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Abstract

We investigate the role of nondeterminism in Winfree’s abstract Tile Assembly Model (aTAM),
which was conceived to model artificial molecular self-assembling systems constructed from
DNA. Designing tile systems that assemble shapes, due to the algorithmic richness of the aTAM,
is a form of sophisticated “molecular programming”. Of particular practical importance is to
find tile systems that minimize resources such as the number of distinct tile types, each of which
corresponds to a set of DNA strands that must be custom-synthesized in actual molecular im-
plementations of the aTAM. We seek to identify to what extent the use of nondeterminism in
tile systems affects the resources required by such molecular shape-building algorithms.

By nondeterminism we do not mean a magical ability such as that possessed by a nonde-
terministic algorithm to search an exponential-size space in polynomial time. Rather, we study
realistically implementable systems that retain a different sense of determinism in that they are
guaranteed to produce a unique shape, but are nondeterministic in that they do not guarantee
which tile types will be placed where within the shape. A sensible analogy is a nondeterministic
algorithm that outputs the same value on all computation paths for a given input. Such an al-
gorithm can always be replaced by an equivalent deterministic algorithm with the same running
time, memory usage, and program length. It is then intuitively reasonable to conjecture that a
similar equivalence should hold between deterministic tile systems and those nondeterministic
tile systems that always “output” the same shape.

This intuition is wrong. We first show a “molecular computability theoretic” result: there is
an infinite shape S that is uniquely assembled by a tile system but not by any deterministic tile
system. We then show an analogous phenomenon — using a different technique — in the finitary
“molecular complexity theoretic” case: there is a finite shape S that is uniquely assembled by a
tile system with c tile types, but every deterministic tile system that uniquely assembles S has
more than c tile types. In fact we extend the technique to derive a stronger (classical complexity
theoretic) result, showing that the problem of finding the minimum number of tile types that
uniquely assemble a given finite shape is ¥5-complete. In contrast, the problem of finding the
minimum number of deterministic tile types that uniquely assemble a shape was shown to be
NP-complete by Adleman, Cheng, Goel, Huang, Kempe, Moisset de Espanés, and Rothemund
(Combinatorial Optimization Problems in Self-Assembly, STOC 2002).

The conclusion is that nondeterminism confers extra power to assemble a shape from a small
tile system, but unless the polynomial hierarchy collapses, it is computationally more difficult
to exploit this power by finding the size of the smallest tile system, compared to finding the size
of the smallest deterministic tile system.
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1 Introduction

Tile self-assembly is an algorithmically rich model of “programmable crystal growth”. It is possible
to design molecules (square-like “tiles”) with specific binding sites so that, even subject to the
chaotic nature of molecules floating randomly in a well-mixed chemical soup, they are guaranteed
to bind so as to deterministically form a single target shape. This is despite the number of different
types of tiles possibly being much smaller than the size of the shape and therefore having only
“local information” to guide their attachment. The ability to control nanoscale structures and
machines to atomic-level precision will rely crucially on sophisticated self-assembling systems that
automatically control their own behavior where no top-down externally controlled device could fit.

A practical implementation of self-assembling molecular tiles was proved experimentally fea-
sible in 1982 by Seeman [35] using DNA complexes formed from artificially synthesized strands.
Experimental advances have delivered increasingly reliable assembly of algorithmic DNA tiles with
error rates of 10% per tile in 2004 [33], 1.4% per tile in 2007 [15], and 0.13% per tile in 2009 [7].
Erik Winfree [41] introduced the abstract Tile Assembly Model (aTAM) — based on a constructive
version of Wang tiling [39,/40] — as a simplified mathematical model of self-assembling DNA tiles.
Winfree demonstrated the computational universality of the aTAM by showing how to simulate
an arbitrary cellular automaton with a tile assembly system. Building on these connections to
computability, Rothemund and Winfree [32] investigated a self-assembly resource bound known
as tile complexity, the minimum number of tile types needed to assemble a shape. They showed

that for most n, the problem of assembling an n X n square has tile complexity €2 (log’i gn), and
Adleman, Cheng, Goel, and Huang [3] exhibited a construction showing that this lower bound
is asymptotically tight. Under natural generalizations of the model [1}/5,[8-12,(17}/18,36,[38], tile
complexity can be reduced for tasks such as square-building and assembly of more general shapes.

There are different interpretations of “nondeterminism” in the aTAM. We say a tile system
is directed (a.k.a. deterministic) if it is guaranteed to form one unique final assembly, where an
assembly is defined not only by which positions are eventually occupied by a tile, but also by which
tile type is placed at each position. We say a tile system strictly (a.k.a. uniquely) self-assembles
a shape if all of its final assemblies are guaranteed to have that shape. A natural analogy may
be made between a non-directed tile system that strictly self-assembles some shape and a nonde-
terministic Turing machine N that always produces the same output on a given input, regardless
of the nondeterministic choices made during computation. There is always a deterministic Turing
machine M computing the same function as N and using no more “resources”, according to any
common resource bound such as time complexity, space complexity, or program length. Therefore
we regard such a restricted class of nondeterministic Turing machines as no more “powerful” than
deterministic Turing machines.

Based on this analogy, it might seem that strict self-assembly, while allowing one form of
nondeterminism (which tile goes where) so strongly requires another form of determinism (which
positions have a tile) that extra power cannot be gained by allowing the tile systems to be non-
directed. More precisely, it is natural to conjecture that every infinite shape that is strictly self-
assembled by some tile system, is also strictly self-assembled by some directed tile system. In the
finitary case, every finite shape is assembled by a directed tile system (possibly using as many tile
types as there are points in the shape), so to make the idea non-trivial we might conjecture that the
tile complexity of a finite shape is independent of whether we consider all tile systems or only those
that are directed. Such conjectures are appealing because the algorithmic design and verification of




tile systems [36] as well as lower bounds and impossibility proofs |5}/13,[27] often rely on reasoning
about directed tile systems, which are “better behaved” in many senses than arbitrary tile systems,
even those that strictly self-assemble a shape. It would be helpful to begin such arguments with
the phrase, “Assume without loss of generality that the tile system is directed.”

However, these conjectures are false. We show that there is an infinite shape S that is strictly
self-assembled by a tile system but not by any directed tile system. Therefore, in a “molecu-
lar computability theoretic” sense, nondeterminism allows certain shapes to be algorithmically
self-assembled that are totally “unassemblable” (to borrow Adleman’s tongue-twisting analog of
“uncomputable” [2]) under the constraint of determinism. We then show an analogous phenomenon
in the finitary case: there is a finite shape S that is strictly self-assembled by a tile system with ¢
tile types, but every directed tile system that strictly self-assembles S has more than c tile types
(in fact, more than ~ %c tile types). This establishes a “molecular complexity theoretic” analog of
the first result. We then derive a stronger result, showing that the problem of finding the minimum
number of tile types that strictly self-assemble a given finite shape is complete for the complexity
class Zg = NPNP. In contrast, the problem of finding the minimum number of directed tile types
that strictly self-assemble a shape was shown to be NP-complete by Adleman, Cheng, Goel, Huang,
Kempe, Moisset de Espanés, and Rothemund [4].

