
Exposition of the Muchnik-Positselsky Construction of a Prefix

Free Entropy Function that is not Complete under Truth-Table

Reductions

Eric Allender∗

Dept. of Computer Science
Rutgers University

New Brunswick, NJ 08855, USA
allender@cs.rutgers.edu

Luke Friedman∗

Dept. of Computer Science
Rutgers University

New Brunswick, NJ 08855, USA
lbfried@cs.rutgers.edu

William Gasarch
Dept. of Computer Science

University of Maryland
College Park, MD, 20742

gasarch@cs.umd.edu

August 25, 2010

1 Introduction

In this manuscript we give an exposition of a theorem by Muchnik and Positselsky (Theorem 2.7
of [MP02]). This exposition was developed in the course of writing an article [AFG10] that builds
on the techniques of Muchnik and Positselsky. Some of the material here is lifted verbatim from
[AFG10].

Definition 1.1 If f is a function then ov(f), the overgraph of f , is

{(x, y) : f(x) ≤ y}.

The following example gives a familiar overgraph, related to (plain) Kolmogorov complexity:

Example 1.2 Fix a Universal Turing machine U . Let C(x) be the size of the shortest s such that
U(s) = x. Note that

ov(C) = {(x, y) : there is an s, |s| ≤ y such that U(s) = x}.

Note that ov(C) is c.e.

This paper is concerned much more with prefix complexity.

Definition 1.3
∗Supported in part by NSF Grants CCF-0830133 and CCF-0832787.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 138 (2010)

1. A prefix Turing machine is a Turing machine M such that, for all x, if M(x) halts then, for
all y 6= λ, M(xy) does not halt. That is, the domain of M is a prefix code.

2. Let M be a prefix Turing machine. Define KM (x) to be the size of the shortest s such that
M(s) = x.

3. A universal prefix Turing machine is a prefix Turing machine U such that, for any prefix
Turing machine M , there is a constant c such that for all x,KU (x) ≤ KM (x) + c.

Example 1.4 Let M be a prefix Turing machine. Note that

ov(KM) = {(x, y) : there is an s, |s| ≤ y such that M(s) = x}.

Note that ov(KM) is c.e.

Definition 1.5 We select some universal prefix Turing machine U and call KU (x) the prefix com-
plexity of x. We will omit the subscript U . Note that the choice of U only affects K(x) by an
additive constant.

The following definition was used implicitly by Muchnik and Positselsky:

Definition 1.6 A Prefix Free Entropy Function f is a function from {0, 1}∗ to N such that

• ∑
x∈{0,1}∗ 2−f(x) ≤ 1 and

• ov(f) is c.e.

The canonical example of a Prefix Free Entropy Function is K(x). (K can be seen to be a prefix
free entropy function by appeal to the Kraft Inequality; see e.g. [LV08, Theorem 1.11.1].)

Note that if f is a Prefix Free Entropy Function, then 2−f is a special case of what Li and
Vitányi call a Lower Semicomputable Discrete Semimeasure [LV08, Definition 4.2.2]. We recall the
Coding Theorem (see [LV08, Theorem 4.3.3]), the proof of which yields the following important
relationship between prefix free entropy functions and prefix complexity.

Theorem 1.7 Let f be a prefix free entropy function. Given a machine computing f , one can
construct a prefix machine M such that f(x) = KM (x)− 1.

Proof: The Coding Theorem, as stated and proved in [LV08, Theorem 4.3.3], gives only the
inequality f(x) ≤ KM (x) − 3, where 2−f is a lower semicomputable semimeasure. However, since
we are dealing with the special case where f is a prefix free entropy function, we can dispense
with some of the technicalities in the proof of [LV08, Theorem 4.3.3]. In particular (using the
terminology utilized by Li and Vitányi in their proof) we use intervals Ix, and observe that each
Ix contains a binary interval having length (exactly) half the length of Ix. Modifying the proof of
[LV08, Lemma 4.3.3], to give the label of this interval (instead of the label of the entire interval in
the case where Ix is itself a binary interval) yields the desired prefix machine.

