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Abstract

We show a generic, simple way to amplify the error-tolerance of locally decodable
codes. Specifically, we show how to transform a locally decodable code that can tolerate
a constant fraction of errors to a locally decodable code that can recover from a much
higher error-rate. We also show how to transform such locally decodable codes to locally
list-decodable codes.

The transformation involves a simple composition with an approximately locally (list)
decodable code. Using a construction of such codes by Impagliazzo et al. [[JIKW10], the
transformation incurs only a negligible growth in the length of the code and in the query
complexity.

1 Introduction

Locally decodable codes (LDCs) are codes that allow retrieving any symbol of a message by
reading only a constant number of symbols from its codeword, even if a large fraction of the
codeword is corrupted. Formally, a code C is said to be locally decodable with parameters
(g, €,0) if it is possible to recover any symbol x; of a message = by making at most ¢ queries
to C(x), such that even if a J fraction of C(z) is corrupted, the decoding algorithm returns the
correct answer with probability at least 1 — e.

Locally decodable codes play an important role in many areas in theoretical computer
science. While the first formal definition of locally decodable codes was given by Katz and
Trevisan [KTO0O0], these codes implicitly appeared in previous works.

The main line of research regarding LDCs seeks to identify the shortest possible code
length, in terms of the message length n, while keeping the query complexity, the error-
rate and the success probability constant. The Hadamard code is the best-known 2-query
locally decodable code and its length is 2. For 2-query LDCs tight lower bounds on the
code length of 27(") were given in [GKSTO02] for linear codes and in [KdW03] for general
codes. For an arbitrary constant number of queries g, there are weak polynomial bounds, see
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[KT00, KdWO03, Woo07]. The first subexponential LDCs (with a constant number of queries)
were obtained by Yekhanin [YekO8]. Yekhanin obtained 3-query LDCs with subexponen-
tial length under a highly believable number theoretic conjecture. Later, Efremenko [Efr09],
building on Yekhanin [Yek08] and Raghavendra [Rag07], gave an unconditional construction
of subexponential length LDCs. This construction also allowed a tradeoff between the number
of queries and the codeword length. Subsequently, the query complexity of this construction
was improved in [ISO8, MFL'10].

The decoding algorithm in all of the aforementioned constructions is smooth, i.e., each of
its queries is uniformly distributed. The analysis of the decoding algorithm relied on all of the
queried symbols being uncorrupted. Using the union bound, one could obtain a decoder with
success probability greater than half, only if the error-rate was below %

Another line of research focused on improving the error-tolerance of LDCs. Woodruff [Woo008]

showed how to increase the handled error-rate from 21q to é over binary alphabets. Duvir,

Gopalan and Yekhanin [DGY10], showed how to handle % fraction of errors for the codes
of [Efr09]. Ben-Aroya et. al. [BET10] showed the same codes could recover from any error-
rate below % Gal and Mills [GM09] obtained exponential lower bounds for 3-query LDCs that
can tolerate a high error-rate.

When the error-rate is above half of the code’s distance, the information in a corrupted
codeword is insufficient to uniquely identify the original (uncorrupted) codeword. Thus, in this
case, we have to consider list-decoding. A code C is said to be (1 — «, L)-list-decodable if for
every word, the number of codewords within relative distance 1 — « from that word is at most
L. The notion of list-decoding dates back to works by Elias [Eli57] and Wozencraft [Woz58] in
the 50s. Roughly speaking, a code C is locally list-decodable if it is (1 — «, L)-list-decodable,
and given a corrupted word w, an index k € [L] and a target bit j, the decoder returns the j’th
message bit of the k’th codeword that is close to w. As expected, there are some subtleties in
the definition. The main issue is guaranteeing that for a fixed k, all answers for inputs (k, j)
correspond to the same codeword. More formally, a local list-decoding algorithm generates
L machines {Mj}, such that the machine M, locally decodes one codeword that is close to
w, and the machines { M}, } together cover all the codewords that are close to w (for a formal
definition, see Section 2).

The notion of local list-decoding is central in theoretical computer science. It first im-
plicitly appeared in the celebrated Goldreich-Levin result [GL89], that can be interpreted as a
local list-decoding algorithm for the Hadamard code. Later on, many local list-decoding algo-
rithms were studied, especially for Reed-Muller codes [GRS00, AS03, STV01, GKZ08], direct
product and XOR codes [IW97, IJK06, IIKWO08] and low-rate random codes [KS07, KS09].
In [BET10] it was shown how to locally list-decode the subexponential-length codes of [Efr09]
with only a constant number of queries.

