
IP = PSPACE using Error-Correcting Codes*

Or Meir�

Abstract

The IP Theorem, which asserts that IP = PSPACE (Lund et. al., and Shamir, in
J. ACM 39(4)), is one of the major achievements of complexity theory. The known proofs of
the theorem are based on the arithmetization technique, which transforms a quantified Boolean
formula into a related polynomial. The intuition that underlies the use of polynomials is com-
monly explained by the fact that polynomials constitute good error-correcting codes. However,
the known proofs seem tailored to the use of polynomials, and do not generalize to arbitrary
error-correcting codes.

In this work, we show that the IP theorem can be proved by using general error-correcting
codes and their tensor products. We believe that this establishes a rigorous basis for the afore-
mentioned intuition, and sheds further light on the IP theorem.

1 Introduction

The IP Theorem1 [LFKN92, Sha92] asserts that IP = PSPACE, or in other words, that any set
in PSPACE has an interactive proof. This theorem is fundamental to our understanding of both
interactive proofs and polynomial space computations. In addition, it has important applications,
such as the existence of instance checkers for PSPACE-complete sets [BK95], and the existence
of zero-knowledge proofs for every set in PSPACE [IY87, BOGG+88]. Indeed, the theorem is one
of the major achievements of complexity theory. Additional proofs of the IP theorem have been
suggested explicitly by Shen [She92], and implicitly by Goldwasser, Kalai, and Rothblum [GKR08].

The known proofs of the IP theorem go roughly along the following lines: Suppose that we are
given a claim that can be verified in polynomial space, and we are required to design an interactive
protocol for verifying the claim. We begin by expressing the claim as a quantified Boolean formula,
using the PSPACE-completeness of the TQBF problem. Then, we “arithmetize” the formula,
transforming it into a claim about the value of a particular arithmetic expression. Finally, we use
the celebrated sum-check protocol in order to verify the value of the arithmetic expression. One
key point is that the sum-check protocol employs the fact that certain restrictions of the arithmetic
expression are low-degree polynomials.

While the arithmetization technique used in the proof turned out to be extremely useful, it seems
somewhat odd that one has to use polynomials in order to prove the theorem, since the theorem
itself says nothing about polynomials. The intuition behind the use of polynomials in the proof is
usually explained by the fact that low-degree polynomials constitute good error-correcting codes
that have additional useful properties (in particular, they are capable of encoding computation,
and that their restrictions to lines also constitute good error-correcting codes).

*This research was supported in part by the Israel Science Foundation (grants No. 460/05 and 1041/08) and by
the Adams Fellowship Program of the Israel Academy of Sciences and Humanities.

�School of Mathematics, Institute for Advanced Science, 1 Einstein drive, Princeton, NJ 08540
1This theorem is usually referred to as “the IP = PSPACE theorem“. We chose to abbreviate it to “the IP

theorem” in order to make the presentation less cumbersome.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 7 of Report No. 137 (2010)

In order to demonstrate this intuition, let us consider the special case of proving that coNP ⊆ IP,
which amounts to designing a protocol for verifying that a given Boolean formula has no satisfying
assignments. In this case, the main difficulty that the verifier faces is that it has to distinguish
between a formula that has no satisfying assignments and a formula that has only one satisfying
assignment. If we consider the truth tables of those formulas, then the verifier has to distinguish
two exponential-length strings that differ only on at one coordinate, which seems difficult to do in
polynomial time. However, as a thought experiment, let us observe that if the verifier could access
an encoding of the truth tables via an error-correcting code, then its task would have been easy:
An error-correcting code has the property that any two distinct strings are encoded by strings that
differ on many coordinates, even if the original strings were very close to each other. Therefore, if
the verifier could access an error-correcting encoding of the truth table of the formula, it could just
pick a random coordinate of the encoding and check that it matches the encoding of the all-zeroes
truth table.

The role of polynomials in the proof of the IP theorem is now explained as follows: The
arithmetization technique transforms the formula into a low-degree polynomial. Since low-degree
polynomials are good error-correcting codes, the arithmetization should have a similar effect to
that of encoding the truth table of the formula via an error-correcting code. Morally, this should
help the verifier in distinguishing between satisfiable and unsatisfiable formulas.

While the above intuition is very appealing, it is not clear what is the relation between this
intuition and the actual proof, and whether the actual proof indeed implements this intuition.
In particular, the polynomial that is obtained from the arithmetization of a formula is not the
encoding of the formula’s truth table by the corresponding polynomial code,2 but rather an arbitrary
polynomial that agrees with the formula on the Boolean hypercube. Furthermore, while it is clear
that the known proof of the IP theorem use the fact that polynomials are capable of encoding
computation, and that their restrictions to lines also constitute good error-correcting codes, it is
not clear whether these properties can be abstracted and achieved by other error-correcting codes.
In addition, the known proofs of the IP theorem also use algebraic manipulations (e.g. degree
reduction) that make no sense for general error-correcting codes.

These considerations give raise to the natural question of whether the foregoing intuition is
correct or not. In other words, we would like to know whether the error-correcting properties of
polynomials are indeed the crux of the proof of the IP theorem, or are there other properties of
polynomials that are essential to the proof.

In this work, we show that the IP theorem can actually be proved by using only error-correcting
codes, while making no reference to polynomials. We believe that this establishes a rigorous basis
for the aforementioned intuition. While our proof is somewhat more complicated than previous
proofs of the IP theorem, we believe that it is valuable as it explains the role of error-correcting
codes in the IP theorem.

Our techniques. Our work relies heavily on the notion of tensor product of codes, which is
a classical operation on codes. The tensor product operation generalizes the process of moving
from univariate polynomials to multivariate polynomials, in the sense that if we view univariate
polynomials as error-correcting codes, then multivariate polynomials are obtained by applying the
tensor product operation to univariate polynomials (see remark following Fact 3.6). We refer to
error-correcting codes that are obtained via the tensor product operation as “tensor codes”.

2In other words, the polynomial generated by the arithmetization is not the unique low-degree extension of the
truth table (i.e., the unique degree-1 extension). To see this, note that the arithmetization of an unsatisfiable formula
may produce a non-zero polynomial. For example, the arithmetization of the unsatisfiable formula x∧¬x is x ·(1−x),
which is not the zero polynomial.

2

Our first main observation is the following. Recall that in the proof of the IP theorem, the
sum-check protocol is applied to multivariate polynomials. We show that the sum-check protocol
can in fact be applied to any tensor code. Specifically, we note that tensor codes have the following
property: A codeword c of a tensor code can be viewed as a function from some hypercube [`]m to
a finite field F, such that if a function f : [`]→ F is defined by an expression of the form

f(xi) =
∑
xi+1

. . .
∑
xm

c (r1, . . . , ri−1, xi, xi+1, . . . , xm)

then f is a codeword of some other error-correcting code. We observe that this is the only property
that is required for the sum-check protocol to work, and therefore the protocol can be used with
any tensor code. In other words, the essential property of multivariate polynomials that is used in
the sum-check protocol is the fact that multivariate polynomials are tensor codes.

Our next step is to use the foregoing observation to prove that coNP ⊆ IP without using
polynomials. To this end, we replace the multivariate polynomials used in the proof with general
tensor codes. In particular, we replace the polynomial that is obtained from the arithmetization
with a tensor codeword that agrees with the formula on the Boolean hypercube. We perform this
replacement by generalizing the arithmetization technique to work with general error-correcting
codes instead of polynomials. This generalization is done by constructing “multiplication codes”,
which are error-correcting codes that emulate polynomial multiplication, and may be of independent
interest.

Finally, we consider the proof of the full IP theorem, i.e, IP = PSPACE. To this end, we devise
a protocol for verifying the validity of a quantified Boolean formula. In the known proofs of the
IP theorem, when considering quantified Boolean formulas we encounter the following obstacle: The
arithmetization of a quantified formula results in an arithmetic expression that contains polynomials
of very high degree, and not low degree as required by the sum-check protocol. This issue translates
in our proof to certain limitations of the aforementioned multiplication codes.

Recall that the original proofs of the IP theorem by [Sha92, She92] resolve the foregoing issue
by performing algebraic manipulations on the arithmetic expression to ensure that the involved
polynomials are of low degree. Obviously, such a solution can not applied in our setting. Instead,
we build on an idea from [GKR08], which shows that one can use the sum-check protocol to
reduce the degree of the polynomials. While their technique still uses the algebraic structure of
polynomials, we show that this technique can be adapted to our setting, allowing us to show
that IP = PSPACE.

We note that the first observation discussed above allows us to obtain generalization of the sum-
check protocol, which may be of independent interest, and might find more applications. Roughly,
we show the following: consider two tensor codewords, denoted c and d, such that it is hard to
compute a given coordinate of c, while it is easy to compute coordinates of d. Now, if c and d
agree on (part of) the message they encode, then one can use the sum-check protocol to reduce the
computation of coordinates of c to the computation of coordinates of d. For example, in order to
prove that coNP ⊆ IP, one can choose c to be the encoding of the truth table of the formula, and
choose d to be the arithmetization of the formula. In this case, one can use the sum-check protocol
to reduce the computation of a coordinate of the encoding c, which is intractable for a polynomial
time verifier, to a computation of the low degree extension d, which can be done in polynomial
time. For more details, see Section 4.

The organization of this paper. In Section 2, we review the basic notions of error-correcting
codes and define the notation that we use. In Section 3, we review the notion of tensor product

3

codes, and introduce the notion of multiplication codes. In Section 4, we revisit the sum-check
protocol and generalize it. In Section 5, we prove that coNP ⊆ IP, and along the way present our
generalization of the arithmetization technique. Finally, in Section 6, we prove the full IP theorem.