We will make use of the following easy propositions.

Proposition 1.8 Let U and U ′ be prefix Turing machines. Then there is a prefix machine U ′′ such
that KU ′′(x) = min(KU (x),KU ′(x)) + 1.

2

Proof: The domain of U ′′ is {1x : x is in the domain of U} ∪ {0x : x is in the domain of U ′}.

Proposition 1.9 Given any machine U and constant c, there is a machine U ′ such that KU (x) +
c = KU ′(x)

Proof: The domain of U ′ is {0cx : x is in the domain of U}.

Notation 1.10 Let γ be a Turing machine or any process that works in steps.

• γ(y)↓ means that γ(y) halts.

• γ(y)↑ means that γ(y) does not halt.

• γs(y) is the result of running γ(y) for s steps.

• γs(y)↓ means that γ(y) halts within s steps.

• γs(y)↑ means that γ(y) has not halted within s steps. Note that we can determine this.

We will consider γ as a machine that (possibly) computes a truth-table reduction. We will
interpret the output of γ to be an encoding of a Boolean circuit, with inputs labeled by atoms of
the form “(x, r) ∈ ov(H)”.

2 Main Theorem

Theorem 2.1 There exists a prefix free entropy function H and a c.e. set A such that A 6≤tt ov(H).
The function H is also KU ′ for some universal prefix Turing machine.

Proof:
We will first give the intuition before presenting the formal construction and proof.
Let γ0, γ1, . . . be a list of all tt-reductions. Actually this is a list of Turing machines using the

convention stated in Notation 1.10.
Recall that K(x) is the normal prefix complexity of x. Using K we will construct a c.e. set A

and a function F , to form a function H : {0, 1}∗ → N with the following properties.

1. F is a total function and ov(F) is c.e.

2. H(x) = min(K(x) + 4, F (x) + 2).

3.
∑

x∈{0,1}∗ 2−H(x) ≤ 1
4 .

4. A 6≤tt ov(H). This is broken up into an infinite number of requirements:

Re : γe is not a tt-reduction of A to ov(H).

Claim 1: Given the above properties, (1) H = KU ′ for some universal prefix machine U ′, and
A 6≤tt ov(H) (this is just property 4).

3

Proof: By Property 3 we have that
∑

x∈{0,1}∗ 2−F (x)+2 ≤ 1
4 . Therefore

∑
x∈{0,1}∗ 2−F (x) ≤ 1,

which combined with Property 1 means that F is a prefix free entropy function. By Proposition
1.7 we then have that F + 1 is KM for some prefix machine M . Since K = KU for some universal
prefix machine U , by Proposition 1.9 we have that K + 3 is KU ′′ for some universal prefix machine
U ′′. Thus, by Lemma 1.8, H(x) = min(K(x) + 4, F (x) + 2) = min(K(x) + 3, F (x) + 1) + 1 is KU ′

for some universal prefix machine U ′.

Our control over H comes from our freedom in constructing the function F . The construction
will occur in stages – at any given time in the construction there will be a “current” version of F
which we will denote by F ∗. Similarly, there will be a “current” version of K denoted by K∗, which
represents our knowledge of K at a given stage. At all times, H∗, our “current” version of H, will
be defined as min(K∗(x) + 4, F ∗(x) + 2).

Originally we set F ∗(x) = 2|x| + 2 and K∗ as the empty function. At each stage of the
construction we will assume that a new element (x, y) is enumerated into ov(K) according to some
fixed enumeration of ov(K). (This is possible since ov(K) is c.e.) When this occurs K∗ is updated
by setting K∗(x) = min(K∗(x), y). (Since K∗ is a partial function, it is possible that K∗(x) was
previously undefined. In this case we set K∗(x) = y.) Similarly, during the construction at times
we will modify F by enumerating elements into ov(F). Whenever we enumerate an element (x, y)
into ov(F), F ∗ is updated by setting F ∗(x) = min(F ∗(x), y).