Based on these results, we conclude that nondeterminism confers extra power to assemble a
shape from a small tile system, but unless the polynomial hierarchy collapses, it is computationally
more difﬁcultﬂ to exploit this power by finding the size of the smallest tile system, compared to
finding the size of the smallest directed tile system.

2 Abstract Tile Assembly Model

This section gives a terse definition of the abstract Tile Assembly Model (aTAM, [41]). This is not
a tutorial; for readers unfamiliar with the aTAM, [32] gives an excellent introduction to the model.
Fix an alphabet ¥. ¥* is the set of finite strings over X. Given a discrete object O, (O) denotes
a standard encoding of O as an element of ¥*. Z, Z™, and N denote the set of integers, positive
integers, and nonnegative integers, respectively. For a set A, P(A) denotes the power set of A.
Given A C Z2, the full grid graph of A is the undirected graph Gf, = (V, E), where V = A, and for
all u,v € V, {u,v} € E < ||lu —vlj2 = 1; i.e., iff u and v are adjacent on the integer Cartesian
plane. A shape is a set S C Z? such that Gg is connected. A shape T is a tree if Gl} is acyclic.

A tile type is a tuple t € (X* x N)*; i.e., a unit square with four sides listed in some standardized
order, each side having a glue g € ¥* x N consisting of a finite string label and nonnegative integer
strength. We assume a finite set T of tile types, but an infinite number of copies of each tile
type, each copy referred to as a tile. An assembly is a nonempty connected arrangement of tiles
on the integer lattice Z2, i.e., a partial function « : Z? --» T such that Gfiom ., is connected and
dom o # @. The shape S, C Z? of a is dom o. Two adjacent tiles in an assembly interact if
the glues on their abutting sides are equal (in both label and strength) and have positive strength.
Each assembly « induces a binding graph Gg, a grid graph whose vertices are positions occupied
by tiles, with an edge between two vertices if the tiles at those vertices interactﬂ Given 7 € ZT, a
is T-stable if every cut of G® has weight at least 7, where the weight of an edge is the strength of

L“More difficult” in the sense of nondeterministic time complexity, although it is conceivable that both problems
have the same deterministic time complexity.
2For Gfsa = (Vs,, Fs,) and Gb = (Va, Ea), G® is a spanning subgraph of Gga: Vo =Vs, and E, C Es,, .



the glue it represents. That is, « is 7-stable if at least energy 7 is required to separate « into two
parts. When 7 is clear from context, we say « is stable. Given two assemblies a, 3 : Z% --» T, we
say « is a subassembly of 3, and we write o C 3, if S, C Sg and, for all points p € Sy, a(p) = B(p).

A tile assembly system (TAS) is a triple T = (T,0,7), where T is a finite set of tile types,
o : Z? --» T is the finite, 7-stable seed assembly, and 7 € Z1 is the temperature. Given two
T-stable assemblies «, 3 : Z2 --» T, we write a —] B if a C B and 1S5\ Sa| = 1. In this case we say
o T -produces B in one stepﬂ If a =7 B, Sg\ Sa = {p}, and t = B(p), we write 8 = a + (p—t).
The T -frontier of o is the set 97 a = Ua—>lTﬁ S5\ Sa, the set of empty locations at which a tile
could stably attach to a.

A sequence of k € Zt U {oo} assemblies ag, aq, ... is a T-assembly sequence if, for all 1 < i < k,
i1 —71 ;. We write a —7 B, and we say o T -produces 3 (in 0 or more steps) if there is a 7-
assembly sequence ag, v, ... of length k£ = [Sg \ So| + 1 such that 1) a = ag, 2) Sg = Up<jcr Saus
and 3) for all 0 < i < k, o; C B. If k is finite then it is routine to verify that g = ak_lﬁ We say «
is T-producible if o —7 «, and we write A[T] to denote the set of T-producible assemblies. The
relation —7 is a partial order on A[T] [21,j31]. A T-assembly sequence ag, s, ... is fair if, for all
i and all p € 97 a;, there exists j such that a;(p) is defined; i.e., no frontier location is “starved”.

An assembly « is T-terminal if o is 7-stable and 07 a = @. We write Ag[T] € A[T] to
denote the set of T-producible, T-terminal assemblies. A TAS T is directed (a.k.a., deterministic,
confluent) if the poset (A[T],—7) is directed; i.e., if for each o, 8 € A[T], there exists v € A[T]
such that o =7 ~ and 8 =7 7E| We say that a TAS T strictly (a.k.a. uniquely) self-assembles
a shape S C Z2 if, for all a« € Ag[T], So = S; i.e., if every terminal assembly produced by T
has shape S. If T strictly self-assembles some shape S, we say that T is strict. Note that the
implication “T is directed = T is strict” holds, but the converse does not hold.

In this paper we will always use singly-seeded temperature-2 TAS’s, those with |S,| = 1 and
7 = 2; hence we will use the term seed tile for o as well, and for the remainder of this paper we
use the term TAS to mean singly-seeded temperature-2 TAS. When 7T is clear from context, we
may omit 7 from the notation above and instead write —1, —, O« frontier, assembly sequence,
produces, producible, and terminal. Since the behavior of a TAS T = (T, 0,2) is unchanged if every
glue with strength greater than 2 is changed to have strength exactly 2, we assume henceforth
that all glue strengths are 0, 1, or 2, and use the terms null glue, single glue, and double glue,
respectively, to refer to these three casesﬁ We also assume without loss of generality that every
single glue or double glue occurring in some tile type in some direction, also occurs in some tile
type in the opposite direction, i.e., there are no “effectively null” single or double gluesm

3Intuitively &« —7 B8 means that o can grow into 8 by the addition of a single tile; the fact that we require both «
and f to be T-stable implies in particular that the new tile is able to bind to « with strength at least 7. It is easy to
check that had we instead required only « to be 7-stable, and required that the cut of 5 separating « from the new
tile has strength at least 7, then this implies that 3 is also 7-stable.

41f we had defined the relation —7 based on only finite assembly sequences, then —7 would be simply the reflexive,
transitive closure (—7)* of —7. But this would mean that no infinite assembly could be produced from a finite
assembly, even though there is a well-defined, unique “limit assembly” of every infinite assembly sequence.

5The following two convenient characterizations of “directed” are routine to verify. 7T is directed if and only if
|[Ag[T]] = 1. T is not directed if and only if there exist a, 8 € A[T] and p € S, N Sg such that a(p) # B(p).