Remark regarding algebrization. Recall that the IP theorem is a classical example for a non-
relativizing result. Recently, [AW09] suggested a framework called “algebrization” as a generaliza-
tion of the notion of relativization, and showed that the IP theorem relativizes in this framework,
or in other words, the IP theorem “algebrizes”. We note that while our proof of the IP theorem
does not seem to algebrize, one can generalize the algebrization framework to include our proof as
well. Some details are given in a remark at the end of Section 5.

2 Preliminaries

For any n ∈ N, we denote [n]
def
= {0, 1 . . . , n− 1} — note that this is a non-standard notation.

Similarly, if x is a string of length n over any alphabet, we denote its set of coordinates by [n],
and in particular, the first coordinate will be denoted 0. For a vector x ∈ Fn and a sequence I of
coordinates in [n], we denote by x|I the projection of x to the coordinates in I.

Throughout the paper, we will refer to algorithms that take as input a finite field F. We assume
that the finite field F is represented, say, by a list of its elements and the corresponding addition
and multiplication tables. Unless stated explicitly otherwise, the running time of the algorithms is
always measured in terms of their input length.

For any two strings x, y of equal length n and over any alphabet, the relative Hamming distance

between x and y is the fraction of coordinates on which x and y differ, and is denoted by δ(x, y)
def
=

|{i ∈ [n] : xi 6= yi}| /n.
All the error-correcting codes that we consider in this paper are linear codes, to be defined next.

Let F be a finite field, and let k, ` ∈ N. A (linear) code C is a linear one-to-one function from Fk
to F`, where k and ` are called the code’s message length and block length, respectively. We will
sometimes identify C with its image C(Fk). Specifically, we will write c ∈ C to indicate the fact
that there exists x ∈ Fk such that c = C(x). In such case, we also say that c is a codeword of C.
The relative distance of a code C is the minimal relative Hamming distance between two different

codewords of C, and is denoted by δC
def
= minc1 6=c2∈C {δ(c1, c2)}.

Due to the linearity of C, there exists an n× k matrix G, called the generator matrix of C, such
that for every x ∈ Fk it holds that C(x) = G ·x. Observe that given the generator matrix of C one
can encode messages by C as well as verify that a string in F` is a codeword of C in time that is
polynomial in `. Moreover, observe that the code C always encodes the all-zeroes vector in Fk to
the all-zeroes vector in F`.

We say that C is systematic if the first k symbols of a codeword contain the encoded message,
that is, if for every x ∈ Fk it holds that (C (x))|[k] = x. By applying a change of basis (which can
be implemented using Gaussian elimination), we may assume, without loss of generality, that C is
systematic up to a permutation of the coordinates.

The following fact asserts the existence of (rather weak) linear codes. Such codes are all we
need for this paper.

Fact 2.1. The exists an algorithm that when given as input k ∈ N and δ ∈ (0, 1) and a finite field F
such that |F| ≥ poly (1/ (1− δ)), runs in time that is polynomial in k, log |F|, and 1/ (1− δ), and
outputs the generator matrix of a systematic linear code C over F that has message length k, block

length `
def
= k/poly (1− δ), and relative distance at least δ.

4

Fact 2.1 can be proved via a variety of techniques from coding theory, where many of them do
not use polynomials (see, e.g., [Var57, ABN+92, GI05]3).

3 Tensor Product Codes and Multiplication Codes

In this section, we review the notion of tensor product of codes (in Section 3.1) and introduce the
notion of multiplication codes (in Section 3.2). We note that while the tensor product is a standard
operation in coding theory, and a reader who is familiar with it may skip Section 3.1, with the
exception of Propositions 3.7 and 3.8 which are non-standard. On the other hand, the notion of
multiplication codes is a non-standard notion that we define for this work (though it may be seen
as a variant of the notion of error-correcting pairs, see [Köt92, Pel92, Sud01, Lect. 11 (1.4)]).

3.1 Tensor Product of Codes

In this section, we define the tensor product operation on codes and present some of its properties.
See [MS78] and [Sud01, Lect. 6 (2.4)] for the basics of this subject.

Definition 3.1. Let R : FkR → F`R , C : FkC → F`C be codes. The tensor product code R ⊗ C is
a code of message length kR · kC and block length `R · `C that encodes a message x ∈ FkR·kC as
follows: In order to encode x, we first view x as a kC × kR matrix, and encode each of its rows via
the code R, resulting in a kC × `R matrix x′. Then, we encode each of th columns of x′ via the
code C. The resulting `C × `R matrix is defined to be the encoding of x via R⊗ C.

The following fact lists some of the basic and standard properties of the tensor product operation.

Fact 3.2. Let R : FkR → F`R , C : FkC → F`C be linear codes. We have the following:

1. An `C × `R matrix x over F is a codeword of R ⊗ C if and only if all the rows of x are
codewords of R and all the columns of x are codewords of C.

2. Let δR and δC be the relative distances of R and C respectively. Then, the code R ⊗ C has
relative distance δR · δC .

3. The tensor product operation is associative. That is, if D : FkD → F`D is a code then
(R⊗ C)⊗D = R⊗ (C ⊗D).

The following standard feature of tensor codes will be very useful.

Fact 3.3. Let R and C be as before and let r ∈ R and c ∈ C. Define the tensor product r ⊗ c of r
and c as the `C × `R matrix defined by (r ⊗ c)i,j = ci · rj. Then, r ⊗ c is a codeword of R⊗ C.

Proof. Observe that each row of r ⊗ c is equal to r multiplied by a scalar, and therefore it is a
codeword of R. Similarly, each column of r⊗ c is a codeword of C. By Item 1 of Fact 3.2, it follows
that r ⊗ c ∈ R⊗ C, as required. �

The associativity of the tensor product operation allows us to use notation such as C ⊗C ⊗C,
and more generally:

3We note that the work of [GI05] does make use of polynomials, but this use of polynomials can be avoided at the
expense of having somewhat worse parameters, which we can still afford in this work. Also, we note that the work
of [ABN+92] requires |F| ≥ exp (1/ (1− δ)), but this limitation can be waived by means of concatenation.

5

Notation 3.4. Let C : Fk → F` be a code. For every m ∈ N we denote by C⊗m : Fkm → F`m the
code C ⊗ C ⊗ . . .⊗ C︸ ︷︷ ︸

m

. Formally, C⊗m = C⊗m−1 ⊗ C.

Notation 3.5. When referring to the code C⊗m and its codewords, we will often identify the
sets of coordinates [km] and [`m] with the hypercubes [k]m and [`]m respectively. Using the latter
identification, one can view a string x ∈ Fkm as a function x : [k]m → F, and view strings in F`m

similarly. With a slight abuse of notation, we say that C⊗m is systematic if for every codeword
c ∈ C⊗m, the restriction of c to [k]m equals the message encoded by c. It is easy to see that if C is
systematic (in the usual sense), then C⊗m is systematic as well.

Using Fact 3.2, one can prove by induction the following.

Fact 3.6. Let C : Fk → F` be a code. Then, the codewords of C⊗m are precisely all the functions
f : [`]m → F such that the restriction of f to any axis-parallel line of the hypercube is a codeword
of C. That is, a function f : [`]m → F is a codeword of C⊗m if and only if for every 1 ≤ t ≤ m and
i1, . . . , it−1, it+1, . . . , im ∈ [`] it holds that the function f(i1, . . . , it−1, ·, it+1, . . . , im) is a codeword
of C.

Multivariate polynomials as tensor product codes. It is interesting to note that multi-
variate polynomials of bounded individual degree can be viewed as tensor products of univariate
polynomials of bounded degree, i.e., tensor products of Reed-Solomon codes. More specifically,
there is a folklore theorem that says that a multi-variate function f : Fm → F is a multi-variate
polynomial of individual degree d if and only if its restriction to every axis-parallel line is a degree
d univariate polynomial (i.e. for every 1 ≤ t ≤ m and α1, . . . , αt−1, αt+1, . . . , αm ∈ F it holds that
the function f(α1, . . . , αt−1, ·, αt+1, . . . , αm) is a degree d univariate polynomial). Now, if we view
degree d univariate polynomials as a Reed-Solomon code with coordinate set [`] = F, then we get
by Fact 3.6 that m-variate polynomials of individual degree d are exactly the codewords of the
m-th tensor power of this Reed-Solomon code. For a proof of the folklore theorem in the bivariate
case, see [PS94, Prop. 2].

Less standard features. We turn to prove two less standard features of the tensor product
operation that will be useful in Section 4. Recall that for any linear code, it holds that every
coordinate of a codeword can be expressed as a linear combination of the message coordinates.
The following claim says that in the case of tensor codes, this linear combination has a nice “sum-
check-like” form. We will use this claim later to show that one can use a variant of the sum-check
protocol to evaluate the coordinates of a tensor codeword.

Claim 3.7. Let C : Fk → F` be a systematic code, and let m ∈ N. Then, for every coordinate
(i1, . . . , im) ∈ [`]m there exist scalars αt,j ∈ F (for every 1 ≤ t ≤ m and j ∈ [k]) such that for every
codeword c ∈ C⊗m it holds that

c(i1, . . . , im) =
∑
j1∈[k]

α1,j1 ·
∑
j2∈[k]

α2,j2 · . . .
∑
jm∈[k]

αm,jm · c(j1, . . . , jm)

Furthermore, the coefficients αt,j can be computed in polynomial time from the tuple (i1, . . . , im)
and the generator matrix of C.

Proof. By induction on m. Suppose that m = 1. In this case, c is a codeword of C. Let i1 ∈ [`].
Since C is a linear function, it holds that c(i1) is a linear combination of the elements of the

6

message encoded by c. Since C is systematic, it holds that c (0) , . . . , c(k − 1) are equal to the
message encoded by c. Thus, we get that c(i1) is a linear combination of c (0) , . . . , c(k − 1), as
required. Furthermore, the corresponding coefficients α1,j are simply the corresponding row in the
generator matrix of C.