Our Result. In this note we show a generic, simple transformation that takes a locally de-
codable code C that can tolerate a low error-rate, and results in a code C’ that can tolerate a
much higher fraction of errors. Our construction also works in the list-decoding regime, i.e.,
it can transform any LDC C to a code C" which is locally list-decodable from an error-rate of
1 — ~, for any v > 0. Furthermore, the list-decoder for the new code outputs only a constant
number of codewords.

The transformation is based on the following idea. An error correcting code with relative



distance « is a function C : X" — X" that maps any two different strings, to two strings that
differ in at least an « fraction of the coordinates. The decoding algorithm can therefore map
any string ¢ with more than (1 — «/2)n agreement with a codeword ¢ = C(\), to the correct
message A\. We can view this as an «/2 to 0 error reduction: given a codeword with some «/2
fraction of errors, one can correctly recover the original message.!.

Similarly, one can define a related notion of codes that only amplify the error-tolerance,
without completely correcting the corrupted word. That is, one can design a code C : ¥" —
Y™, such that given access to a corrupted word ¢ with yn agreement with some codeword
¢ = C()\), one can compute a message A with some larger 8 > ~ agreement with A\. We call
such a code an approximately locally decodable code. When + is small, several codewords
can be ~y-close to ¢ and one has to resort to list-decoding. In this case, the code is called an
approximately locally list-decodable code. Such codes naturally arise in hardness amplification
(see, e.g., [[IKW10]). For a formal definition see Section 2.

Now, let us return to the problem of finding a good locally list-decodable code. Our ap-
proach is to compose a locally decodable code (handling the «/2 to 0 error reduction) with
an approximately locally list-decodable code (handling the % — € to a/2 error reduction, for
binary codes). Namely, we first encode a message A\ with a locally-decodable code C and then
encode the result with an approximately locally list-decodable code to get the code C’. To see
that it works, assume we are given a word with % + € agreement with some codeword of C’. We
first apply the approximate local list-decoder and get a list of words, each with 1 — «/2 agree-
ment with some codeword of C. We then (uniquely) locally decode each of these corrupted
codewords to get \;, the i’th symbol of the message ).

In fact, the local list-decoders of Reed-Muller codes [GRS00, AS03, STV01, GKZ08] and
the Hadamard code [GL89], also have this two-step structure, combining an error-reduction
step (that does not completely correct the corrupted word) with another unique decoding step.
The main difference is that Reed-Muller and Hadamard codes are locally correctable, i.e., the
first error-reduction step returns a close codeword, instead of close message. Therefore, these
two steps can be done implicitly without the use of any general approximate list-decoding
mechanism. In our case we present a generic transformation that may work with LDCs that
are not known to be locally correctable (e.g., the code of [Efr09]) and we therefore need to
compose the code with an approximately locally list-decodable code.

Composing the locally decodable binary codes of [Efr09, MFL™10] with the binary ap-
proximately locally list-decodable codes of [[JKW10] we get:

Theorem 1. For every r > 2 there exists a binary code of length

exp(exp(O(/log n(loglog n) 1)),

which is locally list-decodable from an error-rate of 1/2 — «. The list-decoding algorithm
outputs a list of size O(%) and uses at most O(logo(é#) - 3"/ queries.

A locally list-decodable code of similar length was given in [BET10]. However, the list
size in the list-decoding algorithm of [BET10] was poly(n), while in Theorem 1 it is constant.

The query complexity of the list-decoding algorithm of [BET10] was also worse than that of

"For a treatment of the related notion of worst-case to average-case reduction and its relationship to error cor-
recting codes see, e.g., [[JKW10].



Theorem 1. On the other hand, the result in [BET10] shows the code of [Efr09] is locally list-
decodable, while Theorem 1 only shows that some other (related) code is locally list-decodable,
and does not state anything about the original code of [Efr09].

2 Definitions

The agreement between strings x and y is the fraction of coordinates ¢ in which x; = y;. The
agreement between z and y is denoted by Ag(z, y).

Definition 1. A probabilistic oracle machine M™ locally outputs a string s with confidence
1—¢if
Vi PriM®Y(i) = s;] > 1 —k,

where the probability is over the randomness of M.

Definition 2. A deterministic oracle machine M" locally e-approximates a string s, if
Pr[MY(i) = s;] > 1 —,
(2

where the probability is over a uniformly chosen 1.