SWe use null bond, single bond, and double bond similarly to refer to the interaction of two tiles.

"Thus the existence of a tile with a double glue facing empty space implies that the empty space is part of the
frontier. Many of our arguments use the contrapositive that if a shape S is strictly self-assembled by a tile system
and a side of a tile faces a point p € S, then the tile cannot have a double glue on that side.



3 Assembly of Infinite Shapes

In this section we study the power of nondeterminism in assembling infinite shapes. The following
theorem is the main result of Section [3l

Theorem 3.1. There is a shape S C Z? such that some TAS strictly self-assembles S, but no
directed TAS strictly self-assembles S.

Figure 1: A portion of an infinite shape S that strictly self-assembles, but not by any directed
TAS. The n'! ray simulates a Turing machine M on input n, and a vertical line is present under
that ray if and only if M accepts n. Y and N are points at these positions representing “yes” and
“no” instances of L(M), respectively, and elements of Y are the points where nondeterminism is
forced to occur in any TAS that strictly self-assembles S.

Proof. Let L C N be a language that is computably enumerable but not decidable, and let M be
a Turing machine such that L = L(M). Let S be the shape that is strictly self-assembled by the
TAS described below, when M is encoded into the TAS as described.

A portion of the shape S is shown in Figure The TAS that strictly self-assembles S is
based on the main construction of Lathrop, Lutz, Patitz, and Summers . In that paper, the
authors show that for each Turing machine M, an encoding of the language L(M) C N accepted
by M “weakly self-assembles” on the z-axis. More precisely, for a “reasonably simple” function
f: N = N, a special tile type is placed at position (f(n),0) if and only if n € L(M). The n'h



“ray” in Figure [1| begins growth just before (f(n),0), and grows independently of the other rays,
controlling an adjacent simulation of M (n) in parallel with all the other rays. The slope of each
ray is just a bit smaller than the previous, with the slope approaching 2 as n — oco. By simulating
one transition of M on input n every = 2" rows of the ray, each ray has enough space to allow a
potentially unbounded simulation of M on each n, since M can use no more than k tape cells after
k transitions.

What is needed from this construction for our purpose is:

1. f is computablef]

2. The simulation of M(n), carried out adjacent to the n'" ray, sends a “signal” crawling down
the right side of the simulation if and only if M accepts n, placing a special tile just above
the “planter” (the group of tiles growing below each of the rays).

We modify the signal so that, rather than growing all the way to the planter, for input n, the signal
grows to distance n north of the planter and then grows a width-1 vertical line n positions down to
the planter, using the same tile type with equal north and south double glues to “crash” into the
planter. To ensure that the downward-growing vertical lines do not obstruct the operation of the
planter, the planter is modified so that it is guaranteed to grow horizontally a sufficient number
of tiles before laying out the input for the M. The space for the downward-growing line of length
n to drop after the input is accepted is created by having the Turing machine simulations begin
not immediately above the planter, but at height n on input n. This is why the n'" ray grows
straight up for n rows before beginning its sloped growth. Under every simulation, a “notch” tile is
placed above the planter using a double glue, which is horizontally lined up with where the vertical
line will grow if M accepts. The actions of the ray, planter and Turing machine simulation are
otherwise similar to the mechanisms used in [20]. We note that this particular TAS is not directed
since the “notch” tiles compete nondeterministically with the vertical line tiles at positions where
M accepts.

It remains to show that no directed TAS strictly self-assembles S. Assume for the sake of
contradiction that such a TAS T = (T, 0,2) exists, and let a € Ag[T] be its unique producible,
terminal assembly. Since the heights of the vertical “bases” of each ray below the sloped portion are
strictly increasing, there is some ng € N such that, for all n > ng, the distance from (f(n), 1) to the
ray above it is at least |T|+1. Let Y = { (f(n),0) | n € L and n > ng } be the bottommost points
of the vertical lines adjacent to rays corresponding to (sufficiently large) “yes” instances of L, and
let N ={ (f(n),0) | n¢ L and n > ng } represent the positions of the “notches” corresponding to
(sufficiently large) “no” instances. ¥ and N are shown in Figure[l] Let Ty = a(Y) and Ty = a(N)
be the set of tile types that appear at “yes” and “no” instance points, respectively. Since S has
empty space immediately north of positions in IV, no tile type in T has a north double glue.

We claim that Ty NTy = @. For the sake of contradiction, suppose otherwise, let t € Ty NT,
and let p € Y be a point where a(p) = t. Since t € Ty, t has no north double glue, so the vertical
line above p must grow downward using north and south double glues. Let ¢ = p + (0,1) be the
point just above p. By our choice of ng, the vertical line must repeat a tile type before reaching the
point g, so all tile types in the repetition period have a north and a south double glue, including
the tile type t' = a(q). Let t” be the tile type appearing beneath ¢’ after the previous occurrence

® 20| defines the roughly quadratic function f(n) = ("3') + (n + 1) [logn] + 6n — 2'T1'*5™) 4+ 2. Our version of

this function will grow just a bit faster, to make room for a vertical line to form between two adjacent rays without
“touching” the rest of the shape except at the endpoints of the line, but retains computability.



of ¢ in the vertical line. Since ¢’ has a north double glue, t” & T, so t” # t. Because t binds to
the rest of a only through its south double glue, there can be no precedence relationship enforcing
that p must contain a tile before ¢ (or any other point) receives a tile. In other words, there exists
a producible assembly 8 € A[T] such that 8(q) = t' and S(p) is undefined. This implies that ¢’
can bind to 3 at position p to create 3/ = 8+ (p — t”), contradicting the directedness of 7 since
B’ a e A[T] but '(p) =t" #t = a(p). This verifies the claim that Ty N Ty = 2.

For all n € N, let p, = (f(n),0). Since Ty NTy = &, for alln > ng, n € L <= p, €
Y < apy) € Ty,and n ¢ L <= p, € N < a(p,) € Tn. Using this fact, we describe an
algorithm to decide L, contradicting its undecidability and completing the proof. On input n € N,
if n < ng, use a constant lookup table to decide n. Otherwise, compute p, = (f(n),0). Simulate
the assembly of T with a fair assembly sequence, maintaining a first-in, first-out queue of frontier
locations to enforce fairness, until a tile is placed at position p,. Since this assembly sequence is
fair, the simulation will eventually place a tile type a(p,) at p,, and a(p,)’s membership in Ty or
T will indicate whether to accept or reject n. O

We have implemented the tile assembly system that strictly self-assembles S:
http://www.csd.uwo.ca/~ddoty/pnsa/

It can be simulated using Matthew Patitz’s ISU TAS simulator [30] available here:
http://www.cs.iastate.edu/~1nsa/software.html

4 Assembly of Finite Shapes

In this section we study the power of nondeterminism in assembling finite shapes. We first show
that a finitary analog of Theorem holds, by showing that the tile complexity of some shapes
can be reduced using nondeterminism. The ideas in this construction will be useful in proving the
main theorem of this section, which shows that the minimum tile set problem is Zzp -complete.