We now assume that the claim holds for some m ∈ N, and prove it for m+ 1. Let C : Fk → F`
be a systematic code, let c ∈ C⊗m+1, and let (i1, . . . , im+1) ∈ [`]m+1 be a coordinate of c. We first
observe that by Fact 3.6, it holds that c(·, i2, . . . , im+1) is a codeword of C. Thus, by the same
considerations as in the case of m = 1, it follows that there exist coefficients α1,j1 ∈ F for j1 ∈ [k]
such that

c(i1, . . . , im+1) =
∑
j1∈[k]

α1,j1 · c(j1, i2, . . . , im+1)

Next, observe that Fact 3.6 implies that for every j1, it holds that c(j1, ·, . . . , ·︸ ︷︷ ︸
m

) is a codeword

of C⊗m. The induction hypothesis now implies that there exist coefficients αt,j ∈ F (for every
2 ≤ t ≤ m+ 1 and j ∈ [k]) such that for every j1 ∈ [k] it holds that

c (j1, i2, . . . , im+1) =
∑
j2∈[k]

α2,j2 · . . .
∑

jm+1∈[k]

αm+1,jm+1 · c(j1, . . . , jm+1)

Note that the latter coefficients αt,j do not depend on j1. It follows that

c(i1, . . . , im+1) =
∑
j1∈[k]

α1,j1 ·
∑
j2∈[k]

α2,j2 · . . .
∑

jm+1∈[k]

αm+1,jm+1 · c(j1, . . . , jm+1)

as required. Furthermore, it is easy to see that the coefficients αt,j can indeed be computed in
polynomial time. �

The following claim says that the intermediate sum that occurs in a single step of the sum-check
protocol is a codeword of C. This is the key property used in each single step of the sum-check
protocol.

Claim 3.8. Let C : Fk → F` be a code, let m ∈ N, and let c ∈ C⊗m. Then, for every sequence of
scalars αt,j (for every 2 ≤ t ≤ m and j ∈ [`]) it holds that the function f : [`]→ F defined by

f(j1) =
∑
j2∈[`]

α2,j2 ·
∑
j3∈[`]

α3,j3 · . . .
∑
jm∈[`]

αm,jm · c(j1, . . . , jm)

is a codeword of C.

Proof. The proof is by induction on m. For m = 1 the claim is trivial. We assume that the claim
holds for some m ∈ N, and prove it for m+ 1. Let C : Fk → F` be a code, let c ∈ C⊗m+1, and let
αt,j be scalars for every 2 ≤ t ≤ m+ 1 and j ∈ [`]. We wish to show that the function f : [`]→ F
defined by

f(j1)
def
=
∑
j2∈[`]

α2,j2 · . . .
∑

jm+1∈[`]

αm+1,jm+1 · c(j1, . . . , jm+1)

is a codeword of C. To this end, let us observe that Fact 3.6 implies that for every jm+1 ∈ [`], the
function gj2 : [`]m → F defined by

gjm+1(j1, , . . . , jm)
def
= c(j1, . . . , jm, jm+1)

7

is a codeword of C⊗m. Therefore, by the induction hypothesis, the function hjm+1 : [`]→ F defined
by

hjm+1(j1)
def
=

∑
j2∈[`]

α2,j2 · . . .
∑
jm∈[`]

αm,jm · gjm+1(j1, . . . , jm)

is a codeword of C. Now, observe that we can express f as

f(j1) =
∑

jm+1∈[`]

αm+1,jm+1 · hjm+1(j1)

In other words, it holds that f is a linear combination of codewords of C. By the linearity of C, it
follows that f is a codeword of C. �

3.2 Multiplication codes

The arithmetization technique, which transforms a Boolean formula into a low-degree polynomial,
uses two basic properties of polynomials: The first property is that low-degree polynomials form a
linear subspace. The second property is that the product of two low-degree polynomials is a low-
degree polynomial (provided that the field is sufficiently large compared to the degree). Therefore,
in order to generalize the arithmetization technique to use general error-correcting codes, we would
like to have error-correcting codes with similar properties. The first property is attained by every
linear code. The challenge is to obtain codes emulating the second “multiplication” property. To
this end, we use the following notation.

Notation 3.9. Let F be a finite field, let ` ∈ N, and let u, v ∈ F`. Then, we denote by u · v the
string in F` defined by

(u · v)i = ui · vi

We can now phrase the multiplication property of polynomials as follows. If c1 and c2 are
codewords of polynomial codes (of sufficiently low degree), then c1 · c2 is a codeword of a another
polynomial code (of a higher degree). The following proposition shows that one can construct codes
with such property without using polynomials.

Proposition 3.10. For every k ∈ N, δ ∈ (0, 1) and a finite field F such that |F| ≥ poly (1/ (1− δ)),
there exists a triplet (CA, CB, CM) of linear codes over F that have the following properties:

1. Multiplication: For every cA ∈ CA and cB ∈ CB it holds that cA · cB ∈ CM .

2. CA and CB have message length k, and CM has message length k2.

3. CA, CB, and CM all have block length `
def
= k2/poly (1− δ), and relative distance δ.

4. CA and CB are systematic.

Furthermore, the exists an algorithm that when given as input k, δ, and F, runs in time that is
polynomial in k, log |F|, and 1/ (1− δ), and outputs the generating matrices of CA, CB and CM .

Remark 3.11. Again, it is trivial to construct codes as in Proposition 3.10 using polynomials.
Indeed, taking CA, CB, and CM to be Reed-Solomon codes of appropriate degree would yield
codes with the same multiplication property and with better parameters. The novelty of our proof
of Proposition 3.10 is that the construction of the codes is based on generic codes, and not on
polynomial codes. Specifically, we will only use the tensor product operation.

8

Proof. The algorithm begins by invoking the algorithm of Fact 2.1 on input k,
√
δ, and F. This

results in a systematic code C with message length k, relative distance
√
δ, and block length4 `C =

k/poly
(

1−
√
δ
)
≤ k/poly (1− δ). Next, the algorithm sets ` = `2C and constructs the generating

matrices of three codes C ′A, C ′B, and C ′M that satisfy all the requirements of the proposition except
that C ′B is not systematic. The codes C ′A, C ′B, and C ′M are defined as follows:

1. The codewords of C ′A are precisely all the `C × `C matrices cA such that all the rows of cA
are identical and are equal to some codeword of C.

2. C ′B is defined similarly to C ′A, but with columns instead of rows.

3. The code C ′M is the code C⊗2.

It is easy to see that C ′A, C ′B, and C ′M have the required parameters and that their generating
matrices can be constructed in polynomial time. We now show that for every cA ∈ C ′A and
cB ∈ C ′B it holds that cA · cB ∈ C ′M . To this end, recall that cA is an `C × `C matrix all of whose
rows are equal to some codeword cr of C, whereas cB is an `C × `C matrix all of whose columns
are equal to some codeword cc of C. Next, observe that cA · cB = cr ⊗ cc, so it follows by Fact 3.3
that cA · cB ∈ C2 = C ′M .

Finally, the algorithm constructs the codes CA, CB, and CM from the codes C ′A, C ′B, and C ′M
in the following way: the coordinates of the codes are permuted such that the coordinates of the
main diagonal of the `C × `C matrices become the first `C coordinates of the codeword. It can
be verified that this permutation preserves the multiplication property and the parameters of the
code, and that the codes CA and CB that are obtained from this permutation are systematic. �

It is important to note that the multiplication of the codes of Proposition 3.10 is much more
limited than the multiplication of polynomial codes. Specifically, the multiplication of polynomials
can be applied many times. That is, if c1, . . . , ct are codewords of polynomial codes, then c1 · · · ct
is also a codeword of a polynomial code, as long as the degrees of c1, . . . , ct are sufficiently small
compared to t and |F|. On the other hand, Proposition 3.10 only allows the multiplication of two
codewords. This limitation is the reason that our emulation of the arithmetization technique in
Section 5 is somewhat more complicated than the standard arithmetization.

Remark 3.12. It is possible to generalize the construction of Proposition 3.10 to allow multipli-
cation of more codewords. However, the generalized construction yields codes with block length
that is exponential in the number of multiplications allowed, and therefore we can only afford a
constant number of multiplications.

The tensor product of multiplication codes. The following proposition shows that applying
the tensor product operation preserves the multiplication property of codes.

Proposition 3.13. Let C1, C2, and C3 be codes of the same block length such that for every two
codewords c̃1 ∈ C1 and c̃2 ∈ C2 it holds that c̃1 · c̃2 ∈ C3. Then, for every m ∈ N, and for every
c1 ∈ C⊗m1 , c2 ∈ C⊗m2 , it holds that c1 · c2 ∈ C⊗m3 .

4The inequality can be seen by defining α
def
= 1− δ, noting that

√
δ =
√

1− α ≤
√

(1− α/2)2 = 1−α/2, and then

observing that the latter yields 1−
√
δ ≥ 1− (1− α/2) = (1− δ)/2.

9

Proof. Let ` ∈ N be the block length of C1, C2, and C3, and fix m ∈ N. Let c1 ∈ C⊗m1 ,
c2 ∈ C⊗m2 be codewords. We view c1, c2 and c1 · c2 as functions from [`]m to F. By Fact 3.6, for
every 1 ≤ t ≤ m and i1, . . . it−1, it+1, . . . , im ∈ [`] it holds that c1(i1, . . . , it−1, ·, it+1, . . . , im) and
c2(i1, . . . , it−1, ·, it+1, . . . , im) are codewords of C1 and C2 respectively. The multiplication property
of C1, C2, and C3 now implies that for every 1 ≤ t ≤ m and i1, . . . it−1, it+1, . . . , im ∈ [`] it holds
that

(c1 · c2) (i1, . . . , it−1, ·, it+1, . . . , im)

is a codeword of C3. By applying Fact 3.6 again, but now in the reverse direction, the latter claim
implies that c1 · c2 is a codeword of C⊗m3 , as required. �

4 The Sum-Check Protocol Revisited

In this section, we show a generalization of the sum-check protocol, which views the sum-check
protocol as a protocol for reducing the evaluation of one tensor codeword to the evaluation of
another tensor codeword. We will use this generalization both in the proof of coNP ⊆ IP and of
IP = PSPACE. In order to explain this idea and explain why it is useful, we need the following
definition of “consistency”, which generalizes the notion of the encoding of a message.