2.1 How to Satisfy a Particular Requirement

We discuss how to satisfy a particular requirement. Let e ∈ N. Assume we have a witness x picked
out for the purpose of satisfying Re. (During the construction a particular witness x will be used
at most once in this way). If γe(x)↑ then Re is satisfied, though we may never know it. This will
lead to taking no action.

Assume that at some stage s we see that γe,s(x)↓. By Notation 1.10 γe(x) is an encoding
of a circuit λe,x. The output of the circuit λe,x is determined by the truth values of the atoms
“z ∈ ov(H)” that label the inputs to the circuit. Define λe,x[H ′] to be the truth value obtained by
taking the circuit λe,x and for each atom “(z, r) ∈ ov(H)” using the truth value of “(z, r) ∈ ov(H ′)
in its place. In order to satisfy the requirement Re we would like to put x in A iff λe,x[H] says
NO. The problem is that at a given stage s we can “guess” at the value of λe,x[H] by computing
λe,x[H∗], but in general we cannot know the value of λe,x[H] for sure, because as H∗ evolves the
value of λe,x[H∗] may change. The main difficulty is that the function K is out of our control and
determining whether (z, r) ∈ ov(K) is in general an uncomputable task.

We do have some influence over the situation, though, due to our control of F . Indeed, for
any atom “(z, r) ∈ ov(H)”, we can ensure that the truth value of the atom is 1 by enumerating
(z, r−2) into ov(F). (Note that for all x, the value of H∗(x) can only decrease over time). We have
to be careful about making these types of changes though; if we are too liberal in modifying F we
may violate the condition

∑
x∈{0,1}∗ 2−H(x) ≤ 1/4 in the process. Thus the construction becomes a

balancing act – at stage s we will make a decision as to whether to put x in A or not, and from then
on try to use F to ensure that λe,x[H∗] 6= A(x) while at the same time maintaining the invariant
that

∑
x∈{0,1}∗ 2−H∗(x) ≤ 1/4 . (In particular, if Fs is the function F ∗ at the beginning of stage s,

for all x we will not want lims→∞ Fs(x) to be very much smaller than K(x)).
As part of our solution, for each Re we will find a suitable witness x and set up a game Ge,x

played between us (making moves by enumerating elements into ov(F)), and K, who makes moves
by enumerating elements into ov(K). (Even though elements are obliviously enumerated into ov(K)
according to some fixed enumeration we will treat K as if it is a willful adversary). We will always

4

make our choice about whether x is placed in A or not in order to assure that we have a winning
strategy: as long as K continues to make legal moves we can respond with changes to F (our own
legal moves) that both assure that Re is satisfied and that

∑
x∈{0,1}∗ 2−H∗(x) ≤ 1/4.

It is possible that K will cheat by enumerating elements into ov(K) in such a way that it
plays an illegal move. In this case we will simply destroy the game Ge,x and start all over again
with a new game Ge,x′, using a different witness x′. However we will be able to show that if K
cheats infinitely often on games associated with a particular requirement Re, then

∑
x∈{0,1}∗ 2−K(x)

diverges; therefore it can only happen finitely often.
The requirements R1, R2, R3, . . . are listed in priority ordering. If during stage s a move is

played on a game Ge,x, we say that Re is “acting”. In this case for all e < e′ ≤ s, if Ge′,y is the
game associated with Re′ currently being played, we destroy this game and start a new game Ge′,y′

with some new witness y′. When this happens we say that each of the Re′ has been “injured” by
Re. The reason this works in the end is that at some point R1, R2, . . . , Re−1 have stopped acting,
so Re will no longer ever be injured by some higher priority requirement.

2.2 Description of the Game

Before we present the other details of the formal construction, let us describe one of the games Ge,x

in more depth and provide some analysis of the game. Let the inputs to the Boolean circuit λe,x

(encoded by γe(x)) be labeled by the atoms {(z1, r1), . . . , (zk, rk)}. Let Xe = {z1, . . . , zk}. Note
that the queries in this reduction are of the form: “Is H(zi) ≤ ri?”. If H∗(zi) ≤ ri then we already
know H(zi) ≤ ri, so we can replace that input to the circuit with the value TRUE and simplify the
circuit accordingly. Renumber the z’s, rename k to again be the number of questions, and rename
Xe to be the set of all z’s being asked about. When we are done we have {(z1, r1), . . . , (zk, rk)}
and we know that (∀zi ∈ Xe)[H∗(zi) > ri].

