). The known lower bounds for q-query
LDCs for q ≥ 3 seems to be very far from tight.

LDCs are related to private information retrieval protocols, initiated by [6], while LTCs are related to
PCPs [12]. Both these families of error correcting codes are explicitly studied, for survey see e.g. [24].
In spite of the fact, the distinction between the two families of the codes was not made. Namely, it is
well-known that there is an intersection between the two families of codes, e.g. the famous Hadamard
code is 3-query LTC and 2-query LDC. Moreover, it is well-known that LTCs do not imply LDCs, i.e.,

1The last result rules out asymptotically good cyclic LTCs; the existence of asymptotically good cyclic codes has been a long-
standing open problem, and the result shows the “intersection” of these questions concerning LTCs and cyclic codes has a negative
answer.
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there are LTCs which are not LDCs. This follows simply by comparing the upper and lower bounds on the
blocklength of these families of codes. If C ⊆ Fn is a q-query LDCs then n ≥ Ω(dim(C)q/(q−1)) (by Katz
and Trevisan [16]), while there exist (best known) LTCs s.t. n ≤ O(dim(C) · (poly log(dim(C)))) [5, 7],
[21]. However, the other direction, i.e., whether LDCs imply LTCs, was not known.

1.1 Our Results

We show that LDC does not imply LTC, and in fact there are inherent differences between LDCs and LTCs.
Specifically we show the following results.

• In Theorem 3.1 we show that codes invariant under two-transitive groups that obey a local constraint
are LDCs, while they are not necessarily LTCs. This provides a general proof to the local decodability
of polynomial codes such as Hadamard code, Reed-Muller codes and dual-BCH codes. Combining
this with a recent result of [14], we obtain an explicit family of linear codes which is locally decodable
but is not locally testable.

• In Theorem 4.1 we show that every non-sparse code contains a large subcode which is not LTC, while
every subcode of an LDC remains LDC (Corollary 4.4). Hence, every non-sparse LDC contains a
subcode that is LDC but is not LTC. Moreover, we show (Theorem 4.6) that if we consider uniform-
LTCs (for which a tester picks every possible local constraint with the same probability) then, in fact,
every non-sparse LDC has many large subcodes which are not uniform-LTCs (but still LDCs).

1.2 On Sparse codes vs. Non-sparse codes

Recall that a code C ⊆ Fn2 is called sparse if n ≥ 2Ω(dim(C)), otherwise the code is non-sparse. A sparse
code C is called unbiased if all nonzero codewords c ∈ C have relative weight ranging in (1

2−n
−γ , 1

2 +n−γ)
for some constant γ > 0. Kaufman and Sudan [17] showed that all sparse unbiased codes are LTCs and
LDCs. Since every subcode of a sparse unbiased code is a sparse unbiased code we conclude that it is an
LTC and LDC. However, sparse codes have exponential blocklength.

Our Theorem 4.1 shows that every non-sparse LDC contains a large subcode which is not LTC. Hence,
every non-sparse LDC contains a subcode that is LDC but is not LTC. This demonstrates an inherent dif-
ference between sparse and non-sparse codes. In sparse codes local testability is preserved in subcodes,
while in non-sparse codes local testability is not preserved in subcodes. In contrast to local testability, local
decodability of all codes is always preserved in their subcodes (Corollary 4.4).

1.3 Paper Organization

We start with some definitions in Section 2. In Section 3 we provide the proof to our first theorem. In
Section 4 we prove our second theorem, moreover we also prove a stronger version of our second theorem
that applies only for a special type of LTCs known as uniform-LTCs.

2 Preliminaries

Let F be a finite field and [n] be the set {1, . . . , n}. In this work, we consider only linear codes. We start
with a few definitions.