Note that if M™ locally outputs a string s with confidence 1 — ¢ then there is a way to
fix its randomness such that it will locally e-approximates a string s. Essentially, M™ locally
approximates a string s if it outputs a string that is close to s.

Definition 3 (Local unique decoding). A code C : X" — X" is (q, €, ) locally decodable if
there exists a probabilistic oracle machine M"™ (the decoding algorithm) with oracle access to
a received codeword w such that:

1. Foreverymessage A = (A1, A2, ... \n) € X" and for every w € X" such that Ag(C(\), w) >
1 — 6 it holds that M™ locally outputs A with confidence 1 — e.

2. M™ (i) makes at most q queries to w for all i € [n].

It is possible to consider a more relaxed notion of local decoding, where the machine M™
is not required to successfully decode every ¢. Instead, it is required to succeed on average over
1

Definition 4 (Approximate local unique decoding). A code C over a field 3, C : ¥ > X7
is (g, €,9) approximately locally decodable if there exists a deterministic oracle machine M™
(the decoding algorithm) with oracle access to a received codeword w such that:

1. Foreverymessage X = (A1, A2, ... \n) € X" and for every w € X" such that Ag(C(\), w) >
1 — 4, it holds that M™ locally e-approximates \.

2. M™ (i) makes at most q queries to w for all i € [n].



Although the definitions of locally decodable codes and approximately locally decodable
codes are similar, it appears that it is much harder to construct locally decodable codes than ap-
proximately locally decodable codes. While there exist constant-query approximately locally
decodable codes of polynomial length, no such locally decodable codes are known. Approx-
imately locally decodable are interesting when e < ¢, since the identity code is a (1,¢,¢)
approximately locally decodable code.

A code C is list-decodable if for every word, there are a few codewords near it. Let
C(y1),C(y2),-..,C(yr) be the list of codewords near a word w. Roughly speaking, a code
C is locally list-decodable if there exists a machine M, that given ¢, j and an oracle access
to the received word w, outputs the jth symbol of y;. The locality property requires that the
machine M makes a few queries to w. Formally:

Definition 5 (Local list-decoding). Let C : X" — Y™ be a code. A set of probabilistic oracle
machines M ... My, with oracle queries to w, (o, L, q, €) locally list-decodes C at the word
w € X if,

e Every oracle machine M; makes at most q queries to the input word w.

e For every codeword ¢ € C with Ag(c,w) > «, there exists some k € [L], such that M}’
locally outputs c with confidence 1 — e.

We can also define approximate local list-decoding by relaxing the requirement that M’
successfully decodes c on every i. Instead, we require successful decoding on average over %.

Definition 6 (Approximate local list-decoding). Let C : X" — Y™ be a code. A set of de-
terministic oracle machines M, ... My, with oracle queries to w, («, L, q, €) approximately
locally list-decodes C at the word w € 7, if,

e Every oracle machine M; makes at most q queries to the input word w.

e For every codeword c € C with Ag(c,w) > «, there exists some k € [L], such that M}’
e-approximates c.

Definition 7 ((Approximately) Locally list-decodable codes with deterministic reconstruction).
Let C : X" — X" be («, L) list-decodable. A deterministic algorithm A («, L, q, €) (approx-
imately) locally list-decodes C, if on input n, A outputs oracle machines My ... My, which
(o, L, q, €) (approximately) locally list-decode C at every word w € X",

The code C is («, L) list-decodable and therefore every w € ¥™ has at most L codewords
ci,...,cr that are a-close to it. Each such codeword ¢; = C(\?) is represented by a proba-
bilistic machine M; such that:

e If the code is locally list-decodable then Vj M;(j) = )\3» with probability at least 1 — €.

e If the code is approximately locally list-decodable then M;(j) = )\; for atleastal — e
fraction of the indices j.

The algorithm A outputs L machines that are good for every w € ¥". One way to think about it
is that ¢ € [L] is an advice that specifies which of the L solutions corresponds to the codeword
we are interested in.



Definition 8 (Locally list-decodable codes with probabilistic reconstruction). Let C : X" —
Y™ be (v, L) list-decodable. A probabilistic algorithm A («, L, q, €) locally list-decodes C,
if on input n, A outputs probabilistic oracle machines M ... M| such that for every word
w € X", with probability 2/3 over the random coins of A, the machines Mj ... M, locally
list-decode C at w, i.e.,

V€ F" Pr [V)\ <Ag(C()\),w) >a = JiViPrM(j) = \j] > 1— e)} > 2/3.