We make one more change to Xe. If there exists an element zi such that zi ∈ Xe and zi ∈ Xe′

for some e′ < e, then changing H∗ on the value zi during the game Ge,x could affect the game
associated with the requirement Re′ , which would upset our priority ordering. Hence we will take

Xe = Xe −
⋃

e′<e

Xe′ .

This will ensure that Re cannot injure any Re′ with e′ < e.
Let H∗

e,x be the function H∗ when the game Ge,x is first constructed. Let ε = 2−e−ie−5. (How
ie is determined will be explained later). The game Ge,x is played on a labeled DAG. The label of
each node of the DAG has the following two parts:

1. A function h that maps Xe to N. The function h provides conjectured values for H restricted
to Xe. The function h will be consistent with H∗

e,x in that (∀i)[h(zi) ≤ H∗
e,x(zi)].

2. A truth value VAL, which is the value of λe,x assuming that (∀z ∈ Xe)[H(z) = h(z)]. Note
that this will be either YES or NO indicating that either, under assumption (∀z ∈ Xe)[H(z) =
h(z)], λe,x thinks x ∈ A or thinks x /∈ A.

There is a separate node in the DAG for every possible such function h.
We now describe the start node and how to determine the edges of the DAG.

1. There is a node (h,VAL) where h = H∗
e,x restricted to Xe. This is the start node and has

indegree 0.

5

2. There is an edge from (h,VAL) to (h′,VAL′) if for all zi ∈ Xe, h(zi) ≥ h′(zi) (so it is possible
that H∗ could at some point evolve from H∗

e,x to h, and then at a later point evolve from h
to h′.)

The game Ge,x is played between two players who we call FIRST and SECOND which indicates
who goes first. Each player has a score, which originally is zero, and represents how much the
player has been penalized so far in the game. (In other words a high score is bad).

1. The game starts with a token placed on the start node.

2. FIRST picks a value V ∈ {Y ES,NO}.
3. FIRST goes first after which the players alternate moves.

4. On a given turn a player can either leave the token where it is or move the token to a new
node in the DAG. Suppose a player moves the token from a node t to a node t′, where h is
the function labeling t and h′ is the function labeling t′. In this case we add

∑
zi∈Xe

2−h′(zi)−
2−h(zi) to the player’s score. A player can legally move the token from node t to t′ if

(a) There is an edge from t to t′ in the game DAG.

(b) The score of the player after making the move does not exceed ε.

5. FIRST wins if the token ends up on a node with VAL = V . SECOND wins otherwise.

By an easy strategy stealing argument FIRST has a winning strategy.
During the actual construction the games will be played between us (the construction) trying to

make the computation go one way, and K (which we do not control) trying to make it go (perhaps)
another way. We will be FIRST and hence have a winning strategy. We will effect our moves by
enumerating elements into ov(F), which changes F ∗ and hence H∗. (To move the token to a node
labeled with the function h, we modify H∗ so that h equals H∗ restricted to the set Xe) The K
moves will occur when a new element is enumerated into ov(K) at the beginning of each stage,
which changes K∗ and hence H∗. (In this case K is moving the token to the node in the game
DAG labeled by the new H∗).

The key is that the players’ scores measure how much the sum
∑

x∈{0,1}∗ 2−H∗(x) has gone up,
which we bound by not allowing a player’s score to exceed ε. (Of course K is oblivious to the rules
of the game and will at times cheat – we take this into account as part of our analysis.) One final
note: it is possible that K will simply stop playing a game in the middle and never make another
move. This will not matter to us in the construction; what is important is that we have a winning
strategy and if K does move we always have a winning response.