Let C ⊆ Fn be a linear code over F. For w ∈ Fn, let supp(w) = {i ∈ [n] | wi 6= 0} and |w| =
| supp(w)|. We define the distance between two words x, y ∈ Fn to be ∆(x, y) = |{i | xi 6= yi}| and the
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relative distance to be δ(x, y) = ∆(x,y)
n . The distance of a code is denoted by ∆(C) and defined to be the

minimal value of ∆(x, y) for two distinct codewords x, y ∈ C. Similarly, the relative distance of the code
is denoted δ(C) = ∆(C)

n . For x ∈ Fn and C ⊆ Fn, let δ(x, C) = min
y∈C
{δ(x, y)} denote the relative distance

of x from the code C. We note that ∆(C) = min
c∈C\{0}

{|c|}. If δ(x, C) ≥ ε, we say that x is ε-far from C and

otherwise x is ε-close to C. Let dim(C) be the dimension of C. The vector inner product between u1 and u2

is denoted by 〈u1, u2〉. The dual code C⊥ is defined as C⊥ = {u ∈ Fn | ∀c ∈ C : 〈u, c〉 = 0}. In a similar
way we define C⊥≤t =

{
u ∈ C⊥ | |u| ≤ t

}
and C⊥t =

{
u ∈ C⊥ | |u| = t

}
.

For w ∈ Fn and S = {j1, j2, . . . , jm} ⊆ [n], where j1 < j2 < . . . < jm, let w|S =
(wj1 , wj2 , . . . , wjm) be the restriction of w to the subset S. Let C|S = {c|S | c ∈ C} denote the restric-
tion of the code C to the subset S. For T ⊆ Fn and w ∈ Fn we say that w ⊥ T if for all t ∈ T we have
〈w, t〉 = 0.

2.1 Codes invariant under groups

Let G be a group of permutations over [n]. For π ∈ G and w = (w1, w2, ..., wn) ∈ Fn with some abuse
of notation we let π(w) = (wπ−1(1), ..., wπ−1(n)) be a π-permuted word. Note that since G is a group and
π ∈ G we have π−1 ∈ G. A linear code C is invariant under G if for every π ∈ G and c ∈ C we have
π(c) ∈ C. Note that if C is invariant under G then also C⊥ is invariant under G. G is called 2-transitive if
for all i 6= j ∈ [n] and i′ 6= j′ ∈ [n] we have π ∈ G such that π(i) = i′ and π(j) = j′. A linear code C is
2-transitive if it is invariant under some 2-transitive permutation group G.

2.2 LTCs, LDCs and LCCs

In this section, we define LTCs, LDCs and LCCs formally and recall a few concepts that will be used later
in this paper. We define LTCs following [3].

Definition 2.1 (LTCs and Testers). Let C ∈ Fn be a linear code. Given a distribution D over set C⊥, we
define the support ofD over C⊥ asDS =

{
u ∈ C⊥ | D(u) > 0

}
. We say thatD is a (q, ε, δ)-distribution for

the code C, if the following conditions are satisfied:

• DS ⊆ C⊥≤q.

• For all x ∈ Fn such that δ(x, C) ≥ δ it holds that Pr
u∼D

[〈u, x〉 6= 0] ≥ ε.

We say that C ⊆ Fn is a (q, ε, δ)-LTC if it has a (q, ε, δ)-distribution D. If D is uniform over C⊥≤q we say
that C is a (q, ε, δ)-uniform LTC.

The parameter q is known as query complexity, ε is the rejection probability and δ is the distance thresh-
old.

Note that if C is a (q, ε, δ)-LTC then C is also a (q, ε, δ′)-LTC for all δ′ ≥ δ.
We say that a family of codes

{
C(n)

∣∣ n ∈ Z
}

is locally testable if there exist constants q, ε, δ > 0 such
that for infinitely many n it holds that C(n) ⊆ Fn is a (q, ε, δ)-LTC, where δ ≤ δ(C(n))/3.

Note that every perfect code C is (0, 1, δ > δ(C)/2)-LTC, i.e., the code is locally testable with 0 queries
and highest possible rejection probability when the distance threshold is δ > δ(C)/2 since there are no
words which are δ-far from the code. Hence, to avoid trivial cases we must require the distance threshold δ
to be at most δ(C)/2. Moreover, in the area of locally testable codes we usually require even less distance
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threshold, at most δ ≤ δ(C)/3. E.g., all known constructions of LTCs satisfy this requirement (see e.g.,
[12, 17, 18, 21, 7]). From the other side, if for all constants q, ε > 0 the code C is not (q, ε, δ(C)/3)-LTC we
say that C is not locally testable (see e.g., [1, 3, 14]).