Definition 4.1. Let C : Fk → F` be a code, let k′,m ∈ N be such that k′ ≤ k. We say that a
codeword c : [`]m → F of C⊗m is consistent with a function f : [k′]m → F if c agrees with f on [k′]m.

Let φ be a (possibly quantified) Boolean formula over m variables (if φ is quantified, then m is
the number of free variables). We say that c is consistent with φ if c is consistent with the truth
table of φ, viewed as a function from {0, 1}m to F.

Remark 4.2. Observe that if C is systematic, then every codeword is consistent with the message
it encodes. In particular, if k′ = k in the above definition, then c is consistent with f if and only if
c is the encoding of f . On the other hand, if k′ < k, then there may be many codewords of C⊗m

that are consistent with f .

As an example for the notion of consistency, note that the arithmetization of a Boolean formula φ
yields a multivariate polynomial that is consistent with φ. Observe, however, that the latter
polynomial is not the encoding of the truth table of φ via a Reed-Muller code; that is, this polynomial
is not the low-degree extension of the truth table of φ. Thus, the arithmetization also provides an
example for the difference between the encoding of a truth table and a codeword that is consistent
with the truth table.

Now, our generalization of the sum-check protocol says roughly the following: Let c be a
codeword of a code C⊗m, and let d be a codeword of a code D⊗m that is consistent with the
message encoded by c. Then, the sum-check protocol reduces the task of verifying a claim of the
form c(i) = u to the task of verifying a claim of the form d(r) = v (where i and r are coordinates
of c and d respectively, and u, v ∈ F).

Such a reduction is useful, for example, when the verifier can compute d(r) easily, but can not
compute c(i) efficiently without the help of the prover. As a concrete example, consider the case
where c is the low-degree extension of the truth table of a formula φ and d is the polynomial obtained
from the arithmetization of φ. Then, the sum-check protocol reduces the (hard) task of evaluating
the low-degree extension (i.e., computing c(i)) to the (easy) task of evaluating the arithmetization
polynomial (i.e. computing d(r)). A related example is the original proof of coNP ⊆ IP, where
the sum-check protocol is used to reduce the evaluation of an exponential sum (which is hard for
the verifier) to the evaluation of the polynomial obtained from the arithmetization (which is easy
for the verifier).

10

We first give an informal statement of the reduction, and then give the formal statement.

Theorem 4.3 (The sum-check protocol, informal). Let C and D be codes, and let c ∈ C⊗m and
d ∈ D⊗m be codewords such that d is consistent with the message encoded by c. Then, there exists
an interactive protocol that takes as input a claim of the form “c

(
i
)

= u” and behaves as follows:

� Completeness: If the claim is correct (i.e., c
(
i
)

= u), and the prover is honest, then the
protocol outputs a correct claim of the form “d(r) = v”.

� Soundness: If the claim is incorrect (i.e., c
(
i
)
6= u), then even if the prover cheats, the pro-

tocol either rejects or outputs an incorrect claim of the form “d(r) = v” with high probability
(where probability is taken over the coin tosses of the verifier).

Theorem 4.4 (The sum-check protocol, formal). There exists a public coin interactive protocol
between an unbounded prover and a polynomial time verifier that behaves as follows:

� Input: The parties enter the protocol with a common input that contains the following:

� A finite field F.

– The generating matrices of codes C : FkC → F`C and D : FkD → F`D such that C is
systematic, kD ≥ kC , and D has relative distance δD.

– A pair
(
i, u
)
, where i ∈ [`C]m and u ∈ F.

� Output: At the end of the protocol, the verifier either rejects, or outputs a pair (r, v), where
r ∈ [`D]m and v ∈ F.

� Efficiency: The verifier runs in time that is polynomial in |F|, m, `C , and `D and a honest
prover runs in time that is polynomial in the block length of D⊗m, which is `mD . The protocol
has O(m) rounds, and the number of bits that are exchanged is O(m · `D · logF).

The output satisfies the following condition. For every two codewords c ∈ C⊗m, d ∈ D⊗m such that
d is consistent with the message encoded by c, the following holds:

� Completeness: If c
(
i
)

= u, then there exists a strategy for the prover that makes the verifier
output with probability 1 a pair (r, v) such that d (r) = v.

� Soundness: If c
(
i
)
6= u, then for every strategy taken by the prover, the probability that the

verifier outputs a pair (r, v) for which d (r) = v is at most m · (1− δD).

In the both cases, the probability is taken over the randomness of the verifier. Furthermore, the
output r depends only on the randomness used by the verifier, on F and on `D. In particular, r is
independent of the input

(
i, u
)
.

Remark 4.5. The statement of Theorem 4.4 may seem confusing, since the codewords c and d
are not given to the prover and verifier in any way. The codewords c and d should be thought of
as determined by the verifier and the prover before the protocol begins, while formally c and d are
chosen by the prover.

More specifically, in this work we will use Theorem 4.4 as a sub-protocol of higher level protocols.
In those applications, the prover will be forced to use specific choices of c and d in order to convince
the verifier of the high level protocol. In particular, those specific choices of c and d will be
determined by the high level protocol.

11

Proof. Let F, C, D, m be as in the theorem. For convenience, throughout the description of the
protocol we fix specific choices of the codewords c and d as in the theorem. However, the strategy
of the verifier described below does not depend on the specific choice of c and d. Note that the
strategy of the prover must depend on the choice of c and d.

We begin with recalling that by Claim 3.7, there exist scalars αt,j ∈ F for 1 ≤ t ≤ m and j ∈ [k]
such that for every choice of c it holds that c

(
i
)

= u if and only if∑
j1∈[kC]

α1,j1 ·
∑

j2∈[kC]

α2,j2 · . . .
∑

jm∈[kC]

αm,jm · c(j1, . . . , jm) = u

Moreover, the coefficients αt,j can be computed efficiently. We know that c is systematic, and that
d is consistent with the message encoded by c, and therefore c and d agree on [kC]m. Hence, in
order to verify that c

(
i
)

= u, it suffices to verify that∑
j1∈[kC]

α1,j1 ·
∑

j2∈[kC]

α2,j2 · . . .
∑

jm∈[kC]

αm,jm · d(j1, . . . , jm) = u

From this point on, the prover and verifier compute the above exponential sum exactly as in the
standard sum-check protocol, except that univariate polynomials are replaced by codewords of D.
Details follow.

The verifier and prover engage in an iterative protocol of m iterations. Let v0
def
= u. When the

parties enter the t-th iteration, the prover should convince the verifier that the following equality
holds for some r1, . . . , rt−1 ∈ [`] and vt−1 that are determined in the previous iterations.∑

jt∈[kC]

αt,it · . . .
∑

jm∈[kC]

αm,im · d(r1, . . . , rt−1, jt, . . . , jm) = vt−1

To this end, let us consider the function h : [`]→ F defined by

h(jt) =
∑

jt+1∈[jC]

αt+1,jt+1 · . . .
∑

jm∈[kC]

αm,jm · d(r1, . . . , rt−1, jt, . . . , jm)

Observe that by Claim 3.8 the function h is a codeword of D. This follows by applying Claim 3.8
to the function d(r1, . . . , rt−1, ·, ·, . . . , ·), while recalling that this function is a codeword of Dm−t+1

by Fact 3.6.
The verifier expects an honest prover to send the function h (represented by its truth table).

Let h′ : [`]→ F be the function sent by the prover. The verifier checks that h′ is a codeword of D,
and that

∑
jt∈[kc] at,it ·h

′(jt) = vt−1, and rejects if any of the checks fails. Next, the verifier chooses
rt ∈ [`] uniformly at random and sends it to the prover. The parties now enter the (t+ 1)-th

iteration of the protocol with vt
def
= h′(rt). Finally, at the end of the protocol, the verifier outputs

the pair (r, v) where r
def
= (r1, . . . , rm) and v

def
= vm.

The “efficiency” part of the theorem is easy to verify. The completeness of the protocol is clear,
and analysis of the soundness works exactly as the standard sum-check protocol. In particular, if
the parties enter an iteration with a false claim (i.e., the prover cheats), then one of the following
two cases must hold:

� the verifier rejects, since h′ does not pass the checks, or,

� h′ is a codeword of D but is not equal to h, in which case it holds that h′(rt) 6= h(rt) with
probability at least δD.

Thus, the probability that the parties enter the next iteration with a true claim is at most 1− δD.
The “furthermore” part of the theorem, which says that r depends only on the randomness

used by the verifier, follows immediately from the description of the protocol. �

12

5 A Proof of coNP ⊆ IP

In this section we prove that coNP ⊆ IP using tensor codes. We begin with an overview of the
proof, and then provide the full details.

5.1 Proof overview

In order to prove that coNP ⊆ IP, it suffices to design a protocol for verifying that a Boolean
formula is unsatisfiable. For every Boolean formula φ, let us denote by hφ the encoding of the truth
table of φ via some tensor code of relative distance at least 1

2 . Observe that if φ is unsatisfiable
then hφ is the all-zeroes codeword, since the encoding of the all-zeroes message via a linear code
is always the all-zeroes codeword. On the other hand, if φ is satisfiable then hφ is non-zero on at
least half of its coordinates.