2.3 Formal Construction

Stage 0:

• Let F ∗ initially be defined as F ∗(x) = 2|x|+ 2.

• Let K be the standard prefix complexity function K, and K∗ initially be the empty function.

• At all times throughout the construction, we have that H∗(x) = min(K∗(x) + 4, F ∗(x) + 2).
(In the case where K∗(x) is undefined, let H∗(x) = F ∗(x) + 2). We will denote by Hs the
function H∗ as it is at the beginning of stage s.

6

• For all e, set ie = 0. In the future ie will be the number of times Re has been injured by the
requirements Re′ , 1 ≤ e′ ≤ e− 1.

• For all e, je,0 = 0. In the future je,s will be the number of times Re has been injured by K
by stage s. Unless otherwise mentioned we will assume that je,s+1 = je,s. The fact that je,s

is the number of times Re has been injured by K at stage s will not be used in the proof. We
mention only as a tool of exposition.

Stage s (for s ≥ 1):
Let (x′, y′) be the sth element in the fixed enumeration of ov(K). Update K∗ by setting

K∗(x′) = min(K∗(x′), y′). (This automatically updates H∗ as well)
(**) For 1 ≤ e ≤ s we consider requirement Re.

Case 1: Re is not active. We set the witness to be (e, ie,s, je,s) which we denote (e, i, j). If
γe,s(e, i, j)↑ then go to (**) and process the next e. If γe,s(e, i, j)↓ then Activate Re and do the
following:

1. Let x = (e, i, j) for notation purposes only. (If other requirements are using a variable named
x they are not affected by this.)

2. Let γe,x(e, i, j) = λe,x.

3. Set up the game Ge,x associated with λe,x as described in the last section.

4. Determine FIRST’s winning strategy and store it.

5. If FIRST’s winning strategy involves trying to get to a node with VAL = Y ES then do not
put x into A (no other requirement has an interest in x so we know that x will never be put
into A). If FIRST’s winning strategy involves trying to get to a node with VAL = NO then
do put x into A (no other requirement has an interest in x hence this action will not injure
any other requirement).

Case 2: Re is active. Hence there is a witness x = (e, i, j) and a game Ge,x in progress for which
FIRST (i.e., the construction) has a winning strategy. There are a few sub-cases to consider.

1. K has not changed on Xe at all since the last stage. We do nothing.

2. K on Xe has changed so much that the move K plays causes his score to exceed ε (i.e. K
“cheats”). Deactivate the requirement and set je,s+1 = je,s + 1 (This means that the next
attempt to satisfy Re will use witness (e, i, j + 1). Note that i does not change.)

3. It is our turn in Ge,x, either because the token is on the start node of the DAG or because K
on Xe has changed in a way that his score does not exceed ε, so he has played a legal move.

In this case we play the move dictated by our winning strategy (which we have stored). This
may be to do nothing or it may involve moving the token to a new node, in which case we
change H∗ accordingly by enumerating elements into ov(F).

If either case (2) or (3) occurs, we say that “Re is acting” in which case for all s ≥ e′ ≥ e+1, we
deactivate Re′ and set ie′,s+1 to ie′,s + 1 (This means that the next attempt to satisfy requirement
Re′ will use witness (e′, i + 1, j).)

If Re acts then proceed to the next stage. Otherwise return to (**) and process the next e.

7

END OF CONSTRUCTION

Claim 2: For all e, each Re acts at most finitely often and is satisfied.
Proof of Claim 2:

We prove this by induction on e. Assume that the claim is true for all e′ < e. We show that
the claim holds for e. By the inductive hypothesis there exists a stage s′ such that, for all s ≥ s′,
for all e′ < e, Re′ does not act at stage s.

Let Ge,x be the game associated with Re at stage s. If Ge,x is never destroyed in a later stage,
then (by construction) Re will be satisfied (since for H = lims→∞Hs, our winning strategy ensures
that γe,x[H] evaluates to Y ES if and only if x is not in A).