Remark 2.2. Our proofs will follow also if we define “uniform LTC” as LTC with a uniform distribution
over C⊥q .

We note that sometimes (e.g. [3]) uniform LTCs mean that the associated distribution is uniform over
its support and not over all C⊥≤q, which is a less restrictive assumption.

Now we define Locally Decodable Codes (LDCs).

Definition 2.3 (LDCs). Let C ⊆ Fn be a linear code of dimension k. Let EC be the encoding function, i.e.,
C =

{
EC(x) | x ∈ Fk

}
. Then C is a (q, ε, δ)-LDC if there exists a randomized decoder (D) that reads at

most q entries and the following condition holds:

• For all x ∈ Fk, i ∈ [k] and ĉ ∈ Fn such that ∆(EC(x), ĉ) ≤ δn we have Pr
[
Dĉ[i] = xi

]
≥ 1

|F|
+ ε,

i.e., with probability at least 1
|F| + ε entry xi will be recovered correctly.

Note that definition implies that δ < δ(C)/2. We say that a family of codes
{
C(n)

∣∣ n ∈ Z
}

is locally
decodable if there exist constants q, ε, δ > 0 such that for infinitely many n it holds that C(n) ⊆ Fn is a
(q, ε, δ)-LDC.

Now we define locally self-correctable codes (LCCs).

Definition 2.4 (LCCs). Let C ⊆ Fn be a linear code of dimension k. Then C is a (q, ε, δ)-LCC if there exists
a self-corrector (SC) that reads at most q entries and the following condition holds:

• For all c ∈ C, i ∈ [n] and ĉ ∈ Fn such that ∆(c, ĉ) ≤ δn we have Pr
[
SCĉ[i] = ci

]
≥ 1

|F|
+ ε, i.e.,

with probability at least 1
|F| + ε entry ci will be recovered correctly.

We say that a code C is locally self-correctable when q, ε, δ > 0 are constants. Note that the definition
implies that δ < δ(C)/2.

The following folklore claim says that LCCs imply LDCs with the same parameters.

Claim 2.5. If C ⊆ Fn is a (q, ε, δ)-LCC then C is a (q, ε, δ)-LDC.

Proof. Let k = dim(C). We pick a generator matrix G ∈ Fn×k for C, i.e., C =
{
Gm |m ∈ Fk

}
such that

the first k rows of G form identity matrix2. Hence the first k symbols of the code are message symbols, i.e.,
for all m ∈ Fk we have (Gm)|[k] = m.

Let SC be a self-corrector for a code C that for every i ∈ [n] reads at most q symbols and recovers the
symbol i with probability at least 1

|F| + ε even if at most δ-fraction of the symbols was adversely corrupted.
In particular, SC recovers with probability at least 1

|F| + ε every coordinate i ∈ [k], i.e., every message
symbol. We conclude that C is a (q, ε, δ)-LDC.

We stress that LDCs do not imply LCCs. To see this, let C ⊆ Fn2 be an LDC. Append to it one entry
(with coordinate (n + 1)) obtaining C ′ ⊆ F(n+1)

2 , such that this entry will not be involved in low-weight
constraints of C ′ and thus could not be recovered with constant query complexity after the codeword will
be corrupted. However, the extended code remains LDC. Claim 2.6 provides a formal proof to the above
intuition.

2C need not be systematic but it can be easily converted into one as was stated.
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Claim 2.6. There exist constants q, ε, δ > 0 and a code C ′ ⊆ Fn+1
2 s.t. C ′ is a (q, ε, δ)-LDC, but for any

constants q′, ε′, δ′ > 0 it holds that C ′ is not a (q′, ε′, δ′)-LCC.