A toy problem. We begin by making the unjustified assumption that for every formula φ and
coordinate i of hφ we can compute hφ(i) efficiently. Under this assumption, it is easy to show that
coNP ⊆ RP. This is true since we can use the following randomized algorithm for checking the
unsatisfiability of a formula: When given as input a formula φ, the algorithm chooses a coordinate
i uniformly at random, and accepts if and only if hφ(i) = 0.

Of course, the above assumption seems unjustified. The point is that, while we may not be able
to compute hφ(i) efficiently, we can devise an interactive protocol that allows an efficient verifier to
verify the value of hφ(i). By using this protocol inside the aforementioned “algorithm”, we obtain a
protocol for verifying the unsatisfiability of a Boolean formula. It remains to show how to construct
a protocol for verifying the value of hφ(i).

Proof via Arithmetization. We now show a protocol for verifying the value of hφ(i) that uses
arithmetization, and we will later show how to avoid the use of arithmetization. Let φ be a Boolean
formula over n variables, and let pφ the polynomial that is obtained from the arithmetization of φ.
We observe that pφ is consistent with the formula φ, and it can be shown that pφ is a codeword
of some tensor code5. Therefore, we can use the sum-check protocol of Theorem 4.4 to reduce
the task of verifying a claim of the form hφ(i) = u to the task of verifying a claim of the form
pφ(r) = v. Finally, observe that the verifier can compute the value pφ(r) by itself, and thus verify
that pφ(r) = v. This concludes the description of the protocol.

Proof via Error-Correcting Codes. In order to remove the use of arithmetization in the
foregoing protocol, we examine the properties of the polynomial pφ on which we relied, and construct
a codeword cM,φ that has the same properties without using polynomials. Specifically, the codeword
cM,φ will possess the following properties:

1. cM,φ is a codeword of some tensor code.

2. cM,φ is consistent with φ.

3. For every coordinate j, the value cM,φ(j) can be computed in polynomial time.

5To see it, assume that pφ is an n-variate polynomial whose individual degrees are bounded by some number d. It
turns out that the family of such polynomials is a tensor code. Specifically, if we let RS denote the Reed-Solomon code
of univariate polynomials of degree at most d, then it is well-known that the aforementioned family of polynomials is
exactly RSn.

13

It can be observed that these properties are the only properties of p that we needed. This yields
the following protocol: In order to verify a claim of the form hφ(i) = u, the verifier reduces it to
a claim of the form cM,φ(r) = v using the sum-check protocol of Theorem 4.4. Then, the verifier
computes cM,φ(r) by itself, and accepts if and only if cM,φ(r) = v.

Specialized formulas and the construction of cM,φ. In general, we do not know how to
construct the above codeword cM,φ for every formula φ, but only for “specialized formulas”, which
will be discussed shortly. To resolve this issue, the protocol begins by transforming φ into an
equivalent specialized formula φsp, and then proceeds as before while working with φsp. This
issue is a direct consequence of the limitation of our multiplication codes that allows only one
multiplication, as discussed after Proposition 3.10.

A “specialized formula” is a formula φ that can be written as φ = φonce ∧ φeq, where φonce is a
read-once formula6, and φeq is a conjunction of equality constraints. The point is that since φonce
and φeq are very simple, it is easy to evaluate the encoding of their truth tables via any (tensor)
code. Now, we let cA,φonce and cB,φeqbe the encodings of φonce and φeq via the multiplication codes
of Proposition 3.10, and set cM,φ = cA,φonce · cB,φeq . It is easy to see that the codeword cM,φ is
consistent with φ. Moreover, the codeword cM,φ is easy to evaluate, since cA,φonce and cB,φeq are
easy to evaluate.

We stress that while cA,φonce and cB,φeq are the unique encodings of the truth tables of φonce and
φeq (via the corresponding codes), the codeword cM,φ is not the encoding of the truth table of φ
(via the corresponding code), but merely a codeword that is consistent with φ. This is a side-effect
of the multiplication operation.

Comparison with the arithmetization technique. We view the construction of the codeword
cM,φ as a generalization of the arithmetization technique, since it produces a codeword that has
essentially the same properties of the polynomial pφ, but does it using any tensor code and not
necessarily a polynomial code. However, one should note that, while the codeword cM,φ can be
used to replace pφ in the above argument, it may not be possible to do so in every argument that
involves arithmetization (e.g. some of the proofs of the PCP theorem). That is, our technique
should be thought as a generalization of the arithmetization technique only in the context of the
IP theorem.

Moreover, our construction of the codeword cM,φ can only be applied to specialized formulas,
while the arithmetization technique can be applied to any formula.

5.2 Full proof

We turn to describe the full details of the proof. We begin by defining the notion of “specialized
formula” mentioned above.

Definition 5.1. A specialized formula is a formula φ that can be written as φ = φonce ∧ φeq, where

1. φonce is a read-once formula, i.e., every variable occurs in φonce exactly once, and

2. φeq is a conjunction of equality constraints over the variables of φ.

We can now state the “arithmetization generalization” discussed above, that is, the construction
of the codeword cM,φ.

6A read-once formula is a formula in which every variable occurs at most once.

14

Lemma 5.2. Let F be a finite field, and let CM : F4 → F` be the multiplication code generated
by Proposition 3.10 for k = 2 and any relative distance δ. Then, there exists a polynomial time
algorithm that behaves as follows:

� Input: The algorithm is given as input a specialized Boolean formula φ over n variables, the
generator matrix of CM , and a coordinate i ∈ [`]n.

� Output: The algorithm outputs cM,φ

(
i
)
, where cM,φ is a fixed codeword of (CM)⊗n that is

consistent with φ and is determined by φ.

We prove Lemma 5.2 in Section 5.2.1, but first, we show how to prove that coNP ⊆ IP based
on Lemma 5.2. To this end, we use the following standard fact that says that every formula can
be transformed into an “equivalent” specialized formula.

Fact 5.3. Let φ be a Boolean formula over n variables, and let m be the total number of occurrences
of variables in φ. Then, there exists a specialized formula φsp over m variables that is satisfiable
if and only if φ is satisfiable. Furthermore, φsp can be computed in polynomial time from φ. We
refer to φsp as the the specialized version of φ.

Proof. φsp is obtained from φ by applying the standard transformation for making each variable
appear at most three times. That is, φsp is constructed by

1. Replacing each occurrence of a variable in φ with a new variable, which may be thought as a
“copy” of the original variable.

2. Adding equality constraints for each pair of variables that are copies of the same variable
in φ.

It is easy to see that φsp satisfies the requirements. �

Theorem 5.4. coNP ⊆ IP

Proof. We design a protocol for verifying the unsatisfiability of a Boolean formula. Let φ be a
Boolean formula over n variables and m occurrences, and let φsp be its specialized version con-
structed by Fact 5.3. It suffices to design a protocol for verifying the unsatisfiability of φsp.

Let F be a finite field of size at least 4m, let CM be the code generated by Proposition 3.10 for
k = 2 and relative distance δ = 1 − 1/2m, and let cM = cM,φsp be the codeword whose existence
is guaranteed by Lemma 5.2. Let H : F2 → F`H be any systematic linear code of distance at least
1− 1/2m (for example, one may use the |F|-ary Hadamard code), and let h = hφsp be the encoding
of the truth table of φsp via H⊗m. Note that h is the (unique) encoding of the truth table of φsp via
H⊗m, but may be hard to evaluate, while cM is merely a codeword of (CM)⊗m that is consistent
with φsp, but is easy to evaluate.

Observe that if φsp is unsatisfiable then h is the all-zeroes function, while if φsp is satisfiable
then at least

(
1− 1

2m

)m ≥ 1
2 fraction of the entries of h are non-zero. Thus, it suffices to check

that a random coordinate of h is non-zero.
At the beginning of the protocol, the verifier chooses a uniformly distributed tuple i ∈ [`H]m,

and sends it to the prover. The prover should prove to the verifier that h(i) = 0. To this end, the
prover and the verifier engage in the sum-check protocol of Theorem 4.4 with C = H, D = CM ,
c = h, d = cM , i = i, and u = 0. If the verifier does not reject at this stage, then the sum-check
protocol outputs a pair (r, v) that is expected to satisfy cM (r) = v. Finally, the verifier uses the
algorithm of Lemma 5.2 to compute cM (r), accepts if cM (r) = v, and rejects otherwise.

15

For the completeness of the protocol, note that if φsp is unsatisfiable, then h(i) = 0. Therefore,
by the completeness of the sum-check protocol of of Theorem 4.4, there exists a prover strategy
that guarantees that the verifier does not reject and outputs a pair (r, v) such that cM (r) = v. It
is easy to see that if the prover uses this strategy, the verifier will always accept.

For the soundness of the protocol, observe that if φsp is satisfiable, then h(i) 6= 0 with probability
at least 1

2 . Conditioned on h(i) 6= 0, the soundness of Theorem 4.4 guarantees that with probability
at least m · (1− δCM) ≥ 1

2 , the verifier either rejects or outputs a pair (r, v) such that cM (r) 6= v,
in which case the verifier rejects in the next step. It follows that if φ is satisfiable, then the verifier
rejects with probability at least 1

4 , which suffices for our purposes. �

5.2.1 Proof of Lemma 5.2

We turn to proving Lemma 5.2. Let φ be a specialized Boolean formula over n variables, and let
(CA, CB, CM) be the multiplication code generated by Proposition 3.10 for k = 2 and any relative
distance δ. We seek to construct a codeword cM = cM,φ of (CM)⊗n that is consistent with φ, and
such that the value of cM at any coordinate can be computed in polynomial time.

Recall that φ can be written as φ = φonce ∧ φeq, where φonce is a read-once formula and φeq is
a conjunction of equalities. Furthermore observe that the formulas φonce and φeq can be computed
from φ in polynomial time, by simply letting φeq be the conjunction of all the equality constraints
in φ.