Suppose that Ge,x is destroyed at some point. Then, since by the inductive hypothesis Re

cannot be injured by higher priority requirements, by the rules of the construction it must be that
the “player” K cheats on the game Ge,x. In doing this, K is adding at least ε = 2−e−ie−5 to∑

x∈Xe
2−K∗(x) and hence to

∑
x∈{0,1}∗ 2−K∗(x).

Once K cheats and destroys the game Ge,x, a new witness x′ is found and a new game Ge,x′ is
started during the next stage. Once again if this game is never destroyed then Re will be satisfied.
If this game is also later destroyed, this means that another ε = 2−e−ie−5 is added to

∑
x∈X 2−K∗(x).

The crucial observation is that since ie did not change, this is the same ε as before.
This process keeps repeating. If the games associated with Re continue to be destroyed indef-

initely, then
∑

x∈{0,1}∗ 2−K(x) ≥ ε + ε + · · · so it diverges. This contradicts K being a prefix free
entropy function.

Hence eventually there is some game Ge,x′′ that is played throughout all the rest of the stages.
Since the game DAG for Ge,x′′ is finite, this means that eventually Re stops acting and is satisfied.
End of Proof of Claim 2

Claim 3:
∑

x∈{0,1}∗ 2−H(x) ≤ 1
4 .

Proof of Claim 3:
We have that H = lims→∞Hs, and thus

∑

x∈{0,1}∗
2−H(x) =

∑

x∈{0,1}∗
2−H1(x) +

∑

s≥1

∑

x∈{0,1}∗
(2Hs+1(x) − 2Hs(x)).

That is, we can bound the sum by bounding H1 and by bounding the changes that occur to H over
the lifetime of the construction (some of which are made by K, and some by F).

Originally H∗(x) = F ∗(x) + 2 = 2|x| + 4 for all x, so
∑

x∈{0,1}∗ 2−H1(x) = 1
16 .

The total contribution that K can make to
∑

x∈{0,1}∗ 2−H(x) is bounded by
∑

x∈{0,1}∗ 2−K(x)+4.
Since K is a prefix free entropy function, this contribution is at most 1/16.

Let us now consider the total contribution that F makes to
∑

x∈{0,1}∗ 2−H(x) due to movements
by F on games on which K eventually cheats. On each of these games F contributes less to∑

x∈{0,1}∗ 2−H(x) than K, so from the above we can say that the total contribution that F makes
to

∑
x∈{0,1}∗ 2−H(x) while playing these games is at most 1/16.

Finally, let us consider the total contribution that F makes to
∑

x∈{0,1}∗ 2−H(x) due to move-
ments by F on games that are never destroyed, or are destroyed by higher priority requirements.
Consider such games associated with a particular requirement Re. During the first such game
associated with Re, ie = 0, so F can change at most ε = 2−e−ie−5 = 2−e−5. On the second such
game associated with Re, ie = 1, so F can change at most ε = 2−e−6. Generalizing, we see that

8

the total contribution that F makes to
∑

x∈{0,1}∗ 2−H(x) on such games associated with Re is

∞∑

i=5

2−e−i = 2−e
∞∑

i=5

2−i = 2−e−4

Hence, the total contribution that F makes to
∑

x∈{0,1}∗ 2−H(x) on games that are never destroyed,
or are destroyed by higher priority requirements is at most

∑∞
e=1 2−e−4 = 1

16 .
Putting all this information together we have that

∑

x∈{0,1}∗
2−H(x) ≤ 1

16
+

1
16

+
1
16

+
1
16

≤ 1
4

End of Proof of Claim 3

References

[AFG10] E. Allender, L. Friedman, and W. Gasarch. Limits on the computational power of random
strings. In preparation, see http://ftp.cs.rutgers.edu/pub/allender/limitsk.pdf, 2010.

[LV08] M. Li and P. Vitanyi. Introduction to Kolmogorov Complexity and its Applications.
Springer, third edition, 2008.

[MP02] A. A. Muchnik and S. Positselsky. Kolmogorov entropy in the context of computability
theory. Theoretical Computer Science, 271:15–35, 2002.

9

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