Proof. Let C ⊆ Fn2 be a (q, ε, δ)-LDC with dim(C) = ω(log(n)) (such codes exist, e.g. [9]). Claim 4.5
implies that there exists a word u ∈ Fn2 such that ∆(u,C⊥) ≥ ω(1). Let C ′ ⊆ Fn+1

2 be s.t. C ′|[n] = C and
for every c′ ∈ C ′ we have (c′)(n+1) = 〈u, c′|[n]〉, i.e., the first n coordinates of the code C ′ are identical to
the code C and the last bit of the code C ′ is a sum of the bits indexed by supp(u).

Let q′, ε′, δ′ > 0 be constants. We argue that there is no u′ ∈ (C ′)⊥ s.t. n + 1 ∈ supp(u′) and
|u′| ≤ q′ + 1 = O(1). Assume the contrary, and let u′ ∈ (C ′)⊥ be such that n + 1 ∈ supp(u′) and
|u′| ≤ q′ + 1. This implies that the last symbol (n + 1) of the code C ′ is a sum of only q′ symbols
of C ′|[n]. Recall that C ′|(n+1) was defined as a sum of symbols indexed by supp(u). We conclude that
for all c′ ∈ C ′|[n] we have 〈u, c′〉 = 〈u′, c′〉 which implies that 〈u+ u′, c′〉 = 0. Since C ′|[n] = C

we get that u + u′ ∈ C⊥. This means ∆(u,C⊥) ≤ |u′| ≤ q′ + 1 contradicting our assumption that
∆(u,C⊥) ≥ ω(1) > q′ + 1.

We conclude that the last bit of C ′ is not involved in the constraints of weight at most q′ + 1. Hence
any “local view” which contains only q′ queries but does not contain the last bit has no information about
the last bit of C ′ and thus C ′ is not (q′, ε′, δ′)-LCC. However, C ′ is a (q, ε, δ − 1

n+1)-LDC because if
(δ − 1

n+1) · (n + 1) ≤ δn symbols are corrupted then at most δn symbols from the first n symbols are
corrupted. Recall that C ′|[n] = C and C is a (q, ε, δ)-LDC. So, every message bit can be recovered with
probability at least 1

2 + ε and only q queries.

3 Two Transitivity with a Local Constraint implies Local Correction

In this section we show (Theorem 3.1) that 2-transitive codes with local constraints imply LCCs and hence
also LDCs. However, there exists a family of two-transitive codes with local constraints which is not locally
testable, due to [14]. We conclude in Corollary 3.2 that a family of codes

{
C(n)

}
n∈Z (explicitly) shown in

[14] is LCC (and LDC) but is not LTC.

Theorem 3.1 (2-transitivity implies LCCs). If C ⊆ Fn is a 2-transitive code such that C⊥q 6= ∅ then C is a
(q − 1, 1

6 ,
1
3q )-LCC (LDC).

Moreover, there exists a family of 2-transitive codes
{
C(n)

}
n∈Z, where C(n) ⊆ Fn and (C(n))

⊥
8 6= ∅,

which is not (q′, ε′, 1/7)-LTC for all constants q′, ε′ > 0.

The following corollary follows immediately from Theorem 3.1.

Corollary 3.2. There exists a family of linear codes {Cn}n∈N, where Cn ⊆ Fn, which is a (7, 1
6 ,

1
24)-LCC

(LDC) but is not (q′, ε′, 1/7)-LTC for all constants q′, ε′ > 0.

Since by Claim 2.5 (q, ε, δ)-LCC is also a (q, ε, δ)-LDC then Theorem 3.1 and the lower bound on the
blocklength of LDCs by Kerenidis and de Wolf [20] imply the next corollary.

Corollary 3.3. Let C ⊆ Fn be a 2-transitive linear code and k = dim(C). If C⊥q 6= ∅ then n ≥
Ω(k/ log(k))1+1/(d q

2
−1e).

Notice that under the famous conjecture that LDCs have superpolynomial blocklength we have that
2-transitive codes with constant weight duals have superpolynomial blocklength.
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Proof of Theorem 3.1. Assume C (and thus C⊥) is invariant under a 2-transitive permutations group G (note
that G 6= ∅, e.g., G contains the identity permutation). Let u ∈ C⊥q (note C⊥q 6= ∅) and let supp(u) =

{i1, i2, . . . , iq}. Hence for every i ∈ [n] there exists u′ ∈ C⊥q such that i ∈ supp(u′), e.g. pick g ∈ G s.t.
g(i1) = i and let u′ = g(u).