Recall that all of the TAS’s we study are assumed singly-seeded. Let S C Z? be a shape. The
(temperature-2) tile complexity of S is

C*(S)=min{ |T|| T = (T,0,2) is a TAS and T strictly self-assembles S },
with the convention min & = co. The (temperature-2) directed tile complexity of S is
CY(S) =min{ |T|| T = (T,0,2) is a directed TAS and T strictly self-assembles S } .

We are interested in the problems, given a finite shape, what is its tile complexity, and what is its
directed tile complexity? We define two decision problems that are equivalent to these optimization
problems. Let FS C P(Z?) denote the set of all finite shapes. The minimum tile set problem is

MINTILESET = { (S,¢) | S € FS,ce€ Z*, and C**(S) < ¢ },
and the minimum directed tile set problem is

MINDIRECTEDTILESET = { (S, c) ‘ SeFS,cezt, and C¥(S) < ¢ }

Adleman, Cheng, Goel, Huang, Kempe, Moisset de Espanés, and Rothemund [4] showed that the
problem MINDIRECTEDTILESET is NP-complete. In Section we show that MINTILESET is
Zg -complete, where 25 = NPNP. See [6] for a discussion of these complexity classes.


http://www.csd.uwo.ca/~ddoty/pnsa/
http://www.cs.iastate.edu/~lnsa/software.html

4.1 A Finite Shape for which Nondeterminism Reduces Tile Complexity

Although the main result of Section [4, Theorem together with the assumption that NP #
¥P and the fact proven in [4] that MINDIRECTEDTILESET € NP, implies Theorem of this
subsection, we prove Theorem explicitly in order to illustrate some of the reasoning used in the
proof of Theorem

Given a shape S (possibly a subshape of a larger shape we wish to self-assemble), we say some
tile types hard-code S to mean that there are |S| unique tile types, each one specific to a position
in S, using double glues between tile types of all adjacent positions in S.

Given a shape S with a subshape S’ C S, we say S’ is an isolated subshape of S if there is a
point p € S’ such that every path from a point in S’ to a point in S\ S’ includes p. In this case, we
say p is the root of the subshape. If S’ is a tree, we say it is an isolated subtree of S. We say that
an isolated subshape S’ of S is singly-connected if there is precisely one point in S\ S’ adjacent to
the root of S’

Lemma 4.1. Let S be a shape with at least one cycle and St C S be a singly-connected isolated
subtree of S with root r € Sy. Any TAS that strictly self-assembles S places at least C*(St) unique
tile types in St.

Proof. Let T be a TAS that strictly self-assembles S, and let « € Ag[T], so that S, = S.

To begin with, we claim that a(r), the tile type on the root r, does not appear anywhere else
in Sp. For the sake of contradiction, suppose there were a position p € Sp \ {r} with a(p) = a(r).
Since St is assumed to be a tree, there is a unique path 7= (po,...,pm) € (Z%)™*! between r and
p, such that pg = r and p,, = p. Let p’ be the position in S\ St that is adjacent to r. Depending
on whether 7 — p’ = p — p;,,—1 holds or not, we have two cases to be investigated.

The first case is when this equation holds. Note that in this case there must exist a position
Pm+1 € St such that py — r = P41 — pm- This is because a(r) and «a(py) are bound via double
glue. If the seed of T isin S\ S7, then we can replace the singly-connected subtree of St rooted at
p1 with the subtree S1 of St rooted at p,,11. It is impossible that the growth of 57 was blocked in
«, since S7 is a tree, and this replacement enables it to grow further. Hence, 7 could self-assemble
a shape strictly smaller than S. However, this contradicts that 7T strictly self-assembles S. This
argument works also when r has a third adjacent point, which is in Sp, and the seed is in the
singly-connected subtree rooted at the point. If the seed is on the path p between r and p, then
T could repeat this path when the growth reaches p, and then continue the self-assembly process
after the repetition in the same way as done in the expected assembly at p. This growth cannot be
blocked by any tile on S\ St because if it were, then r would be on a cycle in S, contradicting the
fact that St is a subtree of S. No tile on St can block it either because St is a tree. Thus, 7 cannot
set its seed location on p. The remaining possibility is when the seed is in the singly-connected
subtree rooted at p (let us denote it by S3). Then 7 could grow the sub-assembly of the shape
S\ St at p instead of the path reaching to r. This alternative assembly process is not blocked by
Sy. Furthermore, the growth of S\ S in the expected assembly is not blocked by anything but
tiles in S\ Sp. Thus, the alternative assembly would be strictly smaller than S.

Let us consider the other case when the equation » — p’ = p — p,,—1 does not hold. In this case,
there must exist points p}, ,,,q € St satisfying r —p' =p—p}, .1, " —q¢=p—pm-1,and ¢ #p'. If
the seed is in the singly-connected subtree rooted at p!, 41, then at p, T could proceed its assembly
in a manner expected to occur at ¢ because a(q) can attach to «(p). This results in a terminal



assembly strictly smaller than S. Otherwise, after reaching p, 7 could grow the subassembly of
shape S\ St from p. This contradicts the fact that St is a tree.

This claim has been verified so that «(r) never appears on St \ {r}. By replacing the glue of
the side that faces S\ Sy with a null glue, and furthermore putting the seed on r if the seed of T
isin S\ S7, then we can construct a new TAS 77 that strictly self-assembles S without changing
any tiles on S7 \ {r}. Thus any TAS which strictly self-assembles S needs at least C*(S7) tile
types to assemble St. O

If S is a tree, the analogous result of this lemma does not hold. Let us consider a tree
U = {(0,2),(0,1),(0,0),(1,0),(2,0),(2,1),(2,2)} and let J = U \ {(0,2)}. Easily we can see
that C*(J) = 6, while C**(U) = 5.

Theorem 4.2. There is a finite shape S C 72 such that C*(S) < Cdte(S).

Proof. The shape S is shown in Figure 2] In the following, the loop L means the shape which
consists of Lo, L1, ..., Ly, Lj, LY, ..., L}, the tile between Lj, and L}, and the tile between Ly and
L.

L A B

>h

[ 1]

Figure 2: A finite shape S for which C'*(S) < C4%¢(S). Nondeterminism is forced to occur at the
two-color top-middle position of the loop L, since any minimal tile set must reuse the tile types
from subtrees A and B to create L.