We now show how to construct the codeword cM that is consistent with φ. Let cA be the
encoding of the truth table of φonce via (CA)⊗n, and let cB be the encoding of the truth table of

φeq via (CB)⊗n. We choose cM
def
= cA · cB. Observe that cA · cB is indeed consistent with φ, and

that it is a codeword of (CM)⊗n by Proposition 3.13.
It remains to show that for every coordinate i of cM , the value cM (i) can be computed efficiently.

Let ` denote the block length of CA, CB, and CM . Propositions 5.6 and 5.8 below imply that
for every i ∈ [`]n, the values cA(i) and cB(i) can be computed efficiently. It follows that for
every i ∈ [`]n, we can compute the value cM (i) efficiently by first computing cA(i) and cB(i) and
then setting cM (i) = cA(i) · cB(i). This concludes the proof of Lemma 5.2 up to the proofs of
Propositions 5.6 and 5.8.

We stress that while cA and cB are the unique encodings of φonce and φeq via (CA)⊗n and (CB)⊗n

respectively, cM is merely a codeword of (CM)⊗n that is consistent with φ, and not the encoding
of φ via (CM)⊗n. The reason is that, if we consider two messages x, y ∈ F2, then CA(x) ·CB(y) is a
codeword of CM that is consistent with x · y, but is not the encoding of x · y via CM ; in particular,
note that the message length of CM is greater than the length of x · y.

Notation 5.5. In the statements of the following propositions, we denote by C : F2 → F`C a fixed
arbitrary code, and for every Boolean formula ϕ over n variables, we denote by cϕ the encoding of
the truth table of ϕ via C⊗n.

Proposition 5.6 (Codeword for read-once formulas). There exists a polynomial time algorithm
such that when the algorithm is given as input a read-once Boolean formula ϕ, the generator matrix
of a code C of message length 2, and a coordinate i of cϕ, the algorithm outputs cϕ(i).

Proof. We show a recursive construction of a codeword cϕ, and use it later to derive a recursive
algorithm for computing the coordinates of cϕ. We have the following recursive construction:

1. If ϕ = xt for some Boolean variable xt, then cϕ is the encoding of the vector (0, 1) via C
(recall that the message length of C is 2).

16

2. Suppose that ϕ = ¬ϕ′ for some Boolean formula ϕ′ over n variables. Let 1n be the all-ones
function that maps all the elements of {0, 1}n to 1, and let c1n be the encoding of 1n via C⊗n.
Then, it holds that cϕ = c1n − cϕ′ .

3. Suppose that ϕ = ϕ1 ∧ ϕ2 for some Boolean formulas ϕ1 and ϕ2 over n1 and n2 variables
respectively. Observe that ϕ1 and ϕ2 must be over disjoint sets of variables, since by assump-
tion every variable occurs in ϕ exactly once. Let us relabel the variables of ϕ such that the
first n1 variables are the variables of ϕ1 and the last n2 variables are the variables of ϕ2. We
now obtain that cϕ = cϕ1 ⊗ cϕ2 .

4. If ϕ = ϕ1 ∨ ϕ2, then cϕ can be constructed from cϕ1 and cϕ2 using the de Morgan laws and
the previous cases.

The above recursive construction immediately yields the following recursive algorithm for comput-
ing cA,ϕ(i) where i = (i1, . . . , , in) ∈ [`C]n:

1. If ϕ = xt, then the algorithm computes cϕ directly by encoding the vector (0, 1) with C, and
outputs cϕ(i).

2. Suppose that ϕ = ¬ϕ′. In this case, the algorithm computes c1n(i) and cϕ′(i) and outputs
c1q(i)− cϕ′(i). The value cϕ′(i) is computed recursively. In order to compute c1n(i), observe
that c1n = c11 ⊗ . . .⊗ c11︸ ︷︷ ︸

n

. It therefore follows that

c1n(i) = c11(i1) · . . . · c11(in)

Thus, in order to compute c1n(i), the algorithm computes c11 by encoding the vector (1, 1)
with C, and outputs c11(i1) · . . . · c11(in).

3. Suppose that ϕ = ϕ1∧ϕ2. Again, we assume that the first n1 variables of ϕ are the variables of
ϕ1, and that the last n2 variables of ϕ are the variables of ϕ2. Also, observe that n = n1 +n2.
Then, it holds that

cϕ(i) = cϕ1(i1, . . . , in1) · cϕ2(in1+1, . . . , in)

The algorithm thus computes cϕ1(i1, . . . , in1) and cϕ2(in1+1, . . . , in) recursively and outputs
their product.

Clearly, the above algorithm computes cϕ(i) correctly. To see that the algorithm is efficient, observe
that for every gate in the formula, the algorithm performs a number of field operations that is
polynomial in n and in the block length of C (this can be verified easily by considering at each of
the above cases separately). Now, recall that the total number of gates in a read-once formula is
linear in the number of variables, since the number of variables is equal to the number of leaves in
the formula tree, the number of gates is equal to the number of internal nodes, and the number
of internal nodes in a binary tree is linear in the number of leaves. Thus, the algorithm performs
a total number of field operations that polynomial in n and the block length of C, which implies
that the algorithm runs in polynomial time in the length of its input. �

Remark 5.7. Note that the assumption that every variable occurs exactly once in ϕ is critical for
the proof of Proposition 5.6. Specifically, this assumption is used in handling the case of ϕ = ϕ1∧ϕ2,
and allows us to simulate the effect of multiplication using the tensor product operation (i.e., by
setting cϕ = cϕ1⊗cϕ2). Without the assumption, it could be the case that ϕ1 and ϕ2 have common
variables, which would imply that cϕ 6= cϕ1 ⊗ cϕ2 .

17

Proposition 5.8 (Codeword for equality constraints). There exists a polynomial time algorithm
such that when the algorithm is given as input a Boolean formula ϕ which is a conjunction of equality
constraints, the generator matrix of C, and a coordinate i of cϕ, the algorithm outputs cϕ(i).

Proof. We first deal with the special case in which ϕ is satisfied if and only if all its variables
are equal to each other. Let i ∈ [`C]n be a coordinate. We wish to compute cϕ(i) efficiently. By
Claim 3.7, there exist scalars αt,j ∈ F (for every 1 ≤ t ≤ n and j ∈ {0, 1}) such that

c(i) =
∑

j1∈{0,1}

α1,j1 ·
∑

j2∈{0,1}

α2,j2 · . . .
∑

jn∈{0,1}

αn,jn · cϕ(j1, . . . , jn)

By our assumption on ϕ, each term cϕ(j1, . . . , jn) in the above exponential sum is 1 if j1 = . . . = jn
and 0 otherwise. It thus follows that

cϕ(i) =
n∏
t=1

αt,0 +
n∏
t=1

αt,1

Now, the above sum is easy to compute, since by Claim 3.7 the coefficients αt,j can be computed
efficiently.

We turn to consider the general case, in which ϕ may be any conjunction of equality constraints
over its variables. In this case, one can partition the variables of ϕ to disjoint sets S1, . . . , St such
that two variables are in the same set if and only if they are equal in every satisfying assignment
of ϕ. For each such Sj , let ϕj be the formula over the variables in Sj that is satisfied if and only if
all the variables in Sj are equal. Observe that

ϕ = ϕ1 ∧ . . . ∧ ϕt

Let us relabel the variables of ϕ such that the first |S1| variables are the variables of S1, the next
|S2| variables are the variables of S2, etc. After the relabeling, it holds that

cϕ = cϕ1 ⊗ . . .⊗ cϕt

Therefore, if we let i be any coordinate of cϕ and denote i|Sj the restriction of i to Sj , it holds that

cϕ(i) = cϕ1(i|S1
) · · · cϕt(i|St)

Now, each of the formulas ϕj matches the special case we already dealt with, and therefore we
can efficiently compute the value cϕj (i|Sj). We can thus compute cϕ1(i|S1

) efficiently as well, as
required. �

Remark regarding algebrization. Recall that the arithmetization technique is the only non-
relativizing ingredient of the proof of the IP theorem. Indeed, a main motivation of the algebrization
framework of [AW09] was to try to capture the arithmetization technique. While our arithmeti-
zation generalization (Lemma 5.2) does not seem to fit into the algebrization framework, one can
prove the following “algebrization-like” variant of this lemma: Let O = {On : {0, 1}n → {0, 1}}n
be an infinite sequence of Boolean oracles, and let us denote CA,O = {CA,On}n where CA,On is the

encoding of the truth table On by (CA)⊗n. Then, there exists an algorithm that given oracle access
to CA,O satisfies the following requirement: when the algorithm is given as input a specialized
formula ϕ that contains oracle predicates from the sequence O and a coordinate i of cM,ϕ, the
algorithm outputs cM,ϕ(i). Here cM,ϕ is a codeword of (CM)⊗n that is consistent with ϕ, as before.

18

6 The Proof of IP = PSPACE

In this section, we finally prove the IP theorem, that is,

Theorem 6.1. IP = PSPACE.

Since TQBF is a PSPACE-complete problem, it suffices to devise an interactive protocol for
verifying the validity of a quantified Boolean formula. Recall that a quantified Boolean formula is
a logical expression of the form

Q1
y1∈{0,1}

Q2
y2∈{0,1}

. . . Qn
yn∈{0,1}

φ(y1, . . . , yn) (1)

where φ is a Boolean formula and each Qi denotes one of the quantifiers ∃ and ∀. A quantified
Boolean formula is said to be valid if and only if the expression evaluates to 1 (i.e., evaluates to
True). We wish to design an interactive protocol which takes as an input a quantified Boolean
formula, such that if the formula is valid the verifier accepts with probability 1, and otherwise
accepts with probability at most 1

2 .
We begin with an overview of the proof in Section 6.1, and then give the full details in Section 6.2.

We mention that our proof borrows ideas from the work of [GKR08].