We define the self-corrector of entry i ∈ [n] (SCi) which on word w

• picks random g ∈ G such that g(i) = i

• queries all entries of w|supp(g(u′)\{i})

• and recovers the entry w|(i) by
−
∑

j∈(supp(g(u′))\{i})w|j · g(u′)|j
u′(i)

.

This self-corrector queries only q−1 entries and has perfect completeness, i.e., for all c = (c1, . . . , cn) ∈
C and i ∈ [n] it holds that SCi[c] returns ci. Assume the self-corrector SCi is given a word w such that for
some c ∈ C we have δ(w, c) ≤ 1

3q . Let I = supp(w − c) and note that |I| ≤ n
3q . Think of I as a set of

corrupted coordinates. Notice that if SCi picks g ∈ G, g(i) = i such that (supp(g(u′)) \ {i}) ∩ I = ∅ then
SCi recovers correctly the entry wi, i.e., SCi[w] = ci. This is true because∑

j∈(supp(g(u′))\{i})w|j · g(u′)|j
u′(i)

=

∑
j∈(supp(g(u′))\{i}) c|j · g(u′)|j

u′(i)
= ci,

where the last equality follows because 〈c, g(u′)〉 = 0. In other words, whenever all the coordinates of g(u′)
are correct but may be the i’s coordinate, SCi recovers correctly the entry wi. Proposition 3.4 implies that
for j 6= i and random g ∈ G such that g(i) = i we have that g(j) is uniformly distributed in [n] \ {i}. We
conclude that

Pr
g∈G,g(i)=i

[
(supp(g(u′)) ∩ I) \ {i} 6= ∅

]
≤ (q − 1)|I|

n− 1
≤ q|I|

n
.

It follows that the probability that SCi picks g ∈ G, g(i) = i such that supp(g(u′))∩ I ⊆ {i} is at least
1 − q

3q = 2
3 . So, with probability at least 2/3 the self-corrector SCi picks g ∈ G such that g(i) = i and

| supp(g(u′)) \ {i} ∩ I| = ∅ and the correction succeeds.
To see that two transitivity does not imply local testability we recall the main result of [14] (Theorem

4.9) that shows a family of 2-transitive codes
{
C(n)

}
n

such that C⊥8 6= ∅ which is not (q′, ε′, 1/7)-LTC for
all constants q′, ε′ > 0.

The proof of Proposition 3.4 is inspired by [1, Section 7].

Proposition 3.4. Let G be a 2-transitive group and G(i) = {g ∈ G | g(i) = i}. Then G(i) is a group of
permutations s.t. for all i′ 6= i and j′ 6= i there exists g ∈ G(i) s.t. g(i′) = j′. Furthermore, for any i′ 6= i

and j′ 6= i we have Pr
g∈G(i)

[
g(i′) = j′

]
=

1

n− 1
.

Proof. Let id ∈ G be the identity permutation, i.e., for all j ∈ [n] we have id(j) = j. We know that
id ∈ G(i), for every g ∈ G(i) there exists g−1 ∈ G(i), and if h1, h2 ∈ G(i) then also h1 ◦ h2 ∈ G(i). We
conclude that G(i) is a group of permutations.

For any i′ 6= i and j′ 6= i there exists g ∈ G s.t. g(i) = i and g(i′) = j′ because G is 2-transitive,
moreover, g ∈ G(i).
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We argue that for any i′ 6= i and j′ 6= i we have Pr
g∈G(i)

[
g(i′) = j′

]
=

1

n− 1
. It is sufficient to show that

for any i′, j′1, j
′
2 6= i we have Pr

g∈G(i)

[
g(i′) = j′1

]
= Pr

g∈G(i)

[
g(i′) = j′2

]
.