The height h is left as a variable parameter; increasing h increases the gap between C*(S) and
Cdt¢(8). Let us index the tile positions on the pillar A from its bottom as Ay, As,..., Aj, and do
the same for B as Bi, Bo, ..., By. In a similar manner, the left and right pillars of the loop L are
indexed as L1, Lo, ..., L, and L}, L), ..., L}, respectively.

First we establish that C*(S) < 2h + 16 (actually with equality, but we only require and only
prove an upper bound). If the seed is placed in the bottom row, 12 tile types (including the seed)
hard-code the white positions, h + 2 tile types hard-code the subtree A, and h + 2 tile types hard-
code the subtree B. The tile types at Ag,..., Ay can be reused at Ly, ..., Ly, and the tile types at
By, ..., By, can be reused at Ly, ..., L} . Note that this TAS is not directed because the top-middle
position of the loop could receive either a tile from A or a tile from B. Furthermore, these must
be different tile types, because the top-right tile type in A must have a double glue on its west but



cannot have a double glue on any other side, whereas the top-left tile type of B must have a double
glue on its east but not on any other side.

We now show that this nondeterminism is necessary to achieve minimum tile complexity. In
particular, we will show that C4¢(S) > 3h. Let St be the tree which consists of the pillars A, B and
the three tiles connecting them. Let T be a directed TAS that strictly self-assembles S. Lemma [4.1
implies that any TAS that strictly self-assembles S needs C*(St) tile types to assemble S, and
due to Theorem 4.3 in [4], C*(St) = 2h + 5.

First we consider the case when T places its tiles such that every pair of adjacent tiles on the
loop L is bound via double glue. Being singly-seeded, either the left or the right pillar of the loop
L does not contain the seed; assume without loss of generality that the left pillar does not. Since
all tiles on the loop are double-bonded, the left pillar can grow upward as Ly — Lo — -+ — Ly,
Note that the tile on the top-middle position of the loop L should be different from the one on the
end of the pillar A; otherwise the gap between the ends of A and B would be filled with the tile
on L} . This means that the left pillar cannot reuse the tiles on A, and trivially it cannot reuse the
ones on B. Thus, in this case, T contains at least 3h tile types.

Next we consider the case when some of adjacent tiles on the loop L are not bound via double
glue. Note that at most 2 such weak bonds can appear on the loop, and furthermore, they must
be incident on a single tile. Thus, we assume without loss of generality that such a weak bond
does not occur on the left pillar. Depending on whether the bond between L} and the tile on the
top-middle of L is weak or not, there are two subcases to be investigated. If it is weak and the seed
is not on the right pillar, a similar argument as above enables us to see that any tiles on A or B
cannot be reused for the right pillar (the right pillar must grow upward because of the weak bond).
If the bond is weak and the seed is on L;, then on L ,,...,L;, T cannot put any tile placed on A
or B. Furthermore, if 7 reuses some tile from A or B and places it on some of L}, ..., L}, then the
bottom row could extend to the left of the loop into empty space. Finally, we consider the second
subcase when L} binds to the tile on the top-middle position via double glue, but L;- does not bind
to L; 41 via double glue for some 1 < j < h. This establishes that the left pillar must be hardcoded
by h new tile types, whence 7 contains at least 3h tile types. O

4.2 The Minimum Tile Set Problem is ¥}-complete

The following is the main theorem of Section

Theorem 4.3. MINTILESET is Zg—complete.

Proof. To show that MINTILESET € X5, define the verification language

SeFS,ceZt, T =(T,0,2)is a TAS with
MINTILESETy = (S,¢,T,d) | |T| <e¢,d=(0,az,as,...,0) is a T-assembly
sequence with S,, =5, and «y is 7T-terminal

Clearly MINTILESETy € P. MINTILESET € ¥ because (S,c) € MINTILESET if and only if there

exists T = (T,0,2) with |T| < ¢ such that for all T-assembly sequences & = (o, aa,...,ax) of
length k = |S], (S,¢, T, &) € MINTILESETy, with [(7)| and |(@)| bounded by O(] (S, c) [?).
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Figure 3: The shape S of the reduction (p) ~ (S, c) showing IVCNF-UNsAT <P MINTILESET.
In this example, the quantified negated CNF formula ¢ = JzVy—¢(z,y) has clauses C1,Coy and Cj,
J-variables x1, x9, and 3, and V-variables y; and y». The “matrix” of gadgets at the top left has
a row of gadgets for each clause and a column of gadgets for each variable. The matrix sits atop a
group of “pillars” that, when tiled by actual tiles, will represent a variable assignment to ¢ (along
with one taller left-boundary pillar to help initiate cooperative binding of gadgets to assemble the
matrix). The tree T is S without the matrix and pillars beneath it. In the zoom-in, the two yellow
lines above the yellow X represent strength-1 glues that cooperate to place the gray gadget once
(enough of) the black gadgets to its west and south are in place. The yellow X shows “backward
growth” of the gray gadget that is blocked before it can grow down far enough to form a new copy
of the bottom row of S.

To show that MINTILESET is ¥5-hard, we show that IVCNF-UnsaT <P MINTILESET, where
FYCNF-UNSAT is the ¥5-complete language [34,37,42)]

¢ is a true quantified Boolean formula ¢ = JxVy—¢(x,y),
IVCNF-UNsAT = (p) | where ¢ is an unquantified CNF formula with n + m
input bits x =x1,...,z, and y =y1,...,Ym

We follow a similar strategy to the reduction of 3SAT to MINDIRECTED TILESET shown in [4]. The
<P _reduction () ++ (S, c) works as follows. First, we compute a tree T € FS that “represents” ¢
with subtree gadgets that encode possible variable assignments and their effect on clauses. We then
process T with the polynomial-time algorithm described in [|4] that computes the minimum number
of tile types needed to strictly self-assemble a tree. Let T = (T, 0,2) be this minimal TAS that
strictly self-assembles T, and let ¢ = |T|. We then compute a shape S € FS such that T C S with
the property that, if ¢ is true, then the tile types in 1" can be modified, solely through changing
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some null glues to be single or double glues, producing a TAS 7' = (T',0,2) with [T'| = |T| = ¢
such that 77 strictly self-assembles S, and if ¢ is false, then no TAS with < c tile types can strictly
self-assemble S. The shape S is shown in Figure In Figure [3 the height of pillars is set to a
number bigger than 20¢, where ¢ is the number of variables in ¢

i andj in binary notches
T F T F T F T_F T_F T F

e
top branch right branch
U 15 Ul S, Ul S U S
s U s U U
F_T T F_T
branch point p t
SST UuUT UST SSF UUF USF

Figure 4: Six main varieties of “information-bearing” tree gadgets used in the reduction. The
position (i,j) where the gadget is intended to go in the matrix is encoded in binary. Gadgets
intended for the top row are missing the top “T/F” bumps, and gadgets intended for the right
column are different on the right depending on whether the clause is satisfied or not, as shown in