6.1 Proof overview

The formulas ψt. Given a quantified formula as in (1), we define the following quantified formulas

ψt(y1, . . . , yt) = Qt+1
yt+1∈{0,1}

. . . Qn
yn∈{0,1}

φ(y1, . . . , yn)

That is, ψt is a formula in which y1, . . . , yt are free variables and yt+1, . . . , yn are bounded variables.
In particular, ψ0 is the original quantified formula and ψn is the formula φ. We also consider the
encodings of the truth table of ψt via (CA)⊗t and (CB)⊗t, and denote them by cA,t and cB,t (where
(CA, CB, CM) are the multiplication codes of Proposition 3.10).

We mention that the actual proof will work with the specialized version φsp instead of φ itself
(see Definition 5.1 and Fact 5.3). We ignore this technicality throughout this overview.

The structure of the protocol. Our interactive protocol begins by reducing the task of verifying
the validity of Formula (1) to the task of verifying a claim of the form

cA,1(i1) = vA,1 and cB,1(i1) = vB,1 (2)

where i1 is a coordinate of cA,1 and cB,1 — note that i1 is shared by both equalities in (2).
Next, the protocol proceeds to work in iterations: The prover and the verifier enter the t-th

iteration with a claim of the form

cA,t(it) = vA,t and cB,t(it) = vB,t (3)

Throughout the t-th iteration, the parties engage in a sub-protocol, in order to reduce the task of
verifying the claim in (3) to the task of verifying a claim of the same form about cA,t+1 and cB,t+1.

Eventually, the parties end up with a claim about cA,n and cB,n. This means that the prover
is required to prove a claim about encodings of the truth table of ψn = φ, which can be done in
the same way as in the proof of coNP ⊆ IP: The parties engage in the sum-check protocol in
order to reduce the claim about cA,n and cB,n to a claim about a codeword of (CM)⊗n that is
consistent with the truth table of φ, and then the verifier checks the latter claim by itself, by using
the “arithmetization generalization” (Lemma 5.2).

19

A single iteration. We now describe how a single iteration of the protocol is performed. Let us
focus on the t-th iteration, and assume that Qt+1 = ∀ (the case where Qt+1 = ∃ is similar). We
consider the codeword cM,t of (CM)⊗t constructed by setting each coordinate j of cM,t as follows:

cM,t(j) = cA,t+1(j, 0) · cB,t+1(j, 1) (4)

Observe that cM,t is indeed a codeword of (CM)⊗t and that it is consistent with the truth table
of ψt. Recall that our purpose is to reduce the verification of the claim in (3) to the verification of
the same claim for t+ 1. The codeword cM,t serves as a “bridge” between those two claims: On the
one hand, cM,t is consistent with the message encoded by cA,t and cB,t, whereas on the other hand
cM,t is related to cA,t+1 and cB,t+1 by Equality (4). Our strategy is to first reduce the verification
of the claim about cA,t and cB,t to the verification of a claim about cM,t, and then reduce the latter
to the verification of a claim about cA,t+1 and cB,t+1.

More specifically, the parties begin the iteration by reducing the task of verifying the claim
in (3) to the task of verifying an equality of the form

cM,t(r) = vM,t (5)

Such a reduction can be done by invoking the sum-check protocol of Theorem 4.4 twice in parallel,
once with C = CA and D = CM , and once with C = CB and D = CM , with the verifier using
the same randomness for both invocations. The reason for using the same randomness for both
invocations is that we want both invocations to output the same coordinate r.

Next, the prover sends to the verifier two functions fA and fB, which are expected to be
ct+1,A(r, ·) and ct+1,B(r, ·) respectively. The verifier checks that fA and fB are indeed codewords of
CA and CB respectively, and that fA(0) · fB(1) = vM,t, where vM,t is the value from Equality (5).
Finally, the verifier chooses a random coordinate s, and the parties enter the next iteration with
the claim

cA,t+1(r, s) = fA(s) and cB,t+1(r, s) = fB(s)

6.2 The full proof

Fix a quantified formula
Q1

y1∈{0,1}
. . . Qn

yn∈{0,1}
φ(y1, . . . , yn) (6)

where φ is a Boolean formula over n variables and m occurrences of variables.

Moving to specialized formulas. Our first step is moving to work with specialized formulas,
which will allow us to use the “arithmetization generalization” (Lemma 5.2). To this end, consider
the specialized version φsp of φ, whose existence is guaranteed by Fact 5.3, and let us denote
its variables by x1, . . . , xm. Recall that each variable xi′ of φsp is treated as a “copy” of some
variable yi. Let us relabel the variables of φsp such that for each 1 ≤ i ≤ n, the variable xi is a
copy of yi. Now, consider the formula

Q1
x1∈{0,1}

. . . Qn
xn∈{0,1}

∃
xn+1∈{0,1}

. . . ∃
xm∈{0,1}

φsp(x1, . . . , xm) (7)

Observe that that Formula (6) is valid if and only if Formula (7) is valid. For the rest of the proof,
we will work with the Formula (7). For convenience, we will denote Formula (7) as

Q1
x1∈{0,1}

. . . Qm
xm∈{0,1}

φsp(x1, . . . , xm) (8)

even though we know that Qn+1 = . . . = Qm = ∃.

20

The formulas ψi and their encodings. As in the above overview, we define formulas ψt, but
this time we define those formulas with respect to φsp. That is, for every 1 ≤ t ≤ m, we define

ψt(x1, . . . , xt) = Qt+1
xt+1∈{0,1}

. . . Qm
xm∈{0,1}

φsp(x1, . . . , xm)

Let (CA, CB, CM) be the multiplication codes that result from invoking the algorithm of Proposi-

tion 3.10 with k
def
= 2, δ

def
= 1− 1

2(m+1)2
, and with sufficiently large finite field F, and let ` be their

block length. For every 1 ≤ t ≤ m, we define cA,t and cB,t to be the encodings of the truth table
of ψt via (CA)⊗t and (CB)⊗t respectively.

A single iteration. The behavior of the parties in a single iteration is encapsulated in the
following theorem, which we first state informally and then give the formal statement.

Theorem 6.2 (Single iteration, informal). There exists an interactive protocol that takes as input
a claim of the form “cA,t(it) = vA,t and cB,t(it) = vB,t” and and behaves as follows:

� Completeness: If the claim is correct, and the prover is honest, then the protocol outputs a
correct claim of the form “cA,t+1(it+1) = vA,t+1 and cB,t+1(it+1) = vB,t+1”.

� Soundness: If the claim is incorrect (i.e., either cA,t(it) 6= vA,t or cB,t(it) 6= vB,t), then
even if the prover cheats, the protocol either rejects or outputs an incorrect claim of the form
“cA,t+1(it+1) = vA,t+1 and cB,t+1(it+1) = vB,t+1” with high probability.

We turn to state the formal version of the theorem, and to prove it.

Theorem 6.3 (Single iteration, formal). Let φsp, m, CA, and CB be defined as above, and for
every 1 ≤ t ≤ m − 1 let ψt, cA,t, and cB,t be defined as above with respect to φsp. There exists an
interactive protocol between an unbounded prover and a polynomial time verifier that satisfies the
following requirements:

� Input: The parties enter the protocol with a common input
(
it, vA,t, vB,t

)
, where it ∈ [`]t and

vA,t, vB,t ∈ F. Additional inputs are the numbers m, t, the generating matrices of CA, CB,
CM , and the quantified formula in (8).

� Output: At the end of the protocol, the verifier either rejects, or outputs a triplet
(
it+1, vA,t+1, vB,t+1

)
,

where it+1 ∈ [`]t+1 and vA,t+1, vB,t+1 ∈ F.

� Efficiency: The verifier runs in time that is polynomial in |F|, t, and `, and a honest prover
runs in time that is polynomial in the length of cA,t, cB,t, cM,t, which is `t. The protocol has
O(t) rounds, and the number of bits that are exchanged is O(t · ` · logF).

The output satisfies the following requirements:

� Completeness: If both cA,t
(
it
)

= vA,t and cB,t
(
it
)

= vB,t, then there exists a strategy for
the prover that makes the verifier output with probability 1 a triplet

(
it+1, vA,t+1, vB,t+1

)
such

that cA,t+1

(
it+1

)
= vA,t+1 and cB,t

(
it+1

)
= vB,t+1.

� Soundness: If either cA,t
(
it
)
6= vA,t or cB,t

(
it
)
6= vB,t, then for every strategy taken by the

prover, the probability that the verifier outputs a triplet
(
it+1, vA,t+1, vB,t+1

)
such that both

cA,t+1

(
it+1

)
= vA,t+1 and cB,t

(
it+1

)
= vB,t+1 is at most (t+ 1) · (1− δ) = t+1

2(m+1)2
.

21

In both cases, the probability is taken over the randomness of the verifier.

Proof. We begin by defining a codeword cM,t of (CM)⊗t as follows:

1. If Qt+1 = ∀, then for every j ∈ [`]t we define

cM,t(j) = cA,t+1(j, 0) · cB,t+1(j, 1)

2. If Qt+1 = ∃, then for every j ∈ [`]t we define

cM,t(j) = cA,t+1(j, 0) · cB,t+1(j, 0)

+cA,t+1(j, 1) · cB,t+1(j, 1)

−cA,t+1(j, 0) · cB,t+1(j, 1)

Observe that cM,t is consistent with the truth table of ψt, since if we restrict the above equalities
to the Boolean hypercube {0, 1}t then they become

cM,t(j) =

{
cA,t+1(j, 0) ∧ cB,t+1(j, 1) (If Qt+1 = ∀)
cA,t+1(j, 0) ∨ cB,t+1(j, 1) (If Qt+1 = ∃)

Furthermore, observe that cM,t is indeed a codeword of (CM)⊗t for the following reasons: For each
b ∈ {0, 1}, it holds that cA,t+1(·, b) and cB,t+1(·, b) are codewords of (CA)⊗t and (CB)⊗t respectively.
Furthermore, by Propositions 3.10 and 3.13 it holds that the multiplication of codewords of (CA)⊗t

and (CB)⊗t yields a codeword of (CM)⊗t. Finally, (CM)⊗t is a linear code, and therefore a sum of
codewords of (CM)⊗t yields a codeword of (CM)⊗t (this is only relevant for the case that Qt+1 = ∃).