Assume by a way of contradiction that Pr
g∈G(i)

[
g(i′) = j′1

]
> Pr

g∈G(i)

[
g(i′) = j′2

]
. Let h ∈ G(i) s.t.

h(j′2) = j′1. Since G(i) is a group then random g is distributed in G(i) exactly as hg is distributed in G(i)

and thus

Pr
g∈G(i)

[
g(i′) = j′1

]
> Pr

g∈G(i)

[
g(i′) = j′2

]
= Pr

g∈G(i)

[
h(g(i′)) = j′1

]
= Pr

g∈G(i)

[
g(i′) = j′1

]
.

Contradiction.

4 Non-sparse LDCs contain subcodes that are not LTCs

In this section we show (Theorem 4.1) that non-sparse LDCs contain subcodes that are not LTCs. This
demonstrates an important difference between LTCs and LDCs. It turns out that reducing dimension of
LDCs remains LDCs (Corollary 4.4), however LTCs are not stable to the dimension reduction. This leads to
an interesting observation that every non-sparse LDC has a large subcode which is not LTC (but still LDC).
Notice that non-sparse LDCs include Reed-Muller codes of low degree as well as subexponential LDCs that
were recently discovered by Yekhanin [26] and Efremenko [9].

Theorem 4.1 (Non-sparse LDCs contain non-LTCs as subcodes). Let q > 0 and 0 < ε, δ < 1 be constants.
Then for every linear code C ⊆ Fn that is a (q, ε, δ)-LDC with dim(C) ≥ ω(log(n)) and any constants
q′, ε′ > 0 there exists a linear subcode C′ ⊂ C such that dim(C′) ≥ ω(log(n)), C′ is a (q, ε, δ)-LDC but C′
is not (q′, ε′, δ(C))-LTC.

In the following we show that every subcode of an LDC remains an LDC.

Claim 4.2. Let C ⊆ Fn be a linear code and a (q, ε, δ)-LDC. Assume that C′ ⊂ C is a linear subcode of C.
Then C′ is a (q, ε, δ)-LDC.

Proof. Assume C has the message space Fk and has the decoder D. Let EC be an encoding function for C,
i.e., C =

{
EC(x) | x ∈ Fk

}
. Let T ⊂ Fk be a (linear) message space for C′, i.e., C′ = {EC(x′) | x′ ∈ T}.

For a linear subspace M ⊂ Fk and a subset S ⊆ [k] we say that S is an M -independent subset if there
is no u ∈ M⊥ \

{
0k
}

such that supp(u) ⊆ S. We say that S ⊆ [k] is a maximal M -independent subset if
S is M -independent and for all i ∈ [k] \ S it holds that S ∪ {i} is not M -independent subset. Note that if S
is a maximal M -independent subset then |S| = dim(M).

Recall that T ⊂ Fk is a linear subspace of Fk. Let T ′ ⊆ [k] be a maximal T -independent subset (clearly,
such subset exists). Let k′ = dim(T ) = |T ′| and without loss of generality (renaming of bits) we assume
that T ′ = [k′]. Note that k′ < k. Let ET : Fk′ → Fk be a (linear) encoding function for the linear
subspace T , i.e., T =

{
ET (x′) | x′ ∈ Fk′

}
. Note that for all x′ ∈ Fk′ we have ET (x′)|[k′] = x′, namely,

the encoding function ET preserves all “input” bits. Then the code C′ has message space FT ′ = Fk′ that
means C′ =

{
EC(ET (x′)) | x′ ∈ Fk′

}
. We conclude that for every x′ ∈ Fk′ there exists x ∈ Fk such that

x|[k′] = x′ and EC(x) = EC(ET (x′)).
Recall that C ⊆ Fn is a (q, ε, δ)-LDC and has the decoder D. We argue that C′ has the same decoder

D. Let w be δ-close to C′. But we know that C′ ⊂ C. That means there exists x′ ∈ Fk′ such that
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δ(w,EC(ET (x′))) ≤ δ, and moreover δ(w,EC(x)) ≤ δ, where x = ET (x′) ∈ Fk. Note that for all
i ∈ [k′] we have x′i = xi. The fact that C is a (q, ε, δ)-LDC implies that for all i ∈ [k′] ⊂ [k] the decoder
D recovers correctly the message entry (x′i = xi) with probability at least 1

2 + ε. We conclude that C′ is a
(q, ε, δ)-LDC.