Figure

Suppose that ¢ has k clauses Ci,...,Cy and £ = n + m input variables vq,..., vy, Where
Vlye-.,Un = T1,...,T, are the J-variables of ¢ and v,11...,v¢ = y1,...,Yym are the V-variables of
. A clause C is satisfied by variable v if C' contains literal v and v is true, or if C' contains literal
—v and v is false. For each 1 <1¢ < k and 1 < j </, define the following six gadgets:

1. SST;j: Cj is satisfied by v, for some 1 < p < j, and v; is true.

2. SSF;;: C; is satisfied by v, for some 1 < p < j, and v; is false.

3. UUTy;: C; is unsatisfied by v, for every 1 < p < j, and vj is true.

4. UUF;;: C; is unsatisfied by v, for every 1 < p < j, and v; is false.

5. UST;;: C; is unsatisfied by v, for every 1 < p < j, C; is satisfied by v;, and v; is true.
6. USKF;;: C; is unsatisfied by v, for every 1 < p < j, Cj is satisfied by v;, and v; is false.

Each of these six main varieties of “information-bearing” gadgets is shown in Figure {4l Each gadget
is designed to minimize the amount of “potential unwanted cooperative strength-1 binding” when
they are placed next to each other in the “matrix” of gadgets in the upper left of Figure Each
gadget encodes the integers ¢ and j, as well as encoding the information about the clause C; and
variable v; as described above. Some of the “boundary case” gadgets are shaped slightly differently

9 Actually, it is enough to set the height of pillars to any number bigger than the width of the clause-variable
matrix.

10Gtrength-1 glues can only have an effect on growth of gadgets in the matrix when they are on tiles on the gray
positions in Figure [ if the tile types used to assemble those gadgets in the matrix are the same as those used to
assemble the gadgets in Y. This is useful in proving the converse direction of the reduction by showing that if a tile
assembly system with < c tile types strictly self-assembles S, then ¢ must be true.
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than those in Figure . If i = k (a “top gadget”), the top of the gadget will not encode information
about the truth value of the variable v;. If j = ¢ (a “right gadget”), the right side of the gadget
will still encode whether the clause is satisfied, but the gadget will have a different shape than for
1 < j < £. These special boundary shapes are shown in Figure

Not all six varieties of gadgets are created for each (i,7); the only gadgets created are those
that are logically consistent with some variable assignment to ¢. In the case of j = 1, the gadgets
SST;1 and SSF;; are not created. For any clause C; in which the literal v; (resp. —w;) does not
appear, the gadget UST;; (resp. USF;;) is not created. Similarly, for any clause C; in which no
literal v, (resp. —w,) appears for any 1 < p < j, the gadget SST;; (resp. SSF;;) is not created.
Finally, for any clause C; in which the literal v; (resp. —w;) does appear, the gadget UUT;; (resp.
UUF;;) is not created.

The tree T is S without the “matrix” on the top left and the “pillars” beneath it that connect
it to the bottom row. Let ¢ = C'*(Y). We assume that the seed is placed on the rightmost position
of the bottom row, for both the shapes T and S. At the end of the proof we show how to modify
the shapes to enforce this restriction. The steps needed to complete the proof are divided into
several lemmas. These lemmas are proven after the current proof. Lemmas and establish
each direction of the claim that ¢ is true <= C'(S) < c. Intuitively, since T is a “tree-like”
subshape of S (despite the leftmost tiles intersecting cycles in S), any tile system that strictly
self-assembles S must place tiles in the bottom row that do not appear anywhere else in T. ¢ is
true = C'(S) < ¢ because we can modify the null glues of tiles in the left half of the bottom row
of T to be double glues matching those tile types from the pillars on the right to grow the pillars
on the left. In the case of the 3-variables x we choose an assignment by our choice of double glues.
In the case of V-variables y we have no choice; we must allow both the “false” and “true” pillars
to grow and nondeterministically compete to assign a bit to each y;. We can then modify null
glues in the gadgets and pillars to be single glues that propagate information about the neighbors
of a gadget to allow a new gadget encoding the proper information to be placed in the matrix.
Therefore the assembly of the matrix “evaluates ¢(z,y)” and if it is false, strictly self-assembles S.
The reverse direction is more tedious to establish. Again, since T is a “tree-like” subshape of S,
any TAS strictly self-assembling S already uses c tile types just to assemble the T portion of S.
Therefore to assemble all of S using c tile types requires reusing these same tile types. Our gadget
design, together with the properties of minimal tile sets for trees, allow us to conclude that the
only way to tile the matrix is “using the gadgets in the way they were intended”, which means the
rightmost vertical bar of the matrix cannot form unless at least one clause is not satisfied; i.e., ¢
is true.

To handle the placement of the seed, define a € S to be the rightmost point on the bottom row
of S. Make two copies of S, place one directly above the other but without touching, and connect
the copies by a width-1 “bridge” of length A that connects to each copy of a on a’s right side.
Denote this new shape by S’. It is routine to show using techniques similar to those in the proof of
Lemma that any minimal TAS for S’ uses C*(S) + h tile types, places the seed in the bridge,
uses h tile types to grow the bridge and uses the tile types of a TAS 7T that is minimal (subject to
the restriction that 7 places the seed at a) for S, to assemble each copy of S. Let ¢ = ¢+ h. Our
reduction outputs (S’, '), rather than (S, c). By the arguments above concerning S, we have that
@ is true <= C'(5') < ¢, whence IVCNF-Unsar <P MINTILESET. O

In the following lemmas, ¢ denotes an arbitrary (true or false) quantified Boolean formula
of the form ¢ = FzVy—¢p(z,y), where ¢ is an unquantified CNF formula with n + m input bits
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r=x1,...,2pand Yy = y1,...,Ym. Y, S € FS(Z?) refer to the tree and shape constructed from ¢
as in the proof of Theorem and ¢ = C*(Y).

Lemma 4.4. If ¢ is true, then C*(S) < c.

Proof. Let Ty = (T,0,2) be a minimal TAS that strictly self-assembles T with seed placed at
position a, the rightmost point of the bottom row of T, and let « € Ap[Ty] be the unique terminal
producible assembly of Ty, such that S, = Y. Theorem 4.3 of [4] shows that if 7y is a minimal TAS
for T, then 7y puts the same tile type in two positions p1,ps € T if and only if the subtrees of T
rooted at p; and py (with the seed location considered the root of T) are isomorphic and “identically
entered” (meaning both of them have their parent in the same direction). This theorem is stated
for directed TAS’s but it is easy to show that any minimal TAS for a tree must be directed. Given
a and t € T, define t to be singular in « if it appears exactly once in «. Thus, all the positions at
the bottom row of T will receive tile types that are singular in a.