Definition 9 (Approximately locally list-decodable codes with probabilistic reconstruction).
Let C : X" — X" be («, L) list-decodable. A probabilistic algorithm A («, L, q,€) ap-
proximately locally list-decodes C, if on input n, A outputs deterministic oracle machines
My ... My, such that for every word w € X", with probability 2/3 over the random coins of
A, the machines M ... My, approximately locally list-decode C at w, i.e.,

Vw e F" Py [v/\ (Ag(C()\),w) > o = 30 PrM(]) = A] > 1 e)] > 2/3.

The best approximately list-decodable codes currently known (to the best of our knowl-
edge) are due to Impagliazzo et al. [[JKW10]. In this note we focus on binary codes, although
by using the non-binary codes of [[JKW10] one can also get non-binary list-decodable codes.

Theorem 2 ([IJKW101%). For every a,e > 0 there exists a number f(a,€) such that there
exists a code Capp : {0,1}" — {0, @O which is (1/2 + a, O(ﬁ),O(bgﬁ#),e) ap-
proximately locally list-decodable.

3 Composition Theorem

Our main observation in this note is that if a code Cr,pc is locally decodable and a code Capyp,
is approximately locally decodable then by composing these two codes we get a code which is
locally decodable, and can tolerate a higher error-rate.

Theorem 3. Let Cipc : X7 — Eévl be (g€, 6) locally decodable code and let Cpypy, - Zév/ —
Eév be an (¢, 6,9") approximately locally decodable code. Then the code C = Cppp, © CLpC :
Y1 X4 defined by C(\) = Capp(CLpc(N)) is (q - ¢, €,8") locally decodable.

Thus, if we have a locally decodable code which can tolerate a small fraction of errors, the
above theorem allows us to amplify the error-rate by using an approximately locally decodable
code. We have similar theorem for the list-decoding regime:

/

Theorem 4. Let Crpc : X} +— X5 be (q, ¢, 0) locally decodable code and let Capyp = X3
Zév be an (o, L, ¢, &) approximately locally list-decodable code. Then the code C = Capp ©
Crpc : X7 > S defined by C(A\) = Capp(CLpc(N)) is (a, q - ¢/, L, €) locally list-decodable.

The code we use is not explicit in [[JKW10], but it can be deduced from Section 5 in that paper. In Section 5
it is shown that a longer code (the direct-product code, concatenated with Hadamard) is approximately locally list-
decodable. However, the same proof carries over when using the derandomized direct-product code (concatenated
with Hadamard). The parameter d (of [IJKW10]) is set to 5 (this is affects the exponent in the codeword length).
The number of queries is O(logci#) since we need to run the Goldreich-Levin algorithm O(%) times, and
each run requires 1/a? queries.



Proof: Let A denote the reconstruction algorithm for the code Capp and let D* @ [n] +—
31 denote the unique decoding algorithm for the code Crpc. The reconstruction algorithm
for the code C works as follows: it first applies the algorithm A to obtain a list of machines
M, ..., Mf. For each machine Mj, it outputs the machine Z; defined by Z}'(i) = DMF ().

The bounds on the number of queries and the list size are immediate. Fix a word w € %%,
The inner reconstruction algorithm A fails with probability at most % When it does not fail, we
will show that for every codeword with at least o agreement with w, its message is outputted
with confidence 1 — € by one of the output machines. Suppose that the agreement between
Capp(CLpc(A)) and w is at least a. Denote ¢ = Crpc(A). Since A did not fail, one of the
machines M d-approximates (. Thus, Z7 = DM locally outputs A with confidence 1 — e.
]

The above theorem give locally list-decodable codes which improve upon previously known
constructions. Since we wish to get locally list-decodable codes with a constant query com-
plexity, we need to use a locally decodable code with a constant query complexity. The best
such codes currently known are due to [MFL*10]:

Theorem 5 ((MFL™ 10]). For every r > 2 there exists a code
Crpe : {0’ 1}n s {07 1}exp(exp(0(\T/logn(loglogn)T—l)))

which is (3"/%,~,2 - 372 . 4) locally decodable, for every v > 0.

Let Cr,pc and Capp, be the codes from Theorem 5 and Theorem 2, respectively. Applying
Theorem 4 on these codes gives:

Corollary 6 (Theorem 1 restated). For every r > 2 and every o, € > 0 there exists a code

C:{0,1)" s {0, 1} @ a7z exp(exp(O(/log nloglog ) 1)

which is (1/2 + «, O(é), O(logc(y#) =372 €) locally list-decodable, where f is the constant
from Theorem 2.
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