Remark 4.3. The special case of reducing dimension is a removing of columns from the generator matrix.
E.g., given a code C =

{
Gx | x ∈ Fk

}
, where G ∈ Fn×k is a generator matrix for C. Let G′ ∈ Fn×(k−1)

be obtained by removing the last column of G. Then C′ =
{
G′x | x ∈ Fk−1

}
is a linear subcode of C and

dim(C′) = dim(C)− 1. In this case message space of C′ is Fk−1, while the message space of C is Fk.

Corollary 4.4 (LDCs are stable for dimension reduction). Let C ⊆ Fn be a linear code and a (q, ε, δ)-LDC.
Take any sequence of linear subcodes: C1 ⊂ C2 ⊂ . . . ⊂ Cf = C. Then for all i ∈ [f ] it holds that Ci is a
(q, ε, δ)-LDC.

Now we show the auxiliary claim and then prove Theorem 4.1.

Claim 4.5. Let C ⊆ Fn be a linear code such that dim(C) = ω(log(n)). Then there exists w ∈ Fn such that
∆(w, C⊥) ≥ ω(1).

Proof. For integer R let V (n,R) =
R∑
i=0

(
n

i

)
· (|F| − 1)i be the volume of a sphere in Fn of radius R. Let

k = dim(C) ≥ ω(log(n)) and S = C⊥. Then dim(S) = n − k and |S| = |F|n−k = |F|n/|F|k. Recall
that a covering radius of a code S is RS = max

w∈Fn
∆(w, S), i.e., the largest Hamming distance of any word

in Fn from S. Note that if RS is constant then V (n,RS) is polynomial in n and vice versa, if V (n,RS) is
super-polynomial in n then RS goes to infinity with n. Assume by a way of contradiction that there exists a
constant t > 0 such that for all w ∈ Fn we have ∆(w, S) ≤ t, i.e., RS ≤ t = O(1).

The covering radius bound3 states that

|S| · V (n,RS) ≥ |F|n.

But then V (n,RS) ≥ |F|k, where k ≥ ω(log(n)). Hence V (n,RS) must be super-polynomial in n, and
RS ≥ ω(1). Contradiction.

Proof of Theorem 4.1. Claim 4.5 implies that there exists u ∈ Fn such that ∆(u, C⊥) ≥ ω(1) > q′. Let
S = span(C⊥∪{u}). Note that for all u′ ∈ S if |u′| ≤ q′ then u′ ∈ C⊥. Let C′ = S⊥ and then C′⊥ = S. We
have C⊥ ⊂ C′⊥, C′ ⊂ C and in particular, dim(C′) = dim(C)− 1. We argue that C′ is not (q′, ε′, δ(C))-LTC.
We have c ∈ C \ C′ since C ′ ⊂ C. However c ⊥ (C′)⊥≤q′ because (C′)⊥≤q′ ⊆ C⊥ by construction. Hence c is
δ(C)-far from C′ but will be accepted with probability 1 by any q′-query tester of C′.

We conclude that C′ ⊂ C and dim(C′) = dim(C)−1 but C′ is not (q′, ε′, δ(C))-LTC. Claim 4.2 guarantees
that C′ is a (q, ε, δ)-LDC since C′ is a linear subcode of C. The Theorem follows.

4.1 Non-sparse LDCs contain many subcodes which are not uniform-LTCs

Theorem 4.1 shows that every non-sparse LDC C contains a single sequence of linear subcodes C1 ( C2 (
C3 ( · · · ( C which are all not LTCs. In the following (Theorem 4.6) we show that every non-sparse LDC
and every long enough sequence of linear subcodes C1 ( C2 ( C3 ( · · · ( C` = C contains at least one
subcode Ci which is not uniform LTC.