Since ¢ is true, there is an assignment f to variables x1,xs,...,x, such that any assignment
to y1, Y2, .., Ym makes ¢(x,y) false. Since all the tile types in the bottom row are unique, we can
change the north glues of the tiles at the base of the clause-variable matrix, without ruining the
rest of the shape. We change the north glues so that the blue pillar grows as the leftmost pillar and
for each variable x; we grow the red true/false pillar depending on f(x;) being true or false. For
the positions corresponding to y variables, we change the north glues so that both true and false
green pillars can grow.

We will also change a number of null glues into single glues in the following way: the set of
labels with strength one will be T, F, 8; j, and U; j, where 1 < i < k and 1 < j < /. For each
gadget G, let p be the position of its branch point in T, as shown in Figure @] Then, we change
the null glue of the south side of a(s) to a single glue with label T if G is of type SST, UUT, or
UST; otherwise, we change the south glue to a single glue with label F. Also, we change the north
glue of a(s) to a single glue with label S; ; if G is a gadget for the ith clause and jth variable and
is of type SST or SSF; otherwise, if G is of type UUT, UUF, UST, or USF, the north glue of a(s)
will be a single glue with label U; ;. Note that, the tile type «(s) is singular in «, due to the fact
that its rooted subtree contains the encoding about the gadget type, clause number, and variable
number, and hence, is not isomorphic to any other subtree.

The north glue of the tile type a(r) will be changed to a strength one glue with label T if G is
of type SST, UUT, or UST; otherwise, its label will be F. The south glue of the tile type a(t) will
be changed to a strength one glue with label S; ;11 if G is for the ith clause and jth variable and
is of type SST, SSF, UST, or USF; otherwise, its label will be U; ;1.

Applying the above-mentioned changes will give us a TAS Tg with the same tile complexity as
Tr. In Tg, a gadget can grow at the cell of the matrix corresponding to clause i and variable j using
cooperation of single glues of the bottom and left gadget if and only if its notches match the notches
of the bottom and left gadget. And, the notches of gadgets are designed in a way that they can be
put together to assemble S if and only if the truth assignment to = and y variables (presented as
pillar notches at the first row of the matrix) make ¢(z,y) false. Intuitively, the gadgets grow in the
matrix so as to “evaluate ¢(z,y)” on inputs z and y encoded in the pillars, with the pillars encoding
y nondeterministically choosing values for each of the y;. If we choose the proper assignment f to
x, such that, for all assignments to y (corresponding to different terminal assemblies), ¢(z,y) is
false (such an assignment f exists since ¢ = JzVy—¢(z,y) is true), then all of these assemblies will
have at least one unsatisfied right gadget in the rightmost column of the matrix, and the assembly
will have shape S. Therefore Tg strictly self-assembles S. O
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From here until the end of the section, assume that 7g = (Ts, 0,2) is a TAS that strictly self-
assembles S with the seed placed at the rightmost position on the bottom row. Also, B represents
the subshape of S that does not have the black matrix on the left, but has the pillars beneath it,
and I C Z? denotes the set of k x £ positions (where k is the number of clauses in ¢ and £ is the
number of variables) marked by small circles in Figure [3l A set I’ C I is called a staircase if the
following implication holds:

[(x1,51) € I', (w2, 42) € [,y < w1, and yp < y1| = (w2, 12) € I'.

Let G* = [\geg G, where each element of G is a set of tile positions of a gadget created in the
proof of Theorem (Figure [4]) translated so that the branch tile is at the origin (so, G has at
most k X £ x 6 elements).

Lemma 4.5. If |Ts| < ¢ = C*(Y), then there is a TAS Ty = (Tr,0,2) that can be obtained from
Ts = (Ts,0,2) by only changing a number of double glues to null glues (in particular implying that
|Ty| = |Ts|), such that Ty strictly self-assembles Y.

Proof. Tt suffices to show that if a € Ag[Ts], then for any two adjacent positions p1,p2 € T, a(p1)
and «(p2) are bound together by a double glue. This will establish that, by adjusting double glues
on the north of tiles beneath the pillars to be null glues, all of T can grow from the tiles without
growing any of the pillars or matrix of S — Y. Because each adjacent tile in the row under the
matrix double bonded, each of these tile types must be singular in a [ T (« restricted to T);
otherwise, their appearance elsewhere in o would lead to copies of the pillars and matrix growing
in a second location.

For the sake of contradiction, let p; € T and ps € T be the closest positions to the seed that
are adjacent to each other but a(p;) and a(p2) do not have double glue between them. Then,
they are on the bottom row below the clause-variable matrix in .S. Thus, there must be a pillar
growing down from the clause-variable matrix; consider the pillar that grows down in « the earlier
than the others. This pillar cannot reuse any tile type that is used in positions to the right of p;
in T; otherwise, an undesirable part of T can grow to the left of the downward pillar. Therefore,
the number of tile types in Tg is at least C*(Y) — z + y, where z is the horizontal width of the
clause-variable matrix and y is the height of the pillars. This is a contradiction to the assumption
that Tg uses at most C*(T) tile types, since we set y > x in our construction. O

The following lemma states the “inductive step” of the proof of Lemma[4.7] Namely, if gadgets
of a minimal tile system for S grow to fill in part of the matrix “in the way we intend”, then the
only way to extend this growth to fill in an additional gadget is also “in the way we intend.”

In the following lemma, “right branch” and “top branch” refer to the two subtrees of a gadget
rooted at the branch as shown in Figure [4

Lemma 4.6. Suppose Tg has at most c = C*(Y) tile types. Let o € A[Tgs] be a producible assembly
such that

1. BC S, CS. (where B is the subshape of S that does not have the black matriz on the left,
but has the pillars beneath it)

2. So N1 is a staircase of cardinality m < |I|.

3. All tile types in a(Sq N I) are branch tiles of gadgets.
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4. The right and top branches of tiles in S, N I are present in a.
5. If there exists p € I such that p & Sy, then So N (p+ G*) = 2.

Then there exists an assembly 5 € A[Tg] such that o — [ and requirements (1)-(5) are satisfied
with “a” replaced by “B” and “m” replaced by “m + 17.

Proof. o cannot be a terminal assembly, since Tg strictly self-assembles S # S,,.
Since double glues cannot be added to gadget tile types without ruining the tree shape portion
of S, a must grow by cooperation of single glues. This cooperation can happen only at F' — (4, 3),
where
F={pel\S,:(SanI)U{p}isa staircase}.

In other words, F'— (4, 3) is the set of points marked s in Figure [4] which are adjacent to points
marked r and ¢ in neighboring gadgets. Let 3 be a minimal assembly producible from a such
that Sg N F is not empty. Let {p} = Sg N F. All paths from S, to p in /" must pass through
s = p— (4,3), due to the minimality of 3. Even if the tile type that goes in s is not taken from
any gadgets, the tile type that eventually goes to s+ (1,1) must be chosen from a gadget, since it
should be able to grown the zig-zag shape only by double glues, and the zig-zag shape is used only
in one of the gadgets. Thus, 8'(p) is a branch tile type.