The protocol starts with the parties invoking the sum-check protocol (Theorem 4.4) twice in
parallel, using the same randomness for both invocations: The first invocation is done with C = CA,
D = CM , c = cA,t, d = cM,t, i = it, and u = vA,t, and the second invocation is done with C = CB,
D = CM , c = cB,t, d = cM,t, i = it, u = vB,t. The two invocations result in two pairs (r, vM,t),(
r, v′M,t

)
, where r ∈ [`]t and vM,t, v

′
M,t ∈ F — note that r is common to both pairs since the verifier

uses the same randomness for both invocations (see the “Furthermore” part of Theorem 4.4). The
verifier checks that vM,t = v′M,t, and rejects otherwise.

Next, an honest prover should send functions fA, fB : [`] → F. If the prover is honest, the
functions fA, fB are supposed to satisfy fA(·) = cA,t+1(r, ·) and fB(·) = cB,t+1(r, ·). The verifier
checks that fA and fB are codewords of CA and CB respectively, and rejects otherwise. In addition,

1. If Qt+1 = ∀, the verifier checks that fA(0) · fB(1) = vM,t.

2. If Qt+1 = ∃, the verifier checks that fA(0) · fB(0) + fA(1) · fB(1)− fA(0) · fB(1) = vM,t.

If the above check fails, the verifier rejects. Finally, the verifier chooses a uniformly distributed
j ∈ [`], and outputs the triplet

(
it+1, vA,t+1, vB,t+1

)
, where vA,t+1 = fA(j), vB,t+1 = fB(j), and

it+1 is obtained by appending j to r.
The completeness of the protocol is easy to verify, and so is the “efficiency” part of the theorem.

We turn to prove the soundness of the protocol. Without loss of generality, suppose that cA,t
(
it
)
6=

vA,t and that Qi = ∀- the cases where cB,t
(
it
)
6= vB,t and Qi = ∃ can be handled similarly. By

the soundness part of Theorem 4.4, with probability at least 1− t · (1− δ) it holds that either the
verifier rejects or cM (r) 6= vM,t. We stress that the soundness of Theorem 4.4 is not compromised

22

when two copies of the protocol are run in parallel with the same randomness. Moreover, while
at first glance one might expect that running two copies of the protocol will cause to a loss of a
factor of 2 in the soundness due to a union bound argument, we note that this is not the case, since
both protocols must output the same result, so the prover has to cheat successfully on both copies
simultaneously in order to avoid detection by the verifier.

Now, if the verifier does not reject, then it must hold that fA(0) · fB(1) = vM,t, and therefore
fA(0) · fB(1) 6= cM (r). By the definition of cM , this implies that either fA(0) 6= cA,t+1(r, 0) or that
fB(1) 6= cB,t+1(r, 1) — without loss of generality, assume the first. In this case, fA is a codeword
of CA that differs from the codeword cA,t+1(r, ·). Thus, with probability at least δ, it holds that
fA(j) 6= cA,t+1(r, j), or in other words, that cA,t+1(it+1) 6= vA,t+1. By the union bound, it follows
that with probability at least 1− (t+ 1) · (1− δ), the verifier either rejects or cA,t+1(it+1) 6= vA,t+1,
as required. �

The full protocol. We finally turn to describe the full protocol for verifying the validity of
the Quantified Formula (8). At the beginning of the protocol, the prover sends two functions
gA, gB : [`] → F, that are supposed to be cA,1 and cB,1 respectively if the prover is honest. The
verifier checks that

1. gA(0) · gB(1) = 1 (if Q1 = ∀), or that

2. gA(0) · gB(0) + gA(1) · gB(1)− gA(0) · gB(1) = 1 (if Q1 = ∃),

and rejects otherwise. Then, the verifier chooses i1 ∈ [`] uniformly at random and sets vA,1 = gA(i1)
and vB,1 = gB(i1).

The parties then proceed in iterations for 1 ≤ t ≤ m−1, each iteration invoking the protocol of
Theorem 6.3. The parties finish the last iteration with a triplet

(
im, vA,m, vB,m

)
, such that if the

prover is honest it holds that cA,m(im) = vA,m and cB,m(im) = vB,m. Observe that cA,m and cB,m
are the encodings of the truth table of φsp via (CA)m and (CB)m respectively.

By Lemma 5.2, there exists a codeword cM,φsp of (CM)⊗m that is consistent with φsp, such
that for every j ∈ [`]m, the value cM,φsp(j) can be computed efficiently (note that cM,φsp is not
the same as the codeword cM,t in the proof of Theorem 6.3). The parties now engage in the sum-
check protocol (Theorem 4.4) twice: The first invocation is with C = CA, D = CM , c = cA,m,
d = cM,φsp , i = im, and u = vA,m, and the second invocation with C = CB, D = CM , c = cB,m,
d = cM,φsp , i = im, u = vB,m. The two invocations result in two pairs (r, vM), (r′, v′M), where
r, r′ ∈ [`]m and vM , v

′
M ∈ F. Finally, the verifier computes cM,φsp(r) and cM,φsp(r′) by itself,

accepts if cM,φsp(r) = vM and cM,φsp(r′) = v′M , and rejects otherwise.

Remark 6.4. The full protocol could be defined slightly differently. Specifically, one could replace
the first stage of the protocol with an additional invocation Theorem 6.3 for t = 0. This approach
has a formal problem, since ψ0 is not a function but rather a scalar, but the approach can still
be implemented by a suitable modification of the relevant definitions. We preferred the current
presentation.

Analysis. When given as input a quantified formula over n variables and m occurrences, the
foregoing protocol uses O(m2) rounds: In the first stage, the protocol invokes for each 1 ≤ t ≤ m−1
a sum-check protocol of t rounds (twice in parallel), and in the second stage a sum-check protocol
of m rounds is invoked (twice). This can be compared to the protocols of [Sha92, She92, GKR08],
which use O(n2) rounds. This difference between our protocol and the previous protocols results
from the fact that we work with the specialized formula (7) instead of the original formula (6).

23

The completeness of the protocol is easy to verify. As for the soundness, note that due to
considerations similar to those of the proof of Theorem 6.3, if the input quantified formula is not
valid then with probability at least δ it holds that either cA,1(i1) 6= vA,1 or that cB,1(i1) 6= vB,1.
By applying the soundness of Theorem 6.3 for the m − 1 iterations, we get that with probability
at least 1 − m · (m + 1) · (1− δ) it holds that either cA,m 6= vA,m or that cB,m 6= vB,m. Finally,
due to the soundness of the sum-check protocol (Theorem 4), we get that with probability at least
1−m · (1− δ) it holds that either cM,φ(r) 6= vM or that cM,φsp(r′) 6= v′M , in which case the verifier
rejects. By applying the union bound, it follows that if the input quantified formula is not valid,
then the verifier rejects with probability at least 1− (m+ 1)2 · (1− δ) ≥ 1

2 , as required.

Acknowledgement. The author is grateful to Oded Goldreich for very helpful discussions and
for comments that significantly improved the presentation of this work. The author would also like
to thank Scott Aaronson for asking about the relation of the work to the algebrization framework,
which led to the conclusions discussed in the remarks in Sections 1 and 5.2.1. The author is also
thankful to Karen Frilya Celine and Kareem Shehata for finding an error in an earlier version of
this work. Finally, the author would like to thank to Salil Vadhan and anonymous referees for
helpful comments that improved the presentation of this work.

References

[ABN+92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. Construction
of asymptotically good low rate error-correcting codes through pseudo-random graphs.
IEEE Transactions on Information Theory, 38:509–516, 1992.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity
theory. TOCT, 1(1), 2009.

[BK95] Manuel Blum and Sampath Kannan. Designing programs that check their work. J.
ACM, 42(1):269–291, 1995.

[BOGG+88] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan H̊astad, Joe Kilian, Silvio
Micali, and Phillip Rogaway. Everything provable is provable in zero-knowledge. In
CRYPTO, pages 37–56, 1988.

[GI05] Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes with
near-optimal rate. IEEE Transactions on Information Theory, 51(10):3393–3400,
2005.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computa-
tion: interactive proofs for muggles. In STOC, pages 113–122, 2008.

[IY87] Russell Impagliazzo and Moti Yung. Direct minimum-knowledge computations. In
CRYPTO, pages 40–51, 1987.

[Köt92] Rolf Kötter. A unified description of an error locating procedure for linear codes. In
Proceedings of the International Workshop on Algebraic and Combinatorial Coding
Theory, pages 113–117, 1992.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic meth-
ods for interactive proof systems. J. ACM, 39(4):859–868, 1992.

24

[MS78] Florence Jessie MacWilliams and Neil James Alexander Sloane. The Theory of Error-
Correcting Codes. North-holland Publishing Company, 2nd edition, 1978.

[Pel92] Ruud Pellikaan. On decoding by error location and dependent sets of error positions.
Discrete Mathematics, 106-107:369–381, 1992.

[PS94] Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs.
In STOC, pages 194–203, 1994.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992. Preliminary version in
FOCS 1990.

[She92] Alexander Shen. IP = PSPACE: Simplified proof. J. ACM, 39(4):878–880, 1992.

[Sud01] Madhu Sudan. Algorithmic introduction to coding theory (lecture notes), 2001. Avail-
able from http://theory.csail.mit.edu/~madhu/FT01/.

[Var57] R. R. Varshamov. Estimate of the number of signals in error correcting codes. Doklady
Akadamii Nauk, pages 739–741, 1957.

25
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