3For any code C ⊆ Fn (whether linear or not) the covering bound states that the covering radius R of C relates to n and |C| by
|C| · V (n,R) ≥ |F|n.
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Theorem 4.6. Let q, q′, ε, ε′, δ > 0 be constants. Let C ⊆ Fn be a linear code such that dim(C) ≥
ω(log(n)). Then every sequence of ` linear subcodes C1 ( C2 ( C3 ( · · · ( C` = C, where ` ≥
(q′ log(n))/ε′, contains at least one code Ci which is not (q′, ε′, δ(C)/2)-uniform LTC. Moreover, if C is a
(q, ε, δ)-LDC then all linear subcodes Ci in the sequence are (q, ε, δ)-LDCs.

Note that if dim(C) ≥ ω(log(n)) then C contains sequences of subcodes of length ω(log(n)). Now we
prove two simple claims that will be useful in the proof of Theorem 4.6.

Claim 4.7. Let C ⊆ Fn be a linear code. Moreover, let a linear code C′ ( C be a (q, ε, δ(C))-uniform LTC.
Then |C⊥≤q| ≤ (1− ε)|C′⊥≤q|.

Proof. Let D be the uniform distribution over C′⊥≤q. We know that C⊥≤q ⊂ C′
⊥
≤q. Consider any w ∈ C \ C′

(note that C \ C′ 6= ∅). Since C′ is a (q, ε, δ(C))-uniform LTC and δ(w, C′) ≥ δ(C) it holds that
Pr
u∼D

[〈u,w〉 6= 0] ≥ ε. Notice that if for u ∈ C′⊥ it holds that 〈u,w〉 6= 0 then u /∈ C⊥. So, there are

at least ε|C′⊥≤q| words in C′⊥≤q that are not in C⊥≤q. Thus we have |C⊥≤q| ≤ (1− ε)|C′⊥≤q|.

Claim 4.8. Let q′, ε′ > 0 be constants. Let ` be the minimal integer such that ` ≥ q′ logn
ε′ and C ⊆ Fn be a

linear code such that dim(C) > q′ logn
ε′ . Then at least one of the codes in the sequence of the linear subcodes

C1 ( C2 ( · · · ( C` = C is not (q′, ε′, δ(C)/2)-uniform LTC.

Proof. Note that for all i ∈ [` − 1] we have dim(Ci) < dim(Ci+1). Assume that for all i ∈ [`], Ci is a
(q′, ε′, δ(C)/2)-uniform LTC. If (C`)⊥≤q = ∅ then for any word w ∈ Fn such that | supp(w)| = δ(C)/2 (i.e.,
δ(w, C`) ≥ δ(C)/2) it holds that w ⊥ (C`)⊥≤q. Contradiction. We conclude that |(C`)⊥≤q′ | ≥ 1.

Claim 4.7 implies that for all i ∈ [`− 1] we have that |(Ci+1)⊥≤q′ | ≤ (1− ε′) · |(Ci)⊥≤q|. Then it holds that

|(C`)⊥≤q′ | ≤ (1− ε′)` · |(C1)⊥≤q′ | < e−ε
′` · nq′ ≤ 1,

where ` ≥ q′ logn
ε′ . We conclude that (C`)⊥≤q′ = ∅. Contradiction.

Proof of Theorem 4.6. Assume C1 ( C2 ( . . . ( C` = C, where ` ≥ (q′ log(n))/ε′. Claim 4.8 says that at
least one of the codes in the sequence is not (q′, ε′, δ(C)/2)-uniform LTC. Corollary 4.4 implies that for all
i ∈ [`] the code Ci is a (q, ε, δ)-LDC.
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Appendix

For the sake of completeness we state the main result of Grigorescu et al. [14], who showed a 2-transitive
code with dual codewords of weight 8 which is not LTC. For additional details see [14].

Let Tr be a trace function from F2s to F2. For positive integers k < s let

F∗k,s =

{
f : F2s 7→ F2 | ∃β, β0, . . . , βk ∈ F2n s.t. f(x) = Tr(β + β0x+

k∑
i=1

βix
2i+1)

}
.
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Theorem 4.9 ([14]). Assume k = ω(1) and s > 2k + 1. Let C = F∗k,s be a linear code. Then C is
2-transitive and C⊥8 6= ∅, but C is not (q, ε, 1/7)-LTC for all constants q, ε > 0.

12

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