Since p € S NI and p &€ So NI, Sg N I has cardinality at least m + 1. Let 3 be the minimal
assembly producible from 3’ in which the right and top branches of p are tiled. 5(p) and 3(q) for
all ¢ in the branches of p must be tile types from the correct gadget to ensure consistency with the
notches of neighboring gadgets and consistency with the (row,column) identifier notches at the top
of the right branch.

Due to the minimality of 3, it satisfies condition 5. O

Lemma 4.7. If Tg has at most c tile types, then ¢ is true.

Proof. First we show that B is Tg-producible. According to Lemma by changing a number
of double glues in Tg to null glues, we can obtain a TAS T that strictly self-assembles Y. So,
T is Tg-producible. Moreover, as can be checked in the proof of Lemma the null glues in 7y
that are double glues in 7g are the north glues of the tile types that appear at the base of pillars
beneath the gadget matrix. Also, all the pillars must grow from the bottom row to the matrix, and
not downward, because growing a pillar downward requires adding a double glue to a tile type in
the matrix area, which will also ruin Y. Thus, B, which is T together with the pillars beneath the
matrix, is Tg-producible. This establishes the base case.

Let f(x;) be true if the red true pillar is used to grow the pillar corresponding to x; and be
false if the red false pillar is used. Using Lemma for the inductive case, we conclude that there
is an assembly « such that BU I C S, and valid gadgets are/can be used to fill the matrix part
of a. By our construction of gadgets, this implies that the truth assignment f to x makes ¢(x,y)
false for every value of y. Thus ¢ is true. O

5 Conclusion

We have investigated the power of nondeterminism for the strict self-assembly of shapes in the
abstract Tile Assembly Model. We showed that for both the infinite and finite cases, even when
the shape is required to be strictly self-assembled, nondeterminism can help to assemble the shape,
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by making strict self-assembly possible in the infinite case, and reducing tile complexity in the finite
case. Furthermore, the problem of finding the minimum tile set to strictly self-assemble a shape is
strictly harder (in the sense of nondeterministic time complexity) than that of finding the minimum
directed tile set that does so, unless NP = Z2P .

There are some interesting questions that remain open:

1. What is the fastest growing function f : N — N for which one could prove a statement of the
form “For infinitely many n € N, there is a finite shape S C Z? such that C'**(S) < n and
Cdte(S) > f(n)”? The proof of Theorem of the present paper establishes this statement
for f(n) = 1.4999n. Can f(n) be made, for example, n? or 2"? What is an upper bound for
f above which such a statement is false? Note that Theorem [3.1] establishes such a statement
for all functions f : N — N if the shape is allowed to be infinite. However, when designing
complex tile systems, a common challenge is to direct a group of tiles to stop growingE SO
it would be interesting to identify a family of finite shapes with a fast-growing gap between
the two tile complexity measures. This would imply that sometimes it really helps to employ
nondeterminism.

2. We have showed that the optimization problem of finding precisely the smallest number of
tile types to strictly self-assemble a shape is Zg -hard. Can it be shown that for some o > 1,
the solution is ZZP -hard to approximate within multiplicative factor a? This may be related
to Question

3. Is there an a > 1 such that it is NP-hard to find an a-approximate solution to the minimum
directed tile set problem?

4. Shape-building is one common goal of self-assembly; pattern-painting is another. In partic-
ular, it is possible to assemble some patterns, such as disconnected sets, if we change the
definition of what is interpreted as the assembled object. We say that a TAS T = (T, 0,2)
weakly self-assembles a set S C Z? if there is a subset B C T (the tile types that are “painted
black”) such that, for all a € Ap[T], a~1(B) = S. In other words, the set of positions with
a black tile is guaranteed to be S. In the case B = T, this definition is equivalent to strict
self-assembly, but for B C T the shape is allowed to grow outside the desired pattern using tile
types from 7'\ B to allow “extra computation room” for painting the pattern using tile types
from B. Such a definition is appropriate for modeling practical goals such as self-assembled
circuit layouts [19,23}26}28},29,143] or placement of guides for walking molecular robots [24];
see |20, 21] for more discussion of the theoretical issues of weak self-assembly. It remains
open to prove or disprove analogs of Theorems and with “weakly” substituted for
“strictly”. In other words, is it possible to uniquely paint an infinite (resp. finite) pattern
with a tile system, but every tile system that does so (resp. that does so with no extra tile
types) is directed?

5. It remains open to prove or disprove analogs of Theorems and with “weakly” substi-
tuted for “strictly” and with “strict” substituted for “directed”. In other words, is it possible
to uniquely paint an infinite (resp. finite) pattern with a tile system, but every tile system

"For example, C*°(S) ~ C*¢(S) = O(logn/loglogn) for S an n x k rectangle with n > k > logn/ loglogn, but
C*(S) and C%°(S) increase steadily towards n as k decreases from logn/loglogn to 1; “counting” to the length of
the rectangle and then stopping becomes more difficult as the rectangle’s width decreases.
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that does so (resp. that does so with no extra tile types) must self-assemble more than one
shape on which this pattern is painted?

. What is the status of the optimization problem of determining the minimum number of tile

types to weakly self-assemble a finite pattern? Let F(Z?) C P(Z?) denote the set of all finite
subsets of Z2. Define

2 + _
MINWEAKTILESET = { (S, c) ‘ S e F(Z%),ce Z", and (T = (T,0,2)) }

|T'| < c and T weakly self-assembles S

It is not obvious whether MINWEAKTILESET is even contained in PSPACE or EXP, for
instance.

What is the status of MINDIRECTEDWEAKTILESET, defined similarly to MINWEAKTILESET
but also requiring 7 to be directed?

. In [4] the authors show that for the special cases of tree and square shapes, the minimum

directed tile set problem is in P. For trees, it is straightforward to verify that the minimum
tile set is always directed, so the answer is the same whether or not we restrict attention
to directed tile sets. What is the complexity of the minimum tile set problem restricted
to squares? The polynomial-time algorithm given in [4] crucially depends on the existence
of a polynomial-time algorithm for the directed shape verification problem of determining
whether a given tile system strictly self-assembles a given shape and is directed. Removing
the directed constraint on this shape verification problem, even when restricted to the case of
squares, makes the problem coNP-complete [5/16122]. Perhaps this means that the minimum
tile set problem restricted to squares is hard as well. On the other hand, since this problem
is SparseB Mahaney’s Theorem [25] implies that it cannot be NP-hard (nor coNP-hard by
Fortune’s Theorem [14]) unless P = NP.
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